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Abstract: In this paper, we investigate the performance limits of electronic
chromatic dispersion compensation (EDC) and digital backpropagation
(DBP) for a single-channel non-dispersion-managed fiber-optical link. A
known analytical method to derive the performance of the system with
EDC is extended to derive a first-order approximation for theperformance
of the system with DBP. In contrast to thecubic growthof the variance
of the nonlinear noise-like interference, often called nonlinear noise, with
input power for EDC, aquadratic growthis observed with DBP using this
approximation. Finally, we provide numerical results to verify the accuracy
of the proposed approach and compare it with existing analytical models.
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1. Introduction

Optical networks with heterogeneous structure demand accurate channel models and perfor-
mance prediction techniques to accommodate for the dynamicand static variations of the signal
quality. Moreover, the Shannon channel capacity, which is used as a criterion in the design of
coded modulation schemes, also requires an exact channel model and noise statistics of fiber-
optical channels [1–4]. In optical fibers, the nonlinear Schrödinger equation (NLSE) describes
the propagation of light. This model is nonlinear, and due tothe lack of analytical solutions and
the complexity of numerical approaches, deriving the statistics of such channels is in general
cumbersome. Hence, many efforts have been devoted to computing the statistics for simplified
models, e.g., memory-less nonlinear channels with single-polarization [5–8] and polarization-
multiplexed (PM) [9] signals, partially coherent linear channels [10–12], and channels with
intra-channel four-wave mixing [13,14].

The recent progress in channel modeling of non-dispersion-managed (non-DM) fiber-optical
links has provided an accurate description for the interaction of the linear chromatic dispersion



and the nonlinear Kerr effect during propagation. The key idea behind the analytical methods
is to model the nonlinearly-induced noise-like interference, the so-called nonlinear noise [15],
caused by the nonlinear Kerr effect as an additive white Gaussian noise (AWGN) with zero
mean. The variance of this noise as a function of the power spectral density of the transmitted
signal and the channel parameters can be computed using the first-order regular perturbation
(RP1) provided that the nonlinearity is weak, referred to asthe pseudolinear regime [2].

Two time domain models were introduced in [16, 17] using RP1 for both dispersion-
managed (DM) and non-DM single polarization fiber-optical links with wavelength-division-
multiplexing (WDM). These models require numerical integration and no simple closed-form
were provided for the variance of nonlinear noise. A closed-form expression for the variance
of nonlinear noise was introduced in [18] with a PM signal consisting of delta-like pulses us-
ing RP1 for both DM and non-DM links. The power spectral density of the nonlinear noise
was studied in [15, 19, 20] for a PM WDM signal using RP1. This study led to an accurate
model with a closed-form expression for the nonlinear noise. For a single-channel PM non-DM
link, a Gaussian model was proposed in [21] based on the split-step Fourier method (SSFM),
which yielded a closed-form expression for the nonlinear noise. Numerical and experimental
results [22,23] showed a good agreement with the analyticalmodel introduced in [15,19,20].

In our earlier work [21] for a non-DM fiber-optical channel with EDC, we showed that the
derived analytical model has a close performance agreementwith the numerical simulations. In
this paper, we extend this analytical method for the non-DM fiber-optical channel, to include
digital backpropagation (DBP) as a pre-compensation technique. In fact, the numerical simula-
tions show almost the same performance for DBP used as a pre- or post compensator. There-
fore, we consider a pre-compensation scheme based on DBP forsimplicity of the analysis. As
in [21], we take into account the cross effect of the signals in both polarizations. In contrast to
previous works [15,19,24], we include the inline interaction between the transmitted signal and
the amplified spontaneous emission (ASE) noise in differentspans due to the Kerr effect. Then,
we use a first-order approximation for the Taylor expansion of the nonlinear noise variance with
respect to ASE noise variance. This helps us compute the variance of the nonlinear noise as a
function of the transmit power, ASE noise variance, and channel parameters. The results show
a quadratic growth of the nonlinear noise variance with input power for the system with DBP.
The symbol error rate (SER) of a PM quadrature phase shift keying (QPSK) and PM 16-ary
quadrature amplitude modulation (16-QAM) system is computed using this approximation and
also by the numerical SSFM. The performance comparison shows a close agreement between
the first-order approximation and numerical results for lowand moderate transmit powers but
they deviate for high transmit powers.

2. Channel Model

The propagation of light in an optical fiber can be described by Manakov model with loss
included as [25, ch. 6]

j
∂U(t,z)

∂z
− β2

2
∂ 2U(t,z)

∂ t2 + γ(U(t,z)U(t,z)†)U(t,z)+ j
α
2

U(t,z) = 0, (1)

whereU is the PM electric field with complex components(Ux,Uy), γ is the fiber nonlin-
ear coefficient,α is the attenuation coefficient,β2 is the group velocity dispersion, † denotes
Hermitian conjugation,t is the time coordinate in a co-moving reference frame andz is the
propagation distance. A fiber-optical link withN spans of lengthL is considered according to
Fig. 1. Each span consists of a standard single-mode fiber (SMF) followed by an erbium-doped
fiber amplifier (EDFA).
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Fig. 1. A baseband continuous-time model based on the SSFM for a fiber-optical link with
N spans of SMF fiber(i = 1, . . . ,N), each consisting ofM segments(m= 1, . . . ,M), and
electronic linear (EDC) and nonlinear (DBP) pre-compensation.

2.1. Continuous-Time Channel Model

One may exploit the SSFM [25, Eq. (2.4.10)] to model each SMF span by a concatenation
of M segments with linear and nonlinear effects as shown in Fig. 1. The length of each seg-
ment,L/M, should be chosen small enough so that the linear and nonlinear effects can be
modeled independently. The nonlinear effect of segmentm of spani is given byŨ(t, ℓm−1,i) =
U(t, ℓm−1,i)exp( jγLeff‖U(t, ℓm−1,i)‖2), for m= 1, . . . ,M, whereLeff = [1−exp(−αL/M)]/α,
ℓm,i =m(L/M)+(i−1)L, andℓ0,i =(i−1)L. The linear propagation is described in the time do-
main byU(t,z)= exp(−αz/2)U(t,0)∗h(t,z), where∗ denotes convolution, which is performed
independently over elements of the vectors, andh(t,z) = exp[ jt 2/(2β2z)]/

√

j2πβ2z is the dis-
persive impulse response. As shown in Fig. 1, the linear effect in each segment is described
by U(t, ℓm,i) = AŨ(t, ℓm−1,i)∗h(t,L/M) , whereA, exp[−αL/(2M)] is the signal attenuation
for each segment. The symbolsS[n] = (Sx[n],Sy[n]), e.g., PM QPSK, are transmitted everyT
seconds with a pulse shaping filterg(t) and received as the distorted symbol sequenceR. It is
assumed thatE{|Sx[n]|2}= E{|Sy[n]|2}= PT, whereP is the average transmitted power in one
polarization. We assume that each EDFA compensates for the attenuation in each fiber span and
adds a circular white complex Gaussian ASE noise vector,Zi(t) = (Zxi (t),Zyi

(t)), in each span
with variance (over the signal bandwidth)σ2 = GFnhνopt/(2T) in each polarization [26, Eq.
(8.1.15)], whereG= exp(αL) is the required gain to compensate for the attenuation in a span,
Fn = 2nsp(1−G−1) is the noise figure, in whichnsp is ASE noise factor, andhνopt is the photon
energy. The optical bandwidth of the EDFAs is assumed to be equal to the signal bandwidth.

The fiber-optical link is analyzed for both EDC and DBP as shown in Fig. 1. In order to
apply an analytical approach, we consider sinc-shaped pulses g(t). However, the numerical
results show that the proposed model is not very dependent onthe exact pulse shape, e.g., root
raised cosine and Gaussian pulses can be used as well. A filtermatched to the pulse shape and
a Nyquist sampler is assumed at the receiver (with perfect carrier and timing synchronization).
Finally, we define the nonlinear phase shifts for the signalφs, γα−1P, and noiseφn , γα−1σ2,
and the dispersion length [25, p. 55]LD = T2/|β2|.

2.2. Discrete-Time Channel Model

In this section, we introduce a discrete-time model for segmentm of spani of the continuous-
time model, depicted in Fig. 1 with both linear and nonlinearpre-compensation. In the
continuous-time model consideringg(t) = sinc(t/T)/

√
T as a pulse shape, where sinc(x) =

(sin πx)/(πx), the transmitted signal is band-limited to[−1/2T,1/2T]. Hereafter, we assume
a pseudolinear fiber-optical data transmission, and therefore we neglect the spectral broadening
due to the nonlinear effects, i.e., the bandwidth ofUx(t)ejγLeff‖U(t)‖2

is assumed to be limited to
1/T. This assumption helps us obtain the discrete-time model depicted in Fig. 2(b) to fulfill the
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Fig. 2. (a) Nonlinear pre-compensation based on the DBP [27](h−1[n] is the inverse of the
filter h[n]). (b) A baseband discrete-time model for the SMF.

Nyquist criterion for sampling the continuous-time signals with a sampling rate of 1/T. The
discrete band-limited chromatic dispersion filter is givenby h[n] = h(t,L/M)∗sinc(t/T)

∣

∣

t=nT
andh−1 is its inverse, i.e.,h[n]∗h−1[n] = δ [n], whereδ [n] is the Kronecker’s delta.

3. Statistics of the Propagated Signal Using the Split-Step Fourier Method

In this section, we first review our previous results on the signal statistics for a single channel
fiber-optical link with EDC [21]. Then, we use the same framework as in [21] to study the
signal statistics with DBP.

The distribution of the signal for a PM single-channel fiber-optical link is derived in [21] with
large accumulated dispersion and without inline chromaticdispersion compensation. According
to this model, the fiber-optical link depicted in Fig. 1 can bemodeled as a linear channel with
an additive Gaussian noise described by

R = ζS+W, (2)

whereζ is a complex constant,S is the sequence of symbolsS[n] introduced in Section 2.1,
andW represents the PM complex zero-mean circularly symmetric AWGN.

3.1. Signal Statistics with EDC

The squared amplitude of the channel complex scaling constant ζ for the EDC case is given by

|ζEDC|2 ≈ 1−3N1+εφ2
s tanh(α

4 LD). (3)

Experimental investigations [23,28] on the accumulation of nonlinear noise versus the number
of spans,N, revealed that the nonlinear noises from different spans sum up partially coherently
rather than entirely incoherently as was approximated in [21]. Therefore, as introduced in [15,
Eq. (23)], we consideredN1+ε rather thanN to account for this behavior of the nonlinear noise,
where

ε = 3
10 log



1+
6

αL asinh
(

π2

2αLD

)



 . (4)

The system signal-to-noise ratio (SNR) is given by|ζEDC|2P/(Nσ2+σ2
NL), where

σ2
NL = (1−|ζEDC|2)P≈ 3N1+ε γ2α−2 tanh(α

4 LD)P
3. (5)
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Ṽm−1,1

SMF seg.mof span 1

e
jγLeff‖Um−1,1‖2

Um−1,1

Span 1

A−1h−1[n]A−1h−1[n] Ah[n] Ah[n]
A−MAM

Z1

EDFA

SMF seg. 1 of span 2Pre-comp. seg. 1 of span 2
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Fig. 3. The discrete-time model of segment 1 from span 2 and the first span together with
their corresponding pre-compensation units. The gain of the EDFA unit is assumed to be
canceled out by the compensation unit. The channel deterministic impairments are fully
compensated for the first span because the first amplifier is assumed to be added at the
beginning of the second span. All the impairments for the first span are deterministic and
there is no noise interaction involved in the signal propagation in this span.

As showed in [21], the contribution of signal–noise interaction to the variance of the nonlinear
noise can be neglected compared to the contribution of the signal–signal interaction and the
amplifier noise for a system with EDC. Moreover, since the power loss in the fiber-optical link
is compensated by inline amplifiers, the attenuation causedby the complex scaling constant
with |ζ |2 < 1, is coming from the fact that the nonlinear effect convertsa part of the transmitted
power to the nonlinear noise. The comparison in Section 4 shows a good agreement between
our proposed model using Eqs. (3) and (5), the model introduced in [15, Eqs. (7), (13), and
(23)] and numerical simulations.

3.2. Signal Statistics with DBP

In this section, we use an analogous analytical method as [21] to derive the variance of the
nonlinear noise for a system with DBP as pre-compensation technique. As shown in Appendix,
the complex constant for segmentm of spani for the fiber-optical link shown in Fig. 3 is

|ζDBPm,i |2 ≈ 1−6(i −1)A4(m−1)α2L2
effφsφn. (6)

The complex constantζDBP for the fiber-optical link withN spans can be derived as

|ζDBP|2 =
N

∏
i=1

M

∏
m=1

|ζDBPm,i |2 ≈ 1−6α2L2
effφsφn

N

∑
i=1

M

∑
m=1

(i −1)A4(m−1). (7)

The SER is computed by2Q(
√

SNR) − Q2(
√

SNR) [30, Eq. 4.3-15] and3Q(
√

SNR) −
9Q2(

√
SNR)/4 [30, Eq. 4.3-30] for PM QPSK and PM 16-QAM signals, respectively, where

SNR= |ζDBP|2P/(Nσ2+(1−|ζDBP|2)P) andQ(·) is the Gaussian Q-function [30, p. 41]. By us-
ing an empirical approach, we found that Eq. (7) with a segment length aroundLD/2 provides
an approximation for the SERs of the system with DBP, which istight for low and moderate
powers (as shown in Fig. 4(b)). Intuitively, to return the non-Gaussian distribution caused by
the nonlinear effect in the SMF fiber to the Gaussian distribution described in Section 2.2 for
the SSFM, a large enough segment length is needed to have enough chromatic dispersion for
fulfilling the central limit theorem condition [21]. On the other hand, to obtain enough accuracy
for the SSFM, the segment length needs to be kept short. In brief, the SER is intimately related
to the proper choice of the segment length. To obtain a good trade-off between the accuracy of
the Gaussian assumption and the SSFM method, we considerM = ⌈2L/LD⌉, where⌈x⌉ is the



the smallest integer value that is not less thanx. Thus, we have

|ζDBP|2 ≈ 1−3N1+ε(N−1)φsφn tanh(α
4 LD). (8)

In an analogous way as in Section 3.1, we assume the nonlinearnoise to sum up partially
coherently and therefore modified its linear growth toN1+ε to account for this behavior. For a
sinc pulse shape,S = VM,N, R = UM,N, and the all-pass matched filter, depicted in Fig. 1, does
not change the distribution and the variance of the AWGN noise W. Therefore, the variance of
W = (Wx,Wy) is obtained as

Var{Wx}= Var{Wy} ≈
(

1−|ζ |2
)

P+Nσ2 = 3N1+ε(N−1)γ2α−2σ2 tanh(α
4 LD)P

2+Nσ2,
(9)

This result brings us to the conclusion that the fiber-optical link with N spans and its nonlinear
pre-compensator based on DBP can be modeled as a linear channel with the complex constant
attenuationζDBP and the AWGNW, introduced in Eqs. (8) and (9), respectively.

4. Numerical Simulations

In this section, we evaluate the accuracy of the derived first-order approximation for two fiber-
optical links with PM QPSK and PM 16-QAM signals at 32 and 42.7Gbauds. The analytical
SERs are also evaluated using Eqs. (3)–(5) for EDC and the first-order approximation by Eqs.
(8)–(9) for DBP. The SSFM [25, Eq. (2.4.10)] is used to simulate a fiber-optical channel based
on the Manakov equation with an adaptive segment length [31]of ∆i = (κLNL2

D)
1/3, wherei is

the segment index,κ = 10−4 andLN = 1/(γPi−1) is the nonlinear length of segmenti−1 [25, p.
55] with the input powerPi−1. In the simulations, a root raised cosine pulse [30, p. 675] was
used with an excess bandwidth of 0.17 and a truncation lengthof 16 symbols as well as input
sequences consisting of 8192 discrete-time symbols to capture the channel memory (dispersion
crosstalk). For each SER, we repeatedly transmit and receive sequences of 8192 symbols until
we have 1000 symbol errors. The input bits to the PM QPSK and PM16-QAM modulators are
generated as independent, uniform random binary digits. The following channel parameters are
used for the numerical simulations: the dispersion coefficientD = 17 ps/(nm km), the nonlinear
coefficientγ = 1.4 W−1km−1, the optical wavelengthλ = 1.55 µm, the attenuation coefficient
α = 0.2 dB/km, and the EDFA noise figureFn = 5 dB.

The SERs versus transmitted power per polarizationP of two fiber-optical links with EDC
for PM QPSK are shown in Fig. 4(a). For the numerical simulation, we use the links consisting
of 90 spans of length 80 km at 32 Gbaud and 30 spans of length 120km at 42.7 Gbaud. The
pulse shaping excess bandwidth and the symbol rates for the numerical simulations are chosen
to obtain two signal bandwidths of 37.5 and 50 GHz. It is worthmentioning that the first-order
approximation derived in this paper is also applicable for WDM systems where intra-channel
effects are dominant, for example a WDM system with few channels and large frequency spac-
ing between the channels. The SERs of these two systems with EDC have also been evaluated
analytically using Eqs. (3), (5), and [15, Eqs. (7), (13), and (23)]. As seen, the analytical models
show a good agreement with the numerical simulations for lowand moderate transmit powers,
almost up to the optimal power, the so-called nonlinear threshold. For high transmit powers,
the pseudolinear assumption (see Section 2.2) is not valid anymore, which causes discrepancy
between the simulations and analytical approach.

The SERs of a fiber-optical link with DBP as pre-compensationtechnique are plotted in
Fig. 4(b) for two different system configurations: 70 spans of length 120 km with a QPSK
signal and 100 spans of length 80 km with a 16-QAM signal, bothat 32 Gbaud. We observed
a similar behavior as with 32 Gbaud for higher baud rates, e.g., 42.7 Gbaud. As seen, the first-
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Fig. 4. (a) The SERs of two fiber-optical links with EDC and PM QPSK versus transmitted
power per polarizationP, consisting of 90 spans of length 80 km at 42.7 Gbaud and 30
spans of length 120 km at 32 Gbaud. The analytical results using the introduced model in
Eqs. (3) – (5) as well as the model in [15, Eqs. (7), (13), and (23)]. (b) The SERs of two
systems consisting of 70 spans of length 120 km with a QPSK signal and 100 spans of
length 80 km with a 16-QAM signal, both at 32 Gbaud.

order approximation of the system SERs shows a good agreement with the simulation results
for EDC. The system SERs with DBP using the first-order approximation in Fig. 4(b) show
a good agreement for low and moderate transmit powers, whilefor high transmit powers the
Gaussian model underestimates the degradation caused by nonlinear effects. In fact, for high
transmit powers, the fundamental requirement of the Gaussian noise model, operating in the
pseudolinear regime, i.e., when the dispersive length is much shorter than the nonlinear length,
and also shorter than the amplifier distance, is not fulfilled.

5. Discussions and Conclusions

5.1. Gaussian Assumption

The numerical simulation of the NLSE is usually performed using the SSFM with a very small
segment length to ensure that linear dispersive and nonlinear effects can be modeled indepen-
dently. As shown analytically in [21], for a link with large enough accumulated chromatic dis-
persion, the distribution of the electric field will turn to Gaussian for signals with large enough
bandwidth (dispersion) in the absence of nonlinear effects. Moreover, since the nonlinear ef-
fect will change the distribution of the signal to a non-Gaussian distribution in each segment
of the SSFM, a large enough segment length is required to bring the signal distribution back to
Gaussian [9,21].

5.1.1. Non-DM link with EDC

The analytical model introduced in [21] was obtained using asegment length between 0.5LD

and LD (or equivalently⌈2L/LD⌉ segments per span). The SER results show a good agree-
ment with the numerical results computed by the SSFM. If one choosesε = 0, our simulations
show that SER is underestimated for the EDC case just as for the DBP case because Gaussian
assumption loses its accuracy. However, whenε as given by Eq. (4) is used, the SER is over-
estimated as shown in Fig. 4(a). This is due to partially coherent accumulation of noises from
different spans.



Table 1. The variance of the additive Gaussian noiseWx andWy introduced in Eq. (2) with
EDC and DBP consisting of the linear (ASE) and nonlinear noise-like interference.

EDC aNLP3+Nσ2

DBP aNL(N−1)σ2P2+Nσ2

Scale factor aNL = 3N1+εγ2α−2 tanh(α
4 LD)

5.1.2. Non-DM link with DBP

Since the segment length required for the SSFM simulation ofthe channel is much less than
0.5LD, a similar segment length is needed for DBP to get the best (minimum) SER [29]. On the
other hand, a large segment length is needed to have enough chromatic dispersion for fulfilling
the central limit theorem condition [21]. To obtain a good trade-off between the accuracy of the
Gaussian assumption and the SSFM, we considered a segment length of 0.5LD for the first-order
approximation. As discussed in Section 4, the SERs computedby the first-order approximation
have a good agreement with the numerical results based on theSSFM for low and moderate
transmit powers, while they can be only used as a lower bound on the SER at large transmit
powers.

5.2. Nonlinear Threshold

As shown by numerical simulations, the first-order approximation is reasonably tight for dif-
ferent symbol rates and it can be used to compute approximately the optimum transmit power
in terms of minimizing SER. Therefore, at the optimum power,i.e., nonlinear threshold, the
variance of the nonlinear noise is equal to the variance of the accumulated ASE noises, while
for a system with EDC, the ASE noise variance is known to be twice the nonlinear noise vari-
ance [33]. Moreover, the first-order approximation resultsshow the quadratic growth of the
nonlinear noise with transmitted power, which is a limit forthe performance of a system with
DBP.

5.3. Growth of Nonlinear Noise with Transmit Power

The numerical results show that the discrete-time additiveGaussian noise channel model de-
scribed by Eq. (2) can be used as an accurate model for a non-DMfiber-optical link with both
linear (EDC) and nonlinear (DBP) pre-compensation for low and moderate transmit powers.
As shown in Table 1, the signal–signal nonlinear interference caused by the Kerr effect can be
removed to mitigate the cubic growth of the nonlinear noise variance of a system with EDC to
a quadratic growth with DBP. This behavior is intuitively predictable. In fact, within the regular
perturbation assumption [6,15,17,18], the nonlinear noise comes from the integration of electric
field termsUU†U whose variance scales asP3. In the presence of ASE noise, the nonlinear noise
of the RP1 comes from termsUU†(U+Z) = UU†U+UU†Z. When the solely signal-dependent
nonlinear noise termUU†U is perfectly compensated by DBP, then the leftover nonlinear noise
is in order ofUU†Z, whose variance clearly scales asP2.
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Appendix

A. Derivation of the nonlinear noise variance for a system with DBP

We use an analogous analytical method as [21] to derive the variance of the nonlinear noise for
a system with DBP.

A.1. Span 1

As illustrated in Fig. 3, the channel impairments can be fully compensated for the first span,
because all the impairments for the first span are deterministic and there is no noise interaction
involved in the signal propagation in this span. We would like to point out that this is however
not true for post-compensation, i.e., DBP at the receiver. However, according to the numeri-
cal results (not provided in this paper), having DBP at the receiver gives rise to a negligible
performance loss compared with DBP at transmitter.

A.2. First Segment of Span 2

As seen in Fig. 3, the first ASE noise vector,Z1 = (Zx1,Zy1
) is added at the end of the first span

i =1. The discrete-time models introduced for the SMF fiber and the nonlinear pre-compensator
can be used to derive the equivalent discrete-time model forthe first segment of span 2,m=
1, i = 2, as shown in Fig. 3. The signalU1,2 at the output of the first segment of span 2 can be
written as

U1,2 = A
(

U0,2ejγLeff‖U0,2‖2
)

∗h= A
(

(

Ṽ0,2+Z′
1

)

ejγLeff(‖Ṽ0,2+Z′
1‖2−‖Ṽ0,2‖2)

)

∗h, (10)

whereU1,2 = (Ux1,2,Uy1,2
), Z′

1 = (Z′
x1
,Z′

y1
) = Z1ejγLeff‖Ṽ0,2‖2

is a zero-mean complex Gaussian ran-
dom vector with the same covariance matrix asZ1, andṼ0,2 = A−1V1,2 ∗ h−1. We notice that
the DBP pre-compensator contributes the second term into the exponent of the exponential
function of Eq. (10). As the analysis shows shortly, this term mitigates the nonlinear effect
considerably. Hence,U0,2 = (Ṽ0,2+Z′

1)e
− jγLeff‖Ṽ0,2‖2

. By some algebraic manipulations, one can
write U1,2 = ζDBP1,2V1,2+W1,2, where

W1,2 = A
(

(Ṽ0,2+Z′
1)e

jγLeff(‖Ṽ0,2+Z′
1‖2−‖Ṽ0,2‖2)− ζDBP1,2Ṽ0,2

)

∗h. (11)

Here, the complex constantζDBP1,2 is computed such thatE{W1,2}= 0. Thus,

E{W1,2}= AE
{

(Ṽ0,2+Z′
1)e

jγLeff(‖Ṽ0,2+Z′
1‖2−‖Ṽ0,2‖2)− ζDBP1,2Ṽ0,2

}

∗h= 0. (12)

For a non-DM fiber-optical link, the chromatic dispersion will turn the distribution of the optical
field into a zero-mean Gaussian process [21]. Thus, we have|E{Ṽx0,2}|2 = |E{Ṽy0,2

}|2 ≈ 0 and

with some algebraic manipulations we obtainζ−1
DBP1,2

≈ (1+α2L2
effφsφn− jαLeffφn)

3. Thus, for
low transmit powerP, one may perform a Taylor expansion and ignore the terms consisting of
φs with order 3 and higher andφn with order 2 and higher to get

|ζDBP1,2|2 ≈ 1−6α2L2
effφnφs. (13)

The variance of the additive linear (ASE) and nonlinear noise is Var{WDBP1,2} = (1−
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V2,2 Ṽ1,2 V1,2 U1,2 U2,2

exp
(

− jγLeff‖Ṽ1,2‖2
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Fig. 5. (a) The discrete-time model of segment 2 and its pre-compensation unit from span
2 together with the simplified model of segment 1. (b) The simplified model for segments
1 and 2 and their corresponding pre-compensation units.

|ζDBP1,2|2)P+σ2 ≈ 6α3γ−1L2
effφ

2
s φn +σ2. This result brings us to the conclusion that segment

1 and its nonlinear pre-compensator can be modeled as a linear channel with the additive Gaus-
sian noiseW1,2 and complex constant attenuationζDBP1,2 as shown in Fig. 5.

A.3. Second Segment of Span 2

Since we postulate that the additive Gaussian noise and the channel complex scaling are signal
independent, one may follow the same approach as used for segment 1 to find an equivalent
model for segment 2. As seen in Fig. 5, using the discrete-time model introduced for the SMF
fiber and the nonlinear pre-compensator for segment 2 of span2, one can write

U2,2 = A
(

U1,2ejγLeff‖U1,2‖2
)

∗h= A
(

(

ζDBP1,2Ṽ1,2+W′
1,2

)

ejγLeff

(

‖ζDBP1,2Ṽ1,2+W′
1,2‖2−‖Ṽ1,2‖2

)

)

∗h, (14)

whereU2,2 = (Ux2,2,Uy2,2
) andW′

1,2 =W1,2ejγLeff‖Ṽ1,2‖2
. By some algebraic manipulations, one can

write U2,2 = ζDBP2,2ζDBP1,2V2,2+W2,2, where

W2,2 = A
(

(ζDBP1,2Ṽ1,2+W′
1,2)e

jγLeff

(

‖ζDBP1,2
Ṽ1,2+W′

1,2‖2−‖Ṽ1,2‖2
)

− ζDBP2,2ζDBP1,2Ṽ1,2

)

∗h.

(15)

Here, ζDBP2,2 is computed such that E{W2,2} = 0. Using |E{Ṽx1,2}|2 =

|E{Ṽy1,2
}|2 ≈ 0 for a non-DM channel and some algebraic manipulations, we obtain

ζDBP2,2 ≈ (1+α2L2
effA

2|ζDBP1,2|2φsφ̃n− jαLeffφ̃n)
−3, whereφ̃n = A2φn+A2(1−|ζDBP0,2|2)φs.

Similarly, one may perform a Taylor expansion with respect to φs andφn and use Eq. (13) and
also ignore the terms consisting ofφs with order greater or equal to 3 andφn with order 2 and
higher to get

|ζDBP2,2|2 ≈ 1−6A4α2L2
effφsφn. (16)

A.4. General segment and full link

One may follow an analogous approach to derive the complex constant for segmentm of span
i from the fiber-optical link shown in Fig. 3 as

|ζDBPm,i |2 ≈ 1−6(i −1)A4(m−1)α2L2
effφsφn, (17)

and the complex constant for the full link will be|ζDBP|2 = ∏N
i=1 ∏M

m=1 |ζDBPm,i |2.


