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Abstract: Inthis paper, we investigate the performance limits oftetedc
chromatic dispersion compensation (EDC) and digital bemiagation
(DBP) for a single-channel non-dispersion-managed filpdical link. A
known analytical method to derive the performance of thdesgswith
EDC is extended to derive a first-order approximation forghgformance
of the system with DBP. In contrast to tleebic growthof the variance
of the nonlinear noise-like interference, often called lirear noise, with
input power for EDC, ajuadratic growthis observed with DBP using this
approximation. Finally, we provide numerical results toifyethe accuracy
of the proposed approach and compare it with existing aicalyinodels.
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1. Introduction

Optical networks with heterogeneous structure demandratzehannel models and perfor-
mance prediction techniques to accommodate for the dynamdistatic variations of the signal
quality. Moreover, the Shannon channel capacity, whictseduas a criterion in the design of
coded modulation schemes, also requires an exact chanel mied noise statistics of fiber-
optical channels [1-4]. In optical fibers, the nonlinearr®dinger equation (NLSE) describes
the propagation of light. This model is nonlinear, and dutaéolack of analytical solutions and
the complexity of numerical approaches, deriving the stia of such channels is in general
cumbersome. Hence, many efforts have been devoted to comgpl¢ statistics for simplified
models, e.g., memory-less nonlinear channels with sipglarization [5-8] and polarization-
multiplexed (PM) [9] signals, partially coherent linearacimels [10-12], and channels with
intra-channel four-wave mixing [13, 14].

The recent progress in channel modeling of non-dispensianaged (non-DM) fiber-optical
links has provided an accurate description for the int@wadif the linear chromatic dispersion



and the nonlinear Kerr effect during propagation. The keaibbehind the analytical methods
is to model the nonlinearly-induced noise-like interfererthe so-called nonlinear noise [15],
caused by the nonlinear Kerr effect as an additive white &aosoise (AWGN) with zero
mean. The variance of this noise as a function of the powertsdealensity of the transmitted
signal and the channel parameters can be computed usingdherfier regular perturbation
(RP1) provided that the nonlinearity is weak, referred tthagpseudolinear regime [2].

Two time domain models were introduced in [16, 17] using RBA Hoth dispersion-
managed (DM) and non-DM single polarization fiber-opticak$ with wavelength-division-
multiplexing (WDM). These models require numerical ingggyn and no simple closed-form
were provided for the variance of nonlinear noise. A cloadi expression for the variance
of nonlinear noise was introduced in [18] with a PM signal siseting of delta-like pulses us-
ing RP1 for both DM and non-DM links. The power spectral dgnef the nonlinear noise
was studied in [15, 19, 20] for a PM WDM signal using RP1. Thigdg led to an accurate
model with a closed-form expression for the nonlinear ndise a single-channel PM non-DM
link, a Gaussian model was proposed in [21] based on thestplit Fourier method (SSFM),
which yielded a closed-form expression for the nonlineas@oNumerical and experimental
results [22, 23] showed a good agreement with the analyticalel introduced in [15, 19, 20].

In our earlier work [21] for a non-DM fiber-optical channeltviEDC, we showed that the
derived analytical model has a close performance agreenitmthe numerical simulations. In
this paper, we extend this analytical method for the non-Oddrfioptical channel, to include
digital backpropagation (DBP) as a pre-compensation igalenin fact, the numerical simula-
tions show almost the same performance for DBP used as appesbcompensator. There-
fore, we consider a pre-compensation scheme based on DBRiplicity of the analysis. As
in [21], we take into account the cross effect of the signalsdth polarizations. In contrast to
previous works [15,19,24], we include the inline interantbetween the transmitted signal and
the amplified spontaneous emission (ASE) noise in diffespahs due to the Kerr effect. Then,
we use a first-order approximation for the Taylor expansfdh@nonlinear noise variance with
respect to ASE noise variance. This helps us compute thanaiof the nonlinear noise as a
function of the transmit power, ASE noise variance, and okhparameters. The results show
a quadratic growth of the nonlinear noise variance with trgower for the system with DBP.
The symbol error rate (SER) of a PM quadrature phase shifthgg§QPSK) and PM 16-ary
guadrature amplitude modulation (16-QAM) system is coraguising this approximation and
also by the numerical SSFM. The performance comparison shaoviose agreement between
the first-order approximation and numerical results for &ovd moderate transmit powers but
they deviate for high transmit powers.

2. Channel Mode

The propagation of light in an optical fiber can be describgdMtanakov model with loss
included as [25, ch. 6]

0U(t,2) B 9°U(t,2)
0z 2 at2

YUV + 5 U =0, (1)

whereU is the PM electric field with complex componeritdy,Uy), v is the fiber nonlin-
ear coefficientp is the attenuation coefficiens, is the group velocity dispersion, T denotes
Hermitian conjugationt is the time coordinate in a co-moving reference frame aislthe
propagation distance. A fiber-optical link withh spans of length. is considered according to
Fig. 1. Each span consists of a standard single-mode fibeF)&Mowed by an erbium-doped
fiber amplifier (EDFA).
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Fig. 1. A baseband continuous-time model based on the SSFffoer-optical link with
N spans of SMF fibefi = 1,...,N), each consisting o segment§m=1,...,M), and
electronic linear (EDC) and nonlinear (DBP) pre-compensat

2.1. Continuous-Time Channel Model

One may exploit the SSFM [25, Eq. (2.4.10)] to model each Slginsby a concatenation
of M segments with linear and nonlinear effects as shown in Figh# length of each seg-
ment,L/M, should be chosen small enough so that the linear and nanlaféects can be
modeled independently. The nonlinear effect of segmeot spani is given byU(t,lém,l’i) =
U(t, fm-1) exp(jyLes||U(t,m-1.)]|?), for m=1,...,M, whereLey = [1— exp(—aL/M)]/a,
lmji=m(L/M)+(i—1)L,andlg; = (i—1)L. The linear propagation is described in the time do-
main byU(t,z) = exp(—az/2)U(t,0) xh(t, z), wherex denotes convolution, which is performed
independently over elements of the vectors, hfidz) = exg jt?/(2B,2)]/+/j2mBoz s the dis-
persive impulse response. As shown in Fig. 1, the lineaceffeeach segment is described
by U (t,fmi) = AU (t,£m 1) *h(t,L/M), whereA £ exp —aL/(2M)] is the signal attenuation
for each segment. The symb@f] = (S[n],S[n]), e.g., PM QPSK, are transmitted evéry
seconds with a pulse shaping fil@g(t) and received as the distorted symbol sequétick is
assumed that{|S[n]|?} = E{|S/[n]|?} = PT, whereP is the average transmitted power in one
polarization. We assume that each EDFA compensates fottdreiation in each fiber span and
adds a circular white complex Gaussian ASE noise VeZ{dr) = (Zy, (t),Zy,(t)), in each span
with variance (over the signal bandwidtbf = GFahvopt/ (2T) in each polarization [26, Eq.
(8.1.15)], wheres = exp(al) is the required gain to compensate for the attenuation irag,sp
Frn=2ngp(1— G 1) is the noise figure, in whichsp is ASE noise factor, anldvop is the photon
energy. The optical bandwidth of the EDFAs is assumed to baleq the signal bandwidth.

The fiber-optical link is analyzed for both EDC and DBP as shawFig. 1. In order to
apply an analytical approach, we consider sinc-shapedgg(s). However, the numerical
results show that the proposed model is not very dependehteocexact pulse shape, e.g., root
raised cosine and Gaussian pulses can be used as well. Afdtehed to the pulse shape and
a Nyquist sampler is assumed at the receiver (with perfedecand timing synchronization).
Finally, we define the nonlinear phase shifts for the sige&l ya —'P, and noisem £ ya 10?2,
and the dispersion length [25, p. 35} = T?/|B,|.

2.2. Discrete-Time Channel Model

In this section, we introduce a discrete-time model for sexgim of spani of the continuous-
time model, depicted in Fig. 1 with both linear and nonlingae-compensation. In the
continuous-time model considerimgt) = singt/T)/+/T as a pulse shape, where gixic=
(sin nx)/(mx), the transmitted signal is band-limited[te1/2T,1/2T]. Hereafter, we assume
a pseudolinear fiber-optical data transmission, and tbexefe neglect the spectral broadening
due to the nonlinear effects, i.e., the bandwidthugft )el"-etlV®I? is assumed to be limited to
1/T. This assumption helps us obtain the discrete-time mogettél in Fig. 2(b) to fulfill the



Fig. 2. (a) Nonlinear pre-compensation based on the DBP([27]n] is the inverse of the
filter h[n]). (b) A baseband discrete-time model for the SMF.

Nyquist criterion for sampling the continuous-time signalith a sampling rate of T. The
discrete band-limited chromatic dispersion filter is gibgrh[n] = h(t,L/M) xsinc(t/T
andh~!is its inverse, i.e.h[n] * h~[n] = &[n], whered|n] is the Kronecker's delta.

) ‘t:nT

3. Statisticsof the Propagated Signal Using the Split-Step Fourier Method

In this section, we first review our previous results on tlymal statistics for a single channel
fiber-optical link with EDC [21]. Then, we use the same fram#gwas in [21] to study the
signal statistics with DBP.

The distribution of the signal for a PM single-channel fibgtical link is derived in [21] with
large accumulated dispersion and without inline chronthsipersion compensation. According
to this model, the fiber-optical link depicted in Fig. 1 canrbedeled as a linear channel with
an additive Gaussian noise described by

R={S+W, ()

where( is a complex constan§ is the sequence of symbdBn| introduced in Section 2.1,
andW represents the PM complex zero-mean circularly symmeinGAl.

3.1. Signal Statistics with EDC

The squared amplitude of the channel complex scaling congtior the EDC case is given by

|{epc)? ~ 1 - 3N ¢ftanh(4Lp). (3)

Experimental investigations [23, 28] on the accumulatibnanlinear noise versus the number
of spansN, revealed that the nonlinear noises from different spansigupartially coherently
rather than entirely incoherently as was approximated 1. [Bherefore, as introduced in [15,
Eq. (23)], we considered'*¢ rather tharN to account for this behavior of the nonlinear noise,
where

g=3log | 1+ (4)

aL asinh(%)
The system signal-to-noise ratio (SNR) is given|&abc|?P/(No? + of, ), where

ot = (1—|Zenc/*)P ~ 3N ¢y?atanh(§Lp)P°. (5)
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Fig. 3. The discrete-time model of segment 1 from span 2 aaditst span together with
their corresponding pre-compensation units. The gain®BDFA unit is assumed to be
canceled out by the compensation unit. The channel detetinimmpairments are fully
compensated for the first span because the first amplifiersisneed to be added at the
beginning of the second span. All the impairments for thé §ipgn are deterministic and
there is no noise interaction involved in the signal propiagan this span.

As showed in [21], the contribution of signal—noise inteéi@tto the variance of the nonlinear
noise can be neglected compared to the contribution of theabkisignal interaction and the
amplifier noise for a system with EDC. Moreover, since the @ol@ss in the fiber-optical link
is compensated by inline amplifiers, the attenuation cabgeitie complex scaling constant
with |{|? < 1, is coming from the fact that the nonlinear effect convarart of the transmitted
power to the nonlinear noise. The comparison in Section ¥slogood agreement between
our proposed model using Egs. (3) and (5), the model intreduc [15, Egs. (7), (13), and
(23)] and numerical simulations.

3.2. Signal Statistics with DBP

In this section, we use an analogous analytical method dst¢2derive the variance of the
nonlinear noise for a system with DBP as pre-compensatamique. As shown in Appendix,
the complex constant for segmenbf spani for the fiber-optical link shown in Fig. 3 is

|ZoBRy, [ ~ 1 - 6(i — DA™ Va2l 2. (6)

The complex constar@pgp for the fiber-optical link withN spans can be derived as
|Zoep|? = q |'| |{pBPy, |* ~ 1 6a*LZr s ; DA™Y, (7)

The SER is computed byQ(v/SNR) — Q*(v/SNR) [30, Eq. 4.3-15] and3Q(v/SNR) —
9Q%(v/SNR)/4 [30, Eq. 4.3-30] for PM QPSK and PM 16-QAM signals, respeyivwhere
SNR= |Zpgp|?P/(Na? + (1— |{pep|?)P) andQ(.) is the Gaussian Q-function [30, p. 41]. By us-
ing an empirical approach, we found that Eq. (7) with a sedreegth around.p /2 provides
an approximation for the SERs of the system with DBP, whictigist for low and moderate
powers (as shown in Fig. 4(b)). Intuitively, to return thenr@aussian distribution caused by
the nonlinear effect in the SMF fiber to the Gaussian distidoudescribed in Section 2.2 for
the SSFM, a large enough segment length is needed to havgtenbromatic dispersion for
fulfilling the central limit theorem condition [21]. On théteer hand, to obtain enough accuracy
for the SSFM, the segment length needs to be kept short.éf bie SER is intimately related
to the proper choice of the segment length. To obtain a g@aldtoff between the accuracy of
the Gaussian assumption and the SSFM method, we cordigef2L/Lp |, where[x] is the



the smallest integer value that is not less thahhus, we have
|dpep|” ~ 1~ 3N*"5(N — 1) gsgn tanh(§ Lp). 8)

In an analogous way as in Section 3.1, we assume the noniésg to sum up partially
coherently and therefore modified its linear growti\tb™® to account for this behavior. For a
sinc pulse shap&=Vu n, R = Un N, and the all-pass matched filter, depicted in Fig. 1, does
not change the distribution and the variance of the AWGNais Therefore, the variance of
W = (W, W) is obtained as

Var{Wy} = Var{W,} ~ (1 - |{|?) P+ No? = 3N*"#(N — 1)y?a ?c?tanh( ¢Lp)P? + No?,
9)

This result brings us to the conclusion that the fiber-optick with N spans and its nonlinear
pre-compensator based on DBP can be modeled as a linearathdtinthe complex constant
attenuatior{pgp and the AWGNW, introduced in Egs. (8) and (9), respectively.

4. Numerical Simulations

In this section, we evaluate the accuracy of the deriveddirdér approximation for two fiber-
optical links with PM QPSK and PM 16-QAM signals at 32 and 4@auds. The analytical
SERs are also evaluated using Egs. (3)—(5) for EDC and theofider approximation by Egs.
(8)—(9) for DBP. The SSFM [25, Eqg. (2.4.10)] is used to sinrikafiber-optical channel based
on the Manakov equation with an adaptive segment lengthdBA] = (kLnL3)Y3, wherei is
the segmentindex, = 10~* andLy = 1/(yP,_1) is the nonlinear length of segment 1 [25, p.
55] with the input poweR_;. In the simulations, a root raised cosine pulse [30, p. 674 w
used with an excess bandwidth of 0.17 and a truncation lerfgte symbols as well as input
sequences consisting of 8192 discrete-time symbols taatite channel memory (dispersion
crosstalk). For each SER, we repeatedly transmit and reseiguences of 8192 symbols until
we have 1000 symbol errors. The input bits to the PM QPSK and BAQ AM modulators are
generated as independent, uniform random binary digits fadlflowing channel parameters are
used for the numerical simulations: the dispersion coefiitth = 17 ps/(nm km), the nonlinear
coefficienty = 1.4 W-1km™1, the optical wavelength = 1.55 um, the attenuation coefficient
a = 0.2 dB/km, and the EDFA noise figufg = 5 dB.

The SERs versus transmitted power per polarizafiai two fiber-optical links with EDC
for PM QPSK are shown in Fig. 4(a). For the numerical simalative use the links consisting
of 90 spans of length 80 km at 32 Gbaud and 30 spans of lengthkrb24t 42.7 Gbaud. The
pulse shaping excess bandwidth and the symbol rates fouthenical simulations are chosen
to obtain two signal bandwidths of 37.5 and 50 GHz. It is wongntioning that the first-order
approximation derived in this paper is also applicable fddMWsystems where intra-channel
effects are dominant, for example a WDM system with few cledgyand large frequency spac-
ing between the channels. The SERs of these two systems RithHave also been evaluated
analytically using Egs. (3), (5), and [15, Egs. (7), (13 é23)]. As seen, the analytical models
show a good agreement with the numerical simulations fordod moderate transmit powers,
almost up to the optimal power, the so-called nonlinearsthotd. For high transmit powers,
the pseudolinear assumption (see Section 2.2) is not vayichare, which causes discrepancy
between the simulations and analytical approach.

The SERs of a fiber-optical link with DBP as pre-compensatemhnique are plotted in
Fig. 4(b) for two different system configurations: 70 spah$eagth 120 km with a QPSK
signal and 100 spans of length 80 km with a 16-QAM signal, a0tB2 Gbaud. We observed
a similar behavior as with 32 Gbaud for higher baud rates, 427 Gbaud. As seen, the first-
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Fig. 4. (a) The SERs of two fiber-optical links with EDC and P €K versus transmitted
power per polarizatio®, consisting of 90 spans of length 80 km at 42.7 Gbaud and 30
spans of length 120 km at 32 Gbaud. The analytical resultgyubie introduced model in
Egs. (3) — (5) as well as the model in [15, Egs. (7), (13), ar®)](Zb) The SERs of two
systems consisting of 70 spans of length 120 km with a QPSHKasignd 100 spans of
length 80 km with a 16-QAM signal, both at 32 Gbaud.

order approximation of the system SERs shows a good agraewthrthe simulation results
for EDC. The system SERs with DBP using the first-order apipnaton in Fig. 4(b) show
a good agreement for low and moderate transmit powers, vigrileigh transmit powers the
Gaussian model underestimates the degradation causechbyezo effects. In fact, for high
transmit powers, the fundamental requirement of the Gangsdise model, operating in the
pseudolinear regime, i.e., when the dispersive length ishnshorter than the nonlinear length,
and also shorter than the amplifier distance, is not fulfilled

5. Discussionsand Conclusions
5.1. Gaussian Assumption

The numerical simulation of the NLSE is usually performemgshe SSFM with a very small
segment length to ensure that linear dispersive and namlgféects can be modeled indepen-
dently. As shown analytically in [21], for a link with larg@eugh accumulated chromatic dis-
persion, the distribution of the electric field will turn taaGssian for signals with large enough
bandwidth (dispersion) in the absence of nonlinear effédtweover, since the nonlinear ef-
fect will change the distribution of the signal to a non-Gaas distribution in each segment
of the SSFM, a large enough segment length is required tg b signal distribution back to
Gaussian [9, 21].

5.1.1. Non-DM link with EDC

The analytical model introduced in [21] was obtained usirsggment length betweenSlp
andLp (or equivalently[2L/Lp] segments per span). The SER results show a good agree-
ment with the numerical results computed by the SSFM. If dreoses = 0, our simulations
show that SER is underestimated for the EDC case just asédDBP case because Gaussian
assumption loses its accuracy. However, wheas given by Eq. (4) is used, the SER is over-
estimated as shown in Fig. 4(a). This is due to partially cefieaccumulation of noises from
different spans.



Table 1. The variance of the additive Gaussian ndisandV\, introduced in Eq. (2) with
EDC and DBP consisting of the linear (ASE) and nonlinear euilse interference.

EDC anL P +No?
DBP anL (N —1)02P? + No?

Scale factor anL = 3N'¢y2a2tanh(4Lp)

5.1.2. Non-DM link with DBP

Since the segment length required for the SSFM simulatiaih@ichannel is much less than
0.5Lp, a similar segment length is needed for DBP to get the besiifmim) SER [29]. On the
other hand, a large segment length is needed to have enortagyhatic dispersion for fulfilling
the central limit theorem condition [21]. To obtain a goaatie-off between the accuracy of the
Gaussian assumption and the SSFM, we considered a segmghtd€ Q5L for the first-order
approximation. As discussed in Section 4, the SERs cominytélak first-order approximation
have a good agreement with the numerical results based dBSR# for low and moderate
transmit powers, while they can be only used as a lower bouniti® SER at large transmit
powers.

5.2. Nonlinear Threshold

As shown by numerical simulations, the first-order appration is reasonably tight for dif-

ferent symbol rates and it can be used to compute approXyrtateoptimum transmit power

in terms of minimizing SER. Therefore, at the optimum power, nonlinear threshold, the
variance of the nonlinear noise is equal to the varianceeftttumulated ASE noises, while
for a system with EDC, the ASE noise variance is known to bedwie nonlinear noise vari-
ance [33]. Moreover, the first-order approximation resatisw the quadratic growth of the
nonlinear noise with transmitted power, which is a limit foe performance of a system with
DBP.

5.3. Growth of Nonlinear Noise with Transmit Power

The numerical results show that the discrete-time add@aessian noise channel model de-
scribed by Eq. (2) can be used as an accurate model for a nofil@Moptical link with both
linear (EDC) and nonlinear (DBP) pre-compensation for lowd anoderate transmit powers.
As shown in Table 1, the signal-signal nonlinear interfeeecaused by the Kerr effect can be
removed to mitigate the cubic growth of the nonlinear noegance of a system with EDC to
a quadratic growth with DBP. This behavior is intuitivelyedictable. In fact, within the regular
perturbation assumption [6,15,17,18], the nonlinearao@mnes from the integration of electric
field termsuUTU whose variance scales@3 In the presence of ASE noise, the nonlinear noise
of the RP1 comes from termsT(U +Z) = UUTU + UUTZ. When the solely signal-dependent
nonlinear noise terrdu'u is perfectly compensated by DBP, then the leftover nontineise

is in order ofUU'Z, whose variance clearly scalesR
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Appendix
A. Derivation of the nonlinear noisevariance for a system with DBP

We use an analogous analytical method as [21] to derive thi@nee of the nonlinear noise for
a system with DBP.

A.l. Spanl

As illustrated in Fig. 3, the channel impairments can beyfabmpensated for the first span,
because all the impairments for the first span are detertigiaisd there is no noise interaction
involved in the signal propagation in this span. We woulé li& point out that this is however
not true for post-compensation, i.e., DBP at the receiveweéVer, according to the numeri-
cal results (not provided in this paper), having DBP at theeireer gives rise to a negligible
performance loss compared with DBP at transmitter.

A.2. First Segment of Span 2

As seen in Fig. 3, the first ASE noise vectdi,= (Zx,,Zy, ) is added at the end of the first span

i = 1. The discrete-time models introduced for the SMF fiber Archbnlinear pre-compensator
can be used to derive the equivalent discrete-time modehéofirst segment of span &)=

1,i =2, as shown in Fig. 3. The signdh » at the output of the first segment of span 2 can be
written as

Upp=A (UoﬁzejVLeffHUo,sz) “h=—A ((\70’2 4 Z/l) el V‘-eﬁ(H\70,2+Z/1H27“\70,2“2)) xh, (10)

whereUs » = (Ux, .Uy, ,), 2 = (Z},,Z),) = Z,eenl Vol js a zero-mean complex Gaussian ran-
dom vector with the same covariance matrixZas and\70’2 = A1V, +h™1. We notice that
the DBP pre-compensator contributes the second term igt@xponent of the exponential
function of Eq. (10). As the analysis shows shortly, thisrtenitigates the nonlinear effect
considerably. Hencelo, = (Vo2 + 24 )e MerlVozl*, By some algebraic manipulations, one can
write Uio= ZDBP1‘2V1,2+W1,21 where

Wi, = A((\70,2 +2z})el Vet (Vo2+24 )12 Vo2l?) _ ZDBPLZ\N/O,Z) xh. (11)
Here, the complex constadibsp, , is computed such thd@{W; >} = 0. Thus,

E{Wl,z} _ AE{(\N/O,z-l- Z/l)ej Vet (IVo2+Z4 12— Vo2l2) _ ZDBPLZ\N/O,Z} +h=0. (12)

For a non-DM fiber-optical link, the chromatic dispersiotiwirn the distribution of the optical
field into a zero-mean Gaussian process [21]. Thus, we |ﬁb{\k§a2}|2 = |I[-3{\7y0'2}|2 ~0and
with some algebraic manipulations we obtéli;TngL2 ~ (1+a?L2@h — jaLeign)3. Thus, for
low transmit poweP, one may perform a Taylor expansion and ignore the termsstorgsof
@ with order 3 and higher angh, with order 2 and higher to get

2L2

|ZDBP1,2|2 ~1-60Lerthgs. (13)

The variance of the additive linear (ASE) and nonlinear @ads Var{Wbgp,,} = (1 —
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Fig. 5. (a) The discrete-time model of segment 2 and its prapensation unit from span
2 together with the simplified model of segment 1. (b) The dified model for segments
1 and 2 and their corresponding pre-compensation units.

|{pBP,,|?)P + 02 ~ 603y 12,2 + 02. This result brings us to the conclusion that segment
1 and its nonlinear pre-compensator can be modeled as adineanel with the additive Gaus-
sian noisé/1 » and complex constant attenuatigisp, , as shown in Fig. 5.

A.3. Second Segment of Span 2

Since we postulate that the additive Gaussian noise andhdrael complex scaling are signal
independent, one may follow the same approach as used foresgd to find an equivalent
model for segment 2. As seen in Fig. 5, using the discrete-timadel introduced for the SMF
fiber and the nonlinear pre-compensator for segment 2 of 2pame can write

Upo— A (ULZGWLS“HU“HZ) “he A<(ZDBP1A2\71,2 +W/1.2) N yLeff(”ZDBPLZVLZ#’W&.Z”ZfHVI.ZHZ)) “h, (14)

whereUs » = (Uy,,, Uy, ) andw} , = Wy sel*ttlV12l*, By some algebraic manipulations, one can
write Uz 2 = {pep,,{pBP, ,V22 + W22, Where

~ i v W, |12— |1V 2 ~
Wa o= A((ZDBP1,2V1,2+W/1,2)GJ e (Come, Y12+ Wil -1Va2lf) _ ZDBPz,zZDBPl,zvl,Z) «h.
(15)

Here, {pep,, Iis computed such that E{W,,} = 0. Using |I[-E~{\~/><L2}|2 =
|I[-E{\7y1‘2}|2 ~ 0 for a non-DM channel and some algebraic manipulations, W&io

{oBR,, ~ (1+ angﬁA2|ZDBP1,2|2¢S&h — jaLesigh) 3, whereg, = A%q, + A2(1— |ZDBP0,2|2)(»05'
Similarly, one may perform a Taylor expansion with respeaptandg, and use Eq. (13) and
also ignore the terms consisting @f with order greater or equal to 3 agg with order 2 and
higher to get

|dper,,|* ~ 1 - 6A A LEs . (16)

A.4. General segment and full link

One may follow an analogous approach to derive the complestaat for segmenh of span
i from the fiber-optical link shown in Fig. 3 as

|ZpBpy; 2 ~ 1 6(i — DA™ Va?LZ (17)

and the complex constant for the full link will Béoep|? = .1 [h-1|{0BR., [



