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Abstract— In this paper, an analysis of the dc dynamics of multi-
terminal VSC-HVDC systems using the small signal modeling 
method is presented. Usually, the VSC controllers are designed 
under the consideration that they operate independently of each 
other. However, the possible interactions among them and the 
dc grid should be studied, especially in multi-terminal 
topologies. In this paper, three VSC-HVDC systems are modeled 
and, after linearization, the eigenvalues of the system are 
calculated for different loading conditions. The results from this 
analysis are compared to those obtained from more detailed 
models using PSCAD. It is shown that the operating point, the 
gains of the direct-voltage controller and the cable dynamics 
have an impact on the system performance. 

Index Terms—Multi-terminal VSC-HVDC system, small signal 
analysis, eigenvalues, control systems, dc dynamics. 

I. INTRODUCTION 
In recent years, multi-terminal voltage-source-converter-

based HVDC systems (VSC-MTDC) have been proposed as 
an option for the interconnection of renewable energy 
resources, and for the integration of electricity markets over 
large geographical areas [1]. Voltage sources converters 
(VSC) have been found to be a promising technology, mainly 
due to their specific controllability features. Moreover, with 
the development of multilevel converters, the losses level has 
been reduced considerably and the voltage waveform 
generated by the VSC has been improved dramatically [2]. 
However, the VSC technology has still some limitations to 
overcome, such as the development of reliable protection 
schemes and the development of control strategies.  

The topic of control strategies deals with the selection of 
the control modes of the converters connected to the dc grid. 
For example, in [3] it was shown the importance of the direct-
voltage, which can be used as an indicator of power balancing 
in the dc system. Likewise, in [4] and [5] it was shown the 
advantage of the voltage margin and the voltage droop control 
for balancing the power flow in the dc side of VSC-MTDC 
during contingencies. Some manufacturers also propose the 

use of the voltage droop control along with a “secondary 
control” signal which determines the final power set-point to 
the converters [6]. 

Frequently, the dynamic evaluation of the proposed control 
strategies for MTDC systems, such as the ones presented in 
[4]-[5], are based on extensive electromagnetic transient 
simulations, while approaches based on analytical methods 
have been used to less extent. Examples of the use of 
analytical methods in the topic of control of VSC-MTDC can 
be seen in [7]-[9], where the small signal analysis is used. For 
instance, a stability evaluation of two control strategies for the 
inner current controller is performed in [7] using the small 
signal analysis. The eigenvalues of a five-terminal system are 
calculated for different short circuit ratios and it was found 
that the use of the direct-voltage as a feedback control signal 
improves the performance of the system. Furthermore, in [8], 
the choice of the slope for the voltage-droop characteristic was 
addressed by a frequency response criterion. The idea is that 
the multivariable gain of the system should not exceed a 
certain threshold for any selected slope. In [9], a more 
systematic approach to develop a small signal model of a 
VSC-MTDC system was presented. The system was divided 
into subsystems to be finally merged into the final VSC-
MTDC system model. The dynamics of the system was 
evaluated for different controller gains. The ranges in which 
the gains make the system eigenvalues located in the stable 
region of the complex plane (s-plane) were determined. 

The control system of the upcoming VSC-MTDC will 
bring a number of challenges. In such systems, the 
simultaneous operation of complex elements such as 
converters and dc cables can result in undesired behavior. 
Therefore, there is a need for developing analytical tools for 
evaluating the dynamical performance of VSC-MTDC 
systems. The small signal method is used in this paper, 
focusing the analysis on the dc dynamics. Some reports 
disregard the analysis of the dc dynamics by assuming the dc 
network being composed only by resistances [4], [5], [9]. 
However, in this paper, the capacitance and inductances from 
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the grid are not neglected. Furthermore, the previous cited 
reports analyzed the VSC-MTDC with its entire complexity 
implying dealing with several problems simultaneously. In 
case problems are found, this may make difficult to identify 
the source behind. In this paper, however, some assumptions 
are made in order to limit the scope of the problem to only the 
dc side of the system.  

The organization of the paper is as follow: In Section II, 
the system is linearized around an operating point and a 
procedure to find the state space (SS) model of the system is 
presented. In Section III, the SS model is used to find the 
eigenvalues of the system for the recommended system 
parameters and controller gains. Since the system is nonlinear, 
the dependency of the eigenvalues on the operating point is 
shown as well. The results are finally compared with a more 
detailed model using PSCAD simulations. In Section VI, final 
remarks on the findings of the performed studies are 
presented. 

II. SYSTEM MODELING 

A. Assumptions 
In order to focus the analysis only on the dc dynamics, the 

following assumptions are made: 

The AC sources are represented as infinite buses, i.e, 
the voltage and phase angle of the voltage VS are 
constants.  

The elements are considered ideal, i.e., the high 
frequency harmonics generated by the switching 
action of power electronic valves are ignored. 
Capacitors, inductors, and resistors are linear, 
temperature and frequency independent.  

The measuring devices are ideal. The signals coming 
from these devices are instantaneous with no 
distortion.  

The models are proposed with these assumptions. The 
conclusions from the analysis will be, therefore, only due to 
the interaction between converter controllers and the dc grid. 

B. State Space Model of the converter 
The typical control structure of a VSC is illustrated in 

Figure 1. The core of the control system is the current 
controller which is implemented using the vector control 
method. With this method, the alternating three-phase 
quantities (voltages and currents) are transformed into two-
component dc quantities, the so called dq frame. In order to 
perform the transformation, the rotating speed s and the 
angle s are calculated by the phase-locked loop (PLL) block. 
Open loop model 

The open-loop model of the VSC can be described by the 
following set of equations in the dq frame [9], [10]: 
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where R is the resistance and L is the inductance of the 
phase reactor, isd and isq are the d and q component of the 
current is, respectively,  Vcd and Vcq, are the d and q component 
of the voltage Vc, respectively, and s is the ac grid frequency. 

 
Figure 1. Typical VSC control structure. 

It should be noted that the VSC capacitor dynamic 
equation is not considered in the above set of equations. The 
capacitor dynamic is considered as part of the dc grid 
dynamics. 

The states are isd and isq, the inputs are Vcd and Vcq, and the 
output is iDC. It is important to realize that in (1c) there are 
products of an input multiplied by a state, making the system 
nonlinear. The nonlinearities are linearized around an 
operating point, resulting in the following small signal model: 
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Note that, since the ac system is assumed to be infinite, the 
PLL dynamics can be disregarded, and Vs becomes zero. 

1) AC current controller 
The structure of current controller is shown in Figure 2. 

The current controller is composed of a proportional-integral 
controller with a cross coupling compensation and a feed 
forward term of the voltage Vs (however, Vs = 0). If the 
modulation indices are normalized with respect to the voltage 
EDC [12] and considering the assumption that measuring 
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devices are ideal, the following equations, in terms of small 
perturbation, are obtained for the current controller: 
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Figure 2. Current controller. 

This can be expressed in an SS form as: 

dqccsdqccdq rBiBm a
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Equation (2) combined with (5) leads to the SS model of a 
converter together with its current controller, as follows: 
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2) Direct-voltage controller 
The output of the direct-voltage controller is connected to 

the input rd of the current controller (see Figure 1). This is 
illustrated in Figure 3 where the direct-voltage controller is 
connected to the model of the converter described by (6). The 
direct-voltage controller is a proportional-integral controller, 
which can be described by the following equation:  
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Figure 3. Direct-voltage controller. 

Considering also the input rq, the direct-voltage 
controller can be expressed in an SS form as: 
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Equation (6) combined with (8) leads to the SS model of a 
converter with its direct-voltage controller, as follows: 
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C. DC Grid 
The SS model of a three-terminal dc grid is to be 

developed in this section. The dc grid is composed of cables 
modeled as  equivalents as shown in Figure 4. The 
capacitors shown in Figure 4 represent an equivalent capacitor 
of the cable capacitor together with the converter capacitor.  

 
Figure 4. Three-terminal dc grid model 

From Figure 4, the dc grid dynamics can be described by 
the following set of equations: 
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The value of the elements of the T matrix depends on the 
buses to which the inductive branch of the  cable model is 
connected. The element is 1 if the column position 
corresponds to the “from bus” number. Similarly, the element 
is –1 if the column position corresponds to the “to bus”. 
Otherwise, zero. For example, the current i12 goes from bus 1 
to bus 2, then the value of the element T11 would be 1 and the 
element T12 would be –1. The element T13 is zero. This 
procedure was also used in [13] and can be further used to 
develop larger dc grid models. 

The SS model of the dc grid is: 

 DCgggg iBxAx a
 ggDC xCE b

where: 
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D. Complete State Space Model of the VSC-MTDC 
Figure 5 shows the three-terminal system which is going to 

be modeled as an example. VSC1 and VSC3 are set to control 
the active power, while VSC2 the direct-voltage.  

 
Figure 5. Three-terminal VSC-HVDC system. 

The set of converters can be modeled as a single SS model 
as follows: 

DCconvconvconvconvconvconv EBrBxAx 21 a
DCconvconvconvconvconvDC EDrDxCi 21 b

where: 

321321

321321

   

      

DCDCDC
T
DCDCDCDC

T
DC

T
dq

T
edq

T
dq

T
conv

TTTT
conv

EEEiii Ei

rrrrxxxx  

23

22

21

2

13

12

11

1

3

2

1

32

22

12

2

31

21

11

1

3

2

1

     

0
     

       

c

e

c

conv

c

e

c

conv

c

e

c

conv

c

e

c

conv

c

e

c

conv

c

e

c

conv

D00
0D0
00D

D
D00

0D0
00D

D

C0
0C0
00C

C
B00

0B0
00B

B

B00
0B0
00B

B
A00

0A0
00A

A

 

The matrices Ac1, Ae2, Ac3, Bc1, Be2, Bc3, etc. are the 
individual matrices obtained for every converter using the 
procedure indicated in the previous section.  

Now, (11) and (12) can be combined to obtain the SS 
model of the VSC-MTDC system. 
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Csys can be selected in such a way that some desired states 
are obtained as outputs. From the SS model (13) the dynamic 
characteristics of the VSC-MTDC system can be obtained by 
calculating the eigenvalues. 

Finally, as can be seen in (2), there are matrix elements 
which depend on the chosen operating conditions. The initial 
values of the dc grid (EDC0, PDC0) are calculated iteratively 
with a Newton-Raphson algorithm, while the initial values of 
the ac side (Vcd0, Vcq0, isd0, isq0) are calculated algebraically. 

III. EIGENVALUE ANALYSIS 
The analysis is performed by calculating the eigenvalues 

of the system for different operating points. First, two two-
terminal system are evaluated due to their simplicity. A more 
detailed model is also developed in PSCAD in order to 
compare the findings of the analysis. Afterwards, a three-
terminal system is also tested. The controller parameters are 
often selected assuming ideal conditions. However, it is shown 
in the analysis that the dc grid dynamics can influence, as 
well, the overall performance of the system. The criteria to 
select the converter elements are presented next. 

A. Model Data and Parameters   
1) Converter 

The converters are considered identical having the rating 
data of 600 MVA and  300 kV. A series reactance of 0.25 pu 
is considered to represent the phase reactor in series with 
transformer reactance. A resistance equal to 1 % of the total 
reactance is considered. The value of the converter capacitor is 
calculated using 5 ms charging time, as proposed in [14].  

2) Current controller 
The proportional and the integral gains of the current 

controller are usually selected in such a way that the closed 
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loop system becomes a first order system with bandwidth of 
. In order to achieve that, the gains are selected as [15]: 

RkLk iccpcc      

Here  is selected as 4 pu (50 Hz frequency base), as 
recommended in [16]. 

3) Direct-voltage controller 
In [11] and [17] similar formulas were derived in order to 

find the proper values for the proportional and the integral 
gains of the direct-voltage controller. In the work presented 
here the following formulas are adopted from [17]: 

2
    , 

2 C
kCk Edc

iEdcEdcpEdc

where Edc is the undamped resonance frequency and  is 
the damping ratio. It is shown in [17] that the  plays a major 
role in damping oscillations. In this paper, Edc is set to both, 
0.4 (10 % of  as recommended in [17]) and 0.8, and  is set 
to 3 (as recommended in [17]). Note that those gains are 
calculated under the assumption that the VSC is connected to 
only its capacitor and not to a cable, as in this case. 

4) Cable  
The cable parameters correspond to one with ratings of 

600 MW and  300 kV. The conductor cross section area is 
about 2000 mm2 (1000 A ampacity) and the resistivity is 3.9e-
8 -m. The insulation thickness is 24 mm, and the relative 
permittivity is 2.5. The parameters used for calculation of a  
model (at the fundamental frequency) are shown in Table I. 

TABLE I. CABLE DATA 

Resistance ( /km) Inductance 
(mH/km)

Capacitance 
( F/km)

0.0376 0.189 0.207 

B. Study Cases 
1) Two terminal system 

Two configurations of two-terminal systems are analysed. 
One in which VSC1 and VSC2 are connected in a back-to-back 
configuration; and another configuration in which VSC1 and 
VSC2 are interconnected through a 50km cable whose 
characteristics are described in Table I. In both cases VSC1 
controls the direct-voltage, while VSC2 controls the power. 
The controller parameters are set as recommended in the 
previous section. Figure 6 shows the location of the 
eigenvalues as the power set-point of VSC2 changes from + 1 
pu to – 1 pu (positive means power from the ac side to the dc 
side, negative means the opposite) for the two configurations. 
In addition, for each configuration two cases are calculated, 
with Edc set as 0.4 and Edc is set as 0.8.  

For the back-to-back case, it can be seen that for both 
values of Edc the eigenvalues remain inside the well damped 
area in most of the cases. When Edc, is set as 0.8 the 
eigenvalues start moving outside the well damped area, but 
they still remain inside the stable region. The most critical 
case is when the power at VSC1 is + 1 pu. 

 
Figure 6. Pole placement as the power changes from + 1 pu to –1 pu (with 

steps of -0.1) at VSC2. (a) Edc is set as 0.4. (b) Edc is set as 0.8. 

For the second configuration, as it can be seen in Figure 6, 
new eigenvalues appear as a result of the dynamics of the 
cable connecting VSC1 and VSC2 and it can be seen that they 
approach the imaginary axis as the power grows to + 1 pu at 
VSC1 being the most critical case when the power is + 1 pu. 
When Edc is set as 0.8, some eigenvalues even go into right 
half plane for powers greater than 0.8 pu at VSC1. 

Figure 7. Direct-voltage at each VSC’s dc node for a power step from – 0.7 
to – 0.75 at VSC2. (a) Direct-voltage at VSC1. (b) Direct-voltage at VSC2. 

The comparison between the results of state space model 
and with the results of two different PSCAD models is shown 
in Figure 7. In one of the PSCAD model the switches are 
modelled in detail (non-ideal nonlinear model), therefore, the 
curves present a high harmonic content. In the other PSCAD 
model, the VSC is represented as an ideally controlled voltage 
source in the ac side, and an ideally controlled current source 
in the dc side (ideal nonlinear model). The direct-voltages at 
both VSC’s dc nodes are plotted as a result of a step change in 
the power at VSC2 from – 0.70 pu to – 0.75 pu. It can be seen 
that the linearized model and the ideal PSCAD model oscillate 
with the same frequency, although the linearized model is 
more damped. This is due to the fact that, in the PSCAD 
model, the increase of power makes the eigenvalues to move 
closer imaginary axis, meaning that the damping of the system 
decreases. The detailed PSCAD model shows a similar pattern 
although the oscillations are not observed since the high 
frequency harmonics override them. The comparison shows 
good agreement between the linearized state space model and 
both models in PSCAD. 

2) Three-terminal system 
The calculations of the eigenvalues are performed for a 

three-terminal system as the one in Figure 4, where the length 
of the cables CL12 and CL23 are each 50 km. The controller 
parameters are set with the criteria indicated in Section III.A. 
In this case, the power set-points of the VSC1 and VSC3 are 
changed from 0.5 to – 0.5 simultaneously making the power 
through VSC2 to change from – 1 to + 1 pu. As in the two-
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terminal cases, two values of Edc are tested: Edc set as 0.4
and Edc set as 0.8.   
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Figure 8. Pole placement as the power changes from + 1 pu to –1 pu (with 

steps of -0.1) at VSC2. (a) Edc is set as 0.4. (b) Edc is set as 0.8. 

Similarly to the two-terminal cases, the increase of power 
at VSC2 towards 1.0 pu deteriorates the dynamical 
performance of the system. It is also verified that, with Edc set 
to 0.8 pu, some eigenvalues move to the right half plane when 
the power at VSC2 is greater than 0.8 pu. This case is 
investigated in the PSCAD models where power at VSC2 is 
ramped up from + 0.7 pu to + 1.0 pu with a rate of 0.10 pu/s, 
for both values of Edc. In Figure 9 (a) it is shown that, in the 
first case, the system remains stable after reaching 1 pu, while 
in the second case undamped oscillations appear. 

 
Figure 9. Direct voltage and current from VSC2 for a ramp up of power at 

VSC1 and VSC3 (a) Edc is set as 0.4. (b) Edc is set as 0.8. 

IV. CONCLUSIONS 
In this paper, a procedure to develop a state space model 

for VSC-MTDC systems was presented. Since the system is 
nonlinear, it is linearized assuming small signal perturbations 
around an operating point. The state space model allows the 
calculation of the eigenvalues of the system for different 
loading conditions. Assumptions were made in order to 
simplify the complexity of the system and to make the ac side 
of the VSC not to impact the dc system.  

The analysis carried out in this paper was made using 
recommended parameters [11], [14]-[17]. In particular, the 
recommended direct-voltage controller gains were obtained 
under the consideration that the VSC is connected only to its 
capacitor [11], [17]. It has been shown that, for a back to back 
configuration, those gains produce a good dynamical 
performance for all the tested operating points. However, 
when the dynamics of the cables are considered, the 
performance deteriorates, appearing oscillations which 

become poorly damped as the power increases at the VSC 
which controls the direct-voltage. That means that, in order to 
select the gains such that the system shows a good 
performance for all operating point, the dc grid dynamics 
should be taken into account. More detailed representation of 
the dc grid may result in new dynamics, which must be further 
investigated. 
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