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We introduce a nonperturbative, first-principles numerical approach for solving time-dependent

problems in quantum field theory, using light-front quantization. As a first application we consider

QED in a strong background field, and the process of nonlinear Compton scattering in which an electron is

excited by the background and emits a photon. We track the evolution of the quantum state as a function of

time. Observables, such as the invariant mass of the electron-photon pair, are first checked against results

from perturbation theory, for suitable parameters. We then proceed to a test case in the strong background

field regime and discuss the various nonperturbative effects revealed by the approach.
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I. INTRODUCTION

Treating quantum field theory in the nonperturbative
regime remains a significant challenge. ‘‘Basis light-front
quantization’’ (BLFQ) [1], which adopts light-front
quantization and the Hamiltonian formalism, offers a
first-principles approach to nonperturbative quantum field
theory (QFT) [1,2]. Diagonalization of the full Hamiltonian
of the quantum field theory yields the physical eigenvalues
and eigenvectors of the mass eigenstates. This approach
offers new insights into bound state properties and scattering
processes [3] as well as opportunities to address many
outstanding puzzles in nuclear and particle physics [4,5].

The BLFQ approach is real time (as opposed to imagi-
nary time, as normally used in lattice QFT; see though [6])
and therefore naturally applicable to time-dependent prob-
lems. There is currently much interest in gauge theories
with an explicit time dependence introduced by a back-
ground field, in particular QED in ultraintense laser fields
[7,8] and QCD in strong magnetic fields [9–12]. In both
cases, the greatest interest lies in the case for which the
fields are strong enough to require a nonperturbative treat-
ment and this motivates the approach we present here.

In this paper we introduce time-dependent basis light-
front quantization (tBLFQ), which is an extension of
BLFQ to time-dependent problems in quantum field the-
ory. In this approach, BLFQ provides the eigenstates of the
time-independent part of the Hamiltonian. We then solve
for the time evolution of a chosen initial state under the
influence of an applied background field, which is intro-
duced through explicitly time-dependent interaction terms
in the Hamiltonian. Although we treat a specific applica-
tion in the present work, the method is more generally
applicable to time evolution even in the absence of external

fields where one is simply following the evolution of a
chosen nonstationary state of the system.
In this paper we will apply tBLFQ to ‘‘strong field QED,’’

in which the background field models the high-intensity
fields of modern laser systems. Such light sources now
routinely reach intensities of 1022 W=cm2, and there is
ongoing research into using intense lasers to investigate
previously unmeasured effects such as vacuum birefringence
[13,14] and Schwinger pair production [15]. Within this
research field, the use of large-scale numerical codes, based
on kinetic models, is becoming increasingly popular [16–19].
The two main advantages of such approaches are that they
are real time, and that huge numbers of particles can be
treated via particle-in-cell (PIC) simulations. However, there
exists no first-principles derivation of the required kinetic
equations from QED. Consequently, this approach is based
on a forced welding of classical and quantum theories, in
which particles and photons are treated as classical ballistic
objects, and QED cross sections are added by hand to model
instantaneous collisions. This leads to problems with double
counting and the inclusion of higher-order processes.
Here, we consider an alternative approach. We restrict

ourselves to low numbers of particles, but we perform a
fully quantum and real-time calculation within QED.
Specifically, we will study ‘‘nonlinear Compton scatter-
ing’’ (nCs), in which an electron is excited by a back-
ground field and emits a photon [20,21]. This is one of
the simplest background field processes, as there are no
thresholds to overcome as in, say, pair creation. We note
that light-front quantization is the natural setting for this
investigation [22,23], since lasers have inherently light-
front properties: all photons propagate on the light front.
This paper is organized as follows. We provide the

background to our approach in Sec. II, followed by details
of the BLFQ method in Sec. III. We then introduce tBLFQ
in Sec. IVand provide illustrative numerical results for our
first application to nonlinear Compton scattering in Sec. V.
We present our conclusions and outlook in Sec. VI. The
appendixes contain a number of useful details.
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II. BACKGROUND

Our approach is based on light-front quantization, and
on a previously developed method called BLFQ [1,2].
We begin here with a brief review of relevant aspects of
the light-front formalism [3,24], and an outline, in terms of
textbook methods, of the calculation which we wish to
perform.

Physical processes in light-front dynamics are described
in terms of light-front coordinates (xþ, x1, x2, x�),
in which xþ ¼ x0 þ x3 plays the role of time. Hence,
quantization surfaces are null hyperplanes given by
xþ ¼ constant, and on which initial conditions are speci-
fied. x� ¼ x0 � x3 is the ‘‘longitudinal’’ direction, and the
remaining two spatial directions are called ‘‘transverse,’’
x? ¼ fx1; x2g. The evolution of quantum states is governed
as usual by the Schrödinger equation, which in light-front
quantization takes the form

i
@

@xþ
jc ; xþi ¼ 1

2
P�ðxþÞjc ; xþi; (1)

where jc ; xþi is the (Schrödinger picture) state at
light-front time xþ and P� is the light-front Hamiltonian.
Our Hamiltonian will contain two parts: P�

QED which is the

full light-front Hamiltonian of QED, and V which contains
interaction terms introduced by a background field, so

P�ðxþÞ ¼ P�
QED þ VðxþÞ: (2)

V contains, in general, an explicit time dependence. It is
therefore natural to use an interaction picture, but we must
immediately stress two things: first, we are not using the
usual ‘‘freeþ interacting’’ split of the Hamiltonian and,
second, we are not working in perturbation theory. Instead,
the full QED Hamiltonian P�

QED replaces the customary

‘‘free’’ Hamiltonian, and V is naturally the interaction
term. The interaction picture states are then defined by

jc ; xþiI ¼ e
i
2P

�
QED

xþjc ; xþi; (3)

(since P�
QED is time independent), and obey

i
@

@xþ
jc ; xþiI ¼ 1

2
VIðxþÞjc ; xþiI; (4)

in which VI, ‘‘the interaction Hamiltonian in the interaction
picture,’’ is

VIðxþÞ ¼ e
i
2P

�
QED

xþVðxþÞe�i
2P

�
QED

xþ : (5)

The formal solution to (4) is

jc ; xþiI ¼ T þ exp

�
� i

2

Z xþ

0
VI

�
jc ; 0iI; (6)

where T þ is light-front time ordering. Now let us imagine
that we could ‘‘solve’’ QED and identify the eigenstates
and eigenvalues of the theory. Call these j�i and P�

�

respectively, so

P�
QEDj�i ¼ P�

� j�i: (7)

Having these covariant solutions, we would then be
interested in the transitions between such states introduced
by the background field interactions contained in V.
We choose the external field (modeling an intense laser)
to vanish, V ¼ 0, prior to xþ ¼ 0. At xþ ¼ 0, we expand a
chosen initial state as a sum over QED eigenstates:

jc ; 0iI ¼
X
�

j�ic�ð0Þ; (8)

where c�ð0Þ is the initial data such that

c�ð0Þ � h�jc ; 0iI: (9)

We then expand a solution of the interaction picture state
at later times,

jc ; xþiI: ¼
X
�

c�ðxþÞj�i; (10)

in which the coefficients c� characterize the nontrivial

part of the state’s time evolution induced by the external
field. Plugging (10) into (4) yields an equation for the c�:

i
@c�ðxþÞ
@xþ

¼ X
�0

�
�

��������12VIðxþÞ
���������0

�
c�0 ðxþÞ

¼: M��0 ðxþÞc�0 ðxþÞ: (11)

(Summation notation in the second line.) This is an
intractable infinite-dimensional system of coupled differ-
ential equations, and it is at this point that one would
normally switch to perturbation theory in the interaction
V. However, the background fields we wish to treat are
strong and therefore not amenable to perturbation theory.
We therefore write down the formal solution to (11),
which is, regarding c� as a column vector and M��0 as

a matrix, both with infinite dimensions,

cðxþÞ ¼ T þ exp

�
�i

Z xþ

0
M

�
cð0Þ: (12)

In our approach, BLFQ provides finite-dimensional ap-
proximate solutions for the eigenstates j�i. In tBLFQ, the
time evolution in (12) is performed numerically, begin-
ning with the initial vector cð0Þ, to find the vector cðxþÞ.
The coefficients c�ðxþÞ can then be read off, allowing one

to reconstruct the evolved state itself from the overlap

c�ðxþÞ ¼ h�jc ; xþiI: (13)

In this way we solve Eq. (11) with initial conditions (9).
Let us compare the above to the usual calculation of

scattering amplitudes in QED. Such amplitudes are based
on the split of the QED Hamiltonian into a free particle
Hamiltonian, P�

free, and an interaction. For the application

here, this split produces an interaction that would be the
sum of the QED interaction terms, which we call VQ, and
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the additional interaction terms introduced by the
background, V.

A scattering calculation would begin with an initial state
which is a free particle state jii, prepared at xþ ¼ �1.
This state would be evolved through all time using the
S-matrix operator [25],

S ¼ lim
T!1T þe

�i
2

R
T

�T
VQIþVI ; (14)

and projected onto a final state jfi, describing free particles
at xþ ¼ þ1. Thus, one obtains the S-matrix element

Sfi ¼ hfjSjii: (15)

We are also calculating ‘‘scattering amplitudes,’’ but
there are two important differences between our ap-
proach and that based on the S-matrix. First, we calculate
transitions based upon the eigenstate basis of QED
(for example physical electrons) rather than between free
particle states. Second, and related, we calculate finite-
time, rather than asymptotic, transitions between such
states. For all times before and after the external field
acts on our chosen state, we have, in principle, the full
quantum amplitude expressed as a superposition of physi-
cal states (mass eigenstates of QED). A specific experi-
mental setup will then project this full amplitude onto
states to which that setup is sensitive.

A. Application: Nonlinear Compton scattering

In this paper we apply tBLFQ to the process of
single-photon emission from an electron accelerated by
a background field. Taking the background to model
an intense laser, this process often goes by the name
‘‘nonlinear Compton scattering’’ and is well studied in
plane wave backgrounds [26–29]. An appropriate experi-
mental setup would see the (almost head on) collision of
an electron with the laser, and the subsequent measurement
of either the emitted photon [30] or electron [31] spectra.

We begin with an electron at light-front time xþ ¼ 0
when it first encounters the laser field. The electron may be
both accelerated (invariant mass unchanged but 4-vector
altered) and excited (invariant mass changed) by the laser
field. Excitation produces electron-photon final states.
After time �xþ the background field switches off and no
further acceleration or excitation may occur. This setup is
sketched in Fig. 1 for two of the four dimensions in the
problem. The natural question to ask is how the quantum
states of the electron and (emitted) photon fields evolve
with light-front time xþ, and this will indeed be studied
below.

While, in principle, there is nothing to stop us including
arbitrarily complex background fields, as a first step we
consider a simple model. The background is turned on only
for finite light-front time �xþ, during which it is indepen-
dent of xþ but inhomogeneous in x�,

eA�ðx�Þ ¼ 2mea0 cos ðl�x�Þ
¼ mea0½exp ðil�x�Þ þ exp ð�il�x�Þ�; (16)

where e is the electron charge and me is the electron mass.
We have written out the exponential form of cosine to
highlight that the field both ‘‘pushes’’ and ‘‘pulls’’ particles
in the longitudinal direction. This field has periodic structure
in the longitudinal direction with frequency! ¼ l� and the
dimensionless parameter a0 measures the field strength in
relativistic units, a0 ¼ eE=me!. (a0 ¼ 1 corresponds to an
intensity of �1018 W=cm2 at optical frequency [7].) It is
uniform in the transverse plane, as for plane waves, but
unlike plane waves is longitudinally polarized. The profile
(16) describes, in the lab frame, a beam of finite durationffiffiffi
2

p
�xþ propagating along the x3 direction. Classically, such

a field accelerates charges in the x� (x3) direction as time xþ
(x0) evolves. The accelerated charges subsequently radiate
(see Fig. 1), and it is the quantum version of this radiation
which we will investigate below.
Note that (16) does not obey Maxwell’s equations in

vacuum. This is not an issue for us since we are interested
here not in phenomenology but in a first demonstration of
the framework of tBLFQ. Whether the background obeys
Maxwell or not has no impact on our methods. With future
developments of our formalism in mind, we note that a
simple background field model obeying Maxwell would be
a plane wave. However, it is also common to consider time-
dependent electric fields, which do not obey Maxwell, as
models of the focus of counterpropagating pulses [15].
Insisting on background field profiles which are both real-
istic (finite energy, pulsed in all four dimensions) and obey
Maxwell’s equations is a challenge, as very few such
solutions exist in closed form. An exception is given in
[32], and while there is nothing to stop us including such
backgrounds in principle, doing so goes somewhat beyond
the initial ‘‘proof of concept’’ presented here.

FIG. 1 (color online). An illustration of nonlinear Compton
scattering. An electron enters a laser field, is accelerated, and
emits a photon. After emission the electron can be further
accelerated until it leaves the field.
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III. BASIS LIGHT-FRONT QUANTIZATION (BLFQ)

We are interested in how eigenstates of the full QED
Hamiltonian P�

QED evolve due to interactions with a back-

ground field. (This is analogous to, but clearly not the same
as, studying transitions between bare states induced by
perturbative QED interactions.) To begin, we must there-
fore find the eigenstates of QED, for which we must adopt
an approximation.

The method we use to construct the approximate eigen-
states is basis light-front quantization, or BLFQ [1,2]. This
is a numerical method for calculating the spectrum of a
Hamiltonian, using light-front quantization. The idea of
finding, for example, the bound state spectrum via diago-
nalization of the Hamiltonian has a long history [3]. One
well-known approach is discretized light-cone quantiza-
tion [3,33–35], on which BLFQ is in part based. The idea
behind BLFQ, and its main advantage, is that its adopted
basis should have the same symmetries as the full QED
or QCD Hamiltonian. (BLFQ was initially designed for
QCD [1] and is supported by successful anti-de Sitter QCD
methods [36].) This basis is therefore not the usual basis
of momentum states. Usually, the more symmetries the
basis captures, the less computational effort is needed
for the solutions to reflect those symmetries. Because
of this, BLFQ achieves an accurate representation of the
Hamiltonian using available computational resources. The
construction of the BLFQ basis therefore begins with
symmetries of the light-front Hamiltonian.

A. Basis construction

The derivation of the light-front QED Hamiltonian
(in the presence of background fields) and a list of
relevant mutually commuting operators, may be found in
Appendix A. We do not need the detailed form of these
operators in order to discuss the three symmetries directly
encoded in the BLFQ basis. A fourth symmetry, transverse
boost invariance (also referred to as transverse Galilei
invariance [3,7]) is discussed separately below as it is not
encoded directly in the BLFQ basis but is easily accessible
with the employed transverse basis.

The three directly encoded symmetries are:
(1) Translational symmetry in the longitudinal x� direc-

tion.The longitudinalmomentumoperator,Pþ, there-
fore commutes with the Hamiltonian ½P�

QED;P
þ�¼0,

and total longitudinal momentum is conserved.
(2) Rotational symmetry in the transverse plane. This

means that the longitudinal projection of angular
momentum is conserved, and the corresponding op-
erator J3 obeys ½P�

QED;J
3�¼0. The operator J3 can be

decomposed into two parts for each particle species,

J3 ¼ J3o þ J3i ; (17)

in which the subscript ‘‘o’’ refers to the longitudinal
projection of orbital angular momentum, while
subscript ‘‘i’’ refers to the longitudinal projection of

the spin angular momentum. This defines the helicity
of a particle in light-front dynamics.

(3) Charge conservation ½P�
QED; Q� ¼ 0, where Q is the

charge operator with eigenvalue equal to the net
fermion number Nf.

The existence of these conserved quantities means that
the QED eigenspace can be divided up into ‘‘segments,’’
which are groups of eigenstates with definite eigenvalues1

Pþ / K, J3 ¼ Mj and Q ¼ Nf. The full spectrum of QED

is the sum of all such segments.
The BLFQ basis is chosen to respect these symmetries.

The essential point is that each basis state, which we call
j�i, is an eigenstate of the three operators introduced
above, with the eigenvalues,

fJ3; Pþ; Qgj�i ¼ fMj;K;Nfgj�i: (18)

Therefore, each state belongs to one and only one segment.
As a consequence, the BLFQ basis divides into segments,
and the QED Hamiltonian P�

QED is accordingly block-

diagonal in the BLFQ basis. As will be outlined below,
this structure allows for a large reduction in (numerical)
complexity in bound state calculations.
The BLFQ basis states are built for each Fock sector

(of free particle states) by allowing the particles to occupy
orthonormalized modes of a single-particle basis that
facilitates implementation of the full symmetries. The
many-particle basis states in each Fock sector are therefore
direct products of single-particle states, written j ��i, so
j�i ¼ �j ��i in general. It clearly remains to specify the
details of the single-particle states.
The single-particle basis states are chosen to be two-

dimensional harmonic oscillator (‘‘2D-HO’’) states in the
transverse direction and discretized plane waves in the
longitudinal direction. This is one choice (among many)
that facilitates implementation of the symmetries mentioned
above. We note in passing the contrast with treatments of
the transverse degrees of freedom in a discretized two-
dimensional plane wave basis where the orbital projection
symmetry is lost.We also note the freedom to choose another
orthonormal basis in the transverse space using cylindrical
coordinates that may be better for some applications.
Each single-particle state carries four quantum numbers,

�� ¼ fk; n;m; �g: (19)

The first quantum number, k, labels the particle’s longitudi-
nal momentum. For this degree of freedom we employ the
usual planewave basis states, i.e. eigenstates of the free-field
longitudinal momentum operator Pþ [see (A21)], with
corresponding eigenvalues pþ. In this paper, we compactify
x� to a circle of length 2L. We impose (anti)periodic

1Throughout, K is an integer except when an odd number of
fermions are present in the basis state for which it is a half-
integer. The constant of proportionality is explained below; see
Eq. (20).
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boundary conditions on (fermions) bosons. As a result, the
longitudinal momentum pþ in our basis states takes the
discrete values

pþ ¼ 2�

L
k; (20)

where the dimensionless quantity k ¼ 1; 2; 3; . . . for bosons
(neglecting the zero mode) and k ¼ 1

2 ,
3
2 ,

5
2 for fermions.

In particular, we have for the laser lþ ¼ 2�
L klas where klas is

a natural number. For convenience, throughout this paper we
take L ¼ 2� MeV�1 so that k can be interpreted as the
longitudinal momentum in units of MeV.

The next two quantum numbers, n and m, label the
degrees of freedom in the transverse directions. As men-
tioned above we take the transverse components of our
single-particle states to be eigenstates of a 2D-HO which is
defined by two parameters, mass M and frequency �.
(See below for the characteristic scale of the oscillator,
which depends only on a combination of these parameters.)
These eigenstates are labeled by the quanta of the radial
excitation, n, and the angular momentum quanta, m. The
eigenstate carrying these numbers has HO eigenenergy

En;m ¼ ð2nþ jmj þ 1Þ�: (21)

Since they are not eigenstates of the transverse momentum
operator P?, the BLFQ basis elements mix states with the
same intrinsicmotion but with different transverse center-of-
mass momenta. This is the price we pay for employing the
2D-HO states as single-particle basis states in the transverse
plane. We may employ, when needed, a Lagrange multiplier
technique to enforce factorization of the transverse center-
of-mass component of the amplitude from the internal
motion components following techniques used in nonrela-
tivistic nuclear physics [37,38]. We may also work with
alternative coordinates chosen to achieve factorization [39].

The final quantum number, �, labels the particle’s
helicity, which is the eigenvalue of J3i ; see (17). The electron
(photon) helicity takes values � ¼ �1=2 (� ¼ �1).

We present only selected essentials of our method; more
details of the basis states may be found in Appendix B. We
note here that our transverse modes depend only on the

combination b :¼ ffiffiffiffiffiffiffiffiffi
M�

p
(and not onM and� individually).

This is a free parameterwhichmust be chosen. Since our goal
is to design a basis which matches as closely as possible the
symmetries of the QED Hamiltonian, we note that there is
only onemass scale in QED, and that is the physical electron
mass me. A sensible choice for our 2D-HO parameter is
therefore2 b ¼ me, and we adopt this throughout.

Now, to see why this choice of basis is suited to light-
front problems, we relate the single-particle quantum num-
bers fk; n;m; �g to the segment numbers of the states �. So,
consider a multiparticle state j�i ¼ �j ��i, which belongs
to a particular segment and is an eigenvector of Pþ, J3, and
Q with eigenvalues K, Mj and Nf, respectively. If k

l, ml,

nf;l, and �l are the quantum numbers for, respectively, the
longitudinal momentum, longitudinal projection of angular
momentum, net fermion number and helicity of the lth
particle in the state then, summing over particles l, we haveX

l

kl ¼ K;
X
l

nf;l ¼ Nf; (22)

X
l

ml � Mt;
X
l

�l � S; (23)

Mj ¼ Mt þ S: (24)

(The single-particle net fermion number nf is 1 for e, �1

for �e and 0 for �.) We see that the basis states j�i are
eigenstates of J3o and J3i individually, with eigenvalues Mt

and S. Note, though, that it is the sum Mj which is

conserved by the light-front QED Hamiltonian.
While each basis state belongs to one and only one

segment, it is clear that the basis states j�i themselves
are not eigenstates of QED (written as j�i). These must
still be constructed by diagonalizing P�

QED in this basis. For

example, the physical electron eigenstate j�i ¼ jephysi can
be expanded as

jephysi ¼
X
�

j�ih�jephysi; (25)

in which both the eigenstate on the left and the basis states
on the right belong to the same segment. Diagonalizing the
Hamiltonian in our basis would yield the coefficients
h�j�i, and hence the physical states j�i. In order to do
this, though, we need to be able to implement our basis
numerically, which requires some truncation. We turn to
this now.

B. Basis reduction

Since a quantum field theory contains an infinite number
of degrees of freedom, reduction of the basis space is
necessary in order for numerical calculations to be feasible.
For us, this reduction takes place both in the basis states
retained (exploiting symmetries) and in the Fock space
itself (i.e. we retain only certain sectors and implement
regulators).
The first type of reduction is called ‘‘pruning,’’ in which

we exclude basis states which are not needed for desired
observables. The pruning process is lossless, in that it does
not lead to loss of accuracy in the desired observables.
For example, in bound state problems, one is typically
interested in states with definite Nf and Mj. Combining

this with the longitudinal boost invariance inherent to
light-front dynamics, one can choose K based on the de-
sired ‘‘resolution’’ for the longitudinal momentum partition

2In Fock sectors with n particles the effective 2D-HO parame-
ter for the center-of-mass motion is bcmn ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nM�
p ¼ b

ffiffiffi
n

p
, i.e.,ffiffiffi

n
p

times that for single-particle states. Thus, in order to match
the center-of-mass motion across different sectors as required by
QED vertices, we adopt sector-dependent 2D-HO parameters
bn ¼ b=

ffiffiffi
n

p
for Fock sectors with n particles, where b ¼ me is

the 2D-HO parameter in the one-particle sector.
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among the basis particles [3]. Thus, one only needs to work
in a single segment of the QED eigenspace, neglecting the
others, without loss of information. From here on we write
‘‘BLFQ basis’’ to mean the basis of a single segment.

Pruning alone is not enough to reduce the basis space
to finite dimension, however, since even a single
segment contains an infinite number of degrees of freedom.
To further reduce the basis dimensionality we need to
perform basis truncation, which unavoidably causes loss
of accuracy in calculating observables. Basis truncation is
implemented at two levels.

(i) Fock-sector truncation. Consider the physical
electron state. This has components in all Fock sec-
tors with Nf ¼ 1, which we write schematically as

jephysi¼ajeiþbje�iþcje��iþdjee �eiþ��� : (26)

Included in this series are, for example, the bare
electron jei and its photon-cloud dressing, je�i,
je��i etc. Together, the bare fermion and its cloud
of virtual particles comprise the observable, gauge
invariant electron, as originally described by Dirac
[40–42]. We implement basis truncation by assum-
ing that higher Fock sectors give (with an appro-
priate renormalization procedure implemented)
decreasing contributions for the low-lying eigen-
states in which we are mostly interested. (One mo-
tivation for this is the success of perturbation theory
in QED.) In this first paper, we make the simplest
possible nontrivial truncation, which is to truncate
our Fock sectors to jei and je�i. Thus, in this trun-
cated basis, the physical electron state would be
given by only the first two terms of (26). This is
enough to calculate physical wave functions accu-
rate up to the first order of the electromagnetic
coupling �. Due to its simplicity this Fock sector
truncation has been typical of light-front
Hamiltonian approaches such as Refs. [2,43] though
an extension to include the 2-photon sector has been
successfully implemented in solving for the elec-
tron’s anomalous magnetic moment [44].

(ii) Truncation within Fock sectors. Fock-sector trunca-
tion is still not enough to reduce the basis to finite
dimension; each Fock particle has an infinite number
of (momentum) degrees of freedom. In BLFQ, trun-
cations of the longitudinal and transverse degrees of
freedom are realized separately, and differently.

Truncation of the longitudinal basis space is realized
through the finite size of the x� direction. By imposing
(anti)periodic boundary conditions, the longitudinal mo-
mentum k for single particles can only take discrete values;
see (20). Therefore, in a given segment with total longitu-
dinal momentum K, only a finite number of longitudinal
momentum partitions is available for the particles in the
basis states, since each particle’s momentum must obey
0< k � K and all the k’s must sum to K. For segments

with larger K, more partitions of longitudinal momenta
among particles are possible, allowing for a ‘‘finer’’ descrip-
tion of the longitudinal degrees of freedom. Thus, K also
regulates the longitudinal degrees of freedom; bases with
larger K have simultaneously higher ultraviolet (UV) and
lower infrared (IR) cutoffs in the longitudinal direction.
Now consider the transverse part. Recalling from above

that the transverse states are eigenstates of a 2D-HO, with
energies (21), we define the total transverse quantum
number for multiparticle basis states j�i as

N� ¼ X
l

2nl þ jmlj þ 1; (27)

where the sum runs over all particles in the state. This
number is used as the criterion for transverse basis trunca-
tion; all the retained basis states satisfy

N� � Nmax ; (28)

for some chosen Nmax . Physically, this simply corresponds
to restricting the total 2D-HO energy (summed over all
particles).Nmax is specified globally across all Fock sectors
to ensure that the transverse motion in different Fock
sectors is truncated at the same energies. As shown in
Appendix B 1,Nmax determines both the UVand IR cutoffs
for the transverse basis space; see also [45,46].
This brings us to the end of our discussion on the BLFQ

basis itself, so let us summarize the approach so far. The
eigenspace of QED breaks up into segments, labeled by K,
Mj and Nf. The BLFQ basis is a basis of states for such a

segment, with each basis element carrying the same three
quantum numbers as the segment itself. The basis elements
themselves are collections of Fock particle states. For each
Fock particle, 2D-HO states/plane waves are employed to
represent the transverse/longitudinal degrees of freedom.
The Fock particle states carry four quantum numbers, k, n,
m, �; see above. A complete specification of a BLFQ basis
requires (1) the segment numbers K, Mj, Nf; (2) the pa-

rameters b and L pertaining to the transverse oscillator
basis and length of the longitudinal direction, respectively;
and (3) two truncation parameters, namely the choice of
which Fock sectors to retain, and the transverse truncation
parameter Nmax . (Recall that K automatically serves as a
longitudinal truncation parameter because x� is compact.)
Such a basis is finite dimensional. It is then a straightfor-

ward matter to diagonalize the QED Hamiltonian in the
BLFQ basis. This yields, as well as the eigenvalues of the
Hamiltonian, a representation of the physical states of
QED in terms of the BLFQ basis, as in (25).
We end this section with a few words on renormalization.

Our focus in this paper is on an initial exploration of
tBLFQ, and we neglect the necessary counterterms when
writing down our Hamiltonians. (Hence, we adopt physical
values for the electron mass and charge.) Renormalization
within the BLFQ framework is possible, via a sector-
dependent scheme [43,47–49]. For an application, see
[49], in which the scheme is implemented for the QED
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Hamiltonian; the resulting electron anomalous magnetic
moment agrees with the Schwinger value to within 1%.

IV. TIME-DEPENDENT BASIS LIGHT-FRONT
QUANTIZATION (tBLFQ)

Now that we have the physical states of QED, we turn to
the transitions between them as caused by an external field.
Our Hamiltonian now consists of two terms,

P� ¼ P�
QED þ V; (29)

in which the new term V comprises the interactions intro-
duced by the background (laser field), just as in (2). See
Appendix A for the explicit form of the new interactions.

As discussed above, only a single segment of states is
needed to address bound state problems. The presence of
background field terms V means, in general, that the full
Hamiltonian P� will not possess the symmetries associated
with conservation of longitudinal momentum (K) and lon-
gitudinal projection of total angular momentum (Mj). (Net

fermion number is not affected, of course.) In other words,
the background field can cause transitions between QED
eigenstates in different segments. In order to account for this,
the BLFQ basismust be extended to cover several segments.
We refer to a collection of multiple BLFQ basis segments
with different K’s andMj’s as the ‘‘extended BLFQ basis.’’

In fact, since our particular choice of background field
(16) only adds longitudinal momentum (and light-front
energy) to the system, the transverse degrees of freedom
remain untouched, and the symmetry associated with J3

holds even with the laser field switched on. Therefore, for
our current example, we only need to include segments
with different total longitudinal momenta K.

We therefore begin by applying BLFQ to P�
QED in each

segment, finding the physical states in that segment and
representing them as in (25). The combination of all
such eigenstates from all the segments forms the ‘‘tBLFQ
basis,’’ which is a basis of physical eigenstates of QED.
From here on we will write j�i to represent the extended
BLFQ basis, and j�i to represent the tBLFQ basis of
physical states. See Fig. 2 for an illustration of the two
different bases and the relationship between them.

In constructing the tBLFQ basis, one needs to specify
the number of the segments to be included. Larger, less
truncated, basis spaces yield more realistic and detailed
descriptions of the underlying system. The price we pay
for increased basis dimensionality is of course increased
computational time.

We have reached the stage at which we have an
(appropriate) set of physical eigenstates of QED. We
now describe the preparation of the initial state, and its
evolution in time under the Hamiltonian (29).

A. Initial state preparation

In perturbation theory, scattering calculations take initial
states to be eigenstates of the free part of the Hamiltonian,

following the usual assumption of asymptotic switching;
see though [50,51]. In our calculations, initial states are
taken to be physical eigenstates of QED. For our nCs
process, for example, the initial state is a single physical
electron with longitudinal momentum Ki. This state can be
identified as the ‘‘ground state’’ of the QED Hamiltonian
P�
QED in the segment Nf ¼ 1, Mj ¼ 1

2 and K ¼ Ki (since

there is no other state in that segment with a lower energy).
In the tBLFQ basis, which is just the set of eigenvectors of
QED, this initial state is trivially defined.

B. State evolution

Recalling the discussion in Sec. II, our initial state
evolves, in the interaction picture, according to

jc ; xþiI ¼ T þe
�i

2

R
xþ
0

VI jc ; 0iI; (30)

in which jc ; 0iI is the initial state, equal to a chosen
eigenstate of QED (or a superposition thereof). In general,
the interaction operator VI will not commute with itself at
different times. We decompose the time-evolution operator
into many small steps in light-front time xþ, introducing
the step size �xþ,

T þe
�i

2

R
xþ
0

VI !
�
1� i

2
VIðxþn Þ�xþ

�
���

�
1� i

2
VIðxþ1 Þ�xþ

�
;

(31)

in which each square bracketed term is a matrix, and we let
each of these matrices act on the initial state sequentially.
Between eachmatrixmultiplicationwe insert a (numerically
truncated) resolution of the identity, so that the evaluation of
(31) amounts to the repeated computation of the overlaps

h�0jVIj�i ¼ h�0jVj�i exp
�
i

2
ðP�

�0 � P�
� Þxþ

�
; (32)

in which the P�
� are the previously solved eigenenergies of

P�
QED, and their presence follows from Eq. (7). In order to

calculate the left-hand side of (32) in our numerical scheme,
it is simpler to first calculate the phase factor and then
calculate the remaining overlap in terms of the (extended)
BLFQ basis, as follows:

h�0jVj�i ¼ X
�0�

h�0j�0ih�0jVj�ih�j�i: (33)

The resulting interaction picture matrix elements are the
elementary building blocks for evaluating all observables.
For our particular choice of background field, the struc-

ture of the matrix elements between BLFQ basis elements
j�i is simple. The interaction terms introduced by the
chosen background do not contain the quantum gauge field
(see Appendixes A and E for details), and therefore do not
directly connect different Fock sectors; matrix elements of
the type h�0ðeÞjVj�ðe�Þi are therefore all zero. (Physically,
the only direct effect of the chosen background field is
to either increase or decrease the longitudinal momentum
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k of an electron by klas.) Matrix elements between the
same Fock sectors [in our case h�0ðeÞjVj�ðeÞi and
h�0ðe�ÞjVj�ðe�Þi], on the other hand, are nonzero. If ��
and ��0 label two Fock electron states, then one finds for
example

h ��0jVj ��i ¼ mea0ð��0
� �

n0
n �

m0
m Þð�k0þklas

k þ �k0�klas
k Þ; (34)

in which �		 is the Kronecker delta. The magnitude of the
matrix element is proportional to the field intensity a0. It is
the sum of two terms, originating in the two exponentials
in (16). Each term is the product of two Kronecker deltas.
The first delta conserves all quantum numbers between the
states except for the longitudinalmomentum (since that is all
that our background field alters). The second delta fixes the
difference between the k values of the basis elements to be
k0 ¼ k� klaser; this is simply the ‘‘conservation’’ of longi-
tudinal momentum among the initial and final electrons,
in that any added energy-momentum must come from the
laser field.

C. Numerical scheme

A direct implementation of Eq. (31) leads to the
so-called Euler scheme which relates the state at xþþ
�xþ to that at xþ; this scheme is however not numerically
stable (since it is not symmetric in time) and the norm of
the state vector jc ; xþi increases as time evolves; see
Ref. [52]. We therefore adopt the second-order difference
scheme MSD2 [53], which is a symmetrized version of the
Euler scheme relating the state at xþ þ �xþ to those at xþ
and xþ � �xþ via

jc ;xþ þ�xþiI ¼ jc ;xþ ��xþiI
þ ðe�iVI�x

þ=2 � eiVI�x
þ=2Þjc ;xþiI


 jc ;xþ ��xþiI � iVIðxþÞ�xþjc ;xþiI:
(35)

It can be shown that the MSD2 scheme is stable, with the
norm of the states conserved, provided that jVI;maxj�xþ<1,
where VI;max is the largest (by magnitude) eigenvalue of

FIG. 2 (color online). The BLFQ and tBLFQ bases. On the left, the extended BLFQ basis j�i. This is a collection of bases in
different segments, each segment labeled by K, Mj and Nf. (Since nothing in our theory changes net fermion number, all segments of

interest have fixed Nf ¼ 1, in our case.) The states in each segment are bare states. Two such states, a bare electron and a bare electron

þ a photon, are illustrated. The BLFQ procedure diagonalizes the Hamiltonian in each segment. The basis states in j�i are then
rearranged into eigenstates j�i of the QED Hamiltonian, shown on the right. These are the tBLFQ basis states.
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VI [52]. This requirement imposes an upper limit on the step
size �xþ. Further limits on �xþ will be discussed below.

(Note that in order to provide sufficient initial condi-
tions for the MSD2 scheme, we use the standard Euler
scheme to evolve the initial state one half-step forward,
generating jc ;�xþ=2iI. Then we use the MSD2 scheme
to evolve jc ;�xþ=2iI an additional half-step forward,
generating jc ;�xþiI. With both jc ; 0iI and jc ;�xþiI
available the MSD2 scheme is ready to generate jc ; xþi
at subsequent times, in time steps of �xþ.)

This concludes our discussion of the principles behind,
and the method of application of, BLFQ and tBLFQ. The
reader interested in more details is referred to Appendix C
for the (analytic) representation of states and operators in the
BLFQbasis, and toAppendixD for aworked example of the
construction of a small, simple BLFQ basis, diagonalization
of the Hamiltonian and an example tBLFQ calculation.

In the next section we turn to the results of our
calculation of the nCs process.

V. NUMERICAL RESULTS

In this section we present numerical results for nonlinear
Compton scattering, computed in the tBLFQ framework.
Since the laser matrix elements h�0jVj�i play an important
role in the numerical results, we first check them against
those from light-front perturbation theory, in Sec. VA. We
then perform a systematic study of nCs using the laser
matrix elements obtained from BLFQ, in Sec. VB. For
interested readers we present the full details in the numeri-
cal calculation for the nCs process (in a ‘‘minimal’’ basis)
in Appendix D.

A. Comparison of laser matrix elements

The laser matrix elements

h�0jVj�i (36)

are calculated in the BLFQ framework from the wave
functions of j�i and j�0i found from diagonalizing P�

QED.

Due to the small value of the electromagnetic coupling
� ¼ e2=ð4�Þ these wave functions can also be calculated
in perturbation theory, and we will use this to check the
BLFQ procedure.

Let us begin with the perturbative calculation of the
matrix element (36). The background field enters only as
an operator sandwiched between the states. What we must
do is to construct the QED eigenstates j�i. This can be
achieved using ordinary, time-independent perturbation
theory. To be concrete we will take j�i ¼ jephysi, the

physical electron, and j�0i ¼ je�scati, the electron-photon
scattering state. We will work to first order in the coupling.
So, if jji is a complete set of eigenstates of the free light-
front Hamiltonian P�

free, and the QED interaction linear in e
is VQ [see the first two lines of (A19)], then the physical

electron can be written, to first order,

jephysi ¼ jei �X
j�e

jji hjjVQjei
P�
freeðjÞ � P�

freeðeÞ
: (37)

Similarly, the physical electron-photon state is

je�scati ¼ je�i � X
j�e�

jji hjjVQje�i
P�
freeðjÞ � P�

freeðe�Þ
: (38)

The matrix element (36) is therefore approximated in
perturbation theory by

he�scatjVjephysi¼
�
e�

��������V 1

P�
freeðeÞ� P̂�

free

VQ

��������e
�

þ
�
e�

��������VQ

1

P�
freeðe�Þ� P̂�

free

V

��������e
�
; (39)

in which we have written a hat over the operator P�
free to

distinguish it from the eigenvalues P�
freeðeÞ and P�

freeðe�Þ.
Note that jei and je�i are eigenstates of P�

free, but in order

to compare with the BLFQ calculation we need to evaluate
the matrix elements (39), and hence the states, in the BLFQ
basis j�i. The calculation is uninstructive, so we simply
present the result in Appendix E.
Now, how do we compare this with a BLFQ calculation?

We begin by constructing a basis containing only two (K)
segments, K ¼ Ki and K ¼ Ki þ klas, using the same pa-
rameters as in the perturbative calculation. In the K ¼ Ki

segment we retain only the single-electron (ground) state;
this acts as the initial state. In the K ¼ Ki þ klas segment
we retain only the electron-photon (excited) states. Such a
basis, while heavily truncated, is all that is required for
comparing the results of BLFQ and tBLFQ with the per-
turbative result (39).
In general we would expect that the two matrix elements

will match in the case of small QED coupling �. However,
in our truncated Fock space (with only the one-electron and
one photon–one electron sectors) there is one further
source of potential discrepancy, for the following reason:
the perturbative matrix elements (39) are calculated in the
(complete) momentum basis first and then projected
onto the initial (jei) and final (je�i) states in the BLFQ
basis. The BLFQ matrix elements, on the other hand, are
calculated in a truncated basis space throughout. In the
language of perturbation theory, there exists extra trunca-
tion effects in the BLFQ matrix elements between the
‘‘propagator’’ and the QED vertices; cf. Eq. (39). Due to
this ‘‘intermediate’’ basis truncation, exact agreement can
only be expected in the continuum limit (Nmax ! 1).
Direct comparison as a function of Nmax is difficult,

because as Nmax increases the spectrum of P�
QED changes

(more states appear in the spectrum) and it becomes difficult
to keep track of the Nmax dependence for specific matrix
elements. We will now look at a test case, the nCs process
with perturbative and nonperturbative matrix elements as
inputs, and compare their predictions for the population of
various tBLFQ basis states as a function of Nmax .

SCATTERING IN TIME-DEPENDENT BASIS LIGHT- . . . PHYSICAL REVIEW D 88, 065014 (2013)

065014-9



We take Ki ¼ 1:5, Nmax ¼ 16, and parameters a0 ¼ 10,
klas ¼ 2 for the laser profile (16). Thus the laser can cause
transitions between the K ¼ 1:5 and K ¼ 3:5 segments. In
general, we expect the truncation error between perturbative
and nonperburbative matrix elements to diminish as Nmax

increases and more basis states are used. However, since we
are neglecting various renormalization counterterms, at suf-
ficiently large Nmax , high-order and divergent loop effects
may lead to further discrepancies between the (leading-
order) perturbative and nonperburbative matrix elements.
Contributions from these loop effects are proportional to
(higher-than-leading) powers of � and generally increase
with the ultraviolet and/or infrared cutoffNmax . Since at this
stage we are interested only in verifying the decreasing
truncation error as Nmax increases, we suppress here the
contribution of loop effects by artificially reducing the
coupling constant so that e2=ð4�Þ ! 1=13700.

At xþ ¼ 0 we switch on the laser field and evolve the
initial single-electron state according to Eq. (35). The
population of tBLFQ basis states [the probabilities
jc�ðxþÞj2] in the K ¼ 3:5 segment, as a function of light-

front time, are shown in Fig. 3, along with the correspond-
ing perturbative results. Different tBLFQ basis states are
distinguished by their respective invariant masses, M�, as

defined in Eq. (D2). As time evolves the probability for the
single-electron state (with invariant mass �0:511 MeV)
drops and various electron-photon states (with invariant
mass above 0.6 MeV) in the K ¼ 3:5 segment are gradu-
ally populated. At xþ ¼ 100 and 200 MeV�1, a peak
structure is seen around the invariant mass of 0.74 MeV.
This can be understood as follows: because our laser profile
(16) is only trivially dependent on light-front time, in that it
switches on and off but is otherwise constant, in the infinite
time limit only transitions between basis states with the
same light-front energy can accumulate (the transition
amplitudes between states with unequal energies oscillate
with a period inversely proportional to their energy differ-
ence). In this case the light-front energy of the initial
(single-electron) state is P� ¼ m2

e=Ki ¼ 0:17 MeV, basis
states in the K ¼ 3:5 segment with invariant mass around

Mpk ¼
ffiffiffiffiffiffiffiffiffiffiffi
P�K

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:17� 3:5

p ¼ 0:78 MeV will thus ac-

cumulate and form a peak. The full peak develops over
longer times and is located at approximately 0.8 MeV,
independent of Nmax .

In order to study the convergence between the perturba-
tive and nonperturbative laser matrix elements as a func-
tion ofNmax , we consider snapshots of the system at a fixed
exposure time (xþ ¼ 4:5 MeV�1) calculated in bases
with increasing Nmax in Fig. 4. As expected the overall
agreement between the results from perturbative and
nonperturbative laser matrix elements indeed improves
systematically as the basis Nmax increases.

As a measure of the energy transfer between the
system and the laser field, we calculate the evolution of
the average invariant mass hMðxþÞi ¼ P

M�jc�ðxþÞj2
of the system as a function of the exposure time xþ.

The numerical results calculated in bases with Nmax ¼ 8,
16, 24 are compared in Fig. 5.
As the exposure time increases, the laser field pumps

energy into the system, and the invariant mass of the
system increases accordingly, as seen from Fig. 5. Again,
as expected the agreement between the results from per-
turbative and nonperturbative laser matrix elements im-
proves as the basis size (Nmax ) increases.
In the next subsection we will study the nCs process

systematically in a larger basis space using laser matrix
elements from the BLFQ approach.

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

pert.
BLFQ

Nmax 16
x 0 MeV 1

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

pert.
BLFQ

Nmax 16
x 100 MeV 1

0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

invariant mass M MeV

pr
ob

ab
ili

ty
pert.
BLFQ

Nmax 16
x 200 MeV 1

FIG. 3 (color online). Time evolution of the electron system in
the laser field (at Nmax ¼ 16). Upper, middle and lower panels
correspond to exposure time xþ ¼ 0, 100, 200 MeV�1 respec-
tively (the laser field is switched on at xþ ¼ 0). Each dot on these
plots corresponds to a tBLFQ basis state j�i inK ¼ 3:5 segment.
The y axis is the probability, jc�j2, for each basis state and x axis is
the corresponding invariant mass,M�. Green (red) dots are results

based on laser matrix elements evaluated nonperturbatively
(perturbatively). Note that the electromagnetic coupling constant
� ¼ e2=ð4�Þ is reduced to 1=13700; see text for details.
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B. Numerical results for nCs

With the laser matrix elements checked, we now turn to
nCs in a larger basis. This basis consists of three segments
with K ¼ fKi; Ki þ klas; Ki þ 2klasg. In each segment we
retain both the single-electron (ground) and electron-photon
(excited) state(s). The initial state for the nCs process is a
single (ground state) electron in the K ¼ Ki segment. This
basis allows for the ground state to be excited twice by the
background (from the segment with K ¼ Ki through to the
segment with Ki þ 2klas). In this calculation, we take Ki ¼
1:5 andNmax ¼ 8, witha0 ¼ 10 andklas ¼ 2.Wepresent the
evolution of the electron system in Fig. 6, at increasing (top to
bottom) light-front time.The initial system is shown in the top
panel of Fig. 6; the only populated basis state is the single-
electron (ground) state in the K ¼ 1:5 segment. As time

evolves, the background causes transitions from the ground
state to states in the K ¼ 3:5 segment. Both the single-
electron state and electron-photon states are populated; the
former represents the acceleration of the electron by the
background, while the latter represent the process of radia-
tion. At times xþ ¼ 0:2 MeV�1, the single-electron state3 in
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FIG. 4 (color online). ‘‘Snapshots’’ of the system at xþ ¼
4:5 MeV�1 in bases of Nmax ¼ 8 (upper panel), 16 (middle
panel) and 24 (lower panel). Each dot on these plots corresponds
to a tBLFQ basis state j�i in K ¼ 3:5 segment. The y axis is the
probability, jc�j2 (on a greatly expanded scale compared to

Fig. 3) for each basis state and x axis is the corresponding
invariant mass, M�. Green (red) dots are results based on laser

matrix elements evaluated nonperturbatively (perturbatively).
Note that the electromagnetic coupling constant � ¼ e2=ð4�Þ
is reduced to 1=13700; see text for details.
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FIG. 5 (color online). Time evolution of the average invariant
mass of the electron system. Upper, middle and lower panels are
calculated in tBLFQ basis space with Nmax ¼ 8, 16, 24 respec-
tively. The y axis is the difference between the average invariant
mass hMi of the system at xþ and that of a single electron me.
The x axis is the (light-front) exposure time xþ. Green (red) dots
are results based on (non)perturbative laser matrix elements.
Note that the electromagnetic coupling constant � ¼ e2=ð4�Þ
is reduced to 1=13700; see text for details.

3Because we neglect counterterms, the single-electron ground
states in the K ¼ 1:5, 3.5 and 5.5 segments receive increasing
(negative) mass corrections from loop effects. K works as an
ultraviolet and infrared regulator in the longitudinal direction
(see discussion in Sec. III B) and as a result, the calculated value
for the invariant mass of the K ¼ 3:5 and K ¼ 5:5 single-
electron states is slightly lower than that for K ¼ 1:5. In order
to prevent the invariant mass of the whole system being affected
by this artifact, we manually set the invariant mass for each
K-segment single-electron state to the physical mass me.
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FIG. 6 (color online). Time evolution of the single-electron system in the laser field. From top to bottom, the panels in each row
successively correspond to light-front time xþ ¼ 0, 0.2, 0.4, 0:6 MeV�1 (the laser field is switched on at xþ ¼ 0). Each dot on these
plots stands for a tBLFQ basis state. The y axis is the probability for the tBLFQ basis state jc�ðxþÞj2 and x axis is its corresponding

invariant mass M�. The panels on the left (with y axis up to 1.1) illustrate the evolution of the single-electron (ground) states in

K ¼ 1:5, 3.5, 5.5 segments respectively and the panels on the right with y axis ‘‘zoomed in’’ show the evolution of various electron-
photon (excited) states. The electromagnetic coupling constant � ¼ e2=ð4�Þ is 1=137.
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K ¼ 3:5 becomes populated while the probability for finding
the initial state begins to drop. In the right-hand panel,
the populated electron-photon states begin forming a peak
structure. The location of the peak is around the invariant
mass of 0.8 MeV, roughly consistent with the expected value

of Mpk1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�ðKiþklasÞ

p ¼0:78MeV; cf. the discussion in

Sec. VA.
Once the basis states in K ¼ 3:5 become populated,

‘‘second’’ transitions to the K ¼ 5:5 segment become
possible. This can be seen in the third row of Fig. 6, at
xþ ¼ 0:4 MeV�1. In the left-hand panel, one sees that the
probability of the electron to remain in its ground state
(K ¼ 1:5) is further decreased, the probability of it being
accelerated (to K ¼ 3:5) is increased, and the K ¼ 5:5
single-electron state becomes populated. In the right-
hand panel, the electron-photon states in the K ¼ 5:5 seg-
ment also become populated as a result of the second
transitions. A second peak arises here at the invariant

mass of around Mpk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�ðKi þ 2klasÞ

p � 1:0 MeV

(distinct from that at �0:8 MeV, above, formed by the
K ¼ 3:5 electron-photon states from the first transitions).
The peak in the K ¼ 5:5 segment is at a larger invariant
mass than that in the K ¼ 3:5 segment simply because the
basis states in the K ¼ 5:5 segment follow from the initial
state being excited twice by the background field, and thus
receive more energy than states in the K ¼ 3:5 segment.

As time evolves further, the probability of finding a
K ¼ 5:5 single electron exceeds that of finding a K ¼ 3:5
segment electron; see the bottom left panels in Fig. 6. At this
time, xþ ¼ 0:6 MeV�1, the system is most likely to be
found in the K ¼ 5:5 single-electron state, with probability
�0:6. The probability for finding the K ¼ 3:5 single-
electron state is around 0.35 and the initialK ¼ 1:5 electron
state is almost completely depleted. In the right-hand panel,
we see that the probability for finding K ¼ 5:5 electron-
photon states increases with time. One also notices that
at later times, the probability for K ¼ 3:5 electron-photon
states also begin to drop. This is because (like the K ¼ 3:5
single electron) the K ¼ 3:5 electron-photon states are
coupled to the K ¼ 5:5 single electron; as the probability
of the K ¼ 5:5 single-electron state increases, it ‘‘absorbs’’
both the single-electron and the electron-photon states in the
K ¼ 3:5 segment. At xþ ¼ 0:6 MeV�1 we terminate the
evolution process, as the system is already dominated
by the single-electron state in the maximum K segment.
Further evolution without artifacts would require bases with
segments of K ¼ f7:5; 9:5 . . .g.

This calculation, although performed in a basis of
limited size, illustrates the basic elements of the tBLFQ
framework. The acceleration of the single-electron state
and the radiation of a photon are treated coherently within
the same Hilbert space.

Since the states j�i encode all the information of
the system, they can be employed to construct other
observables. As an example, in Fig. 7 we present the

evolution of the average invariant mass hMi of the system
as a function of time. The increase of the invariant mass
with time reflects the fact that energy is pumped into the
electron-photon system by the laser field. This invariant
mass can be accessed experimentally by measuring the
momenta of both the final electron, p

�
e , and photon, p

�
� ,

in a nCs experiment. The invariant mass can be compared
with the expectation value of ðp�

e þ p�
� Þ2 measured over

many repetitions of the nCs experiment. Work in deriving
other observables, such as the cross sections for specific
electron-photon final states, is in progress.
In this section we have demonstrated (a) the general

procedure for treating processes nonperturbatively in
tBLFQ, and (b) the accessibility of the full configuration
(wave function) of the system at finite time.

VI. CONCLUSIONS AND OUTLOOK

In this paper we constructed a nonperturbative frame-
work for time-dependent problems in quantum field theory,
referred to as time-dependent BLFQ. This framework is
based on the previously developed basis light-front quan-
tization and adopts the light-front Hamiltonian formalism.
Given the Hamiltonian and the initial configuration of a
quantum field system as input, the system’s subsequent
evolution is evaluated by solving the Schrödinger equation
of light-front dynamics. The eigenstates of the time-
independent part of the Hamiltonian, found by the BLFQ
approach, provide the basis for the time-evolution process.
Basis truncation and time-step discretization are the only
approximations in this fully nonperturbative approach.
(Note that the choice of background field is an input
parameter; although a simple background is adopted in
this work, the tBLFQ framework is in principle capable
of dealing with realistic background fields with generic
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FIG. 7 (color online). Time evolution of the average invariant
mass of the electron system calculated in tBLFQ basis
space with Nmax ¼ 8. The y axis is the difference between the
average invariant mass hMi of the system at xþ and that of a
single electron me. The x axis is the (light-front) exposure time
xþ. The electromagnetic coupling constant � ¼ e2=ð4�Þ is
1=137.
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spatial and temporal dependence.) One feature of the
tBLFQ framework is that the complete wave function of
the quantum field system is accessible at any intermediate
time during the evolution, which provides convenience for
detailed studies of time-dependent processes.

As an initial application we have applied this frame-
work to an external field problem. We have studied the
process in which an electron absorbs energy-momentum
from an intense background laser field, and emits a single
photon. In contrast to current numerical approaches to
strong laser physics, tBLFQ is fully quantum mechanical
and allows us to see both the acceleration of the electron by
the background and the creation of a photon, in real time.
Note that tBLFQ is also applicable to problems without
external fields but in which nontrivial time dependence
arises from using an initial state which is a nonstationary
superposition of mass eigenstates.

Future developments will be made in two directions.
First, further improvement of tBLFQ itself. The initial
step is to implement renormalization so that the BLFQ
representation of the physical eigenspectrum of QED can
be improved (and then used in tBLFQ calculations).
Currently we are working on implementing a sector-
dependent renormalization scheme within the BLFQ
framework. The inclusion of higher Fock sectors in our
calculation is also important, as it will not only result
in more realistic representations of quantum states but
will also allow for the description of a larger variety of
processes, e.g., multiphoton emissions.

The second direction to be pursued is the extension
of tBLFQ’s range of applications. In the field of intense
laser physics, the inclusion of transverse (x?), longitudi-
nal (x�) and time-dependent (xþ) structures to the back-
ground field will be used to more realistically model the
focused beams of next-generation laser facilities [32].
In addition to intense laser physics, we will also apply
tBLFQ to relativistic heavy-ion physics, specifically
the study of particle production in the strong
(color-)electromagnetic fields of two colliding nuclei.
Ultimately, the goal is to use tBLFQ to address strong
scattering problems with hadrons in the initial and/or final
states. As supercomputing technology continues to
evolve, we envision that tBLFQ will become a powerful
tool for exploring QCD dynamics.
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APPENDIX A: THE LIGHT-FRONT
QED HAMILTONIAN

In this section we follow the derivation of the
Hamiltonian in [3], but with an additional background
field. The Lagrangian is

L ¼ � 1

4
F��F

�� þ ��ði��D� �meÞ�; (A1)

in which D� � @� þ ieC� and C� ¼ A� þ A� are

the sums of the background and quantum gauge fields
respectively. Note that F�� is calculated from A� alone;

i.e. there is no kinetic term for the background. The equa-
tions of motion for the fields are

@�F
�� ¼ e ����� ¼: ej�; (A2)

which defines the current j�, and

½i��D� �me�� ¼ 0: (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now analyze
these equations in light-front coordinates (x� ¼ x0 � x3,
and x� ¼ 2x�). We work in light-front gauge, so that
Aþ ¼ Aþ ¼ 0. The � ¼ þ component of (A2) does not
contain time derivatives, and can be written

1

2
A� ¼ @?A?

@þ
� e

jþ

ð@þÞ2 : (A4)

This is a constraint equation which relates the (nondynam-
ical) field A� to the transverse components A? and the
fermion current. Similarly, if we multiply (A3) by �þ on
the left, we find a constraint equation for the fermion field.
Defining first the orthogonal field components

�� � 1

4
�þ���; �þ � 1

4
���þ�; (A5)

the constraint equation may be written

�� ¼ 1

2i@þ
½me � i�?D?��þ�þ: (A6)

Hence, the field �� is nondynamical and can be ex-
pressed in terms of the dynamical field �þ. We now
turn to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@þ�

¼ i ���þ;
@L

@@þA�

¼ F�þ (A7)

and the Hamiltonian P� ¼ 2Pþ is then

P� ¼
Z

d2x?dx�F�þ@þA� þ i ���þ@þ��L

¼
Z

d2x?dx�F�þ@þA� þ 1

4
F��F�� þ i ���þ@þ�;

(A8)
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in which the first line is the standard Legendre transforma-
tion, and in the second line we have used the equations of
motion. It is convenient to add a total derivative to the
Hamiltonian [3], the term�@�ðF�þAþÞ, and again use the
equations of motion to write

P� ¼
Z

d2x?dx�
1

4
F��F�� � F�þF�þ þ i ���þDþ�

þ e ���þAþ�: (A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time derivatives
of the fields in favor of the fields themselves, and their
momenta. The gauge field terms are simplest. Let i, j be
transverse indices and define

f ~Aþ; ~A�; ~Ajg :¼
	
0; 2

@jAj

@þ
; Aj



: (A10)

The first line of (A9) then becomes

1

4
FijFij � 1

2
Fþ�Fþ� ¼ 1

2
~Ajði@?Þ2 ~Aj þ e2

2
jþ

1

ði@þÞ2 j
þ

þ ejþ ~Aþ; (A11)

using the constraint (A4). The field ~A� is that which sur-

vives the limit e ! 0, and is therefore referred to as a ‘‘free
field.’’ Turning now to the spinor terms in (A9), we have

i ���þDþ� ¼ 2i�y
þDþ�þ; (A12)

and the spinor equations of motion (A3) then give

2iDþ�þ ¼ 1

2
½me � i�?D?�����

¼ 1

2
½me � i�?D?� ��

2i@þ
½me � i�?D?��þ�þ

¼ ½me � i�?D?� 1

i@þ
½me þ i�?D?��þ:

(A13)

The first line follows from ���þ � 0, we used (A6) in the
second line and in the third line we commuted �� to the

right. In analogy to ~A, we introduce ~�, defined by

~�þ¼�þ; ~��¼ 1

2i@þ
½me� i�?@?��þ ~�þ: (A14)

Again, this is the field which survives the e ! 0 limit. Our
final task is to insert (A14) into (A13) and rewrite this in
terms of only the ‘‘tilde’’ variables. First, the C-free terms
of (A12) are

�y
þ½me � i�?@?� 1

i@þ
½me þ i�?@?��þ

¼ 1

2
�~��þ m2

e þ ði@?Þ2
i@þ

~�: (A15)

Next, we have terms in (A12) which are linear in C:

�y
þ½e�?C?� 1

i@þ
½me þ i�?@?��þ

þ�y
þ½me � i�?@?� 1

i@þ
½�e�?C?��þ

¼ 1

2
~�y
þ½e�?C?��� ~�� þ 1

2
~�y��þ½�e�?C?� ~�þ

¼ e~j?C?; (A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

�e2 ~�þ½e�?C?� 1

i@þ
½e�?C?� ~�þ: (A17)

Now, we sum (A13) and (A15)–(A17) to obtain the full
Hamiltonian:we drop the tilde on all variables fromnowon,
so that one must remember that

A��2
@?A?

@þ
; ��� 1

2i@þ
½me� i�?@?��þ�þ: (A18)

Since we are interested in the new interactions introduced
by the background field, we will separate these out explic-
itly, expanding C ! Aþ A. (Recall, A has a tilde now.)
Finally, the full Hamiltonian is

P�¼
Z
d2x?dx�

1

2
���þm

2
eþði@?Þ2
i@þ

�

þ1

2
Ajði@?Þ2Ajþej�A�þe2

2
jþ

1

ði@þÞ2j
þ

þe2

2
����A�

�þ

i@þ
��A��

þe2

2
����A�

�þ

i@þ
��A��þe2

2
����A�

�þ

i@þ
��A��

þe2

2
����A�

�þ

i@þ
��A��þej�A�: (A19)

The first three lines are the QED light-front Hamiltonian,
P�
QED. The remaining lines contain the new terms generated

by the background field. We label the terms in P�
QED as

Tf; T�;W1 . . .W3 respectively. Tf and T� are the

kinetic energy terms for the fermion and gauge field re-
spectively. W1 is called the vertex interaction, which is
responsible for photon emission and electron-positron
pair-production processes. W2 is the instantaneous-photon
interaction and W3 is the instantaneous-fermion interac-
tion. The instantaneous-photon interaction is the light-front
analogue of the Coulomb energy, and its origin is Gauss’s
law (A4) [3]. The instantaneous-fermion interaction is
(explicitly) present exclusively in light-front dynamics.
In perturbation theory, methods to properly treat the IR
divergences associated with these instantaneous interac-
tions have been developed and applied in Refs. [54,55].
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The additional terms introduced by the background
field, in the fourth and fifth lines of (A19), are the instan-
taneous 2-background, 2-fermion vertex, two instanta-
neous 1-background, 1-photon, 2-fermion vertices, and
finally the three-point background vertex interaction. For
the field (16), the Hamiltonian (A19) contains only a single
term beyond the ordinary QED Hamiltonian, this term
being

jþAþ ¼ ���þ�Aþ ¼ 2�y
þ�þAþ ¼ �y

þ�þA�:

(A20)

The spatial integral of this term is denoted as V in Secs. IV
and V, and in Appendix E. As the main goal in this work is
to introduce the general framework of BLFQ (rather than
to present new results through precise numerical calcula-
tions, for which see future articles) we work for conve-
nience with a truncated QED Hamiltonian, dropping the
instantaneous interaction termsW2 andW3, proportional to
e2. The remaining Hamiltonian is sufficient for calculating
eigenstates and eigenvalues to first order in �.

1. Symmetries of P�
QED

The BLFQ basis explicitly carries three of the symme-
tries of the QED light-front Hamiltonian P�

QED. A fourth

symmetry, boost invariance in the transverse direction, is
not encoded directly in the basis. However, as discussed in
the text, due to the choice of HO basis and the Nmax

truncation method, this symmetry is recovered by a
factorization of the resulting amplitudes into a component
for center-of-mass motion times the components for inter-
nal motion [49]. The three symmetries encoded directly in
the basis and their operators, which commute with P�

QED,

are listed below.
The longitudinal momentum operator is

Pþ ¼ 1

2

Z
dx�d2x?2�y

þi@þ�þ þ @þAj@þAj; (A21)

with j 2 f1; 2g. This commutes with P�
QED, and so overall

longitudinal momentum is conserved.
The longitudinal projection of angular momentum is

also conserved. The corresponding operator is written J3.
This can be decomposed into the following four parts:

J3 ¼ J3f;o þ J3f;i þ J3�;o þ J3�;i (A22)

in which the subscript o refers to the longitudinal projec-
tion of orbital angular momentum, while subscript i refers
to the longitudinal projection of the spin angular momen-
tum, i.e. helicity. The subscripts f and � refer to the
fermion and photon, as above. In terms of the fields, these
four operators are

J3f;o ¼
Z

dx�d2x?�y
þiðx1@2 � x2@1Þ�þ;

J3f;i ¼
Z

dx�d2x?�y
þ�3�þ;

J3�;o ¼ 1

2

Z
dx�d2x?x1½@þA1@2A1 þ @þA2@2A2

� x2½@þA1@1A1 þ @þA2@1A2�;
J3�;i ¼

1

2

Z
dx�d2x?A1@þA2 � A2@þA1: (A23)

where

�3 � 	3 0

0 	3

 !
:

Finally, net fermion number is also conserved. The
corresponding operator is

Nf ¼
Z

dx�d2x?�y
þ�þ: (A24)

APPENDIX B: BLFQ HARMONIC
OSCILLATOR BASIS

Our BLFQ basis elements differ from the usual basis
of momentum states only in the transverse degrees of
freedom. In this appendix, we describe the transverse
structure of our basis elements.
For the transverse part, the basis elements are eigenstates

of the following two-dimensional harmonic oscillator
(2D-HO) Hamiltonian

H2d
HO ¼ p2

?
2M

þ 1

2
M�2x2?; (B1)

in which M and � are the mass and frequency of the
oscillator. The choice of these free parameters will be
discussed shortly. The characteristic scale of the 2D-HO

is b ¼ ffiffiffiffiffiffiffiffiffi
M�

p
will be called the 2D-HO parameter. The

eigenstates of (B1) are labeled by two quantum numbers:
n, the principle quantum number characterizing the quanta
of the radial excitation, and m, the angular quantum
number characterizing the angular momentum. These
eigenstates, which we write jnmi have eigenenergy En;m¼
ð2nþjmjþ1Þ�. In coordinate space, the corresponding
wave functions can be factorized into a conventional
angular part 
mð�Þ,


mð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p eim�; (B2)

and a radial part fnmð�Þ, as follows
�b

nmð�;�Þ ¼ hx?jnmi ¼ ð�1Þnijmjfnmð�Þ
mð�Þ; (B3)

where (�, �) are polar coordinates in the transverse
plane, x1 ¼ � cos� and x2 ¼ � sin�. Explicitly, the ra-
dial part fnmð�Þ is given in terms of generalized Laguerre

polynomials, Ljmj
n ðb2�2Þ, by
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fbnmð�Þ¼b
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþjmjÞ!

s
e�b2�2=2ðb�ÞjmjLjmj

n ðb2�2Þ: (B4)

The 2D-HO wave function �b
nmð�;�Þ satisfies the follow-

ing orthonormalization condition:

hnmjn0m0i ¼
Z 1

0

Z 2�

0
d��d��b	

nmð�;�Þ�b
n0m0 ð�;�Þ

¼ �n0
n �

m0
m : (B5)

In general, the 2D-HOwave function�b
nmð�;�Þ is a highly

oscillatory function with respect to both � and �. In the
radial direction, though, the oscillations terminate with a

steep falloff to zero at around b�� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ jmjp

.
One property of these wave functions is that their

coordinate and momentum space expressions are very
similar. To see this, we Fourier-transform �b

nmðx?Þ to

obtain the momentum space wave function ~�b
nmðp?Þ,

~�b
nmðp?Þ ¼ hp?jnmi ¼

Z
d2x?e�i ~x?� ~p?

�nmðx?Þ
¼ ð2�Þ~fbnmðpÞ~
mð�Þ; (B6)

in which

~fbnmðpÞ ¼
ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ jmjÞ!

s
e�p2=ð2b2Þ

�
p

b

�jmj
Ljmj
n

�
p2

b2

�
; (B7)

and

~
mð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p eim�: (B8)

The coordinate and momentum space wave functions (B3)
and (B6) differ only in an overall coefficient and in that the
2D-HO parameter b appears in numerators or denomina-
tors, respectively. Note in particular that the wave functions
depend only on b, not on M and � individually.

1. Basis truncation: IR and UV cutoffs

As discussed in the paper, the BLFQ basis must be
truncated in order for numerical calculations to be feasible.
One of the conditions used for obtaining a finite-
dimensional basis space is that the transverse degrees of
freedom of the multiparticle states obeyX

particles

2nl þ jmlj þ 1 � Nmax : (B9)

This restriction also imposes both IR and UV cutoffs into
our theory, as can be seen from the behavior of the 2D-HO
wave functions.

The momentum space HO wave function (B6) exhibits a

sharp falloff at around p? � 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ jmjp

. The maximal
transverse momentum that can be supported by the basis
spaces truncated at Nmax is therefore around pmax

? /
b

ffiffiffiffiffiffiffiffiffiffiffi
Nmax

p
, which is an ultraviolet cutoff in momentum space.

Since the coordinate space wave functions are so closely
related to those in momentum space, we see immediately
that the same basis states in coordinate space have support
up to xmax

? / ffiffiffiffiffiffiffiffiffiffiffi
Nmax

p
=b. This translates into an infrared

cutoff in the momentum space as pmin
? ¼ 1=xmax

? /
b=

ffiffiffiffiffiffiffiffiffiffiffi
Nmax

p
. The above UV and IR cutoffs are analogous to

cutoffs of the 3D-HO that have recently been analyzed in
low-energy nuclear physics applications [45,46].

APPENDIX C: LIGHT-FRONT QED IN
THE BLFQ BASIS

1. Mode expansion

The mode expansion for field operators in the BLFQ
basis is

�ðxÞ ¼X
��

1ffiffiffiffiffiffi
2L

p
Z d2p?

ð2�Þ2 ½b ��
~�nmðp?Þuðp; �Þe�ip�x

þ dy�� ~�
	
nmðp?Þvðp; �Þeip�x�; (C1)

A�ðxÞ ¼
X
��

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lpþp Z d2p?

ð2�Þ2 ½a ��
~�nmðp?Þ
�ðp; �Þe�ip�x

þ ay�� ~�
	
nmðp?Þ
	�ðp; �Þeip�x�; (C2)

where p � x ¼ 1
2p

þx� � p? � x? is the 3-product for the

spatial components of p� and x�, and see Eq. (20) for the
values of pþ, which depend on the (anti)periodic boundary
conditions for (fermions) gauge bosons. The creation

operators by��, dy�� and ay�� create electrons, positrons
and photons (respectively) with quantum numbers �� ¼
fk; n;m; �g. They obey the (anti)commutation relations

½a ��; a
y
��0 � ¼ fb ��; b

y
��0 g ¼ fd ��; d

y
��0 g ¼ � �� ��0 : (C3)

With this, and using the explicit forms of the spinors and
polarization vectors, given below, one can verify that the
fields obey the standard equal-light-front-time commuta-
tion relations,

f�þðxÞ;�y
þðyÞgxþ¼yþ ¼�þ�ðx��y�Þ�2ðx?�y?Þ;

½AiðxÞ;AjðyÞ�xþ¼yþ ¼�i

4
�ij
ðx��y�Þ�2ðx?�y?Þ;

(C4)

in which �� ¼ ����=4 are the usual orthogonal, light-
front projectors and 
ðxÞ is the sign function.

2. Spin and polarization

We use the following (chiral) spinor representation, with
helicity � ¼ �1=2 ¼"# :
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uðp; "Þ ¼

1

0
ime

pþ

ðip1�p2Þ
pþ

0
BBBBBB@

1
CCCCCCA; uðp; #Þ ¼

0

1
ð�ip1�p2Þ

pþ

ime

pþ

0
BBBBBB@

1
CCCCCCA;

vðp; "Þ ¼

0

1
ð�ip1�p2Þ

pþ

�ime

pþ

0
BBBBBB@

1
CCCCCCA; vðp; #Þ ¼

1

0
�ime

pþ

ðip1�p2Þ
pþ

0
BBBBBB@

1
CCCCCCA:

(C5)

We use a circularly polarized basis of polarization vectors
for the photon, with � ¼ �1 ¼"# ,


�ðk; �Þ ¼
�
0; 
?ð�Þ; 2


?ð�Þ � k?
kþ

�
; (C6)

in which the transversal polarization vectors are 
?ðþ1Þ ¼
1ffiffi
2

p ð1; iÞ and 
?ð�1Þ ¼ 1ffiffi
2

p ð1;�iÞ. The vectors are normal-

ized according to


�ðk; �Þ
	�ðk; �0Þ ¼ ����0 : (C7)

3. The Hamiltonian

We have now written our free field operators in terms of
creation and annihilation operators. The next step is there-
fore to express the Hamiltonian in terms of the same basis.
Hence, we take the operators (C1) and insert them into
(A19). The calculation is lengthy and unenlightening, so
we will simply give some example terms.
First, the kinetic energy term for the fermions, which is

the first term of (A19), is

Tf ¼
Z L

�L
dx�

Z
d2x?

1

2
���þ m2

e þ ði@?Þ2
i@þ

�

¼ X
�� ��0

1

pþ ðby
��0b �� þ dy

��0d ��Þ

�
�
½m2

e þ ð2nþ jmj þ 1Þb2�� ��0
��

� b2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ 1Þðnþ jmj þ 1Þ
q

�n0�1
n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ jmjÞ

q
�n0þ1
n

�
�m0
m �k0

k �
�0
�

�
: (C8)

Onecan similarlyobtain expressions for the interaction terms
in (C1). The vertex interactionW1 becomes, for example,

W1¼e
Z L

�L
dx�

Z
d2x? �����A�¼ e

ð2�Þ4 ffiffiffiffiffiffi
2L

p X
��1 ��2 ��3

1ffiffiffiffiffiffiffi
pþ
2

q Z
d2ðp?

1 ;p
?
2 ;p

?
3 Þ

�½ ~�n1m1
ðp?

1 Þ ~�	
n2m2

ðp?
2 Þ ~�	

n3m3
ðp?

3 Þ �uðp3;�3Þ��
	�ðp2;�2Þuðp1;�1Þ�ð3Þðp1�p2�p3Þby��3
ay��2

b ��1

þ ~�n1m1
ðp?

1 Þ ~�n2m2
ðp?

2 Þ ~�	
n3m3

ðp?
3 Þ �uðp3;�3Þ��
�ðp2;�2Þuðp1;�1Þ�ð3Þðp1þp2�p3Þby��3

a ��2
b ��1

þsix similar terms�: (C9)

Here ��1, ��2, ��3 are the quantum numbers associated with
the field operators �, A� and �� respectively. The 3D-�
functions should be understood as the Dirac delta function
for the transverse momentum (p?) and the Kronecker delta

for the discretized longitudinal momentum (pþ). The two
terms given above cause transitions between the jei and je�i
Fock sectors. The six terms which we have not written
explicitly do not contribute to the calculations in this paper,
as they describe transitions between Fock sectors which
are not present in our truncated basis space. The spinor-
polarization vector contraction part �uðp3; �3Þ��
	�ðp2; �2Þ
uðp1; �1Þ in the first term is summarized in Table I for differ-
ent helicity configurations. Taking complex conjugates
and changing labels gives the results with 
� instead for

	�. Integration over the product of three, highly oscillatory,
2D-HOwave functions, as in (C9),would pose a challenge for
numerical calculations. Fortunately, this type of integral can
be performed analytically by applying the Talmi-Moshinsky
transformation to the 2D-HO wave functions; see [56].

APPENDIX D: CONSTRUCTING tBLFQ BASIS:
AN EXAMPLE

In this appendix we illustrate the construction of the
extended BLFQ basis, the diagonalization of the
Hamiltonian and the construction of the tBLFQ basis.

TABLE I. Spinor-polarization vector contraction for different
helicity configurations of the incoming electron (‘‘1’’), outgoing
photon (‘‘2’’) and the outgoing electron (‘‘3’’).

Helicity

configurations ð�3; �2; �1Þ �uðp3; �3Þ��
	�ðp2; �2Þuðp1; �1Þ
""" � ffiffiffi
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3
�ip2
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For the sake of clarity we work in a highly truncated
basis space for which numerical results are subject to large
truncation error, but this section is for illustration only.

1. BLFQ state enumeration

We take b ¼ me and L ¼ 2� MeV�1. In this example,
our extended BLFQ basis consists of two segments, labeled
by fK ¼ 3=2;Mj ¼ 1=2; Nf ¼ 1g and fK ¼ 5=2;Mj ¼
1=2; Nf ¼ 1g. In each segment we truncate the transverse

degrees of freedom at Nmax ¼ 2.
Consider now which Fock states are present in our basis.

In each segment, the basis states have to meet the symme-
try constraints (22) to (24), and the truncation constraint
(28). Consequently, there are only two states in the
K ¼ 3=2 segment; their quantum numbers are given in
Table II. In the K ¼ 5=2 segment we have three basis
states; see Table III. The total dimensionality of this ex-
tended BLFQ space, which is simply the sum of the two
segments, is 2þ 3 ¼ 5. Note that we have assigned a
number to each of the basis states; this ordering is a matter
of choice, and we include it so that the structures of the
exact QED eigenstates, which we will construct below, can
be more easily related to their Fock components.

Now that we have the basis states j�i, we calculate their
matrix elements with the Hamiltonian, h�0jP�

QEDj�i, using
for example the expressions (C8) and (C9). The resulting
QED Hamiltonian in our five-dimensional extended BLFQ

basis is shown in Table IV. The diagonal entries come from
the free kinetic terms in the Hamiltonian. [In general, the
kinetic terms give off-diagonal matrix elements, as can be
seen from (C8); such terms do not appear here only be-
cause of the small basis space.] The off-diagonal matrix
elements in Table IV come from the vertex interactionW1.
As expected, the Hamiltonian matrix exhibits a block-
diagonal structure; no coupling exists between the K ¼
3=2 segment (states 1 and 2) and the K ¼ 5=2 segment
(states 3, 4 and 5), due to the symmetries of QED.
Normally, we would also include the instantaneous W3

terms. However, as noted above, we are only solving for
QED mass eigenstates with the Hamiltonian accurate to
order e in the present work.

2. Diagonalization of P�
QED

With the QED Hamiltonian matrix in the BLFQ basis
prepared, we are ready to diagonalize it. This can be done
segment by segment because of the block-diagonal struc-
ture of the Hamiltonian. Doing so, we obtain eigenstates
j�i and eigenvalues P�

� . These are listed in Table V. The

first column enumerates the eigenstates. The second and
third columns contain P�

� and the invariant mass M� for

each eigenstate, which will be discussed shortly. The fourth
column contains the segment specifier; it is enough to give
just K in this case. In the fifth to ninth columns we list the
overlaps of the eigenstates j�i with the BLFQ basis states
j�i in Tables II and III, i.e. this part of the table contains the
coefficients in the expansion

j�i ¼ X
�

j�ih�j�i: (D1)

Let us comment briefly on the physical interpretations of
these QED eigenstates. In this example, the five QED
eigenstates lie in two segments. The eigenstates numbered
1 and 2 are in the (total longitudinal momentum) K ¼ 3=2
segment, while eigenstates 3, 4 and 5 are in the K ¼ 5=2
segment. In order to interpret these states it is useful to
introduce the invariant mass,

M2 :¼ PþP� � P?P?: (D2)

We see that the eigenstates 1 and 3 have invariant masses
close to the physical electron mass me. Reading off the

TABLE IV. The Hamiltonian matrix P�
QED in the extended BLFQ basis consisting of two segments: fK ¼ 3=2;Mj ¼ 1=2; Nf ¼ 1g

and fK ¼ 5=2;Mj ¼ 1=2; Nf ¼ 1g. See text for truncation parameters.

h�0jP�
QEDj�i (MeV)

BLFQ basis state j�i
1 jei 2 je�i 3 jei 4 je�i 5 je�i

BLFQ basis state h�0j

1 jei 0.3482 �0:0119 0 0 0

2 je�i �0:0119 0.9139 0 0 0

3 jei 0 0 0.2089 �0:0024 �0:0101
4 je�i 0 0 �0:0024 0.3917 0

5 je�i 0 0 �0:0101 0 0.8486

TABLE II. BLFQ basis states in the segment fK ¼ 3=2;Mj ¼
1=2; Nf ¼ 1g.
Basis state no. Fock sector ke ne me �e k� n� m� ��

1 jei 3=2 0 0 1=2
2 je�i 1=2 0 0 �1=2 1 0 0 1

TABLE III. BLFQ basis states in the segment of fK¼5=2;
Mj¼1=2;Nf¼1g.
Basis state no. Fock sector ke ne me �e k� n� m� ��

3 jei 5=2 0 0 1=2
4 je�i 3=2 0 0 �1=2 1 0 0 1

5 je�i 1=2 0 0 �1=2 2 0 0 1
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coefficients (D1), we see that these states are dominated by
contributions from the single-electron basis states. Thus we
interpret them as the physical single-electron states jephysi
with different longitudinal momenta. (The slight deviation
in the invariant mass fromme is due to our omission of mass
corrections from counterterms.) The small je�i components
in their wave functions are generated by the QED vertex
interaction (W1), and describe the dressing of the bare fields
by the photon cloud which, together, make up the physical
electron [40–42]. We will see that these je�i components
play an important role in photon-radiation processes. They
are also responsible for the electron’s anomalous magnetic
moment; see Ref. [49] for more details.

The eigenstates 2, 4 and 5 are excited states in their
respective segments, with invariant masses considerably
above the physical electron mass. Since they are dominated
by the basis states in the je�i sector, it is natural to interpret
them as the electron-photon scattering states je�scati. Their
invariant masses M�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPeþP�Þ2

q
are experimentally

accessible through simultaneous measurements of the
electron and photon four-momenta. The je�scati states
receive small contributions from the single-Fock-electron
sector (jei) due to the QED vertex interaction W1. As we
will see below, it is through such ‘‘minor’’ components that
external fields are able to couple physical electron states to
electron-photon scattering states or, in other words, cause
photon emission.

3. tBLFQ: Time evolution

The eigenstates we have constructed comprise the
tBLFQ basis. We continue our example by calculating

transitions between these eigenstates in nCs. The laser
profile used in this example is

eA�ðx�Þ ¼ 2a0me cos ðl�x�Þ
¼ a0me½exp ðil�x�Þ þ exp ð�il�x�Þ�; (D3)

and we take a0 ¼ 1, which is at the edge of the nonpertur-
bative intensity regime. Recalling that the frequency l� can
be written in terms of the wave number klas as l� ¼ �

L klas,

we take klas ¼ 1. The laser can therefore cause transitions
between just the two segments of the tBLFQ basis prepared
above.
We need the matrix elements of V in the tBLFQ

basis. One can first write down the matrix elements in
the extended BLFQ basis, i.e. the set h�0jVj�i, and then
transform to the tBLFQ basis using

h�0jVj�i ¼ X
��0

h�0j�0ih�0jVj�ih�j�i: (D4)

The resulting matrix of V in the tBLFQ basis, h�0jVj�i, is
shown in Table VI. The only allowed transitions are now
between the two segments, because of the longitudinal
momentum being added to the system by the background.
The most probable transitions are those between the
physical electron states jephysi in the two segments, and

between the electron-photon scattering states je�scati in the
two segments. These types of transitions describe accel-
eration, as the particle number is conserved, but the
longitudinal momentum is changed by one unit.
There are also transitions between the physical electron

states and the electron-photon scattering states (jephysi $
je�scati), which describe the radiation process. We see that

TABLE VI. The matrix elements of the interaction term V in the tBLFQ basis.

h�0jVj�i (MeV)

Basis element j�i
1 2 3 4 5

Basis element h�0j

1 (K ¼ 3=2) 0 0 �0:5109 �0:0041 0.0080

2 (K ¼ 3=2) 0 0 �0:0041 0.5110 0.0002

3 (K ¼ 5=2) �0:5109 �0:0041 0 0 0

4 (K ¼ 5=2) �0:0041 0.5110 0 0 0

5 (K ¼ 5=2) 0.0080 0.0002 0 0 0

TABLE V. Eigenstates and eigenvalues of the QED Hamiltonian in the extended BLFQ basis comprising the two segments
fK ¼ 3=2;Mj ¼ 1=2; Nf ¼ 1g and fK ¼ 5=2;Mj ¼ 1=2; Nf ¼ 1g.

P�
QED eigenstate h�j P�

� (MeV) M�(MeV)

BLFQ amplitudes h�j�i
K 1jei 2je�i 3jei 4je�i 5je�i

1 0.3479 0.5106 3=2 �0:9998 �0:0210 0 0 0

2 0.9142 1.0540 3=2 �0:0210 0.9998 0 0 0

3 0.2087 0.5105 5=2 0 0 0.9998 0.0130 0.0157

4 0.3917 0.8474 5=2 0 0 �0:0130 0.9999 �0:0003
5 0.8488 1.3640 5=2 0 0 �0:0157 0.0001 0.9999
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these transitions have much smaller amplitudes, since they
link the ‘‘minor’’ Fock components in tBLFQ basis states
j�i (e.g., the je�i components in jephysi, and the jei
components in je�scati), which are suppressed by one
factor of the electron charge e. Next we multiply by the

required phase factor ei!�0�x
þ=2, which transforms the

matrix elements into those in the interaction picture,

h�0jVIðxþÞj�i ¼ h�0jVj�i � ei!�0�x
þ=2; (D5)

where !�0� ¼ P�
�0 � P�

� (see Table V for the values of

these energy eigenvalues). Due to this phase factor, the
transition amplitudes oscillate in time with the period,
�1=!�0�, inversely proportional to the light-front energy

difference between j�0i and j�i. Thus in xþ ! 1 limit only
the transitions which conserve light-front energy can accu-
mulate. The interaction picture matrix elements of VI are
given in Table VII. We also need the initial state of the
system, jc ; xþ ¼ 0iI; cf. Eq. (8). In the nCs process the
initial state is a physical electron. In our current tBLFQ basis
there are two states corresponding to physical electrons, the
two jephysi states; see Tables II and III. We choose our initial

state to be that in the K ¼ 3=2 segment. Now we are in a
position to evolve the initial state forward in xþ. To do so,
wemust identify the largest (bymagnitude) eigenvalue of VI

in order to determine our step size (see the discussion in
Sec. IVC). According to Table VII the smallest value for
1=!�0� is about 1

0:35 � 3 MeV�1, and according to Table VI

the largest eigenvalue (by magnitude) of VI is about

0.511 MeV which translates to 1=jVI;max j � 2 MeV�1.

For this problem, we can safely choose the step size of
�xþ ¼ 0:1 MeV�1.
Starting from the initial state jc ; 0iI, i.e. a physical

electron with K ¼ 3=2, the evolved state jc ; xþiI is rep-
resented in Table VIII, at various times by the probabilities
for being in various QED eigenstates j�i. As time begins to
evolve, the state first acquires an overlap with the jephysi
state with K ¼ 5=2 (the state with f�;Kg ¼ f3; 5=2g).
Mathematically, this state is populated first due to the large
matrix element in VI coupling it to the initial state.
Physically, this is acceleration; the electron is accelerated
by the laser but does not, yet, have a significant probability
for photon emission.
At later times, the je�scati states (f�;Kg ¼ f4; 5=2g and

f5; 5=2g) become populated. The overlap between these
states and the initial state is smaller than that between the
physical electron state with the initial state. Hence, we
observe a ‘‘domination’’ of acceleration over radiation, as
the latter is suppressed by a factor of the coupling. Note that
the je�scati scattering state in the K ¼ 3=2 segment
(f�;Kg ¼ f2; 3=2g) eventually becomes populated, even
though it is not directly coupled to the initial state. This
population arises through the basis states in the K ¼ 5=2
segment, which are ‘‘decelerated’’ to the f�;Kg ¼ f2; 3=2g
state by the laser field. (This is due to the presence
of the ‘‘negative’’ exponential in the chosen laser profile
(D3), which subtracts rather than adds longitudinal
momentum.)

TABLE VIII. The evolution of jephysi with K ¼ 3=2 in the laser field by Eq. (D3). The norm and invariant mass are listed in the sixth
and seventh rows, respectively.

jc�j2
xþ (MeV�1)

0 0.05 0.1 0.2 1.0 5.0 10.0 15.0 20.0

1 (K ¼ 3=2) 1.000000 1.000000 0.999347 0.997391 0.936139 0.093892 0.720013 0.566033 0.199441

2 (K ¼ 3=2) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000010 0.000005 0.000005

3 (K ¼ 5=2) 0.000000 0.000163 0.000653 0.002609 0.063841 0.905839 0.279520 0.432517 0.798676

4 (K ¼ 5=2) 0.000000 0.000000 0.000000 0.000000 0.000004 0.000060 0.000035 0.000005 0.000015

5 (K ¼ 5=2) 0.000000 0.000000 0.000000 0.000001 0.000016 0.000209 0.000422 0.001440 0.001862

jhc jc ij2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.999999

hMc i (MeV) 0.510635 0.510635 0.510635 0.510635 0.510643 0.510745 0.510985 0.511826 0.512153

TABLE VII. The matrix elements of the interaction term VI in the interaction picture. xþ is in units of MeV�1.

h�0jVIðxþÞj�i (MeV)

tBLFQ basis state j�i
1 2 3 4 5

tBLFQ basis state j�0i

1 (K ¼ 3=2) 0 0 �0:5109e0:070ix
þ �0:0040e�0:022ixþ 0:0080e�0:250ixþ

2 (K ¼ 3=2) 0 0 �0:0040e0:353ix
þ

0:5110e0:261ix
þ

0:0002e0:033ix
þ

3 (K ¼ 5=2) �0:5109e�0:070ixþ �0:0040e�0:353ixþ 0 0 0

4 (K ¼ 5=2) �0:0040e0:022ix
þ

0:5110e�0:261ixþ 0 0 0

5 (K ¼ 5=2) 0:0080e0:250ix
þ

0:0002e�0:033ixþ 0 0 0
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The norm of the state jc ; xþi is conserved over
the entire evolution due to the stability of the MSD2
scheme. It is an advantage of the tBLFQ approach that
the wave function of the system is accessible at each
time step, which allows one to monitor the real-time evo-

lution of any observable OðxþÞ, by evaluating OðxþÞ ¼
Ihc ; xþjÔIjc ; xþiI. For example, taking ÔI to be the
invariant mass operator, we obtain the evolution of the
average invariant mass of the system; see the seventh row
of Table VIII. The increase in the invariant mass with time
reflects the fact that the laser field pumps energy into the
system and hence that photons are being created.

This completes our example. Performing calculations in
larger basis spaces follows the same procedure. In Sec. VB
we present the numerical results for the nCs process in
larger basis spaces, which allows for a more accurate
description of the evolution of the system.

APPENDIX E: COMPARISON WITH
PERTURBATION THEORY

In order to check the BLFQ calculation, we calculate
the matrix element he�scatjVjephysi in perturbation theory.

As discussed in Sec. VA, the perturbative approximation
to this matrix element follows from standard time-
independent perturbation theory, and is equal to

he�scatjVjephysi¼
�
e�

��������VQ

1

P�
freeðe�Þ� P̂�

free

V

��������e
�

þ
�
e�

��������V 1

P�
freeðeÞ� P̂�

free

VQ

��������e
�
: (E1)

The Feynman diagram representation of the perturbative
matrix elements on the right-hand side of (E1) is shown in
Fig. 8; these are (respectively) s-channel and t-channel
Compton scattering diagrams, where the laser field takes
the place of the incoming photon. Using the machinery in
Appendix B to write these perturbative overlaps in terms of
the BLFQ basis, one eventually finds [with lþ ¼ 2l� from
(16) and �		 the Kronecker delta]

�
e�

��������VQ

1

P�
freeðe�Þ � P̂�

free

V

��������e
�
¼ ea0me

4
ffiffiffiffiffiffi
2L

p
Z d2ðp0?; k0?; p?Þ

ð2�Þ4 ffiffiffiffiffiffiffi
k0þ

p ~�	
n00m00 ðk0?Þ ~�	

n0m0 ðp0?Þ ~�nmðp?Þ

� X
s¼�1

�?ðp0 þ k0 � pÞ�p0þþk0þ
pþþslþ

p0þ þ k0þ

k0:p0 �u�
0

p0

	ðk0Þu�pþsl; (E2)

and

�
e�

��������V 1

P�
freeðeÞ � P̂�

free

VQ

��������e
�
¼ � ea0me

4
ffiffiffiffiffiffi
2L

p
Z d2ðp0?; k0?; p?Þ

ð2�Þ4 ffiffiffiffiffiffiffi
k0þ

p ~�	
n00m00 ðk0?Þ ~�	

n0m0 ðp0?Þ ~�nmðp?Þ

� X
s¼�1

�?ðp0 þ k0 � pÞ�p0þþk0þ
pþþslþ

pþ � k0þ
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�u�
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	ðk0Þu�p : (E3)

The final factors in each of the above, describing spin and polarization contributions, can be read off from Table I.
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