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Extending Digital Backpropagation to Account for Noise

Naga V. Irukulapati(1), Henk Wymeersch(1), Pontus Johannisson(2), and Erik Agrell(1)

(1) Department of Signals and Systems, (2) Department of Microtechnology and Nanoscience,
Chalmers University of Technology, Gothenburg, SE-41296, Sweden. B vnaga@chalmers.se

Abstract We propose a maximum a posteriori-based scheme that extends digital backpropagation (DBP)
by accounting for the nonlinear signal-noise interaction. With periodic dispersion compensation we find up to
20% reach improvement over DBP. For uncompensated links DBP is close to optimal.

Introduction

The propagation of light in an optical fiber can be

modeled by the Manakov model with loss included.

The Manakov model does not generally have an ana-

lytic solution and numerical approaches, such as the

split-step Fourier method (SSFM), are often used to

describe the signal propagation in dispersive and non-

linear media1. Since a fiber is a lossy medium, peri-

odic amplification of the signal is needed, which can

be accounted for in the SSFM. However, amplifiers

also add noise and the signal-noise interaction due

to nonlinear effects must be modeled statistically.

Digital backpropagation (DBP), which is often

used as a benchmark algorithm, harnesses the in-

vertible nature of the linear and nonlinear impair-

ments to derive a digital receiver that inverts the

SSFM2,3. Variations include weighted DBP4, per-

turbation DBP5, and filtered DBP6, to name a

few. However, all DBP variations fail to capture

the statistical effects of the channel, in particu-

lar the noise introduced in the amplifiers, and are

thus suboptimal. Receivers can also be designed

from Bayesian detection theory. In particular, the

maximum a posteriori (MAP) receiver is provably

optimal in the sense of minimizing the probabil-

ity of error7. MAP-based detectors for the fiber-

optical channels include a look-up-table detector

that mitigates data pattern-dependent nonlinear im-

pairments8,9, a low-complexity Viterbi detector that

complements DBP10, and an optimal detector for

discrete memoryless channels11.
In this paper, we extend the MAP-based detector

for the single-channel11 to account for dispersive ef-
fects. The proposed detector is based on the MAP
criterion and compensates not only linear and nonlin-
ear effects but also takes the noise from the amplifiers
into account. As a consequence, nonlinear signal-
noise interactions (NSNI) can be handled using the
proposed detector. This allows us to (i) get closer
to the fundamental performance limits of the fiber-
optical channel; and (ii) identify regimes where DBP
is close to optimal. Our proposed near-MAP detector
turns out to be a generalization of DBP, and hence
we call the method stochastic digital backpropaga-
tion (SDBP).
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Fig. 1: (a) A fiber link with N spans where each span

consists of an SMF, an FBG (for the compensated case),

and an EDFA. (b) Approximate model for SMF using

SSFM with nonlinear and linear segments. (c) EDFA

with gain and noise.

System Model

Notation: The vector representation corresponding
to the dual-polarization continuous-time waveform
q(t) will be denoted by q, and vector representation
of a collection of waveforms by Q.

The system model is shown in Fig. 1a, and com-
prises a dual-polarization transmitter, a pulse shaper,
and N spans of fiber, each consisting of a standard
single-mode fiber (SMF) followed by an optional fiber
Bragg grating (FBG) for the case of inline disper-
sion compensation and an erbium-doped fiber am-
plifier (EDFA). In Fig. 1b, we show the SSFM view
of the system, where each SMF is approximated by
the concatenation of M nonlinear memoryless oper-
ators (Kerr nonlinearity) and linear operators (chro-
matic dispersion). Fig. 1c shows the operation of the
amplifier, consisting of gain and addition of white
Gaussian noise (AWGN) with power spectral den-
sity (PSD) N0/2 per real dimension. A sequence
of K transmitted complex symbols per polarization
is denoted by s ∈Ω(2K) (for a complex constellation
Ω), the transmitted waveform by x, and the received
waveform by r. In Fig. 1, the channel with SMF,
FBG (for compensated links only), and EDFA will be
called a forward system. When the received wave-
form is propagated through the inverse of the blocks
in the forward system, we refer to it as a backward
system.
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Fig. 2: A simplified system model with unknown symbol sequence s passing through different blocks of the channel

with N = 1 spans, and received waveform r. The top row depicts the waveforms corresponding to the hidden states

x,y,z as well as the received waveform r. In the bottom row, collections of waveforms representing the uncertainty of

the hidden states are shown in gray and the DBP waveform is shown in thick blue lines.

Proposed MAP-based Detector

Formally, the MAP detector calculates ŝ =
argmaxs p(s|r), where p(s|r) is the posterior distri-
bution of s. The posterior can be interpreted as a
marginal distribution of p(s,hidden states|r), where
the hidden states refer to the unobservable wave-
forms between the transmitter and the receiver (e.g.,
the waveform after an arbitrarily chosen SMF or FBG
or EDFA). Fig. 2 is a simplified case of Fig. 1 for
N = 1, where we have the transmitted data s, hidden
states x,y,z, and the received waveform r. The top
row of Fig. 2 depicts the hidden waveforms as well
as the received waveform r in the forward system.

We propose an algorithm based on factor graphs
and the sum-product algorithm7,12 to approximate
p(s|r) and thus perform near-MAP detection. The
main idea is to represent the uncertainty in the hid-
den states at each stage in the forward system, start-
ing from the received waveform r, which has no un-
certainty, to the first hidden state (z in Fig. 2), all
the way to the transmitted sequence s. Uncertainty
is captured using a so-called particle representation
though a collection of Np sampled waveforms, as
shown in gray color in the bottom row of Fig. 2.
These particles are passed through the inverse of
each of the blocks in the forward system. For ex-
ample (see Fig. 2), we start with the known received
waveform r (which exhibits no uncertainty and thus
has particle representation R= r) and pass it through
the inverse of the EDFA block to get Z, a collection
of Np waveforms, which describes the uncertainty
regarding the waveform z. Since the EDFA block
adds AWGN noise with PSD N0/2 per dimension,
the waveforms in Z are generated from r by adding
suitable AWGN processes. We then move on to the
next block and undo the effects of the FBG to get the
uncertainty of the hidden waveform y represented by
Y. The particles of X are then found by passing the
particles in Y through the inverse SSFM description
of the SMF. It should be noted that even though the
SMF block in Fig. 2 is depicted as one block, it con-
tains hidden states corresponding to the SMF inter-
nal states as in Fig. 1b, and thus the particles should
be passed through each of these internal sub-blocks.
Finally, we apply a filter matched to the pulse shape

and a symbol-rate sampler. We end up with parti-
cle clouds (Np particles for each complex dimension)
corresponding to each symbol vector sk ∈Ω2, serving
as a representation of p(r|sk) for k = 1,2, ...,K. This
likelihood function is approximated with a bivariate
complex Gaussian distribution, which is then evalu-
ated for every possible value of sk and multiplied with
p(sk). This allows us to make a near-MAP decision
on sk as ŝk = argmaxs p(sk|r) = argmaxs p(sk)p(r|sk).

Connection to DBP
In DBP, once the received waveform r is available, it
is passed through the inverse of each of the blocks
used in the forward system and the most likely sym-
bol is selected based on a minimum Euclidean dis-
tance criterion. The DBP waveforms are shown as
thick blue lines in the bottom row of Fig. 2. We note
that the DBP waveform corresponds to a special case
of SDBP where (i) Np = 1 and (ii) the noise in the
forward system is ignored.

Simulations and Discussion
We applied DBP and the proposed detector with
Np = 500 to a system with SMF with dispersion
coefficient DSMF = 16 ps/(nm km), Kerr nonlin-
earity parameter γSMF = 1.3 W−1km−1, attenuation
αSMF = 0.2 dB/km, and span length LSMF = 80 km.
For the case with inline dispersion compensation,
we used an FBG without Kerr nonlinearity, insertion
loss of 3 dB, and perfect dispersion compensation of
the preceding SMF. The EDFA noise figure is 5 dB.
We used a root raised cosine pulse in time domain
with a roll-off factor of 0.25 and truncation length
of 16 symbols, and dual polarization 16-QAM. The
receiver is assumed to have perfect knowledge of the
polarization state, as well as the carrier phase and
the symbol timing. ASE noise with bandwidth equal
to the used sampling frequency, which is twice the
signal bandwidth, is added in each span. The symbol
error rate (SER) is used as a performance metric.

The SSFM is simulated with a segment length13 of
∆ = (εLNL2

D)
1/3, where ε = 10−4, LN = 1/(γSMFP) is

the nonlinear length, LD = T 2/|β2| is the dispersion
length, P is the input power to each fiber span, T
is the symbol duration, and β2 is the group-velocity
dispersion parameter of the SMF. The number of
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Fig. 3: SER vs. input power for the FBG link.
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Fig. 4: SER vs. input power for the uncompensated link.

segments per span M = dLSMF/∆e, where dpe is the
smallest integer not less than p. We used the same
segment length in the backward and forward system.

Fig. 3 shows the SER as a function of the in-
put power for two different symbol rates (14 and 28
Gbaud) for a link with FBG dispersion management
(called FBG link from here on) for DBP and SDBP.
We observe that SDBP performs significantly better
than DBP for both symbol rates. Using SDBP, a dif-
ferent optimal power is obtained and also for a given
input power, lower SER is obtained. Using SDBP,
the system is more tolerant to nonlinear effects and
therefore we can use higher launch power. In Fig. 4,
we show the SER for a system without inline dis-
persion compensation. We see that for both sym-
bol rates, SDBP outperforms DBP to some extent,
and the gains are smaller for the higher symbol rate.
This indicates that DBP is close to optimal for high-
rate systems without inline dispersion compensation.
The results presented in this paper corroborate the
result14 by quantifying the gains in handling NSNI
for both dispersion compensated and uncompensated
links. In Fig. 5, we compare the SER against the
system reach. Each point in this plot is for an op-
timal input power, i.e., for different configurations,
the input power corresponding to the lowest SER is
selected. For 14 Gbaud, we see that there is around
20% increase in the system reach for SDBP com-
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Fig. 5: SER vs. system reach for DBP (dashed, blue)

and SDBP (solid, black) for the FBG link.

pared to DBP. However, this gain decreases slightly
as we go to higher symbol rates (around 18% for 28
Gbaud, and 13% for 56 Gbaud).

Gains of SDBP can be explained as follows. The
larger the deviation of the received particle clouds
from a circular symmetric Gaussian, the higher are
the expected gains in SDBP compared to DBP. We
expect this deviation (and thus the gain) to decrease
with increasing symbol rates, which can also be seen
in Fig. 3. For an inline dispersion compensated link,
we observed that the particle clouds are less circu-
larly Gaussian and hence SDBP performs better than
DBP. For an uncompensated link, the particle clouds
tend to be more circularly Gaussian, which can be the
reason why SDBP performs similar to DBP.

Conclusions
We showed that by taking signal statistics of the
end-to-end fiber channel into account, a near-MAP
detector can outperform DBP. Our proposed SDBP
algorithm shows up to 20% increase in the system
reach compared to DBP for an FBG link. Similar
performance for SDBP and DBP for uncompensated
links suggests that DBP is then close to optimal.
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