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Abstract

Department of Applied Physics

Doctor of Philosophy

Nonlinear Electromechanics of nanomembranes and nanotubes

Daniel Midtvedt

Nanomechanical resonators is a class of systems consisting of resonating structures on

the sub-micrometer scale. They are known to display strong nonlinear dynamics. In

addition, due to the size of the systems (∼ 104 − 106 atoms), a statistical description of

the internal degrees of freedom is not a priori justified, and they are typically critically

affected by fluctuations. This hampers the straighforward miniaturization of currently

employed micromechanical systems, but it also introduces new and interesting physics.

In particular, an improved description and understanding of the nonlinear effects in

these systems will enable the exploitation of these effects.

In this thesis, a theoretical framework for describing the elastic properties of low-

dimensional resonators, such as suspended graphene and nanotube structures, is devel-

oped. The framework is based on continuum mechanics, which is the same underlying

model that describes the properties of macroscopic rods and plates. However, the re-

duced dimensionality of the considered system introduces some interesting aspects of

the theory. The nonlinearities are characterized in Paper I and Paper II and exploited

in the subsequent papers:

• To gain additional insight to the process of relaxation and thermalization in meso-

scopic systems (Paper III);

• To develop a method for experimentally determining the bending rigidity of atom-

ically thin membranes (Paper IV) and

• To study the interplay between mechanical motion and single electron tunneling

in suspended carbon nanotubes (Paper V).

Due to the theoretical nature of the thesis, special attention is given to the possibility

of experimental observation of the physical effects presented.

http://www.chalmers.se
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Chapter 1

Introduction

Using a term like nonlinear science is

like referring to the bulk of zoology as

the study of non-elephant animals

Stanislaw Ulam

The world around us is inherently nonlinear. From a child sitting on a swing, to large

scale fluctuations in the climate, a vast majority of the systems we encounter in our

everyday lives display nonlinear dynamics. In fact, as will be discussed at great length

in a subsequent chapter, the fundamental concepts of thermodynamics and statistical

mechanics rely on nonlinearities. Still, throughout history, the field of physics has mainly

dealt with linear systems.

The reason for this apparent inconsistency can be put quite simply: linear systems are

solvable, while nonlinear systems in general are not. Therefore physicists often go to

great lengths to reduce nonlinear systems to linear ones, hoping that the key physics is

not lost in the process.

This approach gave reasonable results because physics, up until the 20th century, was

concerned with the behavior of macroscopic objects: apples falling from trees, vibrating

plates and swinging pendulums. It is clear that to solve for the motion of the swinging

pendulum, one does not have to solve the equations of motion for each individual atom in

the pendulum, but it is sufficient to look at the average motion of all atoms. So, even if, as

is generally the case, the individual atoms behave in a complicated, nonlinear fashion, the

macroscopic system can be described by a single equation of motion which in many cases

may be approximated as linear. In mechanical systems there often exist a length scale

that sets the regime of validity of such linearized equations. Correspondingly, vibrating

plates behave linearly if their vibration amplitude is small compared to the thickness of

1
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the plate, and a pendulum behaves linearly if the amplitude is small compared to the

length of the pendulum.

At the turn of the 20th century, quantum mechanics made it possible to consider also

the internal degrees of freedom. But although quantum mechanics revealed a whole new

world of physics, still only linear, few degrees of freedom systems were tractable, such

as the energy levels of a single hydrogen atom.

Simultaneously, thermodynamics and statistical physics had been developed as a tool to

describe how physical systems interact with their environment, and how the statistical

properties of the internal degrees of freedom affects the macroscopic properties. This

introduced the concept of thermodynamic equilibrium as a state where no flow of energy

occurs within the system. Considering small deviations from this hypothetical state, the

equations for the internal degrees of freedom can be linearized and various macroscopical

properties can be derived. However, this relies on a statistical description of the internal

degrees of freedom, e.g. the motion of the individual atoms. This is possible if the

number of atoms is very large and the time scale of interest is large compared to the

natural time scales of the internal degrees of freedom.

So, physics dealt with either very small systems, where the total number of degrees of

freedom is small, or very large systems, where the internal degrees of freedom can be

treated statistically. Still, it was clear that there must exist an intermediate region be-

tween those extremes where the detailed evolution of the microscopic degrees of freedom

is relevant for the macroscopic properties. It was first with the advent of computers

in scientific research that this issue was first studied in the famous FPU (Fermi-Pasta-

Ulam) experiment of 1954 [2].

Some decades later, mechanical systems with sizes in this interesting region between the

microscopic and the macroscopic were experimentally realized. Such systems may be

called mesoscopic1. Among these systems are NanoElectroMechanical Systems (NEMS),

which combine the electronic and mechanical properties of systems on the nanoscale.

In particular, low dimensional (1D and 2D) mechanical resonators are now routinely

fabricated and characterized. In one or more spatial directions these systems have no

extension and so no natural length scale in these directions exist (or is very small). Based

on this argument, one would expect these resonators to behave nonlinearly already at

low vibrational amplitudes. In fact, these resonators often display highly nonlinear

behavior. This combination of mesoscopic size and strong nonlinearity, suggests that

these systems contain much interesting physics.

1The word mesoscopic derives from the greek word mesos, meaning ”intermediate”. Although it is
most commonly used in electronics [3], I use it in the meaning ”intermediate size”.
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In this thesis, the nonlinear dynamics of suspended mechanical systems in one and two

dimensions is characterized using classical continuum elasticity theory. Although the re-

sults obtained are generic for any low dimensional mechanical system, I specifically focus

on graphene and carbon nanotubes as they are the most straightforward experimental

realizations of the considered systems.

In the following sections, the reader will be familiarized with the basics of Hamiltonian

dynamics as well as the basic properties of graphene and carbon nanotubes.

1.1 Hamiltonian dynamics

In the introductory section, I introduced linear and nonlinear systems without specify-

ing the mathematical distinction between the two. Linear and nonlinear systems are

examples of a more general class of systems, called dynamical systems. They are sys-

tems whose time evolution is determined by some fixed rule. At any point in time, a

dynamical system is described by its state, which is essentially a set of numbers for the

coordinates of the systems. If the system is described by N coordinates, the state can be

represented as a vector in an N -dimensional space called phase space. For mechanical

systems, which are the ones considered in this thesis, the phase space consists of all

conceivable values of positions and momenta for all particles in the system. To each

point in phase space corresponds a unique trajectory of the system parameters; in other

words, if the state of all degrees of freedom at any specific point in time is known, the

time evolution of the system is uniquely determined. A consequence of this is that phase

space trajectories never cross; if they did, the time evolution would not be unique.

I shall use the following conventions: a point in phase space will be denoted by x ≡ (p, q).

A trajectory in phase space will be γ(t).

For physical systems, the rule determining the trajectories in phase space is Hamilton’s

principle. This dictates that between time t1 and t2, the system evolves along the path

that makes stationary the action

S =

∫ t2

t1

dtL(q̇, q), (1.1)

where L(q̇, q) = T − V is the Lagrangian, defined as the difference between the kinetic

and potential energy, q are the generalized positions of the system and q̇ denotes the time

derivative of the coordinates. Requiring that S is stationary gives the Euler-Lagrange
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equations of motion for the coordinates q,

∂t

(
∂L
∂q̇

)
− ∂L
∂q

= 0. (1.2)

For mechanical systems, the kinetic energy is a quadratic function of q̇ and the potential

energy is a function of q. In that case, the equations become

q̇ =p

ṗ =− ∂V

∂q
, (1.3)

where p = ∂L
∂q̇ is the generalized momentum. If the system consists of N particles, the

equations are

q̇i =pi

ṗi =− ∂V

∂qi
, (1.4)

where i ∈ [1, N ] labels the particles of the system. For a macroscopic system consisting

of a large number of particles, this becomes a completely untractable set of, in general,

nonlinear equations describing chaotic motion of the particles. Luckily, one is typically

not interested in the exact motion of every particle in a system, but rather on some

average quantity. As an example, for a swinging pendulum the interesting parameter is

the motion of the center of mass of the system.

Now, we are in position to discuss the difference between linear and nonlinear systems. A

linear system is a system for which the superposition principle holds, that is, if γ1(t) and

γ2(t) are paths that satisfy the constraints set up above, then the path ξ(t) = γ1(t)+γ2(t)

also satisfy the constraints. This principle makes it simple to construct the entire set

of admissible paths, or solutions, to a dynamical system, and is the reason why so

much attention has been devoted to this subclass of dynamical systems. Specifically,

consider the vector field composed of the difference between two paths emanating from

infinitesimally close points in phase space. If the superposition is to hold for every path,

it must hold also for the path traced by this vector field. If the paths are initially very

close, the equation of motion for ξ(t) can locally be written as

ξ̈i = − ∂2V

∂qi∂qj
ξj . (1.5)

From this equation, it is clear that ξi satisfies the same Hamiltonian equations of motion

as γ1 and γ2 when ∂2V
∂qi∂qj

is independent of the position in phase space. In terms of

the geometrical interpretation of phase space, a linear system is a system defined on
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a potential energy manifold with everywhere constant curvature, or equivalently, the

potential energy is a quadratic form. For any physical system, this is unlikely to hold

globally, but it may be a good approximation locally. In particular, if the evolution of

the system can be described as a small deviation from an equilibrium configuration, the

potential landscape can be locally expanded to obtain linear equations. This procedure

is known as linearization, and is incredibly useful for macroscopic systems. The vector

field ξ, called the tangent field, is useful to illustrate the concept of Hamiltonian chaos.

Consider a small portion, a volume, of phase space. A consequence of Liouvilles theorem

is that in Hamiltonian systems, volumes in phase space are preserved. In general, such

a volume will expand in some directions and contract in other, but the total volume

will always be the same. In the directions of expansion, the tangent field will diverge,

which means that two points initially close in phase space will, after some time, be well

separated. Consequently, nearby points in phase space do not, in general, correspond to

similar dynamics. Such systems are called chaotic. Chaotic systems are characterized

by the rate of separation of the tangent field, quantified by the Lyapunov exponents.

A final concept that aids the understanding of linear and nonlinear systems is integra-

bility, or integrals of motion (IOM). An IOM is a number that is conserved during the

evolution of the system. One example of an IOM is the total energy of a Hamiltonian

system. Each IOM decreases the dimensionality of the manifold on which the phase

space trajectories evolve. A completely integrable system is a system with as many in-

tegrals of motions as degrees of freedom, in which case the manifold is one-dimensional

and the system is defined by a set of uncoupled equations of motion. All linear systems

are completely integrable, with the integrals of motion being the individual particle (or

mode) energies.

The standard way of treating weakly nonlinear systems is to start from a linear system

and characterize its IOMs. The effect of small nonlinear terms in the system will then

in many cases be to break the symmetry protecting the IOM causing them to depend

weakly on time. The aim of standard perturbation theory is then to approximate the

slow dynamics of the IOMs of the linear system.

As we have seen, the Hamiltonian description is useful if the number of degrees of freedom

is small, and fluctuations of the internal degrees of freedom can be neglected. What

about systems where the fluctuations themselves are of importance? This is typically

the case for mesoscopic systems. Then, the above formulation must be modified.
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1.2 Statistical mechanics

A fundamental observation of nature is that it is not time reversible. A trivial manifes-

tation of this is playing an old VHS tape in reverse; the unphysicality of the evolution on

the tape becomes painfully obvious. This irreversibility is contained in the second law

of thermodynamics, which states that entropy is either constant or increases in time.

At the same time, the equations of motion considered above for general Hamiltonian

systems are time reversible, changing the direction of time does not alter the dynamics.

As an example, consider again a movie of a pendulum swinging in a vacuum chamber.

The motion of the pendulum is perpetual, and the motion will look identical whether

the movie is played backwards or forwards. If the vacuum chamber is removed, the

collisions between air molecules and the pendulum will act as to damp the motion of the

pendulum; the amplitude of the motion decreases in time. Now, if the movie is played

backward the amplitude of the pendulum will seem to increase in time; the pendulum

somehow gains energy from nowhere. Suddenly, there is a clear distinction between the

evolution forward and backward in time; time reversibility is broken due to the interac-

tion of the system with the environment. Clearly, something happens when going from

a low dimensional deterministic description as given in the preceding section to a high

dimensional system (pendulum + environment) where interactions play a role.

We saw in the preceding section that a volume of phase space will contract in certain

directions, and expand in other. Consequently, if one does not know the exact position of

all particles but only some statistical distribution of the positions, the initial (possibly

very small) phase space volume will contract and expand to a point beyond recogni-

tion. If, additionally, one is not interested in the motion of all atoms individually, but

only in the statistical properties of some subsystem of the total Hamiltonian system,

the equation of motions become probabilistic, or stochastic. The process of deriving

these stochastic equations of motion involve projecting the full system of equations onto

the subsystem of interest and performing a proper coarse-graining. For details on the

procedure I refer to the excellent work by Kubo [4].

The paradigmatic example of a statistical description of a mesoscopic system is that

of Brownian motion. Although this is rather far from the main course of this thesis,

some aspects of statistical mechanics can be very intuitively described in the context of

Brownian motion, and so I will devote a few paragraphs to it.

Brownian motion was originally observed by botanist Robert Brown in 1827, as the ran-

dom motion of pollen grains suspended in water. Much later, Albert Einstein explained

this motion as being due to the surrounding water molecules randomly hitting the pollen

grain. If the pollen grains are freely suspended in the water, the equation of motion for
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the pollen grains are

q̇ =p

ṗ =R(t), (1.6)

where R(t) is a force acting on the grain due to the random motion of the surrounding

water molecules. If the pollen grain is stationary, one would expect that on average, the

force acting on the grain is zero. If, however, the grain has a velocity, it is clear that

more water molecules will hit the side of the grain facing the direction of the velocity,

and the water will consequently act to damp the motion. If the water molecules move

independently and uncorrelated, this term can be taken into account by including in the

equations of motion a term proportional to the velocity (or momentum) of the grain,

q̇ =p

ṗ =− γp+ ξ(t) (1.7)

where γ is now the damping parameter and ξ(t) is a random process with some statistical

properties. The inclusion of this damping term breaks the time reversal symmetry of

the original problem, and is consequently an effect of the statistical description of the

motion of the water molecules.

It is clear from the discussion above that there must exist a relation between the damp-

ing and the statistical properties of the random force ξ. This is given by the famous

fluctuation-dissipation theorem. The fluctuation-dissipation theorem is a relation be-

tween the thermal fluctuations of a system and the dissipation, or the degree of irre-

versibility.

As we have seen, Hamiltonian dynamics describe well the evolution of both microscopic

and macroscopic systems, where fluctuations can be disregarded. However, for systems in

an intermediate range of sizes, mesoscopic systems, fluctuations play an important role in

the dynamics. A lot is known about the fluctuations in linear systems. At the same time,

the linearization of the equations of motion relies on the assumption that the deviation of

the system from its statistical equilibrium is small. Therefore, this procedure is in general

not valid for mesoscopic systems that display large fluctuations. Consequently, it is

essential to be able to describe also nonlinear systems out of thermodynamic equilibrium.

In the following sections, I will briefly introduce two physical realizations of mesoscopic

systems that may come to aid the understanding of nonlinear nonequilibrium systems,

namely graphene and carbon nanotubes.
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1.3 Carbon based nanomaterials

The strive for smaller, faster and less energy-consuming electronic components has been

central to the electronics industry for several decades. As an example, Gordon Moore

noted in his 1965 paper that during the seven years preceding the paper, the number

of transistors that can be integrated on a chip had doubled for each year [5], which was

later modified to a doubling every two years. The fact that this exponential growth has

continued to such uncanning precision that the bi-annual doubling of on-chip components

is now referred to as Moore’s law very clearly underlines this strive toward smaller

components.

However, while the currently employed semiconducting devices reaches nanometer scales,

fundamental limits to the technology prevents further miniaturization. Therefore, new

materials must be used as basis for the continuing quest toward molecular sized electron-

ics [6]. As Feynman put it in his 1959 lecture, ”there’s plenty of room at the bottom”

[7].

Carbon, being one of the most abundant elements on Earth, would be ideal for this

purpose. Not only is it the basis for all life on Earth, but the versatility of its chemical

bonds results in an impressive diversity of the different forms of carbon. This allows for

recycling the individual carbon atoms within an organism; the same atom can, depending

on how it is bonded, be a part of the neurons firing while you are reading this thesis,

or of the muscle tissue in your fingers activated as you turn the pages. This diversity is

seen also in different forms of pure carbon, carbon allotropes. As an example, diamond

is hard, transparent and insulating, while graphite is soft, opaque and conducting.

In the past decades, the possibility to apply carbon to our ever increasing technological

demands have sparked a lot of interest. It has in particular focussed on a few remarkable

discoveries of carbon allotropes existing on the nanoscale, starting with the so called

”Buckyballs” in 1985 [8], tiny balls of carbon where the atoms are arranged in the

same way as the patches of a football. Single walled carbon nanotubes, tubes of carbon

in the same characteristic hexagonal, or ”honeycomb” lattice as the graphite planes,

were discovered in 1993 [9], although the tubular nature of carbon filaments was known

much earlier [10]. Carbon nanotubes have the clear advantage over buckyballs that they

can much more easily be connected to electrodes, simplifying using them in electronic

applications. The next major discovery was made by Geim and Novoselov at Manchester

University in 2004 [11], when they successfully isolated and characterized graphene, a

single layer of graphite.

This thesis concerns mainly the theoretical description of the latter two allotropes; car-

bon nanotubes and graphene, based on a continuum mechanical approach.
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Graphene is a two-dimensional sheet of carbon atoms in a honeycomb structure (figure

1.1). In the original experiment of Geim and Novoselov, graphene was isolated by

repeatedly splitting stacked graphite layers by the use of Scotch tape [11]. This method

is still frequently in use, although much current research is focussed on growing graphene

chemically, to allow for industrialization of graphene growth [12].

Figure 1.1: Schematic image of a graphene sheet, showing the carbon atoms arranged
in a hexagonal lattice.

The properties of graphene differ significantly from conventional three-dimensional ma-

terials. Chemically, the bonds are constructed by hybridising two p-orbitals and one

s-orbital (sp2-hybridisation). The resulting chemical bond is referred to as a σ-bond,

the most stable type of covalent bond. This is responsible for the remarkably high ten-

sile strength of graphene. The remaining p-orbital may combine with free p-orbitals of

neighboring carbon atoms to form a π-bond. These bonds are in turn what determines

the electronic properties of graphene.

Among the most extraordinary features of the electronic properties of graphene is its

linear spectrum close to the Fermi energy,

E = ±~vFk,

with wave vector k measured from the so called Dirac point. The spectrum is conical

with edges at the six corners of the Brillouin zone of the hexagonal lattice. Physically,

this means that the velocity of the electrons, v = 1
~
∂E
∂k = vF is constant, independent

of momentum, close to the Fermi energy. The Fermi velocity in graphene is ∼ 106 m/s

meaning that at short distances electrons in graphene move like massless particles at

about 1% of the speed of light. In fact, the electrons in this region obey the massless

Dirac equation, and are therefore often referred to as massless Dirac fermions. At

distances longer than the mean free path of the electrons, the charge transport is diffusive

with reported electron mobilities up to 150000 cm2V−1s−1 at room temperature [13, 14].

For a thorough overview of the electronic properties of graphene, the reader is referred

to the review by Castro Neto et al. [1].
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The unprecedented electronic properties of graphene make it a potential building block

for the miniaturization of present silicon based electronics. However, graphene has a

number of properties that are expected to take the industrial and societal importance

of graphene even beyond that of silicon [15].

A fundamental problem in electronic applications of graphene is the lack of band gap. In

recent years, there has been considerable interest in so called graphene heterostructures:

layered structures of graphene and other 2D material (most notably hBN and MoS2).

The lack of band gap in graphene can then be overcome by a vertical design where a few

layers of hBN, MoS2 or WS2 are used as tunnel barriers, and graphene serves as one or

both electrodes [16, 17].

The flexibility, high tensile strength and good conductive properties of graphene makes

it promising for printable flexible electronics applications. In contrast to almost any

other conductor, graphene is transparent which further allows for using graphene as

transparent electrodes in touch screens, rollable e-paper and photovoltaic cells [18, 19].

Due to its large surface area, graphene is sensitive to its environment. This makes it

useful in various sensing applications. Further, the reactivity of graphene with biological

materials makes it promising for diagnostic uses. Using the shift in local electron density

around adsorbed molecules, graphene can act as an extremely sensitive concentration

biosensor [20, 21]. Further, utilizing the shift in conductance when a strand of DNA

passes through pores in a graphene sheet, graphene can be used for fast DNA sequencing

[22].

Resonators made from suspended graphene display a significant shift in frequency due to

adsorbed particles, an effect that can be used for mass detection [23]. A problem arising

in this kind of application is that information about the position of the adsorbed particle

is typically needed to uniquely determine the mass of the particle. In particular, for a

linear resonator the shift in resonance due to a light particle adsorbed near the center of

the resonator is indistinguishable from the shift due to a heavier particle adsorbed closer

to the rim. However, the strong nonlinearities of graphene resonators can be exploited

to give information about both mass and position of an adsorbed particle [24].

Graphene additionally have potential therapeutical applications. It solubilizes and binds

drug molecules and can in principle be used for drug delivery. The mechanical and

chemical properties also makes it promising within tissue engineering. However, before

any of these applications become viable, the possible toxicity and biodistribution of

graphene in biologically relevant concentrations need to be charted [25].
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Carbon nanotubes (CNT) are essentially graphene sheets rolled up into hollow cylinders.

They retain the impressive tensile strength of graphene while having more easily con-

trolled band filling. The electronic properties depend on what is known as the chirality

of the atomic arrangement, and ranges from metallic to semiconducting with band gap

up to several eV. [26]

The versatility of the electronic properties of CNTs make them attractive as components

in applications where a strong coupling to the electronic degrees of freedom is essential.

An example of this is given in chapter 5, where a CNT is used as a single electron

transistor (SET). At the same time, the one-dimensional structure of CNTs makes them

inferior to graphene for certain applications, for instance when a layered structure or a

large surface area is preferred.

1.3.1 Carbon and NanoElectroMechanical Systems (NEMS)

In recent years there has been considerable interest in combining the mechanical and

electrical properties of carbon allotropes on the nanoscale in so called NanoElectroMe-

chanical Systems (NEMS). A prototypal NEMS device is depicted in figure 1.2. A

graphene sheet is suspended over a trench, and is actuated by applying a voltage to the

gate below it. Nanoelectromechanical systems are miniaturized extensions of the widely

employed microelectromechanical systems (MEMS) developed in the 1980s. There is

a wide range of enticing applications of NEMS, such as mass detectors with resolution

reaching 10−21 g [27, 28], nanoelectromechanical switches [29, 30], tunable RF resonators

[31, 32], memory devices [33] and transducers actuating and detecting mechanical motion

on the nanoscale [34]. Also, these structures pave the way for experimental detection of

quantized mechanical motion [35–37].

10nm - 10µm 

Figure 1.2: An archetypal graphene NEMS structure. A graphene sheet is suspended
over a trench in the substrate. Mechanical motion of the graphene is induced by ap-
plying a voltage to the gate below it. The size of the structure is typically in the range

10 nm - 10 µm.



Chapter 2

Continuum mechanical

description of nanoresonators

The aim of this chapter is to give a short review on the elasticity theory used in the

thesis. In the process, the equations of motion for a graphene sheet under external

forcing are derived. The discussion follows the book of Landau and Lifshitz [38].

When an elastic body is deformed, the distance between points in the body is changed.

A measure of the deformation is then the difference between the squared length element

in the deformed body (dXI) and the undeformed body (dxi)

dXIdXI − dxidxi =
∂XI

∂xj

∂XI

∂xk
dxjdxk − dxidxi =

(
∂XI

∂xj

∂XI

∂xk
− δjk

)
dxjdxk (2.1)

where summation over repeated indicies is implied. Defining the displacement field as

uj = Xj − xj , (2.2)

the difference in length elements can be written as

dXIdXI − dxidxi =

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ul
∂xi

∂ul
∂xj

)
dxidxj = 2εijdxidxj . (2.3)

Here εij is the strain tensor,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ul
∂xi

∂ul
∂xj

)
. (2.4)

Carbon based nanomaterials have a hexagonal atomic structure. The hexagonal lattice

is the maximally symmetric lattice and implies a symmetry between strains in different

12
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directions in the structure. Consequently, the free energy density describing a deformed

carbon based nanostructure is given by only two material parameters λ and µ, called

the Lamé parameters. These parameters relate the on- and off-diagonal terms in the

strain to the free energy density according to

F =
λ

2
εiiεjj + µεijεij . (2.5)

The internal stresses in the structure are given by the stress tensor,

σij =
∂F

∂εij
. (2.6)

This gives a linear relation between the strain and the stress in the material, and it is a

two-dimensional generalisation of Hooke’s law. The free energy density can be written

explicitly in cartesian coordinates as

F =
1

2
σijεij =

(
λ

2
+ µ

)(
ε2xx + ε2yy

)
+ λεxxεyy + 2µε2xy, (2.7)

Denoting the displacement fields by

ux = u(x, y), uy = v(x, y), uz = w(x, y), (2.8)

the components of the strain tensor are, to lowest nonvanishing order in the displacement

fields,

εxx = ∂xu+
1

2
(∂xw)2,

εyy = ∂yv +
1

2
(∂yw)2,

εxy =
1

2
(∂yu+ ∂xv + ∂xw∂yw) . (2.9)

Higher order terms of the in-plane displacements have been omitted. This approximation

will be denoted the membrane approximation, and is the main approximation of interest

in this thesis. Note that the nonlinearites in the strain appear only through the out-of-

plane deformation w. Further, there is no linear term in w, so the response is expected

to be highly nonlinear even for small deformations. Finally, in this model, there is no

external parameter that sets the size of the nonlinearity; it is an intrinsic feature of these

structures. It is very important that this nonlinearity arises not due to a nonlinear force

between the atoms, but is simply a consequence of Pythagoras’ rule. The nonlinearity

is therefore said to be geometrical.
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However, there is one parameter left to be discussed in this context, namely the geometry

of the sample. For a carbon nanotube this is irrelevant, but the additional dimension

of graphene sheets makes this an important issue. Therefore, I now introduce the two

main geometries of interest in this thesis, the nanobeam and the nanodrum (fig 2.1).

The nanobeam is a rectangular graphene sheet with two free edges and two fixed edges.

The nanodrum, on the other hand, is a circular sheet with its entire boundary fixed.

Nanobeams are the natural choice when the dynamics is to be coupled to electronic de-

grees of freedom. As the supports of the nanobeam are separated in space, a voltage can

be applied over the length of the beam effectively using the nanobeam as a conducting

channel. This is more challenging for the drum geometry.

On the other hand, the beam geometry suffers from mechanical drawbacks. The tension

in the sheet is often nonuniform, which makes the oscillation modes less well-defined

[39]. Further, they may possess edge modes on the free edges which degrade the quality

factor of the resonator [40].

𝑹 𝝓 𝒓 𝑹 𝝓 𝒓 𝑹 𝝓 𝒓 𝑹 𝝓 𝒓 

𝑹 𝝓 𝒓 
a) b)

Figure 2.1: The geometries considered in this thesis. a) Beam geometry, b) Drum
geometry.

Resonators made from exfoliated graphene usually have some residual tension T0, which

introduces a linear term in the equations of motion. Further, in NEMS applications the

resonator typically oscillates around a static equilibrium shape w̄ induced by a static

load. The analysis of the continuum mechanical description of graphene resonators

therefore need to take both these effects into account.

A further approximation will be employed in all models of this thesis. The time scale

of the in-plane dynamics and the out-of-plane dynamics is well separated in graphene

resonators. The time scale for the in-plane dynamics is set by l
√
ρG/T1, where l is

a typical size of the suspended domain, T1 = λ + 2µ and ρG is the mass density of

graphene. The time scale for the out-of-plane dynamics is similarly set by l
√
ρG/T0,

where T0 represents the residual stress in the resonator. Since T0/T1 is of the order 10−3

for graphene resonators made from exfoliated graphene, the in-plane dynamics is much

faster than the out-of-plane dynamics. In other words, the in-plane field will follow the
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out-of-plane field adiabatically, and are therefore removed from the dynamics by setting

∂2
t ui = 0.

The equations of motion for a nanobeam are derived and analyzed in appendix A. The

equations of motion can be reduced to a set of coupled differential equations describing

the evolution of the oscillation modes qn driven by a pressure pz cosωt,

q̈n + ω̃2
nqn + δω2

n

(
qn +

8w(0)

n2π2
〈φn〉

)
= 〈pzφn〉 cosωt, (2.10)

with ω̃2
n = n2π2

(
1 + 〈w̄2

x〉
)

and δωn(t)2 = n2π2
(∑

m qm〈2w̄x∂xφm〉+ π2
∑

mm
2q2
m

)
,

w(0) is the maximal deflection of the static equilibrium shape, φi is the i:th mode shape,

〈·〉 denotes spatial integration over the beam, subscript x denotes spatial derivative and w̄

is the static equilibrium shape of the resonator. This equation is written in dimensionless

form, the explicit form of which is also given in appendix A.

The derivation shows that the presence of a static deformation gives rise to a uniform

renormalization of the stress in the sheet. Further, it turns out that in the absence of a

static deformation, the modes are coupled only parametrically, i.e. through fluctuations

in the mode frequencies.

2.1 Equation of motion for a nanodrum

The continuum mechanical description of nanodrums is investigated in detail in Paper I.

I will here summarize the most important results of that paper. The Föppl-von Karmann

equations for the drum geometry read

ρ0ür −
[
∂rσrr + r−1∂φσrφ + r−1(σrr − σφφ)

]
= 0, (2.11)

ρ0üφ −
[
∂rσrφ + 2r−1σrφ + r−1∂φσφφ

]
= 0, (2.12)

ρ0ẅ − r−1
[
∂r(rσrr∂rw + σrφ∂φw) + ∂φ

(
σrφ∂rw + r−1σφφ∂φw

)]
= Pz(r, t), (2.13)

where Pz is an externally applied pressure. As in the case of the nanobeam, the equa-

tions can be cast in the form of a coupled mode equation. To derive these equations,

the in-plane dynamics is eliminated adiabatically and the following scaled variables are

introduced,

r̃ =
r

R
; t̃ =

√
εcL

R
t; w̃2 =

1

2

w2

R2ε
; Ẽ =

E

2ε2c2
LρGR2

; Φz = PzR/T0, (2.14)

where c2
L = T1/ρG is the longitudinal speed of sound in graphene, ε = T0/T1 is the

pre-strain of the sheet, R is the radius of the drum, Pz is the external pressure and ρG
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is the mass density of graphene. Explicit calculations show that the equations of motion

have the form

∂2
τ qn + ω̃2

nqn +
∞∑
j=1

∞∑
k≥j

Bnjkqjqk +
∞∑
j=1

∞∑
k≥j

∞∑
l≥j

Wnj;klqjqkql = 〈Ψ∗nδΦz〉, (2.15)

where φ∗n is the n:th mode function and δΦz is the time dependent part of the external

pressure.

The quadratic coupling Bnij arises due to the broken symmetry when the membrane

fluctuates around a static curved equilibrium shape, and vanishes if the fluctuations

occur around a flat, unbiased equilibrium. The cubic coupling matrix Wnj;kl is dense,

and has a permutation symmetry in the indices n ↔ j and k ↔ l. To highlight this

symmetry, the matrix is denoted as Wnj;kl.

In contrast to the beam geometry, the modes are coupled not only parametrically. In-

stead, a single mode can be driven by the presence of other vibrational modes in the

system. This feature of the drum resonator will be employed in chapter 3, where the

thermalization of graphene resonators due to mode coupling is investigated.

Another difference is that a static deformation due to a homogeneous pressure no longer

results in a homogeneous increase in the resonator stress. The inhomogeneity of the

stress renormalizes the frequencies of the modes, and gives rise to nontrivial frequency

crossings when the static pressure is increased.

2.1.1 Equations of motion for carbon nanotubes; effect of bending

Readers familiar with structural mechanics may have noted that the boundary condi-

tions considered in the previous section are different from what is ordinarily encountered

in that context. In particular, one usually requires information also regarding the deriva-

tives of the displacement field at the boundary. The reason for this is that typically,

there is an energy cost associated with bending a structure, while in the preceding sec-

tion only the energy cost of stretching was considered. Macroscopically, the origin of this

energy cost is that for a bent structure the convex side will be slightly stretched, while

the concave side will be compressed. This mechanism will not be present in atomically

thin structures such as graphene monolayers. On the atomistic scale, bending changes

the bond angles between carbon atoms, which will also cost energy. This energy is, how-

ever, in most applications very small compared to the stretching energy, and so it will

be ignored for graphene structures for a large part of the thesis. The issue of bending

rigidity in graphene mono- and multilayer structures is revisited in chapter 4.
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For carbon nanotubes (CNT:s), the situation is different. When bending a CNT, it

is clear that one side of the tube will be stretched, while the other is compressed.

Therefore, bending plays a more significant role for CNT:s than for graphene. The free

energy density of a CNT is, for small deformations

F =
κ

2
(wxx)2 +

T1

2

(
u2
x + uxw

2
x + w4

x/4
)
, (2.16)

where κ is the bending rigidity. The appearance of a term quadratic in the flexural

motion in the free energy density implies that the equation of motion will be linear for

small amplitudes. In this regime, mode coupling will be of minor importance and the

motion of the nanotube can be well modeled by considering the dynamics of a single

mode. In chapter 5, this model for the CNT motion is coupled to a quantum dot as an

interesting example of how a strong coupling between mechanical motion and electronic

degrees of freedom can be achieved.

2.2 Actuated nanoresonators

In applications, nanoresonators are actuated by an external field. In this thesis, the

actuation mechanism is electrostatic. The resonator is suspended over a back gate.

When a voltage is applied to the back gate, the resulting electric field between the back

gate and the suspended nanostructure causes charge to accumulate on both surfaces,

much as in a regular capacitor. This charge accumulation generates a force between the

gate and the resonator, which in turn causes the resonator to move.

As a first approximation for the case of a suspended graphene sheet, consider two static,

parallel plates separated by a distance d. The voltages on the two plates are ±V/2,

respectively. The electric field between the plates is homogeneous and given by Ez =

V/d. From Gauss law it follows that the charge on the plates are given by Q = ±ε0AV/d,

where ε0 is the vacuum permittivity. The proportionality constant between the charges

and the applied voltage is called the capacitance of the system. The force between the

plates is given by

F = Fz ẑ =
1

2

∂C

∂z
V 2ẑ. (2.17)

Note that taking the voltage V to be oscillating with frequency ω, the force oscillates at

the double frequency, 2ω. The reason for this is that reversing the sign of the voltage

does not reverse the sign of the force; the opposing charges on the two plates will still

attract.

For simplicity, I will consider an actuation that only affects the fundamental mode. The

effective equation of motion for the fundamental mode of the resonator becomes
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q̈0 + ω2
0q0 + αq3

0 = A−1〈Fzφ0〉, (2.18)

whereA is the resonator area, ω0 = (π/l)
√
T0/ρG for a nanobeam, ω0 = (ξ0,0/R)

√
T0/ρG

for a nanodrum where ξ0,0 ≈ 2.4 is the first zero of the zeroth order Bessel function, and

α = (c2
L/2)(π4/l4) for a nanobeam and α ≈ (2/3)(c2

L/2)〈r(∂rφ0)4〉 for a drum.

The effect of this force acting on the graphene sheet will be that the graphene sheet starts

to oscillate. However, when the graphene moves, the distance separating the graphene

and the back gate will change, effectively changing the force acting on the graphene.

To estimate this effect, consider a voltage signal consisting of a static part and a time

varying part, V (t) = Vdc +Vac(t), Vdc � Vac. To a first approximation the force is given

by

Fz[x, y, t, w] =
ε0

2(d− w)2
[Vdc + Vac(t)]

2 , (2.19)

where w is the deviation from the equilibrium position of the graphene sheet, d is the

distance to the backdate and ε0 is the vacuum permittivity. This force may be Taylor

expanded around the static equilibrium of the resonator to obtain the renormalization

of the resonance frequency,

δω2
el =

ε0
ρd3

V 2
dc, (2.20)

as a consequence of the electrostatic interaction between the graphene and the back

gate. Additionally, the mechanical nonlinearities gives a renormalisation of the frequency

δωmech of opposite sign. It is worth noting, that when ω2
0 − δω2

el + δω2
mech < 0 where ω0

is the frequency of the fundamental mode, the structure is unstable and the graphene

sheet will irreversibly ”snap in” to the back gate.

The shift of resonance frequency with static gate voltage, the so called tuning curve, is

a characteristic feature of NEMS devices. In figure 2.2, the tuning curve is reported for

both a nanobeam of length l = 500 nm and a nanodrum of radius R = (ξ0,0/π)l, chosen

to have the same non-renormalized frequency as the beam. The sheets are suspended

300 nm above the backgate, and the initial strain is taken to be T0/T1 = 0.001.
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Figure 2.2: The renormalized resonance frequency as a function of gate voltage for
a drum (dashed line) and beam (full line) with parameters as given in the main text.

The drum displays less mechanical stiffening compared to the beam.



Chapter 3

Dissipation and relaxation in

graphene resonators

All truth is crooked, time itself is a

circle

Friedrich Nietzsche

When a mechanical subsystem, such as a NEMS-resonator, is put out of equilibrium one

expects that the energy of the resonator decays and relaxes to the thermal equilibrium of

its environment. The time scale at which this happens defines the dissipation rate, and

is a fundamental limiting factor for the application of NEMS-devices. Understanding

the processes that lead to relaxation is therefore of key importance.

The standard way of describing relaxation of a subsystem toward thermal equilibrium is

provided by the Caldeira-Leggett model [41, 42], in which the subsystem is coupled to a

”bath” of linear harmonic oscillators. By bath one means a set of N oscillators that are

in thermal equilibrium with each other, with N large enough that the distribution of

energies among the oscillators is well described by its statistical properties. In the limit

that N → ∞, this model describes an irreversible relaxation of the subsystem towards

the thermal equilibrium of the bath. In section 3.2, the relaxation of the fundamental

mode of a graphene resonator is described in the context of the Caldeira-Leggett model.

However, the Caldeira-Leggett model reveals some deep underlying problems in the

classical statistical mechanics description of the physical world, without really providing

any answers. For instance, the dynamics of any physical system can be described by

a Hamiltonian. Hamiltonian dynamics is inherently time-reversible, yet the relaxation

toward thermal equilibrium is irreversible. In other words, how can one reconcile the

20
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first law of thermodynamics, stating that the energy of any closed system is constant,

thereby implying reversible motion, with the second law, implying an irreversible increase

in entropy? One can gain a heuristic understanding of this by considering Poincare

recurrences. Any Hamiltonian system evolves along the closed geodesics of an (N − 1)-

dimensional manifold in N -dimensional phase-space [43]. In other words, after a finite

amount of time, the system passes through the same point in phase space; the system

returns to its initial condition. The time this takes is called the Poincare recurrence

time. The more degrees of freedom a system has, the larger phase space will be. As

a consequence, the probability for this type of return decreases very quickly with the

dimensionality of the system, and so for high-dimensional systems only a finite part of

the geodesic will be explored within a physically reasonable amount of time. This makes

the dynamics appear irreversible, without being so in a rigorous sense.

The second question regards the requirements of a physical system to display a ther-

mal equilibrium. The concept of a thermal equilibrium relies on the assumption that

statistical properties of a system can be obtained without knowing the details of the

high-dimensional trajectories involved. In particular, if the trajectories uniformly covers

the constant energy manifold on which the system is defined, time integrations over

individual trajectories can be replaced by a phase space integral over the manifold. This

is the concept of ergodicity, which lies at the heart of classical statistical mechanics [44].

The system of uncoupled harmonic oscillators employed in the Caldeira-Leggett model

is for instance not ergodic in this sense, as additional integrals of motion restricts the

geodesics on the manifold to only a subspace of it. Therefore, the geodesics do not

cover the entire manifold in this case. Further, the very same argument that resolved

the issue of irreversibility in reversible systems seem to cause a contradiction now since

for high-dimensional systems, only a finite part of the manifold can be covered within a

physical time. Therefore, for a thermal equilibrium to be reasonably defined, not only

ergodicity is required, but also that large, separated portions of the manifold is covered

within finite time. This is called mixing, and is typically seen in chaotic systems. There

has been significant research on the relation between chaotic motion in Hamiltonian

systems and statistical mechanical properties of the system.

A natural question that arises is then, what are sufficient and necessary conditions on

the Hamiltonian for the system to relax toward a uniquely defined thermal equilibrium?

How do these conditions scale with the dimensionality of the system? These questions

were posed by Fermi, Pasta and Ulam (FPU) in their famous computer experiment of

1955 [2], and has been an active area of research ever since. The status of this research

is summarized in section 3.1, and in section 3.3 the idea of experimentally investigating

those questions in graphene resonators is proposed and analyzed. For excellent reviews

on the FPU problem I refer the reader to [45–47] and the recent book [48].
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3.1 FPU problem

The model system employed by FPU in their investigation of relaxation in finite-dimensional

systems was a set of coupled, nonlinear oscillators. The Hamiltonian they considered

was

H =
1

2

∑
n

(
p2
n + ω2

nq
2
n

)
+
α

3

∑
n

(qn+1 − qn)3 +
β

4

∑
n

(qn+1 − qn)4 , (3.1)

where α and β were considered small perturbations to the linear system of uncoupled

oscillators. The cases α = 0 and β = 0 are called the FPU-β problem and the FPU-α

problem, respectively. According to a theorem by Fermi, nonlinear systems generally do

not have additional integrals of motion aside the energy, and so the system is expected

to be ergodic for arbitrarily small perturbations. Based on this, the expectation by FPU

was that the system would display relaxation toward a thermal equilibrium determined

only by the energy of the system. The time scale of the relaxation was expected to

increase as the perturbation parameter decreased and become infinite in the limit α,

β → 0. Much to their surprise, the system instead displayed quasiperiodic motion, and

showed no signs of equipartition. This very innocent computer experiment spawned an

enormous amount of research on nonlinear Hamiltonian dynamics, the most important

results of which I will try to summarize here.

A possible explanation to the paradoxical observations of Fermi, Pasta and Ulam was

provided in 1965 by Kruskal and Zabusky [49]. They considered an equation describing

the short-time evolution of the FPU chain in the continuum limit, namely the Korteweg-

de Vries (KdV) equation,

ut + uux + uxxx = 0. (3.2)

This equation is a certain continuum limit of the FPU equations obtained by taking

β = 0 (FPU-α model), and describes the evolution of a combination of the momentum

and displacement field of the FPU chain. For a derivation of this equation I refer to

[50]. Kruskal and Zabusky numerically found that certain solitary waveforms (solitons)

traveled through the chain without loosing their shape. This result sparked the develop-

ment of the mathematical field of solitons and integrable nonlinear systems. However,

although not explicitly stated in the original paper, this equation approximates the FPU-

α model only on a short time scale, and the results obtained by Zabusky and Kruskal

therefore failed to give a complete explanation of the FPU results.

A year later, Izrailev and Chirikov [51] found evidence of a critical energy, below which

the system displayed regular motion. Above the critical energy, an approach to equipar-

tition was observed. A heuristic theoretical explanation was also provided in the context
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of the Kolmogorov-Arnold-Moser theory. In essence, one may say that the presence of

a perturbing nonlinear term in the Hamiltonian distorts the constant energy manifold.

For a given value of the perturbation parameter, this distortion vanishes in the limit

E → 0. Thus, for small energies the geodesics remain almost unchanged. In particular,

the constants of motion are destroyed only locally close to resonances. They conjec-

tured that irreversible energy sharing implied chaotic motion, which they attributed to

a resonance overlap.

Thus, the understanding of the FPU problem was the following: initially, the system

quickly relaxes to a superposition of normal modes, the stable solitons found by Zabusky

and Kruskal. For low energies, these solitons are stable, but for larger energies the

solitons constitute a metastable state and eventually break down and the system relax

toward equipartition.

Israeliv and Chirikov went even further by noting that in the ”thermodynamic limit”

N →∞, where N is the number of oscillators, the energy threshold vanished, and they

therefore drew the conclusion that the ”FPU-paradox” was irrelevant for the general

problem of ergodicity in statistical mechanics. However numerical evidence shows the

opposite behavior; the persistence of the metastable state in the limit of large oscillator

chains. In particular, the threshold for equipartition seemed to occur at the same value

of energy density or specific energy of the system ε ≡ E/N , regardless of system size

[52]. These observations steered the focus of the FPU problem in the direction it has

had ever since; namely, does the lack of equipartition observed by FPU persist in the

thermodynamic limit, and what implications would this have for classical statistical

mechanics?

It is now generally recognized that a second threshold exist, akin to a phase transition,

below which the phase space is mostly regular, with small stochastic islands close to

resonances, and above which most of phase space consists of chaotic orbits [53]. For

low energies, the dominating mechanism for energy redistribution is a slow diffusion

along resonances, so called Arnold diffusion, while for higher energies diffusion across

resonances gives a much faster equilibration. This threshold is seen as a cross-over in

the scaling of the largest Lyapunov exponent, a measure of the rate of separation of two

initially nearby points in phase space. The observation of this second threshold led to a

very interesting reformulation of classical mechanics in terms of Riemannian geometry

[54–58]. In particular, using these results the strong stochasticity threshold for large

Hamiltonian systems could be evaluated analytically [59].

Consequently, the parameters typically studied in the context of coupled oscillator chains

are the scaling of the largest Lyapunov exponent, λ(ε), and the scaling of the equilibra-

tion time Teq(ε), where ε is the specific energy, ε ≡ E/N .
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3.2 Dissipation in graphene resonators coupled to a medium

In this section, the equations of motion for a graphene sheet coupled to a medium are

derived and analyzed. The coupling will, as was discussed above, introduce dissipation

of the vibrational energy of the graphene sheet.

If the graphene is suspended in a gas (air, for instance), the gas molecules will collide

with the vibrating sheet, leading to a direct coupling to the flexural motion of the

sheet. This will induce regular, viscous damping. A more interesting scenario occurs

when the external bath couples to the strain. Then, the coupling will affect the flexural

motion indirectly through the in-plane field. This type of coupling occurs for instance

for electrons coupling to the deformation potential of strained graphene, or for phonon-

phonon coupling between graphene and the supporting substrate. This type of coupling,

as I will demonstrate, gives rise to a qualitatively different type of damping, where the

dissipation rate depends on the flexural mode amplitude.

I will consider the case when the in-plane motion of the graphene is coupled to a linear

elastic medium. Equations of motion are derived for a general geometry, and the specific

cases of a nanobeam and a nanodrum are considered separately.

Consider a graphene sheet suspended in a region Ω, otherwise connected to an elastic

substrate. Assuming that the interaction between the graphene sheet and the substrate

is harmonic in the displacement, the Hamiltonian of the system is

H = HG +Hm +
1

2

∑
i

λiΩ(ui − si,z=0)2, (3.3)

where HG and Hm are the uncoupled graphene and medium Hamiltonians, si,z=0 is the

displacement field of the substrate at the surface z = 0, and the coupling parameters

λiΩ are non-vanishing only outside the suspended domain Ω.

The equations of motion for the subsystems are

ρG~̈u = ∇ · σ̄ + λΩ(~u− ~s||,z=0),

ρGẅ = ∇ · (σ̄∇w) ,

ρS~̈s = µ∇2~s+ (λ+ µ)∇(∇ · ~s)− λΩ(~u− ~s||,z=0)− λzΩ (w − sz,z=0) , (3.4)

where ~s||,z=0 are the in-plane displacements of the substrate on the surface. The response

of the substrate at the surface can be written in terms of a response function Mij ,

s̃i(~x, z = 0, ω) = −
∫
d~x′Mij(~x− ~x′, ω)σjz(~x

′, ω) , (3.5)
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where σjz(~x
′, ω) = λΩ(uj − sj,z=0) is the stress at the surface of the substrate.

The equation of motion for the fundamental mode dynamics resulting from this coupling

is derived in appendix B. The dynamics of the fundamental mode in the rotating wave

approximation q1 can be written

iωq̇1 +
1

2

(
ω̃2

0 − ω2
)
q1 +

3

8

α̃

m
|q1|2q1 + i

1

2m
γωq1 + i

1

8m
ηω|q1|2q1 =

f0

2m
〈φ〉, (3.6)

where ω̃0 is the renormalised resonance frequency of the sheet, α̃ is the renormalised

Duffing parameter, γ and η correspond to the linear and nonlinear damping, φ = φ(x)

is the fundamental mode shape, ω is the driving frequency, m is resonator mass and f0

is the driving strength. Following Lifschitz [60], the following dimensionless quantities

are investigated,

δ =
η|q1|2

4γ
=

Im
{
〈(∇φ)T σ̃u(2ω)∇φ〉

}
|q1|2

8Im {〈(∇φ)T σ̃u(ω)∇φ〉} q2
0

η̃ =
ηω

α̃
. (3.7)

The first of the dimensionless quantities measures the relative magnitude of the linear

and nonlinear damping. This is determined by the ratio of overlap integrals of the

mode shapes φ and the frequency components of the in-plane stress field σ̃u(ω), and

by the ratio between the vibrational amplitude q1 and the static displacement of the

graphene sheet q0. For a small static displacement, it is therefore expected that the

nonlinear damping dominates the dissipation caused by this mechanism. The second

quantity measures the relative importance of the two nonlinearities in the equation. For

η̃ <
√

3, the well-known bifurcation of the Duffing equation is present, while for η̃ >
√

3

this bifurcation vanishes [60]. This is a purely geometrical factor, apart from the weak

dependence of ω on the static deformation of the graphene.

As a measure of the total dissipation due to this mechanism, we consider the quality

factor, defined as

Q =
ω̃0Ē

˙̄E
, (3.8)

where Ē is the energy of the subsystem of interest, averaged over one period. Here, the

concern is the damping of the out-of-plane motion. The energy E is consequently the

part of the energy of the graphene related to the out-of-plane motion. In the rotating

frame, it is given by

E = mω̃2
0|q1|2 +

1

4
α̃|q1|4 (3.9)
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The expression for the quality factor becomes, retaining only terms quadratic in q1,

Q−1 = γ̃
1 + δ

1 + (3/16)|q̃1|2
, (3.10)

where the dimensionless variables

q̃1 = q1

√
α̃

mω2
; γ̃ = γ/(mω), (3.11)

are introduced.

This result for the quality factor is valid in the limit T = 0. For T > 0 the thermal

motion of the substrate must be taken into account when deriving the equations of

motion for the suspended graphene.

The terms entering equation (3.10) depend on the geometry of the suspended domain,

and on the elastic properties of the supporting substrate.

To get quantitative results, a suspended beam and a circular drum coupled to SiO2

has been considered. The structures are assumed to be actuated electrostatically. To

get quantitative results, specific mode shapes must be chosen. The mode shapes are

determined by the geometry of the suspended region, and are chosen according to the

fundamental mode shapes of a beam and a drum,

φBeam =
√

2 cos
(πx
l

)
φDrum =

J0

(
ξ0,0r
R

)
J1(ξ0,0/R)

. (3.12)

Assuming the structures to be electrostatically actuated, this also allows for calculation

of the static displacement q0,

q0,Beam ≈ −
√

2
l2ε0V

2
dc

π3T0d2

q0,Drum ≈ −
R2ε0V

2
dc

ξ3
0T0d2

. (3.13)

To find the amplitude of the vibrational motion, I further define

f̃ =
f

ω3

√
α̃

m3
, (3.14)

where f is the amplitude of the oscillating force actuating the vibrational motion, pro-

jected onto the fundamental mode shape. Then, following [61], the maximal amplitude
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|q̃1,max| of the vibrational motion of the Duffing oscillator is given by the relation

f̃ = |q̃1,max|
(
4γ̃ + |q̃1,max|2

)
. (3.15)

The last piece needed to calculate the parameters of the equation is the response function

of the substrate, which is taken from [62, 63].

It is interesting to note that the phonons emitted to the substrate from the oscillations

of the graphene are quite different for the two geometries. For the circular geometry the

graphene will act as a monopole, emitting phonons in a radially symmetric fashion. In

contrast, the beam structure will act as a dipole, with a radiation pattern with strong

directionality. This also influences the frequency dependence of the emitted radiation;

it is well known that the power emitted by a dipole scales as P ∼ ω4, while the power

from a monopole scales as P ∼ ω2 [64]. Since the source of the emitted radiation is the

vibrational energy of the resonators, the power received by the substrate must equal the

dissipated power of the resonator. Since the dissipated power of a harmonic oscillator

scales as ωγ, it is clear that the imaginary part of the overlap integrals 〈(∇φ)T σ̃u(ω)∇φ〉
must scale with ω for circular drums, and with ω3 for beams. This is confirmed in figure

3.1, where this overlap is plotted for both geometries as a function of frequency.

Figure 3.1: The scaling of the imaginary part of the overlap integrals for beams
(squares) and drums (circles) with frequency in logarithmic scale. The dashed lines
correspond to least square fits proportional to Ω3 for the beams and Ω for the drums
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This scaling of the overlap integrals implies a certain scaling of the quality factor. Writing

Q−1 = γ̃ (1 + δ) , (3.16)

valid for |q1,max| � 1, it is clear that the quality factor will be Q−1
LD = γ̃ for δ � 1 and

Q−1
NLD = γ̃δ = 1

4 η̃|q̃1,max|2 for δ � 1.

Figure 3.2: The quality factor Q as a function of bias voltage Vdc. The quality factor
is evaluated for Vac = 10 µV (blue line), Vac = 100 µV (black line) and Vac = 1 mV

(green line).

This analysis enables the calculation of η, γ and Q. In the following, a graphene beam of

suspended length 1 µm and initial tension T0 = 0.34 N/m on top of a SiO2 substrate is

considered. The coupling parameter Λ is taken from the literature to be Λ = 1020 N/m3

[65], and the distance to the back-gate is d = 330 nm. Furthermore, the total length of

the graphene sheet is taken to be 3 µm. For this particular geometry, the values η̃ = 0.19

and δ = 0.42 are obtained. Thus, nonlinear damping is not strong enough to obliterate

the Duffing bistability. In fact, η̃ <
√

3 in all conducted simulations.

In figure 3.2, the quality factor Q is plotted as a function of Vdc for three values of

the driving voltage Vac at the vibrational resonance of the graphene resonator. There

is a clear kink in the quality factor, signifying the transition from nonlinear to linear

damping dominated regimes. The dependence of the quality factor on the bias voltage is
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qualitatively different in the two regimes, something that could be used for experimental

verification of nonlinear damping. Another signifying feature of the nonlinear damping

regime is that the quality factor in this regime depends on the alternating voltage, while

it is independent of alternating voltage in the linear regime.

For this particular geometry, the nonlinear damping will dominate for bias voltages

Vdc . 10 V. The resulting quality factor lies in the range 104-106, similar in magnitude to

those reported in experiments of Q ∼ 105 [66]. The coupling between the flexural motion

of the graphene sheet and the in-plane motion is therefore a contributing mechanism

for dissipation, and should give rise to measurable nonlinear dissipation for small bias

voltages. However, this mechanism alone will not remove the Duffing bistability.

3.3 Thermalization of nanoscale resonators

In the last section, I showed how the nonlinearity of graphene resonators affects the

dissipation of the motion of the fundamental mode oscillations when it is coupled to an

external medium. The nonlinear coupling between the out-of-plane and in-plane motions

caused an amplitude dependent, nonlinear, dissipation. In this chapter the possibility of

using the other oscillation modes of the graphene sheet as the heat bath is considered.

This would imply that, even without any coupling to external heat baths, the energy of

the fundamental mode would be distributed among all modes. This would set a lower

limit on the dissipation of graphene resonators, and is therefore of key importance for

applications. Since the form of the nonlinearity is determined solely by the geometry

of the resonator, this lower dissipation limit is also set by the geometry. As in previous

chapters, the drum and beam geometry are explicitly considered here.

Further, as repeatedly mentioned in this thesis, the question of energy relaxation in

closed Hamiltonian systems touches upon fundamental questions in statistical physics

in mesoscopic systems. Due to the strong nonlinearity in graphene resonators, I propose

to use these as test beds for the large amount of theoretical results in this field.

The question regarding energy redistribution among modes in NEMS resonators conse-

quently need to be adressed from two different viewpoints. The first question is: can

the approach toward a thermodynamic equilibrium in these system help us gain further

insight into statistical mechanics and Hamiltonian dynamics in finite sized systems? The

second issue concerns the feasibility of using NEMS-systems for this purpose; in par-

ticular, is it possible to somehow distinguish the inter-mode relaxation processes from

coupling to external heat baths?
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For linear systems, the oscillation modes are uncoupled, and so the motion of mode n is

not influenced by the motion of mode m. This is no longer true for nonlinear oscillators,

where different modes are coupled. As was shown in chapter 2, the equations of motion

for the modes of a generic, unbiased graphene resonator are on the form

q̈n + ω2
2qn +

∑
ijk

Wijknqiqjqk = 0 (3.17)

where the coupling matrix Wijkn is determined by the geometry of the resonator. The

Hamiltonian in the conjugate mode coordinates (p, q) will similarly be

Hg =
1

2

∑
n

(p2
n + ω2

nq
2
n) +

1

4

∑
ijkn

Wijknqiqjqkqn (3.18)

Singling out the fundamental mode, the Hamiltonian can be written

Hg =
1

2

(
p2

0 + ω2
0q

2
0

)
+

1

4
W0000q

4
0

+
1

2

∑
n 6=0

(p2
n + ω2

nq
2
n) +

1

4

∑
(ijkn)6=0

Wijknqiqjqkqn

+
q0

4

′∑
(ijk)6=0

Wijk0qiqjqk +
q2

0

4

′∑
(ij)6=0

Wij00qiqj +
q3

0

4

′∑
i 6=0

Wi000qi, (3.19)

where the prime on the sums implies that the sum is to be taken over all permuta-

tions of the indices. This gives a natural subdivision of the Hamiltonian into a system

Hamiltonian, a bath Hamiltonian and a coupling Hamiltonian,

Hsyst =
1

2

(
p2

0 + ω2
0q

2
0

)
+

1

4
W0000q

4
0,

Hbath =
1

2

∑
n 6=0

(p2
n + ω2

nq
2
n) +

1

4

∑
(ijkn)6=0

Wijknqiqjqkqn,

Hcoup =
q0

4

′∑
(ijk)6=0

Wijk0qiqjqk +
q2

0

4

′∑
(ij)6=0

Wij00qiqj +
q3

0

4

′∑
i 6=0

Wi000qi. (3.20)

There are some key differences between this Hamiltonian system, and the system con-

sidered in the previous section. First, the coupling in the previous chapter was quadratic

in the mode amplitude, while here also a cubic coupling appears. Second, in the pre-

vious chapter the bath was a linear system, while here it is nonlinear, which makes

the coupling terms nonlinear in the bath modes. Third, upon going to the rotating

frame, the previous chapter showed that the energy transfer between the subsystem was

dominated by the response of the bath at the fundamental mode frequency. Since the

bath spectrum in the present case is discrete, it is not clear that the bath will have
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a frequency response at the fundamental mode frequency at all, and therefore energy

sharing between the modes may not be present. The dynamics of this kind of system is

determined by the linear frequency spectrum and the coupling matrix. In a simplified

picture, the linear spectrum contains information about which couplings remains upon

going to the rotating frame, and consequently which couplings allow for energy transfer.

As a simple model system, one may consider the beam equation in the out-of-plane

approximation,

ẅ = ∂x
[(

1 + w2
x

)
wx
]

(3.21)

As it turns out, this is exactly the continuum limit of the FPU-β problem, one of the best

studied nonlinear systems around. Although adding the in-plane deformations to the

model will change the dynamics, this similarity to the FPU problem suggests that some

results may be directly transferred to the dynamics of graphene resonators. In particular

three aspects of the problem are considered; namely the nature of the metastable state,

the scaling of the equilibration time with energy and the scaling of the largest Lyapunov

exponent with energy. It should be noted, that while one in the FPU literature makes

a distinction between total energy of the system and ”specific” energy, i.e. the energy

per mode or equivalently the energy per oscillator, this distinction is meaningless in the

continuum limit and makes sense only when the equations of motion are projected onto

mode space. By energy I will always mean energy density, or specific energy, unless

otherwise stated.

3.4 Internal relaxation in nanobeams

First, consider a graphene nanobeam. As mentioned previously, the beam equation in

the out-of-plane approximation is identical to the continuum limit of the FPU-β problem.

The situation changes when the in-plane deformation field is is taken into account. The

equations of motion are then

∂x(2ux + w2
x) = 0,

ẅ =wxx+ ∂x
[
(2ux + w2

x)wx
]
. (3.22)

As is shown in appendix A, the coupled mode equation for this system can be written

as

q̈n +

(
ω2
n +

∑
m

ω2
mq

2
m

)
qn = 0, (3.23)
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which means that the frequencies of the modes are renormalized by the presence of

other modes. As was argued in the previous section, significant energy sharing among

modes require the development of chaos in the system. This in turn implies a loss of

stability of some, or all, fixed points of the system. The fixed point in question is clearly

q∗n = 0; if this fixed point ceases to be stable, mode n will be excited due to the motion

of the fundamental mode. If, initially, only one mode is excited, the equation above is

essentially the Mathieu equation,

q̈n +
(
ω2
n + ω2

0 q̃
2
0 cos2(ω0t)

)
qn = 0 (3.24)

where q̃2
0 is the amplitude of the single mode excitation and ω0 its frequency. This equa-

tion will be unstable for ω2
n +

ω2
0 q̃

2
0

2 < 0 and for ω0 ≈ ωn. Since ω2
n +

ω2
0 q̃

2
0

2 cannot be

smaller than zero, instability will occur only for ω0 ≈ ωn, so called parametric excitation.

However, since the spectrum is discrete, ω0 and ωn will always be well separated. From

this, we conclude that chaos, and consequently significant energy sharing among modes,

will not be present for the one-dimensional beam as long as the system can be charac-

terized by well defined mode frequencies. Nonetheless, (3.23) suggests that the coupling

between modes causes fluctuations of the frequency of the modes. Consequently, the

lineshape will be broadened by these fluctuations. This spectral broadening is not re-

lated to dissipation of energy, but rather to dephasing. This type of broadening has

been observed experimentally [67], which gives additional support for the possibility of

directly observing the mode coupled dynamics in graphene resonators.

It should be noted that taking the full two dimensional model of the beam, including the

bending rigidity of the beam, or introducing defects in the beam will break the symmetry

of the equations and allow for energy sharing. Following the same line of reasoning, a

carbon nanotube may be expected to display some energy relaxation due to the relatively

large bending rigidity. However, these models would be treated as perturbations to the

non-chaotic model and so the relaxation can be expected to be rather slow, possibly

undetectable experimentally. The other route to observing energy relaxation would be

to change the form of the nonlinearity, or in other words to change the geometry.

3.5 Drum geometry

The drum geometry is a nontrivial extension of the original FPU problem. As noted

in chapter 2, the coupling matrix Wij;kl is dense, with permutation symmetry in the

indices i ↔ j and k ↔ l. This implies that no simple selection rules for the indices as

was the case for the FPU chain will exist in this case.
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The relaxation and thermalization process for the drum geometry has additionally been

investigated using molecular dynamics simulations (MD) performed at Boston Univer-

sity. The two models complement each other: the theory underlying the MD equations

is atomistic and more fundamental than the field theoretical approach taken in this the-

sis. At the same time, the MD simulations are much more computationally heavy than

a straightforward numerical integration of the coupled mode equations (3.17). Further,

the continuum mechanics model is parameter free, and the results can therefore be di-

rectly scaled to any physical realization of the drum resonator, while the MD simulations

are performed for specific sets of system parameters. Consequently, the MD simulations

are used to obtain quantitative results on the thermalization process for small system

sizes and short times. The results of the MD simulations are compared to the results

from a numerical integration of the coupled mode equations.

It is not a priori clear that the two models should give consistent quantitative results in

any physical limit. The reason is twofold: firstly, the MD simulations contain dynamics

on length scales that are comparable to the bond length in the graphene sheet. These

high frequency fluctuations cannot be handled in a continuum model. Further, the mode

coupling model employed here only takes radially symmetric modes into account. The

angular modes may give rise to additional relaxation channels in the system.

If the high frequency fluctuations couple only weakly to the fundamental mode, the

two models should at least qualitatively agree already for a small number of considered

modes in the continuum model. This is consistent with the so called Boltzmann-Jeans

conjecture of freezing of high-frequency degrees of freedom. Such freezing phenomena

are well known to occur in nature, the best known example possibly being the specific

heat of diatomic gases. Diatomic gas molecules have seven degrees of freedom; three

corresponding to translations, two to rotations, and two internal degrees of freedom due

to vibrations. Consequently, classical statistical mechanics predicts a specific heat of

7/2R, while experimentally one has 3/2R at sufficiently low temperatures, with R being

the universal gas constant. It therefore seems as though only the translational degrees

of freedom contributes to the specific heat; the rotational and vibrational degrees of

freedom appears to be frozen.

To convince oneself that the truncated coupled mode equations can be used to study

the fundamental mode dynamics of a circular graphene sheet, one needs to show that

the highest mode only weakly couples to the fundamental mode. To this end, I consider

a system of 32 modes, with initially all energy in a high frequency mode (for specificity

I have chosen the 16th). Then, the energies of the individual modes are monitored for

a time large compared to the frequency of the fundamental mode. The evolution of the

mode energies is shown in figure 3.3. The system quickly approaches a quasi-equilibrium
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Figure 3.3: Time evolution of the modal energies evaluated from the continuum
theory, when initially all energies in the 16th mode. Mode numbers are indicated on
the right. The higher modes equilibrate quickly, while the lowest modes are essentially

decoupled from the dynamics.

situation where a subset of the modes share the energy, but the low frequency modes

are essentially disconnected from the dynamics. This implies that already 32 modes

are sufficient to separate the dynamics into a ”bath”, consisting of the high frequency

modes, and a ”system” of low frequency modes, with only weak coupling between system

and bath, but strong mixing and fast relaxation within the bath. For more traditional

FPU-type initial conditions, with all energy in the fundamental mode, the metastable

state significative for the FPU problem is recovered. The system evolves non-chaotically

for a long time τm, and then undergoes relaxation toward equipartition during a time

τtr. This is exemplified in figure 3.4 a), where the energy of the fundamental mode

normalized to the total energy of the system is reported. A normalized energy of 1

means that all energy is concentrated to the fundamental mode, or equivalently that

the bath is kept at T = 0 K. As energy is fed from the fundamental mode to the bath

modes, the temperature of the bath increases accordingly, and so the normalized energy

decreases.

In figure 3.4 a), several simulations of the coupled mode equations have been performed

at a fixed total energy but with different distributions of energy among the modes. An

effective bath temperature is simulated by drawing initial conditions for the bath modes

from a Boltzmann distribution. The remaining energy is then fed to the fundamental

mode. In other words, the system energy is fixed but the initial ratio of fundamental
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mode energy to total energy varies. By shifting the time for the different simulations, so

that at time t = 0 the ratio between fundamental mode energy and total energy is 1/2,

the evolution of the fundamental mode energies align. This implies that as energy is

fed from the fundamental mode to the higher modes, the higher modes thermalize on a

faster time scale and is always in a thermal equilibrium. Consequently, the evolution of

the fundamental mode will follow a universal curve given by the fitted sigmoid function

in the figure. Changing temperature and initial excitation of the fundamental mode

while keeping the total energy fixed will simply constitute a shift in time along this

curve.

This implies that the metastable state is very sensitive to temperature; increasing the

temperature from T = 0 K very quickly gives a dramatic shift in time along the universal

evolution curve, and the system enters the violent relaxation phase. As a result, the

metastable state is probably difficult to observe experimentally.

The violent relaxation phase is then more promising for experimental observation. This

phase has been studied both using the coupled mode equations and using MD simu-

lations. For the coupled mode equations the time scale for the violent relaxation was

extracted by fitting the dynamics to sigmoid functions as in figure 3.4 a). As the MD

simulations are much more computationally expensive, the time scale was extracted by

considering the maximal relaxation rate during the thermalization process. From figure

3.4 a) it is clear that this occurs when the ratio of fundamental to total energy is roughly

1/2. Consequently, for the MD simulations the initial configuration was chosen so that

the ratio was initially close to this value.

Since, as argued above, changing the temperature and initial excitation velocity inde-

pendently would in general change both the total energy and the ratio of fundamental to

total energy, a peculiarity of the scaling of the dimensionless energy was used to change

the total energy without changing the ratio. In terms of temperature, the dimensionless

energy can be written as

Ẽ =
1

2ε2
κ

mcc2
L

(3.25)

where mc is the mass of a carbon atom, ε is the pre-strain of the system and κ is the

average energy per atom. In thermodynamic equilibrium, κ = kBT . Out of equilibrium,

one may define an effective temperature by considering the energy not residing in the

fundamental mode, kBT
∗ ≡ (E − E0)/N , where E is the total system energy, E0 is the

fundamental mode energy and N is the number of degrees of freedom. The relation

(3.25) shows the correspondence between temperature and strain in this system. The

importance of the mode coupling is determined by the thermal fluctuations of the mem-

brane. These may be enhanced either by increasing the temperature, or by decreasing

the strain. To vary the total dimensionless energy of the graphene without changing the
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initial ratio of fundamental to total energy, both temperature and velocity were kept

fixed while the strain ε was changed.

The resulting scaling of the relaxation rate with dimensionless energy is reported in figure

3.4 b). The scaling is linear for the considered energies. Further, there is no dependence

on the dimensionless relaxation rate on the size of the drum. This is consistent with the

observation that the dimensionless energy in (3.25) does not contain any length scale.

These results also give a hint on how the mode coupling and thermalization in graphene

resonators may be experimentally detected. First of all, the mode coupling mechanism

implies a size independent relaxation. This is in contrast to what has previously been

reported for drum resonators by the Cornell group, where a power law dependence on

drum radius was observed [68]. However, the graphene resonators they considered were

CVD grown. It is known that CVD grown graphene suffer from grain boundaries. The

size of the grains then introduces an additional length scale into the problem, which

makes the continuum mechanics model employed here invalid unless the resonator is

very large compared to the grain sizes.

Secondly, the relaxation is set by the dimensionless energy of the graphene. The tem-

perature and the strain enters into the scaling as T/ε2, which implies a relation between

the temperature scaling of the relaxation and the scaling with strain.

Finally, a potential problem for experimentally observing ring-down in circular graphene

resonators is noted. The frequency of the fundamental mode is observed to decrease

during the ring-down, due to the decrease in energy of that mode. The decrease is

observed both in MD simulations and continuum mechanical simulations, and the results
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agree quantitatively as is shown in figure 3.5. This decrease in frequency poses a problem

experimentally, since it may not be possible to observe ring-down by locking in to a

specific frequency.

As the scientific community has gathered results on the FPU-chain in its traditional

form for over five decades, the present study is by no means exhaustive regarding the

thermalization and equilibration properties of graphene nano drums. It is merely in-

tended as a proof of concept, suggesting the use of graphene nano drums as physical

test beds for nonlinear non equilibrium systems. In particular, the existence of a strong

stochasticity threshold as reported in the FPU chain would be a logical next step in the

theoretical investigation of the model. If such a threshold exist at physically reasonable

energies, this could also be used for experimental verification and observation of the

coupled mode dynamics.



Chapter 4

Bending rigidity of graphene

In all previous models in this thesis, the energy cost of bending the graphene sheet has

been disregarded. This is often a valid approximation, particularly when the sheet is un-

der tension. At Gothenburg University, devices have been fabricated where compressive

strain is used to engineer the shape of the suspended graphene sheet. The compressive

strain is achieved through thermal cycling before making the graphene suspended. Upon

suspending the graphene, the compressive strain is released and the graphene buckles.

The interaction with the electrodes breaks the spatial symmetry of the buckling, causing

the graphene to buckle toward the electrodes. This way, the graphene buckles can be

assessed electrostatically (figure 4.1). In these prebuckled structures, the response to

an applied pressure is determined by the relative balance between bending and stretch-

ing energy. As a consequence, the bending rigidity of the graphene can no longer be

neglected. Since the bending rigidity has a very limited effect on the mechanical prop-

erties of graphene in most structures, the numerical value of this parameter is much less

established than the elastic stiffness of graphene. In the present case, the response of

the sheet will be determined by the relative balance of the elastic stiffness and bending

rigidity. Hence, these structures give us a unique opportunity to measure the bending

rigidity directly. Before describing the details of the measurements, I give a brief review

on the current status of the bending rigidity of graphene.

4.1 Bending rigidity of graphene: current status

The bending rigidity of bulk elastic materials is due to the stretching and compression in

different parts of the material as a consequence of the bending deformation. The bending

rigidity of such materials scale with thickness and Young’s modulus as κ ∼ Eh3. For

monolayer graphene, this tension-compression model of bending stiffness does not apply,
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Figure 4.1: Visualisation of the buckled structures. The upper image is a schematic
image of the resulting structure. Beneath it to the left is an AFM image of an ex-
perimental structure, and to the right an STM image. In both images the resulting

curvature is clearly visible.

since graphene is two dimensional. The bending rigidity must therefore have a different

origin.

One such origin is the change in bond angles in the hexagonal atomic structure associated

with changing the curvature of the graphene sheet. This effect can be estimated using

so called bond order potentials, an empirical set of potentials designed to describe the

energetics of molecular bonds. Estimates based on bond order potentials as well as ab

initio calculations give values of κ ∼ 1 eV [69–71].

It is worth noting that this estimate is given in the limit of zero temperature. At

higher temperatures, thermal fluctuations causes ripples in the graphene sheet that are

approximately 80 Åwide and that screen long wavelength deformations such as bending.

The bending rigidity is consequently increased to about ∼ 2 eV at T = 3500 K [72].

Admittedly, this predicted increase in bending rigidity by a factor of two when increasing

the temperature from 0 K to 3500 K does not imply a dramatic thermal effect. The case

is quite different, in fact, when moving from a single graphene layer to a bilayer [73].

At low temperatures the two layers follow each other rigidly, reinstating the tension-

compression model as the primary origin of bending stiffness already for membranes

only two atoms thick. The bending rigidity here is easily estimated considering two

thin plates separated by a distance h. When deforming this system, we consider a

hypothetical neutral surface between the thin plates that is not stretched. If the system
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is bent into a cylinder with radius of curvature R at the neutral surface, the radii of

curvatures of the two plates become R+h/2 and R−h/2 respectively. Compared to the

nonstretched neutral surface, the relative tension/compression of an infinitesimal length

element on each of the plates is consequently given by h/2R. The energy associated

with this deformation is ∆E = T1
2

(
h

2R

)2
for each plate, where T1 = λ + 2µ. The

bending rigidity is the parameter in the free energy multiplying the inverse radius of

curvature squared. Thus, κ = T1
h2

4 . Using T1 = 340 N/m [74] and h = 3.4 Å, this

evaluates to κ ∼ 160 eV. This naive estimate is in excellent agreement with ab initio

calculations using bond order potentials, giving values ranging from 160 to 180 eV [70]

at T = 0 K. Thus, the energy of bending a bilayered graphene sheet at low temperatures

mainly comes from the tension-compression energy, indicating that elasticity theory

again prevails.

If, however, the temperature is increased from T = 0 K, the individual graphene layers

will create the same kind of thermal ripples as described above. At short distances, the

graphene layers will appear to move independently, meaning that the bending rigidity

on this length scale (∼ 80 Å) is drastically reduced to that of two monolayer graphene

sheets, i.e. 2− 4 eV. At the same time, the graphene sheets appear to conserve stacking

order despite the rippling. On longer length scales the sheets therefore do not move

independently, and a significantly larger bending rigidity is expected. Thus, the issue

of bending rigidity of bilayered graphene on experimentally relevant length scales is far

more involved than its monolayered counterpart and experimental determination of this

parameter, both for monolayered and few-layered graphene, is of significant importance

for our understanding of the microscopic behavior of graphene.

4.2 Measuring the bending rigidity

As mentioned previously, the energy cost of bending a graphene sheet is extremely

small compared to the energy required to stretch the sheet, so small that the former

is typically neglected completely compared to the latter when modeling the mechanics

of flat suspended graphene. It is therefore very difficult to experimentally estimate the

value of this parameter by directly investigating the mechanical response of the graphene.

In fact, prior to our work the only reported experimental estimate of the bending rigidity

of monolayered graphene comes from studies of the phonon spectrum of graphite [75],

giving values consistent with ab initio calculations. On the other hand, nano-indentation

measurements have proven successful for determining the bending rigidity of thicker

flakes (more than 8 layers) [76] where the difference in energy scales between bending

and stretching is less pronounced.
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In the measurement scheme developed by our group in collaboration with an experimen-

tal group at Gothenburg University, the inherent difficulties in measuring the bending

rigidity are avoided by tuning the geometry to our advantage. Through thermal cycling

a compressive strain is built up within the graphene sheet, which is released when the

sheet is suspended causing the sheet to buckle (figure 4.2). When an external pressure

is applied to these prebuckled structures, the resulting deformation is small until a crit-

ical pressure is reached, where the structures display a snap-through instability. This

instability is probed by gradually increasing the voltage on the back gate while keeping

an AFM tip in tapping mode on the graphene structure. The sudden change in height

on the AFM is a signature of the snap through. A typical structure with snap through

instability is shown in figure 4.2. A schematic image of the process of snap-through is

seen in figure C.1.

Figure 4.2: A doubly clamped structure showing a snap through instability. a) and
b) are AFM images of the sample at 0 V and 3 V, respectively. In c), AFM sweeps have
been made along the dashed line in a) while gradually increasing the voltage. In d) the
AFM tip is kept fixed at the spot marked with a cross in a) while gradually increasing
the voltage. Here, the snap-through instability manifests itself as the discontinuity in

tip position at 2.6 V.

The instability was observed also in fully clamped structures, depicted in figure 4.3. For

fully clamped structures, continuum elasticity theory gives an expression for the critical

pressure [77],

pc =
4
√
κnT1

R1R2
(4.1)

where n is the number of graphene layers and R1 and R2 are the principal radii of

curvature. It is worth noting that the instability requires curvature in two directions, or,
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Figure 4.3: A fully clamped structure showing a snap through instability. a) and b)
are AFM images of the sample at 0V and 3V, respectively. In c), AFM sweeps have
been made along the dashed line in a) while gradually increasing the voltage. In d) the
AFM tip is kept fixed at the spot marked with a cross in a) while gradually increasing
the voltage. Here, the snap-through instability manifests itself as the discontinuity in

tip position at 3V.

equivalently, a nonvanishing Gaussian curvature. This is due to a result from differential

geometry, stating that pure bending can occur only in surfaces with a vanishing Gaussian

curvature. Thus, to obtain the desired competition between bending and stretching, one

needs curvature in two directions. Since the bending rigidity is very small for graphene

membranes, a sheet with vanishing Gaussian curvature will respond easily to an applied

pressure through pure bending. The detailed calculation leading up to equation (4.1) is

far too involved to be included in this thesis; the reader is here referred to Pogorelov

[77]. The scaling of the critical pressure can, however, be found from rather simple

considerations (see appendix C).

Plotting V 4
cr versus R−4 on a logarithmic scale for the fully clamped structures, the

experimental values are expected to fall along a straight line with unit slope. The

bending rigidity can then be extracted from the intersection of the line with the y−axis.

The experimentally obtained values for the fully clamped structures, all bilayers, are

shown in figure 4.5. It is seen that the scaling is consistent with the one derived above.

Using the analytical expression from Pogorelov, we were able to fit the bending rigidity,

giving κ ≈ 30+20
−15 eV. The rather large error bars here are mainly due to the smallness

of the data set considered, and are not inherent to the method itself.

For the beam structures, the data points are expected to fall along a line with unit slope

when plotting V 4
cr versus R−3. Also the beam structures follow the expected scaling, as

seen in figure 4.5. In this data set both bilayers and monolayers are present. Using the

value of the bending rigidity extracted for the bilayers, we found a monolayer bending

rigidity of κ ∼ 7+4
−3 eV. Again, the error bars are large mainly due to the very small data

set (only two monolayered structures were successfully fabricated and measured).
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Figure 4.4: Scaling of the snap-through voltage with radius of curvature for fully
clamped bilayer drums. The full line is a least squares fit, while the dashed lines

represent the uncertainty. The scaling is consistent with theoretical considerations.

Figure 4.5: Scaling of the snap-through voltage with radius of curvature for doubly
clamped beams. The open diamonds are monolayers, full diamonds bilayers and open

square trilayer. The scaling is consistent with theoretical considerations.



Chapter 5

Parametric excitation of carbon

nanotube single electron

transistors

In the previous chapters, the focus has been entirely on the nonlinear properties of

nanomechanical resonators, and the electromechanical actuation scheme was introduced

only as necessary a means to induce the mechanical motion of the resonators. However,

the coupling between electronic and mechanical properties is important in its own merit.

First of all, most anticipated applications of NEMS devices employ electric readout.

Secondly, coupling mechanical motion to additional degrees of freedom introduces new

physics that is interesting in its own right.

In systems studied independently by the group of Bachtold in Barcelona and van der

Zant in Delft [78, 79], the coupling between the mechanical motion of the resonator

and the electronic quantum state of the electrical system is particularly strong. In fact,

the addition or subtraction of a single electron to the resonator changes its mechanical

properties in a measurable way.

The structure at hand is schematically depicted in figure 5.1. A doubly clamped carbon

nanotube (CNT) is coupled via tunnel barriers to two electrodes, referred to as source

and drain. The current between source and drain is modified by mechanical vibrations

of the nanotube, typically induced by applying an oscillating voltage to the tube via the

gate electrode, situated beneath the tube.

As was described in chapter 2, the presence of a significant bending rigidity in CNTs

introduces a linear term in the equations of motion that is not present for graphene
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Figure 5.1: Visualization of the considered structure. A carbon nanotube with a
quantum dot residing on it is coupled via tunneling barriers to two electrodes, source
and drain. Beneath the tube there is a gate electrode capable of shifting the chemical

potential of the quantum dot. Image provided by Yury Tarakanov.

resonators. I therefore disregard the mechanical nonlinearities and consider only the

nonlinearities induced by the electromechanical coupling.

The electrical properties of the CNT is described as those of a quantum dot. A quan-

tum dot is a small (essentially zero-dimensional) structure in which the electronic wave

functions are confined in all spatial directions. In practice, this means that the energy

quantization of the electronic levels is directly observable. The level spacing will be

due partly to the quantization of the electronic wavelengths in spatial confinement, and

partly due to an effect known as Coulomb blockade. If an additional electron is to enter

the dot, it must first overcome the electrostatic potential from the electrons already

residing on the dot: this will lead to an energy gap between the occupied and empty

states on the dot. This energy gap is called the charging energy of the dot and is given

by

Ech =
e2

Cdot
, (5.1)

where Cdot is the capacitance of the dot. [80]

If the thermal energy is small compared to this charging energy, changes in the electronic

occupation of the dot can be experimentally observed. A quantum dot connected as

shown in figure 5.1 is called a single electron transistor (SET). The tunneling probability
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into and out of the dot is determined by the relative position of the chemical potential

of the dot compared to the chemical potential of the leads. The chemical potential of

the dot, and consequently the tunneling probability, can be tuned by changing the gate

voltage. The tunneling probability is maximized when the chemical potential of the dot

aligns with the potential of the leads. This point is called the degeneracy point. By

applying a bias voltage along the tube, between source and drain, the tunneling into and

out of the dot becomes directed and the structure will have a conductance that depends

strongly on the gate voltage, just as an ordinary transistor. The concepts are visualized

in figure 5.2.

Figure 5.2: Energy diagram showing the concept of the single electron transistor.
Tunneling is prohibited unless the chemical potential of the dot is aligned with the
chemical potential of the leads. By biasing the transistor, tunneling in either direction

can be enhanced.

The next step is to couple the electronic properties of the quantum dot to the mechanical

motion of the tube. The force acting on the tube is due to the difference in electrostatic

potential between the back gate and the CNT. The physical origin of the electrostatic

potential of the tube is the accumulation of charge on the tube. Since the charge

changes stepwise due to the strong quantization effect in quantum dots, the electrostatic

potential, and hence also the force acting on the tube, changes stepwise as the number

of electrons on the tube changes. Therefore, a strong coupling is observed between the

macroscopical mechanical motion and the quantum state of the dot.
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The groups in Barcelona and Delft found that the resonance frequency and damping of

the mechanical motion of the nanotube changes significantly when the average electron

occupation on the dot changes. This can intuitively be understood by considering the

equation of motion for the fundamental mode oscillation of the tube,

q̈ + γq̇ + ω2
0q = Fcap + Fdot (5.2)

where Fcap is the ordinary electrostatic force due to capacitive coupling considered in

chapter 2, and Fdot is the contribution to the force from the single electron tunneling

effect. This additional force will be proportional to the occupation of the dot. The

occupation changes abruptly whenever the chemical potential of the dot aligns with the

chemical potential of the leads. The chemical potential of the dot is given in terms of

the tube deflection by

µdot = µDC −
dCg

dq

eV0

Cdot
q (5.3)

where
dCg

dq is the derivative of the gate capacitance with respect to the deflection, V0

is a reference voltage and µDC is the chemical potential in the absence of deflection.

Consequently, the force will depend strongly on the tube deflection in the region where

the dot occupation changes. The shift in spring constant, or equivalently in resonance

frequency, is given analytically as a function of the chemical potentials by

δk =
dFdot

dq
=

(
dCg

dq
V0

)2 1

2CdotkBT

[
1 +

Ech

2

(
f ′
(
µdot + µsd

kBT

)
+ f ′

(
µdot − µsd

kBT

))]
(5.4)

where f(x) = 1
1+ex is the Fermi function. This is shown in figure 5.3 as a function of

the dot chemical potential. As is seen, the spring constant shift is maximal when the

argument of the Fermi function vanishes.

In the experiments in Barcelona and Delft, the actuation of the mechanical motion of

the device is achieved by periodically modulating the back gate voltage. This introduces

a force on the dot both from the capacitive term Fcap and through the single electron

effect. However, to really study the strong coupling it would be desirable to have an

actuation that only affects the nanotube through the single electron effect. It is clear

that such a scheme cannot rely on the gate voltage since the gate voltage introduces

a capacitive forcing. In paper V, I show that the desired actuation can be achieved

through an oscillating source-drain voltage.

From figure 5.3, one infers that changing the source-drain voltage changes the shift in

resonance frequency at the degeneracy point. Consequently, an oscillating source-drain

voltage causes an oscillating frequency shift. Further, since the frequency shift is in-

dependent of the sign of the voltage, this shift is modulated at twice the oscillation
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Figure 5.3: The resonance shift due to single electron tunneling as a function of the
misalignment in chemical potentials of dot and lead at various source-drain voltages.
The shift is strongly peaked at the degeneracy point, where the chemical potentials
align. The inset shows the frequency shift at the degeneracy point as a function of
source drain voltage. Applying an oscillating source-drain voltage causes an oscillatory

frequency shift.

frequency of the source-drain voltage. It is well known that modulating the frequency

of an oscillator at twice its fundamental frequency causes the system to undergo what

is known as a parametric instability. The system will start to oscillate at the funda-

mental frequency. The instability is present in a narrow range of frequencies, the width

of which is determined by the linear damping in the system. This implies that the me-

chanical motion displays a very strong sensitivity to the modulation frequency, which

makes parametrically excited structures interesting for filtering applications. Further,

the amplitude of these oscillations is not set by the linear damping but by nonlinearities

in the system. Consequently, this kind of system could be used to study nonlinear effects

in nanoresonators.

As a final note, the amplitude of the frequency modulation saturates if the source-

drain voltage is too large. The parametric driving will then be weakened, which implies

that the effect is present for a finite range of source-drain voltages and modulation

frequencies. This is shown in figure 5.4, where the mechanical oscillation amplitude is

shown as a function of modulation frequency and source-drain voltage. In the figure,

the time evolution of the fundamental mode oscillations inside and outside the region of

parametric excitation is additionally shown.
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Figure 5.4: Contour plot of the deflection amplitude (in nanometers) at the mod-
ulation frequency ω ≈ ω1 when the dot is biased at the degeneracy point. Note the
boomerang shape of the region where the excitation occurs. The inset shows the time

evolution of the oscillations inside and outside the region of parametric instability

The observation of this boomerang shaped feature would constitute strong evidence for

the presence of this effect in carbon nanotube single electron transistors (CNTSETs).



Chapter 6

Summary

In this thesis, the equations of classical elasticity theory are applied to suspended

graphene and nanotube structures with various designs. In the first paper, the equations

of motion for circular graphene nanodrums are derived and analyzed. The equations are

reduced to a set of coupled Duffing oscillators for the mode amplitudes. Further, a static

deformation introduces quadratic coupling terms. Interestingly, the stress field induced

by the static deformation is nonuniform, which leads to additional renormalization of

the mode frequencies. These renormalizations introduce frequency crossings.

The second paper concerns the dissipation of a graphene beam coupled to an elastic

medium. It is found that the coupling between in-plane and out-of-plane motion causes

both linear and nonlinear damping to be present in these systems. Although this non-

linear term was found to be too small to dominate the nonlinear response of suspended

graphene sheets under realistic assumptions, it can, under certain circumstances, be the

dominating dissipation term. More specifically, the ratio between the nonlinear and lin-

ear damping terms scale as |q1,max|2/q̄2, where q1,max is the amplitude of the vibrational

motion, and q̄ is the static displacement of the graphene sheet. Thus, the nonlinear

damping can dominate for small static displacements. The quality factor displays qual-

itatively different behavior with respect to driving voltage and bias voltage in the two

different damping regimes. The quality factors obtained from this mechanism ranges

from 104 to 106 for the considered geometry, which is consistent with recent experimen-

tal findings [66].

In the third paper, the relaxation properties of graphene resonators are investigated fur-

ther. Specifically, the relaxation and thermalization of a nanodrum due to the nonlinear

mode couplings derived in the first paper is considered. An analogy with the famous

FPU problem is drawn, and the system is shown to display a metastable state for ini-

tial data very far from equilibrium. After the break down of the metastable state, the
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energy decays toward equipartition at a rate that is energy dependent. The thermal-

ization due to nonlinear mode couplings is an internal process inherent to the resonator

itself, and so constitutes a lower bound on the relaxation rate. Further, the connection

between the mode couplings in graphene resonators and the FPU problem suggests that

these nanoresonators may be used as test beds for various concepts within nonlinear non

equilibrium systems.

In the fourth paper, the bending rigidity of monolayer and bilayer graphene is estimated

using suspended graphene sheets that are buckled due to a built-in compressive strain,

fabricated and characterized by an experimental group at Gothenburg University. These

structures were shown to display a snap-through instability under large enough pressures.

Describing the buckled graphene sheet as a shallow elastic shell, the critical pressure

could be related to the bending rigidity of the system. The bending rigidity of bilayer

graphene was estimated to κ ≈ 30+20
−15 eV, and for monolayers to κ ∼ 7+4

−3 eV.

Finally, the fifth paper concerns a parametric actuation scheme for suspended carbon

nanotube single electron transistors (CNTSETs). The strong coupling between the

mechanical motion of the nanotube and the occupation of the quantum dot reported

previously [78, 79] gives rise to a frequency shift at the degeneracy point. By period-

ically modulating the source drain voltage, the frequency shift is modulated without

introducing direct driving terms into the equation of motion.

In conclusion, this thesis concerns the use of continuum mechanics to model and char-

acterize nonlinear dynamics in mechanical nanostructures. The ability to accurately

describe the dynamics of these structure is essential for future applications. This thesis

develops and strengthens the theoretical foundation for this type of modeling by con-

necting the predicted dynamics of the resonators to experimental results. In addition,

the possibility of using nanoresonators to further the understanding of nonlinear non

equilibrium physics is introduced.



Appendix A

Equation of motion for nanobeam

In this appendix, the equations of motion for the vibrational modes of a graphene

nanobeam are derived.

I consider a ribbon of width b, suspended over a trench of length l. The ribbon is

actuated by a homogeneous pressure. The boundary condition for the free edges are

that the stresses vanish there,

σxy =
∂F
∂εxy

= 0

σyy =
∂F
∂εyy

= 0. (A.1)

The first boundary condition gives that εxy = 0, indicating an absence of shear strain.

The second reads

2

(
λ

2
+ µ

)
εyy + λεxx = 0. (A.2)

This means that the transversal (εyy) strain at the boundary is related to εxx through

the Poisson ratio λ
λ+2µ . Far from the boundary, the transversal strain will vanish. For

sufficiently wide beams, this means that the structure can be treated as a quasi one-

dimensional structure by setting εyy = 0.

The free energy density of the sheet then becomes

F =
T1

2

(
u2
x + uxw

2
x + w4

x/4
)

(A.3)

where T1 = λ + 2µ. The equations of motion are obtained from the Euler-Lagrange

equations,
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ρGü−T1uxx =
T1

2
∂x
(
w2
x

)
ρGẅ =

T1

2
∂x
[(

2ux + w2
x

)
wx
]
. (A.4)

Often, suspended graphene structure have rather large internal stresses even in the

absence of flexural deformation. This is taken into account in the model by writing

ux = ε+δux, where ε is the strain in the absence of flexural deformation. This introduces

a linear term in the equations of motion for the out-of-plane dynamics. Further, the

characteristic time scale for in-plane phonons is given by
√

T1
ρG

1
l , while the time scale for

small flexural vibrations is
√

T1ε
ρG

1
l . As ε� 1, the in-plane modes will move much faster

than the flexural modes, which implies that the in-plane modes can be adiabatically

eliminated by setting ü = 0 in the equations of motion. Consequently, the equations of

motion are

δuxx =− 1

2
∂x
(
w2
x

)
ρGẅ =T0wxx +

T1

2
∂x
[(

2δux + w2
x

)
wx
]
, (A.5)

where T0 = εT1, and the boundary conditions are w(−l/2) = w(l/2) = δu(−l/2) =

δu(l/2) = 0. We note that the linear wave equation is recovered for T0 � T1. In

most applications however, T0 is much smaller than T1, meaning that the response of

a suspended graphene sheet is highly nonlinear. At this point, it is useful to note that

the equations can be made dimensionless and parameter free by introducing the scaled

variables

x̃ =
x

l
; t̃ =

√
εcL

l
t; w̃2 =

1

2

w2

l2ε
; Ẽ =

E

2ε2c2
Lρl

2
(A.6)

where c2
L = T1

ρG
is the longitudinal sound velocity of graphene. Skipping the tildes on

the scaled variables for convenience, the dimensionless equations of motion becomes

δuxx =− 1

2
∂x
(
w2
x

)
ẅ =wxx + ∂x

[(
2δux + w2

x

)
wx
]
, (A.7)

with boundary conditions w(−1/2) = w(1/2) = δu(−1/2) = δu(1/2) = 0. An applied

pressure can be taken into account by adding a force term on the right hand side of the

equation for the out-of-plane motion.
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A.1 Response of nanobeam to static force

In order to address the dynamics of these equations, I will need to analyze the equa-

tions in the static limit by setting ẅ = 0. First, the in-plane equation can easily be

solved to obtain the in-plane deformation in terms of the flexural deformation by simply

integrating the equation. Then one obtains

ux(x) = −1

2

(
wx(x)2 −

∫ 1/2

−1/2
dx′w2

x

)
. (A.8)

Inserting this into the out-of-plane equation, the equation reads

wxx + wxx

∫ 1/2

−1/2
dx′w2

x = 0, (A.9)

that is, the nonlinear behavior depends on an average of the flexural deformation. This

nonlocal feature of the equations of motion is an artifact of the adiabatic elimination

of the in-plane dynamics. Next, a static, uniform pressure is applied to the membrane,

changing the equation to (
1 +

∫ 1/2

−1/2
dx′w2

x

)
wxx = −Pz, (A.10)

This equation is solved making the ansatz w = 4w(0)(x− 1/2)(x+ 1/2), where w(0) is

the flexural deformation at x = 0. This leads to a cubic relation between the maximal

deformation and the applied pressure,

8w(0)

(
1 +

16w(0)2

3

)
= Pz (A.11)

which can be solved to obtain the flexural deformation due to a static load Pz. The

maximal deformation is shown as function of the static pressure in figure A.1. For

small pressures, the deformation increases linearly, while it increases as P
1/3
z for larger

pressures.

An important feature of the beam geometry is that a static deformation gives rise to a

uniform renormalization of the stress in the resonator according to (A.10).

A.2 Dynamical response of nanobeam

Having elucidated the static response of a suspended nanobeam, I will now consider a

dynamical pressure, introduced by adding to the static pressure a spatially homogeneous,
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Figure A.1: Maximal flexural deformation w(0) as a function of the applied pressure
Pz. The dotted lines are the corresponding asymptotic scalings.

periodically varying pressure,

ẅ −

(
1 +

∫ 1/2

−1/2
dx′w2

x

)
wxx = Pz + pz cosωt. (A.12)

This is analyzed by writing w = w̄(x) + δw(x, t), where w̄ is the solution to the static

problem (A.10). Denoting the integration over the beam by 〈·〉, the equation for the

dynamical response δw becomes

δẅ −
[
1 + 〈w̄2

x〉+ 〈2w̄xδwx〉+ 〈δw2
x〉
]
δwxx +

[
〈2w̄xδwx〉+ 〈δw2

x〉
]
w̄xx = pz cosωt.

(A.13)

The first term on the right hand side corresponds to a frequency shift, while the second

term corresponds to a simple rescaling of the static response due to the instantaneous

pressure. This is most easily seen by expanding the equation in the fundamental modes

of the linear wave equation on this domain, δw(x, t) =
∑
qn(t)φn(x), where the mode

functions φn =
√

2 cos(nπx + (n − 1)π/2) satisfy ∂2
xφn = −n2π2φn, 〈φnφm〉 = δnm and

〈∂xφn∂xφm〉 = n2π2δnm. Then, the equation of motion for the mode amplitudes becomes

q̈n + ω̃2
nqn + δω2

n

(
qn +

8w(0)

n2π2
〈φn〉

)
= 〈pzφn〉 cosωt, (A.14)
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with ω̃2
n = n2π2

(
1 + 〈w̄2

x〉
)

and δωn(t)2 = n2π2
(∑

m qm〈2w̄x∂xφm〉+ π2
∑

mm
2q2
m

)
.

The static deformation therefore gives rise to a shift in the linear frequency of the

resonator, while the nonlinear mode couplings give rise to a fluctuation of the frequency

δωn(t)2.



Appendix B

Equation of motion for graphene

sheet coupled to elastic substrate

In this appendix, the derivation of the equation for the slowly varying envelope (3.6) of

a graphene resonator coupled to a medium is sketched. Starting from (3.4) the stress

is divided into a constant part, a part that depends on the in-plane displacement and a

part that depends on the out-of-plane displacement,

σij = σ0
ij + σuij + σwij (B.1)

Taking σ0
ij = δijσ

0, the equations of motion for the graphene are modified to

ρG~̈u = ∇ · (σ̄u + σ̄w) + λΩ(~u− ~s||,z=0)

ρGẅ = σ0∇2w +∇ · [(σ̄u + σ̄w)∇w] (B.2)

Since σ̄u is linear in u, one may formally write the solution to the in-plane problem in

terms of a response matrix Rij(~x, ~x′, t− t′),

ui =

∫
d~x′dt′Rij(~x, ~x

′, t− t′)∂kσwjk (B.3)

The form of the response function Rij is determined by the geometry of the suspended

domain and by the interaction with the substrate.

Next, the out-of-plane motion is expanded in terms of the normal modes of the Laplacian

with clamped (Dirichlet) boundary conditions on the edge ∂Ω of the suspended domain,

w(~x, t) =
∑
ij

qij(t)φij(~x) (B.4)
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To keep the calculations transparent, the sheet is assumed to be driven by an external

force that excites only the fundamental vibrational mode. The expressions for the out-

of-plane motion and the out-of-plane part of the stress becomes

w(~x, t) = q(t)φ(~x)

σwij =
q(t)2

2

[
λδij (φ,k(~x))2 + 2µφ,i(~x)φ,j(~x)

]
(B.5)

where the mode function φ(~x) have the following properties

∇2φ(~x) = −k2φ(~x)

φ(~x ∈ ∂Ω) = 0

〈φ(~x)2〉 ≡
∫

Ω
d~xφ(~x)2 = AΩ (B.6)

with AΩ being the area of the suspended domain. The equation of motion for the mode

amplitude q(t) then becomes

q̈ +
k2σ0

ρG
q +

α0

ρGAΩ
q3 +

q

AΩρG
〈(∇φ)T σ̄u∇φ〉 =

f0 cosωt

ρGAΩ
〈φ〉 (B.7)

where k
√

σ0

ρG
≡ ω0 is the resonance frequency of the resonator,

α0 ≡ 〈φ,i
[
λδij (φ,k)

2 + 2µφ,iφ,j

]
φ,j〉 is the Duffing parameter and the driving force

f(t) = f0 cosωt is introduced.

Inserting the expression for the out-of-plane part of the stress into (B.3), the expression

for the in-plane displacement becomes

ui =
1

2

∫
d~x′dt′Rij(~x, ~x

′, t− t′)q(t′)2∂k

[
λδjk (φ,l(~x))2 + 2µφ,j(~x)φ,k(~x)

]
(B.8)

For external forces that are periodic with frequency ω close to ω0, the amplitude of the

out-of-plane motion can be written as

q(t) = q0 +
1

2

(
q1(t)eiωt + q∗1(t)e−iωt

)
; q̇ =

iω

2

(
q1(t)eiωt − q∗1(t)e−iωt

)
(B.9)

where q0 is the static response and q1 is a slowly varying function of time.

At this point, it is worthwhile to consider the time and length scales involved in the

problem. Disregarding the graphene-substrate coupling for a moment, the wavelength

of the emitted in-plane phonons will be of the order λph ∼ cG
2πω0

∼ l
√

T1
σ0 , where cG is the

sound velocity of graphene, l is a characteristic length scale of the suspended domain

and T1 = λ + 2µ has been introduced previously. Since T1
σ0 ∼ 103 for typical graphene
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sheets fabricated by exfoliation, the wavelength of the emitted phonon will be much

longer than the size of the suspended domain. The propagation time for such a phonon

across the suspended domain is similarly much shorter than the period of oscillation

for the out-of-plane motion. Then, the slowly oscillating q1 may be pulled out of the

integral expression for the in-plane displacement, resulting in

ui =
1

2

[(
q2

0 +
|q1|2

2

)∫
d~x′dt′Rij(~x, ~x

′, t− t′)Dj [φ(~x′)]+

q0q1e
iωt

∫
d~x′dt′Rij(~x, ~x

′, t− t′)eiω(t′−t)Dj [φ(~x′)]+

q2
1

4
e2iωt

∫
d~x′dt′Rij(~x, ~x

′, t− t′)e2iω(t′−t)Dj [φ(~x′)] + c.c

]
(B.10)

where Dj [φ] = ∂k

[
λδjk (φ,l(~x))2 + 2µφ,j(~x)φ,k(~x)

]
.

Note that the time integrals in the above expression can be expressed as Fourier trans-

forms of the response function, R̃ij(~x, ~x
′,Ω). Each of the integrals correspond to a specific

frequency component of the in-plane motion. Writing ui(~x, t) = u0i+
1
2

(
u1i(~x, t)e

iωt + u∗1i(~x, t)e
−iωt)+

1
2

(
u2i(~x, t)e

2iωt + u∗2i(~x, t)e
−2iωt

)
these different components are given by

u0i =
1

2

(
q2

0 +
|q1|2

2

)
ϕi(~x, 0)

u1i =q0q1ϕi(~x,−ω)

u2i =
q2

1

4
ϕi(~x,−2ω) (B.11)

where ϕi(~x,−Ω) ≡
∫
d~x′R̃ij(~x, ~x

′,−Ω)Dj [φ(~x′)]. The in-plane stress can consequently

be written as

σuij =
1

2

(
q2

0 +
|q1|2

2

)
σ̃uij(0)+

q0q1
1

2

(
σ̃uij(ω)eiωt + σ̃u∗ij (ω)e−iωt

)
q2

1

4

1

2

(
σ̃uij(2ω)e2iωt + σ̃u∗ij (2ω)e−2iωt

)
(B.12)

where the different frequency components σ̃uij(kω), k = 0, 1, 2 are given by

σ̃uij(kω) = λδijϕl,l(~x,−k · ω) + 2µϕi,j(~x,−k · ω) (B.13)
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Inserting these expressions into the equation for the out-of-plane motion and integrating

over one period, the equation becomes

iωq̇1 +
1

2

(
ω2

0 − ω2 + 3
α0

m
q2

0

)
q1 +

3

8

α0

m
|q1|2q1 +

1

2m
q2

0q1〈(∇φ)T σ̃u(ω)∇φ〉+

1

4m
q1

(
q2

0 +
|q1|2

2

)
〈(∇φ)T σ̃u(0)∇φ〉+

1

4m

|q1|2q1

4
〈(∇φ)T σ̃u(2ω)∇φ〉 =

f0

2m
〈φ〉, (B.14)

where m ≡ AΩρG is the resonator mass.

Depending on the form of the response function R(x, x′, t − t′), the overlap integrals

will have both real and imaginary parts. The real parts will renormalise the resonance

frequency and Duffing parameter, while the imaginary parts correspond to dissipation.

The term containing σ̃u(ω) is linear in the out-of-plane amplitude, and corresponds to a

linear viscous damping. On the other hand, the term containing σ̃u(2ω) multiplies q1|q1|2

and corresponds to an amplitude dependent, or nonlinear, damping. The importance of

this damping is determined partly by the ratio between the nonlinear damping and the

linear damping, and partly by the ratio between the nonlinear damping and the Duffing

parameter. To separate the terms, the following notation is introduced,

γ =
1

ω
q2

0Im{〈(∇φ)Tσ̃u(ω)∇φ〉}

η =
1

2ω
Im{〈(∇φ)Tσ̃u(2ω)∇φ〉}

3

8
α̃ =

3

8
α+

1

8
Re
{

2〈(∇φ)T σ̃u(0)∇φ〉+ 〈(∇φ)T σ̃u(2ω)∇φ〉
}

ω̃2
0 =ω2

0 +

(
3
α

m
+

1

4m
〈(∇φ)T σ̃u(0)∇φ〉+

1

2m
Re
{
〈(∇φ)T σ̃u(ω)∇φ〉

})
q2

0. (B.15)

The equation of motion for the slowly varying amplitude can then be written as

iωq̇1 +
1

2

(
ω̃2

0 − ω2
)
q1 +

3

8

α̃

m
|q1|2q1 + i

1

2m
γωq1 + i

1

8m
ηω|q1|2q1 =

f0

2m
〈φ〉. (B.16)



Appendix C

Scaling of snap-through voltage

for drum and beam structures

Assume that a small pressure, well below the critical pressure, is applied to a shallow

spherical shell of radius R. The shell will respond by locally becoming ”flatter” at the

top of the shell. In other words, in a region of width d, the radius of curvature increases

from R to R′ > R (figure C.2). As the radius of curvature R′ increases, the graphene

within the flattened region is compressed. At some pressure, the deformed part of the

shell will be completely flat. Deforming the shell further, the compressive strain will be

released until the deformed part of the shell form a mirror image of its original shape.

Then, both the bending and stretching contributions to the energy will be equal to the

undeformed shell, apart from a considerable bending in a region close to the edge of the

deformed region. In other words, the deformation of a shallow shell will be qualitatively

different for small and large applied pressures. It turns out that the latter configuration

is unstable under an applied pressure. The pressure at which the transition between

the two types of deformation occurs will therefore be the critical pressure. A schematic

depiction of the process is given in figure C.1.

The deformation at small pressures is parametrized by the width and depth of the

deformation according to figure C.2. We aim at finding these parameters by minimizing

the free energy of the system.

The elastic energy is divided into two parts, Utot = Ub+Us. The bending energy density

is given by

ub ∼ κ(ξ′′)2, (C.1)

where ξ is the deflection of the shell in the radial direction, and the differentiation is with

respect to a length element ds in the meridial direction. Since the deflection changes by
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Figure C.1: A schematic view of the process of snap through. Left: For small pressures
a local deformation is formed in the region denoted Ω. Middle: When the critical
pressure is reached, it becomes energetically favorable to form a concave region where
the elastic energy is confined to a narrow region Γ. Right: This concave region is
elastically unstable. As a result, the deformation propagates outward, and the sheet

snaps through.

Figure C.2: Top: Shells under external pressure display two qualitatievely different
regions of deformation, indicated in the figure by the dashed and dash-dotted line. At
low pressures, the shell will locally flatten, decreasing the local curvature. For large
pressures, the deformed part of the shell will form a mirror image of its undeformed
counterpart. The main contribution to the elastic energy will then be contained in a
narrow region close to the edge of the deformed region. Bottom: Close-up of the edge
of the deformation for large pressures. The edge region can be parametrized by a width

δ and an angle α.

H over a distance d, the second derivative can be approximated by

ξ′′ ∼ H

d2
. (C.2)
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The bending energy density thus becomes

ub ∼ κ
H2

d4
. (C.3)

As for the stretching energy density, it is given by

us ∼ Tε2, (C.4)

where ε is the strain. For a spherical shell, the relative elongation of the equator due to

a homogeneous radial displacement ξ is 2πξ
2πR = ξ

R . Hence, the strain is ε = ξ
R ∼

H
R ,

us ∼ T
H2

R2
. (C.5)

The total elastic energy is the energy density times the area of the bulge, which scales

as d2,

Utot ∼ d2 (ub + us) = κ
H2

d2
+ T

H2d2

R2
. (C.6)

Note that the bending energy decreases with the bulge size d, while the stretching energy

increases with d. To determine the equilibrium shape of the shell, it is clear that both

bending and stretching must be taken into account.

To find d, we consider Gibbs free energy,

G = U − p∆V, (C.7)

where p is the pressure and ∆V is the change in volume due to the deformation. This

volume scales as ∆V ∼ Hd2, so

G ∼
(
TH2

R2
− pH

)
d2 + κ

H2

d2
, (C.8)

so the effect of the pressure is to renormalize the parameter T to T̃ = T− pR2

H . Minimizing

the free energy with respect to d we find

0 =
∂G

∂d
∼ T̃ dH

2

R2
− κH

2

d3
⇒ d ∼

(
κ

T̃

)1/4

R1/2. (C.9)

Inserting this into the free energy, we find

Utot ∼
√
κT̃

H2

R
, (C.10)
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and the work done by the pressure is

p∆V ∼ pHRκ
1/2

T̃ 1/2
. (C.11)

Once again minimizing Gibbs free energy, this time with respect to H, we find

0 =
∂G

∂H
=

(
H

R

√
κT̃ − pR κ

1/2

T̃ 1/2

)
+

(
H2

R

κ1/2

T̃ 1/2
+ pHR

κ1/2

T̃ 3/2

)
∂T̃

∂H
. (C.12)

Inserting ∂T̃
∂H = pR

2

H2 , we find

0 =

(
H

R

√
κT̃ − pR κ

1/2

T̃ 1/2

)
+ pR

κ1/2

T̃ 1/2
+
p2R3

H

κ1/2

T̃ 3/2
, (C.13)

which gives

H ∼ pR2

T̃
=

pR2

T − pR2

H

. (C.14)

Solving this equation for H finally gives

H ∼ pR2

T
. (C.15)

This is the scaling of the depth of the deformation as a function of the applied pressure.

The situation described above ceases to be valid if the forces on the membrane are so

large that the shape of the membrane changes considerably. In this case, we assume that

the bulge forms a mirror reflection of its original surface in a plane perpendicular to the

symmetry axis. This means that well inside the bulge, the curvature of the deformed

shell is opposite in sign but equal in magnitude to the curvature of the original surface,

and hence the free energy density here remains unaffected. Instead, the major part of

the change in free energy will be concentrated to a narrow strip of width δ around the

edge of the bulge. The radius of the bulge is denoted r, and its depth H. We start by

finding δ, once again through minimization of Gibbs free energy.

The bending energy density is again given by

ub ∼ κ
ξ2

δ4
, (C.16)

and the stretching by

us ∼ T
ξ2

R2
. (C.17)
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The area of the bending strip scales as rδ, so the total elastic energy becomes

Utot = rδ

(
κ
ξ2

δ4
+ T

ξ2

R2

)
. (C.18)

The deflection ξ is determined geometrically. With the notation defined in figure C.2,

we have ξ = δ sinα ≈ δ rR .

The total elastic energy thus becomes

Utot ∼ κ
r3

R2δ
+ T

r3δ3

R4
. (C.19)

The work done by the pressure is again

W = p∆V ∼ pHr2. (C.20)

Note that the work done by the pressure does not depend on the width of the bending

strip δ; hence, in determining δ only the elastic free energy needs to be considered,

0 =
∂Utot
∂δ

∼ r3

(
T
δ2

R4
− κ 1

R2δ2

)
→ δ ∼ κ1/4

T 1/4
R1/2. (C.21)

Before we write down Gibbs free energy, we note that r and H are related geometrically

through r2 ∼ RH. Then, minimizing Gibbs free energy with respect to H we find

0 =
∂G

∂H
=
κ3/4T 1/4H1/2

R
− pRH, (C.22)

which gives

H ∼ κ3/2T 1/2

R4p2
. (C.23)

The physical interpretation of this result is that if one decreases the pressure, the bulge

will increase in size; this indicates that the structure is unstable. Indeed, calculating the

second derivative of Gibbs free energy one finds

∂2G

∂H2
=
κ3/4T 1/4

2RH1/2
− pR = −pR

2
< 0, (C.24)

meaning that this value of H corresponds to a maximum of Gibbs free energy, not

a minimum. Larger bulges will grow on their own accord, while smaller bulges will

decrease. It is therefore expected that until the critical bulge size H is reached, the

deformation is well described by the scaling derived in the previous section,

H ∼ pR2

T
. (C.25)
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So at what pressure does H reach its critical value? We set H = Hcr, giving

pcrR
2

T
=
κ3/2T 1/2

R4p2
cr

⇒ pcr ∼
√
κT

R2
, (C.26)

giving the correct scaling behavior.

The same method can be applied to doubly clamped beams with principal radii of

curvature Rx and Ry. In this case, the stretching energy is expected to scale with the

Gaussian curvature, so

us = T
ξ2

RxRy
. (C.27)

Hence, for small deflections it is sufficient to do the substitution R2 → RxRy, resulting

in

H ∼ pRxRy
T

. (C.28)

For large deflections, the situation is slightly more intricate. One can no longer assume

that the bulge formed in the ribbon is closed by a simply connected curve as depicted in

figure C.1. Let us instead investigate the limit where this edge consists of two parallel

lines, separated by a distance 2r. Again, we start by determining the width of the edge

region, δ by minimizing the free energy. The bending energy density is still

ub ∼ κ
ξ2

δ4
, (C.29)

while the stretching energy scales with the Gaussian curvature, as argued above,

us ∼ T
ξ2

RxRy
. (C.30)

The same geometrical argument as for the fully clamped structures gives for the deflec-

tion

ξ ∼ δ r
Rx

. (C.31)

The area of the width region scales as Dδ, where D is the width of the ribbon, so the

total elastic energy becomes

Utot ∼ Dδ
(
κ

r2

δ2R2
x

+ T
r2δ2

R3
xRy

)
. (C.32)

Minimizing with respect to δ gives

δ ∼
( κ
T
RxRy

)1/4
, (C.33)
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where I have used r2 ∼ HRx. Inserting this into the elastic energy yields

Utot ∼
κ3/4T 1/4HD

R
5/4
x R

1/4
y

. (C.34)

The work done by the pressure is

W = p∆V ∼ pHrD ∼ pDH3/2R1/2
x , (C.35)

again using r2 ∼ HRx. Once again differentiating Gibbs free energy with respect to H

one finds

Hcr ∼
κ3/2T 3/2

R
7/2
x R

1/2
y p2

, (C.36)

where the subscript cr indicates that this is again the critical deformation of the shell.

Using the scaling for small deformations found previously, H ∼ pRxRy

T , one obtains the

critical pressure

pcr ∼
κ1/4T 1/4

R
3/2
x R

1/2
y

. (C.37)

If the pressure is applied electrostatically, we expect that p ∼ V 2, meaning that the

critical voltage scales as

Vcr ∼
κ1/4T 1/4

R
3/4
x R

1/4
y

. (C.38)
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[79] G. A. Steele, A. K. Hüttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwen-

hoven, and H. S. J. van der Zant. Strong coupling between single-electron tunneling

and nanomechanical motion. Science, 325(5944):1103–1107, 2009.

[80] M. Brink. Imaging Single-Electron charging in nanostructures by low-temperature

scanning force microscopy. PhD thesis, Cornell University, 2007.






