
Chalmers Publication Library

Smoothed probabilistic data association filter

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

FUSION 2013, 9-12 July 2013, Istanbul, Turkey

Citation for the published paper:
Rahmathullah, A. ; Svensson, L. ; Svensson, D. (2013) "Smoothed probabilistic data
association filter". FUSION 2013, 9-12 July 2013, Istanbul, Turkey pp. 1296 - 1303.

Downloaded from: http://publications.lib.chalmers.se/publication/185917

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/185917


1

Smoothed Probabilistic Data Association Filter
Abu Sajana Rahmathullah, Lennart Svensson, Daniel Svensson, and Peter Willett

Abstract—This paper presents the Smoothed Probabilistic Data
Association Filter (SmPDAF) that attempts to improve the Gaus-
sian approximations used in the Probabilistic Data Association
Filter (PDAF). This is achieved by using information from
future measurements. Newer approximations of the densities are
obtained by using a combination of expectation propagation,
which provides the backward likelihood information from the
future measurements, and pruning, which uses these backward
likelihoods to reduce the number of components in the Gaussian
mixture. Performance comparison between SmPDAF and PDAF
shows us that the root mean squared error performance of
SmPDAF is significantly better than PDAF under comparable
track loss performance.

Index Terms—PDA, filtering, smoothing, factor graph, Gaus-
sian mixtures, message passing, expectation propagation, target
tracking, pruning.

I. INTRODUCTION

In target tracking, the sensors pick up signals not only from
the target but also from unwanted sources. When tracking with
radar, echoes are reflected from ground, sea, etc. which can be
sources of clutter signals. Even while tracking a single target,
there can be a large number of measurements observed. It can
also be that, at times, the target is not observed.

Even under simple assumptions on the process and mea-
surement model — linear with additive Gaussian noise —
the problem is computationally intractable. It is easy to
show that the true posterior filtered density has the Gaussian
Mixture (GM) form with an exponentially increasing num-
ber of components over time, thus making approximations
inevitable. There are many suboptimal algorithms that have
been proposed and been in use. The two major approaches to
the problem are one that uses a random-set framework and
another that uses a data association framework. Probabilistic
Hypothesis Density (PHD) [10] filters belong to the former
category, whereas the Multiple Hypothesis Tracking (MHT)
filters [13, 4] and the PDAFs [3] belong to the latter. This paper
focuses on the data association setting; it should be pointed
out that the solution presented in this paper is extendable to
scenarios with GMs in general.

In the data association setting, multiple hypotheses are
formed, one for each data-to-target association. Under each
hypothesis, and under linear-Gaussian assumptions, the filtered
posterior is a Gaussian density, thus resulting in a GM for
the overall filtered posterior density. This mixture, when
propagated through time, has exponentially increasing number
of components. Thus, the number of components in the GM
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has to be reduced. There are several GM reduction algorithms
[14, 15, 16] that can be employed to reduce the number of
components in the GM. These algorithms vary in terms of
complexity, the divergence measure that is minimized, the
number of components retained, etc. [7].

MHT uses pruning and/or merging techniques to keep the
number of terms under control. The GM reduction at a certain
time instant is based on the information from future measure-
ments. But the complexity involved is typically exponential.
Based on the parameters of choice, MHT can be quite close
to the optimal solution, but the closer it is to the optimal
solution, the higher the computational complexity. In PDAF,
the GM posterior is reduced to one single Gaussian which
has the least Kullback-Leibler (KL) divergence [9] from the
mixture. Thus, the PDAF has linear complexity in the number
of measurements received.

In this paper, we present the SmPDAF algorithm that
uses a combination of PDAF, Expectation Propagation (EP)
[11] and pruning to reduce the GM to a single Gaussian
density. The approximation is different from the PDAF in
the way that before reducing the GM to a single Gaussian,
SmPDAF tries to improve the approximation of the prediction
density. Likelihood from the future measurements are used to
improve the approximations made for the GMs in the past time
instants. This improves the prediction, thereby improving the
current posterior. This involves iterating between filtering and
smoothing [12]. EP is used in obtaining the likelihood from the
future measurements, and these likelihoods are used to prune
components in the GM of the filtered density. The complexity
of the algorithm is linear in the number of measurements and
in the depth (or the lag) involved in the smoothing.

The proposed algorithm is compared with PDAF. The two
performance measures that are used for comparison are the
root mean squared error (RMSE) and the track loss (TL).
It will be later shown in the results that although TL is
almost the same for both PDAF and SmPDAF, the latter does
show a significant improvement in the RMSE performance.
The performance has been compared for varying measurement
noise levels and probabilities of detection. Results are shown
for a single target scenario. A comparison of complexities of
PDAF and SmPDAF is also discussed in the results section.

The layout of the paper is as follows: Section II describes
the model assumptions, the clutter measurement distribution,
etc. The problem statement and a brief description of the
idea behind the SmPDAF algorithm are also presented in
this section. Section III gives a comprehensive background on
filtering, PDAF, smoothing and EP. The SmPDAF algorithm is
described in detail in Section IV. It details on how EP helps us
to obtain the likelihoods from the future measurements. Also
explained is how pruning exploits these backward likelihoods
to improve the approximation of the GM densities. An algo-
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rithmic description of SmPDAF is also provided. Section V
presents the results and a discussion on the interpretation of
the performance for varying measures. Appendices A and B
throw more light into the details of Gaussian divisions involved
in EP and the backward predictions, respectively.

II. PROBLEM FORMULATION AND IDEA

A. Model assumption
The state at time k is given by the process model,

xk = Fxk−1 + vk

and the target measurement at time k is described by the
measurement model,

ztk = Hxk + wk

where xk ∈ RM , ztk ∈ RN , F ∈ RM×M , H ∈ RN×M ,
vk ∼ N (0, Q) and wk ∼ N (0, R).

In this paper, we only consider single-target scenarios. On
top of the target-generated measurement, there are also spuri-
ous measurements due to clutter. The collection of measure-
ments at time k is represented by the set Zk and the collection
of measurement sets from time 1 to k is given by Z1:k. The
clutter measurements are assumed to be uniformly distributed
over an observed region of volume V , and independent of
the target state. The number of clutter measurements is also
a random variable that follows a Poisson distribution with
parameter λV , where λ is the clutter density. Also, it is
assumed that the initial prior, p(x1), is known and Gaussian.
PD will be the probability of detection.

B. Problem statement and Idea
Under the above-mentioned assumptions, it is easy to show

that the filtered posterior density p(xk|Z1:k) is a GM with
exponentially increasing number of components. The goal of
this paper is to find a better approximation for the filtered
density, p(xk|Z1:k).

The filtered posterior density is given by

p(xk|Z1:k) ∝ p(xk|Z1:k−1)p(Zk|xk) (1)

where p(xk|Z1:k−1) is the prediction density and p(Zk|xk)
is the likelihood from measurements observed at k. Any
improvements on the approximation of p(xk|Z1:k−1) will
help in improving the approximation of p(xk|Z1:k). This
is achieved by improving the approximations of the filtered
densities p(xl|Z1:l) at the past time instants l < k, using the
backward likelihood messages p(Zl+1:k|xl) from the future
measurements. These likelihoods are obtained using EP and
are passed backward in time for a fixed number of time
steps. The backward likelihoods available at each of these time
instants l, are used for pruning some of the components in the
GM corresponding to the filtered density p(xl|Z1:l).

III. BACKGROUND

The focus of the paper is on improving the approximation
for filtering. To achieve, this we use smoothing along with EP.
A brief background on filtering, smoothing, PDAF and EP is
provided in this section. For a more thorough explanation on
these topics, readers are referred to [3], [12] and [11].

A. Filtering and PDAF

Filtering, in short, is combining the inference about the
current state variable obtained from the past measurements
along with the inference made from the current measurements
to obtain the filtered posterior density of the state variable. This
is performed in a recursive manner so that only the filtered
density of the state at past time instant can be used along
with the current measurement to obtain the filtered density
of the current state variable; not all the past measurements
have to be retained. But these operations are not always easy;
the densities are complicated and it becomes computationally
intractable to use recursion. Approximations are necessary.
The PDAF is a filtering algorithm that uses Gaussian approxi-
mation at each time instant. The section provides some details
on how this is performed. Also presented in this section is a
means of involving future measurements to present inference:
that is, a smoothed estimate.

Let the state transition density be f(xk|xk−1) and the
measurement likelihood be p(Zk|xk). This state space model
is illustrated in Fig. 1.

Figure 1. State space model for filtering and smoothing.

Filtering comprises two steps: prediction and update. Pre-
diction is given by

p (xk|Z1:k−1) =

∫
p (xk−1|Z1:k−1) f (xk|xk−1) dxk−1 (2)

In this equation, the filtered density at time k−1 is propagated
through the process model to obtain the prediction of the
current state variable xk from the past measurements Z1:k−1.
The prediction step is followed by the update step — the
information from the current likelihood is updated along with
the prediction to obtain the filtered density.

p (xk|Z1:k) ∝ p (xk|Z1:k−1) p (Zk|xk) (3)

The two components in equation (3) can be interpreted as:
• p (xk|Z1:k−1) is the information that the measurements

from the past, Z1:k−1, provide us about the current state
xk.

• p (Zk|xk) is the information that the current measurement
Zk has about the current state xk.

The update step puts together these pieces of information to
give us the filtered posterior p(xk|Z1:k).

Under the model assumptions made in section II-A, the
likelihood p (Zk|xk) is a GM.

p (Zk|xk) = w0 +

mk∑
i=1

wiN (Hxk; zk,i, R) (4)

where
{
zik
}
i=1,..mk

is the set of all measurements at time
instant k, wi ∝ 1

mk
, for i = 1, ..mk is the probability of the
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hypothesis that the measurement zik correspond to the target,
and w0 ∝ 1− PDPG is the probability of the null hypothesis
i.e., that the target did not yield any measurement. PG is the
probability of gating.

With a likelihood as in equation (4) and a Gaussian initial
prior, the filtered density will be a Gaussian mixture. As this
is propagated through time, all the filtered densities will be
GMs and the number of terms in the GM grows exponentially
with time. Thus, approximation of the GM is necessary. The
PDAF approximates the filtered posterior, p (xk|Z1:k), with a
single Gaussian. Assuming that the prediction p (xk|Z1:k−1) is
a Gaussian density N

(
xk; x̂k|k−1, Pk|k−1

)
(which is typically

due to the approximations made at the previous time instants),
the filtered posterior will be:

p (xk|Z1:k) ∝ p (xk|Z1:k−1) p (Zk|xk) (5)
= w0N

(
xk; x̂k|k−1, Pk|k−1

)
+

mk∑
i=1

w′iN
(
xk; x̂k|k,i, Pk|k,i

)
which is again a GM with the same number of components as
p (Zk|xk) but with updated means x̂k|k,i, covariances Pk|k,i
and weights w′i. The new weights w0 and w′i are such that the
weights shift towards the most likely component in the GM.
The PDAF makes the following approximation of the GM:

p̃ (xk|Z1:k) = MM (p (xk|Z1:k))

where MM (ψ(x)) stands for moment matching that would
return a Gaussian with the same first two moments
as ψ(x). This method minimizes the KL divergence
KL (p (xk|Z1:k) || p̃ (xk|Z1:k)).

B. Smoothing

Referring back to equation (3), if along with the infor-
mation, if the information from the future measurements is
also incorporated, that gives us the smoothed density. Let us
consider smoothing for time instant l such that l < k. The
filtered density at l will be

p (xl|Z1:l) ∝ p (xl|Z1:l−1) p (Zl|xl) .

The smoothed density at l will be

p (xl|Z1:k) ∝ p (xl|Z1:l−1) p (Zl|xl) p(Zl+1:k|xl). (6)

p(Zl+1:k|xl) is the likelihood of the current state xl from the
future measurements Zl+1:k. This likelihood is obtained in two
steps, which are similar to the prediction and update step, but
in a different order:
• Likelihood update:

p(Zl+1:k|xl+1) = p(Zl+1|xl+1)p(Zl+2:k|xl+1)

• Backward prediction:

p (Zl+1:k|xl) =

∫
p (Zl+1:k|xl+1) f (xl+1|xl) dxl+1

(7)

C. EP

In the current algorithm, to compute the backward like-
lihood p(Zl+1:k|xl+1), EP [11] is used. In section IV-A, it
will be explained how and why EP is employed to obtain
an approximation of the backward likelihood. In this section,
the general working of EP will be explained. EP is an
approximation technique that can be used to obtain a Gaussian
approximation of factors of a function. If the function is
a product of several non-Gaussian factors, then a Gaussian
approximation of each of the factors is obtained using the
information from the other factors. This can be performed
in an iterative fashion among all the factors in the function.
This can also be used to get a Gaussian approximation of the
function.

Let f(x) be a function that is made up of several factors
fi(x). These factors are non-Gaussian and we would like to
obtain a Gaussian approximation of it.

f(x) =
N

Π
i=1
fi(x)

Let us assume that we have an initial approximation of the
factors, f̃i(x). We are interested in obtaining the approxima-
tion for the jth factor fj(x). The new approximation provided
by EP will be

f̃newj (x) =

MM

fj(x)
N∏

i = 1
i 6= j

f̃i(x)


N∏

i = 1
i 6= j

f̃i(x)

The jth factor is replaced with this new approximation and
the procedure can be iterated for the remaining factors. The
advantage in this is that the approximation of fj(x) is made
in the region where the product of all the factors has its mass.
In the next section, there will be more explanation on the
relevance of this region of interest.

IV. SMPDAF
The main goal of this paper is to obtain an accurate ap-

proximation of the filtered density. SmPDAF tries to make the
approximation accurate in the region of interest. In this section
we argue that the region of interest is where the smoothed
density has its mass, which hence depends on all the available
information. An important consequence is that future mea-
surements influence where the density approximations should
be accurate, i.e., Zl+1:k influence where our approximation
of p(xl|Z1:l) should be accurate in order to yield an accurate
approximation of p(xk|Z1:k) (which is our objective). To be
noted is that if we have an exact, and Gaussian, expression for
the filtered density in the first place, the information from the
future is not going to change anything in the filtered density.
The idea is to use the older approximations of the filtered
density and the information from the future to obtain a more
accurate approximation of the filtered density.
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Under the model assumptions given in Section II-A, it was
shown very briefly in Section III-A that the true filtered density
p(xk|Z1:k) is a GM. A PDAF makes a Gaussian approxi-
mation (by moment matching) of the filtered density at each
stage. This filtered density depends on the prediction density
p(xk|Z1:k−1), which in turn depends on (the approximation of)
the filtered densities, p(xl|Z1:l) at the past time instants l < k.
Each of this filtered density is originally obtained through a
PDAF. Thus before MM, each of this is a GM but with far
lesser number of components than the true filtered density.

The idea is to improve on the GM in PDAF before MM.
By improve, we mean that we want the GM to become
more unimodal, with the mode corresponding to the true
hypothesis gaining more weight. EP and pruning are used to
perform this. This involves computing the backward likeli-
hoods p(Zl+1:k|xl) (l < k) from the future measurements,
which again for computational simplicity and tractability, has
to be approximated as a Gaussian density. EP is one way
to obtain these backward likelihoods. It uses the prediction
p(xl|Z1:l−1) and the current likelihood p(Zl|xl) to approxi-
mate the backward likelihood at the previous time step. Based
on this backward likelihood, we use pruning in order to remove
components in the GM before MM.

Both EP and pruning use all the available information —
prediction, current likelihood and the backward likelihood
— to improve on the approximation of the backward like-
lihood and thereby, the approximation of the filtered density,
p(xl|Z1:l). This will later be propagated forward to improve
the filtered density p(xk|Z1:k). Thus, it becomes quite natural
to make the approximation of these densities accurate in the
region which uses the information from all measurements
Z1:k. Since the smoothed density is obtained using all the
information, the region of interest is then the region where
the smoothed density has most of its mass. EP and pruning
provide an accurate approximation of the backward likelihood
and the filtered density in this region of interest. In the
following sections, there will be more detailed discussions on
the working of EP and pruning.

A. EP

It was argued in the above section that it is crucial to
obtain an accurate Gaussian approximation of the backward
likelihood p(Zl+1:l|xl). This can be obtained in two steps:

1) Starting with the Gaussian likelihood p(Zl+2:k|xl+1)
and the GM likelihood p(Zl+1|xl+1) at time l + 1,
EP is used to obtain a Gaussian approximation of
p(Zl+1:l|xl+1) = p(Zl+1|xl+1)p(Zl+2:k|xl+1),

2) The Gaussian approximation from 1) is passed back-
wards through the process model to obtain the necessary
likelihood p(Zl+1:l|xl). (This step is referred as back-
ward prediction in this paper).

It is emphasized that starting from time l + 1, these above
two steps can be repeated for each l. The details of the
backward prediction are provided in Appendix B. To be noted
is that given the Gaussian density input, there are no additional
approximations made in this backward prediction step.

For notational simplicity and without loss of generality, in
this section we will discuss the possibilities to obtain the
likelihood p(Zl:k|xl), instead of p(Zl+1:k|xl+1), where

p(Zl:k|xl) = p(Zl|xl)p(Zl+1:k|xl). (8)

The current likelihood has the form,

p(Zl|xl) = w0 +

mk∑
i=1

wiN (Hxl; zl,i, R) .

If p(Zl+1:k|xl) is a proper Gaussian density, the product will
yield a GM which can be moment matched and approximated
to a Gaussian density. On the other hand, if p(Zl+1:k|xl) is of
the form N (Ux; µ, P ) where the matrix U is not a square
matrix, then the product in equation (8) will result in a function
of the form,

p(Zl:k|xl) = w0N (Uxl; µ0, P0) +

ml∑
i=1

w′iN (U ′xl; µ
′
i, P

′) .

This function is not a density in xl and cannot be normal-
ized. It is therefore difficult to find an approximation that is
Gaussian-like and has the same moments. EP comes to the
rescue. EP suggests that the prediction density can be used
in obtaining the approximation. It serves two purposes: 1)
the approximation is made accurate in the region where the
smoothed density has most of its mass, and 2) it overcomes
the problem of normalization and computing the moments. EP
does the following:

p(Zl:k|xl) ≈
MM (p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl))

p(xl|Z1:l−1)
(9)

The likelihood p(Zl:k|xl) is first multiplied by the prediction
p(xl|Z1:l−1), to get the smoothed density p(xl|Z1:k). This will
result in a GM which can be normalized. A Gaussian approx-
imation of this density is made by moment matching. And the
resulting Gaussian density is divided by the prediction to get
an approximation of the desired likelihood p(Zl:k|xl). This
approximation for p(Zl:k|xl) is obtained so that the Kullback-
Leibler divergence between the moment matched smoothed
density, p(xl|Z1:l−1)p(Zl:k|xl) and the GM smoothed density
p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl) is minimized, i.e.,

p(Zl:k|xl) ≈ argmin
p(Zl:k|xl)

KL {p(xl|Z1:l−1)p(Zl:k|xl)

||p(xl|Z1:l−1)p(Zl:k|xl)}

is minimized. Thus the approximation is made such that the
smoothed density is more accurate and thus yields an accurate
approximation for the backward likelihood. This likelihood
can be propagated back through the process model to obtain
p(Zl:k|xl−1); the details of this are in n Appendix B.

It can be seen from equation (9) that EP involves division of
Gaussian densities. This operation is carried out similar to the
Gaussian multiplication operation. There will be addition of
covariance matrices in Gaussian multiplication to obtain the
resultant (product) covariance. In case of Gaussian division,
there is subtraction of covariance matrices. The problem is
that this may result in a matrix with non-positive eigenvalues.
The numerator in the Gaussian division is obtained after
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moment matching. Thus the covariance of the numerator will
be much wider because of the spread of means term involved
in moment matching a GM. If the covariance of the numerator
is wider in certain dimensions compared to the covariance of
the denominator, the subtraction of covariance matrices will
result in a matrix with negative eigenvalues. The approach
taken in overcoming this is to use only the dimensions along
which the eigenvalues are positive and to ignore the remaining
dimensions. The details of how this is performed is explained
in Appendix A.

B. Pruning

EP provides us with a good approximation to the backward
likelihood p(Zl+1:k|xl). The question now is how this back-
ward likelihood can be used to obtain an approximation of the
filtered density p(xl|Z1:l).

One natural way of utilizing the backward likelihood would
be to use EP as

p(xl|Z1:l) ≈
MM (p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl))

p(Zl+1:k|xl)
.

The problem with this method is that it involves Gaussian
division and can result in a density with infinite covariance
along certain state dimensions, which is not desirable.

Another way would be to use the smoothed density as an
approximation,

p(xl|Z1:l) ≈ MM (p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl)) .

The disadvantage with this would be that as we iter-
ate between the approximations of the backward likelihood
p(Zl+1:k|xl) and the filtered density p(xl|Z1:l), the infor-
mation in p(Zl+1:k|xl) will be overused (this is sometime
referred to as data “incest”) and can result in an underestimated
covariance.

The method that is suggested in this paper is to perform
pruning on the filtered GM p(xl|Z1:l) based on the smoothed
density which uses the backward likelihood p(Zl+1:k|xl). The
filtered density and the smoothed density are GMs (but we
assume that the prediction and the backward likelihood are
Gaussian functions). Let them be denoted as:

p(xl|Z1:l) =

ml∑
i=0

wiN
(
xl; µ

i
l, P

i
l

)
p(xl|Z1:k) =

m′
l∑

i=0

w′iN
(
xl; η

i
l , B

i
l

)
The different components in the GM correspond to the

hypothesis that the measurement zil is due to the target,
and i = 0 refers to a missed detection. If the weights of
some of the components in the GM p(xl|Z1:k) are negligible
compared to the weights of the filtered density GM, then
it would imply that the backward likelihood indicates that
the impact of those components become insignificant in the
future time instants. If the impact of those components is
negligible, these components may as well be pruned in the
filtered GM density at time l. This helps in reducing the
number of components in the GM. The lesser the number

of components in the GM, the easier (or more accurate) can
be the approximation of the GM to single Gaussian density.
Thus, a better and an easier approximation for the filtered
density p(xl|Z1:l) would be to prune those components and
moment-match the remaining components. Thus the idea is
to prune the components in the filtered density GM that have
negligible weights (or insignificant) in the smoothed density.
The remaining components in the filtered density are moment-
matched to obtain a Gaussian density approximation.

The pruning operation will be denoted as ‘Prune1:k’ in the
algorithmic description 1.

C. Algorithmic Description

An algorithmic description of SmPDAF is provided as
Algorithm 1. It is assumed that the lag parameter L and the
iteration parameter, J are defined. For each time instant, k, the
procedure is explained in Algorithm 1. The filtered density at
time k − 1 is assumed to be available.

Algorithm 1 Algorithmic description of SmPDAF
1) Propagate the prior through the process model to get

the prediction p(xk|Z1:k−1) as in equation (2), compute
the filtered density at k as in equation (5) followed by
moment matching and set b = k.

2) At b, compute the backward likelihood as in equation
(9) with l = b and propagate it backward through the
process model as in equation (7) with l = b − 1. Set
b = b− 1.

3) Repeat step 2) until b = k − L and set f = b.
4) At f , compute the new prediction as in equation (2) and

perform pruning on filtered density as

p(xf |Z1:f ) = Prune1:k(p(xf |Z1:f−1) p(Zf |xf )),

perform moment matching as

p(xf |Z1:f ) = MM(p(xf |Z1:f ))

and set f = f + 1.
5) Repeat step 4) until f = k.
6) Repeat steps 2) to 5) the specified iteration ‘J’ number

of times.

V. RESULTS

Performance comparisons between SmPDAF and PDAF are
presented in this section. Simulation comparisons of the root
mean squared error and the track loss between the PDAF and
SmPDAF are presented. The asymptotic complexity of the
SmPDAF algorithm is discussed later.

A. Root Mean Squared Error and Track Loss

The model considered for simulations is the constant ve-
locity model with a two dimensional state vector containing
position and velocity. The trajectory was generated with zero
process noise. The initial speed was 50m/s. For the simula-
tions, the acceleration noise had a standard deviation of around
4m/s2. The lag parameter L, for the SmPDAF was set as 5 time
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steps and for each time instant, the SmPDAF was performed
once, i.e., the iteration parameter J was set as 1.

The performance measures considered are RMSE and TL.
The results are averaged over 1000 Monte Carlo iterations. The
RMSE performance is shown in Fig. 2 and Fig. 3. The RMSE
in the position obtained with PDAF is 10% higher than that
of SmPDAF for higher PD(See Fig. 2); for lower PD, PDAF
has 5% more RMSE in position than SmPDAF. With respect
to the RMSE in velocity, PDAF has around 2% more RMSE
than SmPDAF.

The TL decision was made by thresholding the Mahalanobis
distance between the estimated state and the true state. The TL
of SmPDAF is slightly better than the TL of the PDAF for
higher PD (See Fig. 4). For lower PD, SmPDAF has higher
track loss than PDAF. A closer analysis showed that the tracks
were lost when the approximation of the backward likelihood
made by EP was not accurate. This mainly happened when
the target measurements were missed and were not part of the
backward likelihood.

B. Complexity
The complexity of SmPDAF is analyzed as a function of the

number of terms in the GM filtered density. It will be argued
that smoothing back until a certain lag and filtering forward
have same complexity (asymptotically).

At each time instant, SmPDAF performs PDAF and smooth-
ing back until a certain time step, followed by forward filtering
forward employing pruning. Thus, the complexity of SmPDAF
can be grouped into three parts: PDAF (Step 1 in Algorithm 1),
smoothing back until a certain lag (Step 2), forward filtering
with pruning (Step 4). PDAF involves MM of the filtered GM
density at each time instant. Thus PDAF has linear complexity
in the number of components in the GM, which depends on
the number of clutter measurements at each time instant. On
an average, PDAF has a complexity linear in the expected
number of measurements at a time instant, let’s say ‘C’.

The smoothing step is very similar to the PDAF step. In
smoothing, there is the GM backward likelihood instead of a
GM filtered density; instead of direct MM, EP is performed.
EP has an additional step of Gaussian division, which is inde-
pendent of the number of components in GM. Thus, following
a similar argument as before, smoothing for a time step has
linear complexity in the expected number of measurements, C.
This smoothing back is performed until certain lag, say ‘L’.
Thus, this results in a complexity of L×C for the smoothing
step.

The filtering forward with pruning step is again very similar
to PDAF, with additional pruning happening before MM.
Thus, filtering forward with pruning for ‘L’ times steps has a
complexity of L×C. The smoothing and the filtering forward
with pruning steps are repeated ‘J’ number of times (Step
6)). Putting all these together, SmPDAF has a complexity of
(2×L× J + 1)C for each time step, which is asymptotically
linear in L× C × J .

VI. CONCLUSIONS

In this paper, the Smoothed Probabilistic Data Association
Filter algorithm was presented. The core idea of the algorithm

Figure 2. Comparison of the RMSE in position between SmPDAF and PDAF

Figure 3. Comparison of the RMSE in velocity between SmPDAF and PDAF

is to exploit the information from the future to improve on the
Gaussian approximation of the filtered density at the current
time instant. The work done in this paper presented a way
to use the idea of a combination of the probabilistic data
association filter (PDAF), expectation propagation (EP) and
pruning. To compute the backward likelihood from future mea-
surements, EP was employed. Pruning was a way suggested
to use this backward likelihood to improve the approximation
of the filtered density. Both EP and pruning work in such a
way that the approximations are made accurate in the region
of interest. The RMSE performance of the SmPDAF algorithm
was found to be significantly better than that of PDAF in
a simulated single-target scenario with clutter and non-unity
probability of detection.

Figure 4. TL comparison between SmPDAF and PDAF
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APPENDIX A
GAUSSIAN DIVISIONS

When computing the backward likelihoods from the future
measurements, EP is used as in equation (9). This involves
division of Gaussian densities that leads to subtracting the
inverses of the two covariance matrices, which may result
in covariance matrices with negative eigenvalues. One way
to overcome this is to exploit the dimensions along which
the eigenvalues are positive, and propagate the corresponding
density.

Let us assume that the densities involved in the Gaussian
division are N (x;µa, Pa) and N (x;µb, Pb) and the interest
is in computing the function g(x) such that it has a Gaussian
form with positive definite covariance matrix.

g(x) ∝ N (x;µa, Pa)

N (x;µb, Pb)

∝ exp

{
−1

2

[
xT
(
P−1a − P−1b

)
x

−2xT
(
P−1a µa − P−1b µb

)]}
Let the eigendecomposition of P−1a −P−1b be UT ΛU . Λ is

such that

Λ =

[
Λp 0
0 Λnp

]
where Λp and Λnp are diagonal matrices with positive eigen-
values and non-positive eigenvalues along their diagonals,
respectively. The eigenvectors in the U matrix are sorted
accordingly,

U =

[
Up

Unp

]
and UpU

T
p = I . The approximation made will be that

P−1a −P−1b is replaced with UT
p ΛpUp, thereby using only the

dimensions along which the eigenvalues are positive. Thus,

g(x) ∝ N (Upx;µp, Pp)

where µp = Λ−1p Up

(
P−1a µa − P−1b µb

)
and Pp = Λ−1p .

APPENDIX B
BACKWARD PREDICTION

The backward likelihood functions used in SmPDAF have to
be propagated back through the process model as in equation
(7), This operation is very similar to the prediction step in
filtering. Equation (7) is

p (Zk+1:N |xk) =

∫
p (Zk+1:N |xk+1) f (xk+1|xk) dxk+1

The likelihood p (Zk+1:N |xk+1) is a function obtained by
using EP that involves Gaussian division as in Appendix A.
Thus, it will have the form N (Upxk+1; µp, Pp). The state
transition density is given by N (xk+1; Fxk, Q).

p (Zk+1:N |xk) =

∫
N (Upxk+1; µp, Pp)×

N (xk+1; Fxk, Q) dxk+1

=

∫
N (xk+1; •, •)×

N
(
UpFxk; µp, UpQU

T
p + Pp

)
dxk+1

The second term in the above integral is independent of xk+1

and hence can be moved out of the integral and the first term
is a Gaussian density in xk+1 and integrates to unity. Thus,

p (Zk+1:N |xk) = N
(
UpFxk; µp, UpQU

T
p + Pp

)
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