
Thesis for the Degree of Doctor of Philosophy

Trees, Queues and Alcohols

Per Sillrén

Applied Physics

Chalmers University of Technology

November 2013



Trees, Queues and Alcohols
PER SILLRÉN
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Abstract

Hydrogen bonded (H-bonded) materials, such as water, alcohols, sugars, and
even DNA, are extremely important for biology, as well as chemical industry.
Alcohols are used as solvents in paints, in perfumes, as cleaners, anti-freezers,
or as an alternative to petrol in combustion engines. Crucial in most of the
applications are the effects the hydrogen bonds have on the physical properties
of the liquid and its functionality.

This thesis is concerned with the H-bonding structure and dynamics in some
of the simplest H-bonding material: small molecule alcohols. To investigate the
structure and dynamics of the H-bonded clusters we use a combination of exper-
imental, computational, and theoretical methods. More specifically, a statistical
model of the hydrogen bonded clusters is developed that describes the distri-
bution of cluster sizes and their properties. The clusters that we find, have a
tree-like topology, and a broad distribution of cluster sizes. The model properties
are in good agreement with results from Monte Carlo simulations as well as EPSR
simulations based on neutron diffraction data. The model is also shown to be
compatible with spectroscopic IR- and Raman data.

The dynamics of the clusters are captured in a model inspired by queuing
theory, with monomers leaving and joining the clusters. The dipole correlation
spectrum of the dynamic model explains the Debye peak seen in dielectric spec-
tra, and also the different time scales measured by NMR and neutron scattering
techniques.

Keywords: Alcohols, Hydrogen Bonded Liquids, Neutron Scattering, Monte
Carlo Simulation, EPSR, Raman Scattering, Statistical Physics
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1
Introduction

Hydrogen bonded (H-bonded) materials are all around us. The most abundant
one, water, covers 71% of the earth’s surface, and constitutes about 60% of our
bodies. Water has some unusual properties, caused by the H-bonds, including a
density maximum at 4◦ C and a compressibility minimum at 46◦ C [1]. Not only
does the water in our bodies contain H-bonds, but also sugars, fatty acids and
proteins interact via H-bonds [2,3]. In medicine, the polymeric alcohol polyethy-
lene glycol, PEG, is used in a process called pegylation [4], where PEG chains are
attached to drugs or therapeutic proteins. Pegylation can prolong the medicines
half life in the body, as well as aid in making the drug water soluble. Anomalies
caused by hydrogen bonds are also found in water-alcohol mixtures [5], as well as
in pure alcohols [6]. In mono alcohols, the most well known anomaly is probably
the so called Debye process seen in dielectric spectra [1, 5–8].

To better understand the effect H-bonds have in different materials, it is im-
portant to know what the H-bonded structures look like, and what the connec-
tion is between these structures and their dynamics. H-bonds are intermolecular
bonds, with a bond strength corresponding to ∼ 10 times the kinetic energy of the
hydrogen bonding atoms at room temperature. In alcohols and water, this leads
to a transient H-bond network [9], where molecules leave and join the networks
at picosecond timescales.

There is thus a great need to systematically study how H-bonding affects a
materials properties. One might think that water, being the smallest and struc-
turally simplest H-bonding molecule, would be the ideal candidate for studying
the effect of H-bonding in general. The H-bonding situation in water is compli-
cated, however, by the fact that a single water molecule can participate in as
many as four H-bonds. Alcohols, especially mono-alcohols, are also relatively
simple molecules, but have the advantage that one can vary the properties of the
molecule, such as the length of the alkyl tail, or the position of the OH-group
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2 Chapter 1 Introduction

in a systematic way. One can then study how the H-bonded structures in the
liquid changes, and relate that to variations in other properties. Mono-alcohols
are thus a class of materials well suited for systematic exploration of the effects of
H-bonding. Both water and alcohols have, as discussed in more detail in chapter
3, been studied extensively over the last century, but details regarding the struc-
ture of the H-bonded molecule clusters in these liquid still remain unclear. The
main questions regarding the structure of H-bonded liquids that I investigate in
my thesis are

• What is the topology of the hydrogen bonded clusters formed in liquid
alcohols?

• How can we describe and quantify these structures?

• How do we access the structural properties experimentally?

• What happens to the structure when we change the temperature of the
liquids?

To answer these questions I have developed a statistical model for the hydro-
gen bonded clusters, based on the probabilities of forming bonds between neigh-
bouring molecules. The model, presented in Paper I and in chapter 4 is shown to
be capable of describing the, tree-like, hydrogen bonded clusters obtained from
Monte Carlo computer simulations of a variety of mono and poly alcohols. In
Paper II and Paper V the model is shown to also be in good agreement with
results based on neutron diffraction data and Raman spectroscopy.

Hydrogen bonds have a strength intermediate between other typical inter-
molecular bonds, and intramolecular bonds [10]. The strength is such that the
bonds break and reform on a picosecond timescale at room temperature, lead-
ing to rapidly evolving sizes and shapes of the intermolecular clusters mentioned
above. In Paper IV we develop a mathematical model, based on results from
queueing theory, which is shown to be consistent with one of the unusual features
of monohydroxy alcohols: the so called Debye peak seen in dielectric spectra.
The dynamic model also explains a different time scale that shows up in NMR
measurements [9] and in the neutron scattering experiments of Paper V. Both
timescales are shown to be connected to the size distribution of the hydrogen
bonded clusters present in mono alcohols.

Figure 1.1 display the molecular structure of the alcohols studied in the ap-
pended papers and table 1.1 lists some of their basic thermodynamic properties.
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Methanol

Propanol

Butanol

Propylene Glycol

Glycerol

Propylene Glycol
Monomethyl Ether

Figure 1.1: The six different alcohols studied in the appended papers

Alcohol Density Melting temperature Boiling temperature
Methanol 0.79 g/cm3 -97◦ C 65◦ C
Propanol 0.80 g/cm3 -126◦ C 97◦ C
Butanol 0.81 g/cm3 -90◦ C 118◦ C
Propylene glycol 1.04 g/cm3 -59◦ C 188◦ C
Glycerol 1.26 g/cm3 18◦ C 290◦ C
Propylene glycol
monomethyl ether 0.96 g/cm3 -97◦ C 118◦ C

Table 1.1: Densities, melting points, and boiling points of the six alcohols studied
in the appended papers
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2
The Liquid State

From an energetic point of view, liquids are characterised by a total potential
energy VN that is of the same order of magnitude as their total kinetic energy
KN [11]

KN

|VN |
∼ 1, (2.1)

where N is the number of atoms in the liquid. The kinetic energy is related to
the temperature through the equipartition theorem

KN = N
3

2
kBT, (2.2)

where kB is Boltzmann’s constant and T is the temperature of the liquid. The
right hand side, kBT is called the thermal energy of the system, and it follows
that in a liquid, the thermal energy is also of the same order of magnitude as the
average potential energy

kBT ∼
2|VN |
3N

, (2.3)

which makes it possible for the molecules to move far enough away from their
attracting neighbours to make the liquid deformable, but not far enough to break
up the liquid into a gas.

The total potential energy can be divided into different contributions with
different strengths and different directional properties. At close distances, the
dominant part, present in all liquids, is the hard core repulsion connected to the
Pauli exclusion principle, which forbids the overlap of electron clouds of neigh-
bouring molecules. Also present in all liquids, are the attractive van der Waals
interactions [10], caused by permanent or induced multipole-multipole interac-
tions, i.e. from the interaction between the charge distributions of the molecules.
In non-polar liquids, the dominant van der Waals interaction is that between two

5



6 Chapter 2 The Liquid State

induced dipole moments, also called London interaction or dispersion interaction.
In polar liquids on the other hand, the permanent dipoles dominate the attractive
part of the interaction, and in liquids such as water and alcohols containing one or
more hydrogen atom covalently bonded to an oxygen, an OH-group, these inter-
actions give the largest contribution to the so called hydrogen bonds (OH-bonds)
that this thesis is to a very large extent about.

2.1 From Potential Energy to Structure and Ther-
modynamics

The potential energy, VN , is related to the structure of a liquid, through the radial
distribution function, g(r), which for a monatomic, homogeneous, and isotropic
liquid is defined as [11]

ρg(r) = ρ(2)(r) =

〈
1

N

N∑

i=1

N∑

j 6=i

δ(r− rj + ri)

〉

=
N − 1

ZN

∫ ∫
. . .

∫
e
−VN (r+r2,r2,r3,...,rN )

kBT dr2dr3 . . . drN , (2.4)

where r is the distance between two atoms, ρ = N/V is the number density of
the liquid (N is the number of molecules, V is the volume of the liquid), and ZN
is the configuration integral.

The connection to potential energy is through the Boltzmann factor e
− VN
kBT ,

and the connection to structure is the fact that the probability of finding one par-
ticle at a distance r from a reference particle is 4πr2ρg(r)dr, and peaks in g(r)
represent shells of neighbouring particles around the reference particle. The num-
ber of nearest neighbours a given particle has is thus the integral of 4πr2ρg(r) over
the first peak in g(r). For a polyatomic or molecular system, we can define, anal-
ogous to equation (2.4), partial pair correlations between different atom types.
This will be elaborated upon further in chapter 5, where it will also be explained
how the pair correlations can be measured by neutron diffraction experiments.

An example of a partial radial distribution function for 1-propanol is shown
in figure 2.1. The typical intermolecular H-bonded O· · ·H distance is seen to be
∼ 1.8 Å, and the next nearest neighbour represented by the second peak is seen
to be located about 3.4 Å away. Beyond r > 4 Å, there is very little structure
left.

If the potential energy is expressed as a sum of pairwise interactions between
atoms, i and j,

VN =
N∑

i=1

∑

j>i

v(rij), (2.5)
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Figure 2.1: The intermolecular (excluding intramolecular correlations) partial
radial distribution function, gOH(r), from EPSR simulations, reflecting the distri-
bution of oxygen around hydroxyl-hydrogens, or vice versa, in liquid 1-propanol
at room temperature. The short range order, with one or two clear peaks in the
radial distribution functions, is very characteristic of the liquid state.

which is often a good approximation, the pair distribution can also be related to
various thermodynamic quantities. One example is the relation between pressure
and intermolecular forces, referred to as the virial equation [11]

P = kBTρ−
2πρ2

3

∫
r
dv

dr
g(r)r2dr (2.6)

When it comes to H-bonds however, the pairwise interaction terms only account
for about 70% of the energy [12], and higher order interactions need to be included
to yield an accurate description.

The partial pair distribution functions between the different atomic species
of a material can in principle be determined experimentally through neutron- or
X-ray scattering experiments, but in practice this is intractable for all but the
simplest molecules. To make the determination more tractable and unambiguous
we thus need other means to narrow down the range of possible structures, such
as the use of a priori information about the internal structure of the molecules, as
determined from other techniques. If we are then able to determine the structure
experimentally we can of course reverse the reasoning above, and learn about the
intermolecular interactions, such as the hydrogen bonds in alcohols and water.
This is the essence of the empirical potential structure refinement (EPSR) sim-
ulation technique [13], described in detail in chapter 7, which uses the measured
structure to alter the intermolecular pair potentials in an iterative manner, such
that the agreement between measured and simulated structure improves over the
course of the simulation. When a satisfactory agreement has been obtained one
can start extracting properties of interest from the simulation. In Paper II we use
the EPSR technique together with neutron diffraction data to extract information
about the H-bond network in propanol [14].
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2.2 Dynamics, autocorrelation functions and response
functions

If the time dependence of particle coordinates are taken into account into the
pair distribution function we obtain the van Hove correlation function containing
information about correlation in time as well as space. G(r, t) is defined similarly
to the radial distribution function (2.4):

G(r, t) =

〈
1

N

N∑

i=1

N∑

j=1

δ(r− rj(t) + ri(0))

〉
. (2.7)

The van Hove function will tend to be peaked around values of r corresponding to
units moving together in the liquid, such as neighbouring molecules, or clusters of
molecules. For all values of r, it will decay with respect to time as the molecules
move in a diffusive manner, but the rate of decay will vary depending on the
nature of the diffusing structures. In chapter 5 it will be explained how the
van Hove function can be measured experimentally using quasi elastic neutron
scattering or neutron spin echo.

The van Hove function can also be written as an autocorrelation function of
the microscopic particle density ρ(r, t) [11]

G(r, t) =

〈
1

N

N∑

i=1

N∑

j=1

δ(r− rj(t) + ri(0))

〉

=

〈
1

N

∫ N∑

i=1

N∑

j=1

δ(r− rj(t) + r′)δ(r′ − ri(0))dr′

〉

=

〈
1

N

∫
ρ(r′ + r, t)ρ(r′, 0)dr′

〉

=
1

ρ
〈ρ(r, t)ρ(0, 0)〉 . (2.8)

where the microscopic particle density is defined as

ρ(r, t) =
N∑

i=1

δ (r− ri(t)) . (2.9)

This can can be generalised to a general dynamic variable A(r, t) by writing

A(r, t) =
N∑

i=1

ai(t)δ (r− ri(t)) . (2.10)
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which has a corresponding autocorrelation function

C(r, t) = 〈A(r, t)A∗(0, 0)〉, (2.11)

where ∗ denotes complex conjugation. A can be charge current, dipole moment,
particle velocity or any other property of interest. Now, the fluctuation dissipa-
tion theorem states [11] that the imaginary part of the response in the property A
with respect to an external field F , conjugate to the property A, is proportional
to the time derivative of the autocorrelation function! Since measurements are
more often performed in the frequency domain (and when applicable, wave vector
domain), the fluctuation dissipation theorem is often expressed in terms of the
space-time Fourier transform of the autocorrelation function, Ĉ(Q,ω), as

χ′′(Q,ω) =
πω

V kBT
Ĉ(Q,ω). (2.12)

The particular example that will be of interest is when F is an oscillating external
electromagnetic field and A is electrical dipole moments. The experimental tech-
nique is then referred to as dielectric spectroscopy, and as will be discussed later
in this chapter, mono alcohols have an unusual peak in their dielectric relaxation
spectrum (i.e. an unusual dipole-dipole autocorrelation function). The relation-
ship between this unusual relaxation and the H-bonded clusters in alcohols is
further explored in chapter 4 and in Paper IV.
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3
The Structure and Dynamics of

Hydrogen Bonded Liquids

3.1 Structure of the Hydrogen Bond Network in
Alcohols

The structure of H-bonded liquids, such as alcohols, can be described in terms of
the H-bonded clusters present in the liquids. As can be seen in figure 3.1, showing
four example clusters, each OH-group can bond to up to three neighbouring OH-
groups. The possible H-bonded structures thus range from chains and loops, to
branched tree like structures. The typical H-bonded O—H distance is 1.4 - 2.4
Å. Computational studies have revealed that the H-bonding energy, as well as

the OH-stretch vibrational frequency is proportional to the OH-distance [12,15].
As will be explained below, this sensitivity of the OH-stretch frequency to the
H-bonding situation can be used to study the structure of the hydrogen bonded

Figure 3.1: Examples of H-bonded clusters from EPSR-simulations of liquid 1-
Propanol. Hydrocarbon tails are omitted for clarity.

11



12 Chapter 3 The Structure and Dynamics of Hydrogen Bonded Liquids

clusters by spectroscopic techniques. The location of the oxygen electron lone
pairs lead to typical H-O—H angles between 100◦ − 150◦ [14, 16, 17], resulting
in curved H-bonded clusters rather than straight chains. To investigate these
structures, computational as well as a variety of experimental techniques have
been used [9, 14,16–42].

Since the energy of H-bonds is only about an order of magnitude larger the
thermal energy kBT , the energy differences between different types of clusters are
small compared to thermal energies, and from the Boltzmann distribution we thus
expect a wide range of cluster configurations in a liquid. Thus, even though ab
initio calculations reveal that ring clusters with 3-5 molecules [15,34,38] have the
lowest energy, they do not necessarily have to be the dominant cluster type in the
liquid. This is especially true since, in ab initio calculations, structures of clusters
are obtained from a quantum mechanical energy minimisation, and due to the
complexity of the quantum mechanical description, these studies are restricted to
looking at a small selection of H-bonded clusters, one at a time, rather than at
the bulk liquid. Inter-cluster interactions are thus completely ignored.

In contrast to ab initio methods, classical molecular dynamics or Monte Carlo
simulations can be used to simulate hundreds or even thousands of molecules.
When it comes to mono alcohols, the resulting hydrogen bonded clusters are in
this case more often found to be in branched chain-like configurations, rather
than ring clusters [18, 25, 29–31]. Also experimental data from X-ray or neutron
diffraction have suggested that the H-bonded clusters are most often in the form
of chains [14, 16, 17, 22, 25, 36, 37] but sometimes also a significant fraction of
ring clusters [40, 43] have been claimed to fit with the data. In Paper II we
use neutron diffraction data in combination with a type of classical simulation,
Empirical Potential Structure Refinement, to study the structure of propanol over
a large temperature range.

As mentioned earlier, the frequency of the OH-stretch vibration depends on
the hydrogen bonding configuration the OH-group is in. Vibrational spectroscopy
such as Raman and IR are therefore viable ways to study the structure of the
H-bond network in alcohols and other H-bonded materials. In the gas phase
the OH-stretch band is narrow and centred somewhere around 3600− 3700 cm−1

while in the liquid phase the band is broadened and shifted to frequencies between
3100 cm−1−3700 cm−1, see figure 3.2. The idea is thus to infer the structure from
the distribution of OH-frequencies in the liquid. To this end a, model introduced
by Graener et al. [27,28] with three hydrogen bonding states labeled α/β, γ and
δ, has been used [19–21]. α represents non-hydrogen bonded molecules. The
alcohol molecules are assumed to form chains with the β molecules representing
chain-ends that accept a hydrogen bond and thus have an non-bonded hydrogen
atom. γ represents the other kind of chain-end, i.e. molecules that donate a
hydrogen bond but has a free non-hydrogen bonded oxygen atom. Finally, δ
represents molecules inside the chains that are both donors and acceptors. The
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Figure 3.2: The wide OH-stretch Raman spectrum of methanol. As temperature
is increased, the spectra shifts towards higher frequencies.

α and β sub-bands are both located close to 3640 cm−1 and are therefore treated
as one state. The γ sub-band is located around 3490 cm−1 and the δ sub-band
is located around 3250 cm−1. The relative areas of the bands is then used to
obtain fractions of α/β, γ, and δ oscillators that can then be used to obtain the
chain length distribution [19–21]. Recent computational work, however, shows
that not only the nearest neighbours influence the OH-stretch frequency, but also
the next nearest neighbour [15]. Instead of the three OH-stretch sub-bands of
Graener et al., it thus seems more appropriate to assign six sub-bands representing
different OH-group coordination. Ab initio calculations [15, 34] can also used to
calculate the difference in Raman cross-section or IR absorbance between different
H-bond configurations. The difference can be more than an order of magnitude,
and should thus not be neglected when analysing vibrational spectra. In Paper
III we attempt to improve the analysis, for the case of methanol, by taking
into account the possibility of branching as well as more detailed information
about the vibrational frequencies and cross sections of different hydrogen bonded
configurations. In combination with our model from Paper I we obtain cluster
size distributions in good agreement with the neutron diffraction results of Paper
II.

Also water has been extensively studied using the methods discussed above
[44–51]. Even though water might be considered a simpler molecule than alcohols,
the H-bonding situation is complicated by the fact that water has four H-bonding
sites per molecule, versus the three sites on an alcohol molecules OH-group.

To conclude, computational as well as diffraction and spectroscopic methods
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all provide useful information regarding the structure of H-bond networks in
alcohols and other H-bonded materials. None of the mentioned methods are
conclusive however, and ideally a combination should be used, and hopefully lead
to similar conclusions. Despite all the work that has been done on alcohols there is
still no agreement about the types and sizes of H-bonded clusters in these liquids.
One problem, in my opinion, has been the lack of quantitative models describing
the clusters. This has made it difficult to compare the results of different authors
and between different techniques. In Paper I, we thus develop a quantitative
model for H-bonded clusters. In Paper I and Paper II the model is compared to
results from Monte-Carlo computer simulations and neutron diffraction data. In
Paper III we use the model in combination with ab initio calculations to extract
model parameters and cluster sizes from Raman and IR spectra.

3.2 Dynamics in alcohols

The covalently bonded OH-groups in alcohol molecules vibrate with a frequency
of approximately 1014 Hz. For each vibrational cycle the probability to es-
cape through the H-bond energy barrier of height ∆EH ≈ 10 − 30 kJ/mol =
4 − 12 kBT at room temperature in methanol [15], is given by the Boltzmann
factor e−∆EH/kBT . The escape probability per second becomes about 1012 giving
an H-bond lifetime of 10−12s, in good agreement with experimental findings [52].
The H-bonded clusters are thus constantly reforming, leading to peculiar dynam-
ics that have been studied by a range of techniques, including dielectric spec-
troscopy [6, 53–67], NMR [9, 68], rheology [54, 69], and by quasi elastic neutron
scattering/neutron spin echo in Paper V.

The perhaps most fundamental relaxation process, seen in all above mentioned
techniques, is called the structural α relaxation time. The α relaxation time can
be approximately related to the mechanical properties of the liquid through the
temperature dependent viscosity η and high frequency shear modulus G∞ [70]

τα ≈
η

G∞
. (3.1)

The α time scale measured by different techniques do usually not match exactly
and can vary by as much as an order of magnitude, but generally show very
similar temperature dependence [69,71].

Apart from the ubiquitous α-process, mono alcohols have an unusual relax-
ation that dominates their dielectric spectrum, as shown in figure 3.3. The peak,
referred to as the Debye peak since Debye was the first to study the dielectric
properties of alcohols in the early 19th century [72, 73], is about 1-2 decades
slower than the α process. The Debye process is characterised by an exponential
relaxation, in contrast with the stretched exponential relaxation characterising
the α process that is normally the lowest frequency peak in dielectric spectra.
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Figure 3.3: Dielectric spectra of 1-propanol, taken from reference [63], showing
the large Debye peak dominating the dielectric response. The temperatures, from
left to right are 121, 135, 162, 210, 273, and 348 K

The Debye process has been explained in terms of monomers joining and leaving
H-bonded clusters, leading to a relaxation of the clusters’ dipole moments [9].
Other authors interpret the process as arising from the collisions of monomers
as well as the reorientation of H-bonded molecules [74]. It has been shown [6]
that the process is largely unaffected, even if the H-bonded clusters are spatially
confined to essentially one dimensional tubes, showing that the relaxation does
not have to be caused by a spatial reorientation, but could instead be caused by
a change in magnitude of the dipole moment as the clusters reform.

A third correlation time, τOH, has recently been noticed using NMR [9]. This
additional relaxation time lies between the α and Debye relaxations, and shows
up also in Paper V using neutron scattering.

In Paper IV we extend a simplified version (neglecting branched clusters) of
the statistical model presented in Paper I, to also include the transient dynamics
of the clusters. According to the dynamic model, the α-relaxation is the time
scale of monomers leaving and joining the hydrogen bonded clusters. The average
cluster size, 〈n〉, is shown to be related to τα and τOH through τOH = 〈n〉τα. The
Debye relaxation is also connected to the other time scales, and is shown to be
the relaxation of the end-to-end dipole moment vector of the whole cluster.
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4
Statistical Models of Hydrogen

Bonded Clusters in Alcohols

As already mentioned in previous chapters, mono alcohols seem to form tree-like
clusters with relatively few branches. In order to relate the properties of such
clusters to experimental results, a quantitative description is needed. Models
for associating fluids have a history dating back to the early 20th century, when
Dolezalek [75] explained the non-ideal properties of mixtures by postulating that
one has to take into account not only the properties of the nominal components
A and B, but also the associated species Am, Bn, and AiBj (m,n, i, j ∈ N).
Dolezalek’s approach belongs to the class of “chemical” theories [76,77], wherein
the distinct cluster types and sizes must be specified in advance, and each cluster
type has an associated equilibrium constant acting as a adjustable parameter.

A different class of theories are those based on statistical mechanics. The
principle is to start from an intermolecular potential energy, and from that calcu-
late the structure and thermodynamic properties of the liquid. By splitting the
potential energy into a reference part, typically something simple, such as a hard
sphere repulsion, and a perturbation describing the less trivial interaction, one
can express the properties of the associating fluid in terms of the properties of
the simple reference fluid. The breakthrough of this type of theories, applied to
associated liquids, came with the publication of four papers by Wertheim [78–81]
in the 1980’s. In his treatment, molecules with association, or bonding, sites, are
treated as different species depending on how many bonds are currently active.
Based on Wertheim’s work, Chapman et al. [82, 83], formulated the Statistical
Associating Fluid Theory (SAFT) which has received an ever increasing interest
since it was introduced [77,84,85].

17
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Within the SAFT framework, the free energy of an alcohol is expressed as [82]

f =
F

NkBT
= f id + f seg + f chain + f assoc, (4.1)

The first term is an ideal gas contribution, and the second term is the energy
contribution from the individual segments of the alcohol, i.e. the CHn and OH
groups hard core and van der Waals type interaction with neighbouring molecules.
The third term relates to the covalent bonds between the atoms, and the last
term relates to the H-bonding between molecules. f assoc, the most interesting
contribution, from the perspective of this thesis, can be related to the fraction
ρT , of molecules with non-bonded association sites of type T through

f assoc =
∑

T

(
ln ρT −

ρT
2

+
1

2

)
. (4.2)

For the particular case of mono alcohols, two models have been used [86]: 2B
and 3B. Both have one bonding site related to the H, and one (2B) or two (3B)
bonding sites representing the electron lone pairs on the oxygen. In the SAFT lit-
erature [77,82–86], the fraction ρT are calculated from the microscopic interaction
strengths between the association site, and the potential energy parameters are
tuned to match thermodynamic properties, such as density and vapour pressure.

The model presented in Paper I, and summarised in this chapter, is different
from the 3B model, in that it treats the two bonding sites on the oxygen as
dependent, i.e. the probability that a bond is formed to one of the bonding sites
depends on whether a bond already exists on the the other site. The reasoning
behind the assumption of dependent bonding probabilities is that, once the first
bond is formed, it is difficult for a second molecule’s OH group to get in close
enough to form a second bond. A second difference is that the parameters of
the model are the two bonding probabilities, rather than the potential energy
related to the bonding sites. With the SAFT approach, a specific intermolecular
association potential fully determines the bonding probabilities, but the opposite
relation is of course not true: A given set of probabilities can correspond to several
potential energy functions. Our model thus focuses on the structural properties of
the H-bonded clusters, without specifying any details of the underlying H-bonding
interaction.

Similar models, based on bonding probabilities are common also in polymer
science, where they are used to describe polymers with different degree of branch-
ing [87, 88]. Those models however, are just like the SAFT models mentioned
above, based on distinct bonding sites, while our model has two identical bond-
ing sites, but with probabilities that depend on wether the other site is bonded
or not.

In principle, we could take our model and plug in the fractions ρT into SAFT
framework (equation 4.2), but instead we have focused on comparing the proper-
ties of the model’s clusters to results from simulations and experimental results:
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In Paper I, the validity of our model is compared with clusters obtained from
Monte Carlo computer simulation results. In Paper II the model is compared to
neutron diffraction results, and in Paper III it is related to vibrational IR and
Raman spectra in the OH-stretch region. The model is also summarised here,
with some results derived in a more elegant way compared to Paper I.

The last part of the chapter is devoted to our mathematical description of
the transient chain model, also presented more briefly in Paper IV, As mentioned
in the previous chapter, a distinguishing feature of the H-bonds in alcohols is
their short lifetimes, typically only a few pico seconds at room temperature. The
transient chain theory, which we formulate in mathematical terms, was originally
proposed, by Böhmer and co-workers, based on results from NMR measurements
[9]. By also measuring the self diffusion constant and comparing to viscosity data,
they concluded that the previously mentioned Debye process seen in alcohols
cannot be related to the diffusion of whole H-bonded clusters, but must instead
be the signature of a process where monomers leave and join the clusters in
a queue-like fashion, i.e. one by one, at the ends. To make the calculations
feasible, the mathematical transient chain model presented here is based on the
assumption of zero branching probability, resulting in chain-like, rather than the
tree-like structures of our structure model. This approximation is justified by
results connected to the tree model however, where the branching probability is
typically rather small, < 10% [14,18].

4.1 A model describing the tree-like structure of
the H-bonded alcohol clusters

The tree model is constructed by starting with an OH-group and assigning a
probability p(OA) = pA of forming a first hydrogen bond, designated OA, from
the oxygen to a neighbouring group, and a probability p(OB|OA) = pB of forming
a second hH-bond OB to a second neighbour, given that the first bond, OA, is
already in place. We will also need to know the unconditional probability p(OB)
which is easily calculated using Bayes’ theorem:

p(OB) =
p(OB|OA)p(OA)

p(OA|OB)
=
pBpA

1
= pApB. (4.3)

An example of a tree, with three leaves, generated in this fashion is shown in
figure 4.1.

The tree structures described by our model, referred to as “unary/binary
trees” or “Motzkin trees”, have been previously discussed in terms of combinatoric
properties [89], but we have not found any references to random unary/binary
trees in the literature.
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Figure 4.1: An example of a tree from the statistical model. The picture only
shows the tree’s topology, i.e. the relative coordinates of the OH-groups have
nothing to with a real liquid state structure.

The probability, pH , that a given hydroxyl hydrogen is H-bonded is given by
the addition law of probability as

pH = pA + pApB. (4.4)

In terms of pA and pB, the probabilities that the oxygen participates in 0, 1 or 2
bonds respectively are

p0 = 1− pA
p1 = pA(1− pB)

p2 = pApB. (4.5)

4.1.1 Cluster size distribution

The probability r(n) of getting a tree cluster of a general size n is most easily
derived as a simple recursive relation, starting from n = 1. The probability of
getting a cluster of size n = 1, i.e. a monomer, is simply the probability of not
having a first bond OA, nor a bonded hydrogen. The latter probability, 1 − pH ,
turns out to be the normalising factor of the whole distribution, and is thus
canceled out, so that

r(1) = 1− p(OA) = 1− pA = p0. (4.6)

The probability of having a cluster of size 2 is the probability of having exactly
one connection on the first OH-group pA(1− pB), times the probability of having
no bonds on the second OH-group.

r(2) = p1p0 = p1r(1). (4.7)
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For clusters of size three we have two possibilities: a linear cluster or a branched
one. The linear one has probability pA(1 − pB)r(2), while the branched one has

probability pApB
(
r(1)

)2
giving

r(3) = p1r(2) + p2

(
r(1)

)2
. (4.8)

A tree with four OH-groups can be constructed in three different ways; start from
one OH-group and add a cluster of size 3, start from one OH-group and add a
cluster of size 1 to the first branch and a cluster of size 2 to the second branch
or vice versa. In total we thus get

r(4) = p1r(3) + p2r(1)r(2) + p2r(2)r(1). (4.9)

By continuing in this way, we get for a general n

r(n) = δn,1p0 + p1r(n− 1) + p2

∞∑

k=1

r(k)r(n− k − 1), (4.10)

where the extension of the sum to infinity is valid as long as r(n) = 0 for n < 1.
The cluster size distribution can also be expressed in closed form, by noting

that

an,k =
1

n

(
n

k + 1

)(
n− k − 1

k

)
, (4.11)

denotes the number of trees with n nodes, k + 1 leaves, and k branch points.
The probability of getting one specific tree of this kind is pn−2k−1

1 pk2p
k+1
0 and the

probability of getting any tree of this kind can thus be written

r(n, k) = an,kp
n−2k−1
1 pk2p

k+1
0 . (4.12)

The cluster size distribution is then obtained by summing over the different pos-
sible number of branches for a given tree size

r(n) =
∞∑

k=0

r(n, k), (4.13)

where we have extended the sum to infinity, since an,k is zero for k > n/2 − 1,
which is the maximum number of branches on a tree of size n.

4.1.2 Moments of the cluster size distribution

The average cluster size is of course given by

〈n〉 =
∞∑

n=1

nr(n), (4.14)
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but can actually be calculated even without knowledge of the cluster size distri-
bution [90] as 〈n〉 = 2/(2 − 〈nb〉), where 〈nb〉, the average number of bonds per
OH-group is given by

〈nb〉 =

= 0× (1− pH)p0

+ 1×
[
(1− pH)p1 + pHp0

]

+ 2×
[
pHp1 + (1− pH)p2

]

+ 3× pHp2 =

= 2pH , (4.15)

so that

〈n〉 =
∞∑

n=1

nr(n) =
1

1− pH
=

1

1− pA − pApB
. (4.16)

A more general approach to calculate the moments is to make us of the prob-
ability generating function

r̂(z) = 〈zn〉 =
∞∑

n=1

r(n)zn, (4.17)

applied to the recursive formula for r(n):

r̂(z) =
∞∑

n=1

δn,1r(1)zn + p1

∞∑

n=1

r(n− 1)zn + p2

∞∑

n=1

∞∑

k=1

r(k)r(n− k − 1)zn

= zr(1) + zp1

∞∑

n=1

r(n− 1)zn−1 + zp2

∞∑

k=1

r(k)zk
∞∑

n=1

r(n− k − 1)zn−k−1

= zr(1) + zp1r̂(z) + zp2 [r̂(z)]2 . (4.18)

The moments can be calculated by noting that the ith derivative of r̂(z) evaluated
at z = 1 gives the ith factorial moment

(
d

dz
r̂(z)

)i ∣∣∣∣
z=1

=
∞∑

n=1

n(n−1) . . . (n−i+1)r(n) = 〈n(n−1) . . . (n−i+1)〉. (4.19)

That the probability distribution r(n) is normalised, i.e. that the zeroth moment
is 1, is verified by substituting z = 1 and r̂(1) = 1 in equation (4.18)

1 = p0 + p1 + p2 = 1− pA + pA − pApB + pApB (4.20)
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For 〈n〉 we get

〈n〉 =
d

dz
r̂

∣∣∣∣
z=1

=

(
p0 + p1r̂(z) + zp1r̂

′(z) + p2[r̂(z)]2 + 2zp2r̂(z)r̂′(z)

)∣∣∣∣
z=1

= p0 + p1 + p1〈n〉+ p2 + 2p2〈n〉
⇔

〈n〉 =
1

1− p1 − 2p2

=
1

1− pA − pApB
(4.21)

in agreement with equation (4.16). The second factorial moment becomes

〈n(n− 1)〉 = 〈n2〉 − 〈n〉 =
d2

dz2
r̂(z)

∣∣∣∣
z=1

=

(
2p1r̂

′(z) + zp1r̂
′′(z) + 4p2r̂(z)r̂′(z) + 2zp2

(
[r̂′(1)]2 + r̂(1)r̂′′(1)

))∣∣∣∣
z=1

= 2p1〈n〉+ p1〈n2〉 − p1〈n〉+ 4p2〈n〉+ 2p2

(
〈n〉2 + 〈n2〉 − 〈n〉

)

⇔
〈n2〉 =

2p2〈n〉2 + (1 + p1 + 2p2)〈n〉
1− p1 − 2p2

= 2p2〈n〉3 + (1 + p1 + 2p2)〈n〉2
(4.22)

so that the variance of r(n) becomes

〈n2〉 − 〈n〉2 = 2p2〈n〉3 + (p1 + 2p2)〈n〉2. (4.23)

In Paper I, the variance is derived in a different way and is shown to be
〈n2〉 − 〈n〉2 = −〈n〉+ 2(1− pA)〈n〉3 which is equivalent to equation (4.23).

4.2 A quantitative model for the transient chain
dynamics in alcohols

Even though the H-bonded clusters can be branched, the majority of experimen-
tal and computational work on alcohols, point towards chain-like structures with
a low probability of branching, pB < 10% [14, 16–32, 91]. To simplify the for-
mulation of a model for the chain dynamics, we thus start from the assumption
of chain like clusters without branching (pB = 0) or loops. The cluster size dis-
tribution, r(n) is then just given by the probability of having n − 1 H-bonded
molecules, followed by a non-bonded molecule

r(n) = pn−1(1− p), (4.24)
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where n is the cluster size and p ≡ pA is the probability of having an H-bond
between two molecules. The probability distribution r(n), which is a geometrical
distribution with mean 〈n〉 = 1/(1− p) and variance σ2 = p〈n〉2, is often referred
to in the polymer literature as the Schulz-Flory-Anderson distribution [87].

To introduce dynamics into the model, we assume, as is done in the transient
chain model proposed by Gainaru et al. [9], that monomers join and leave the
clusters only at the chain ends, i.e. we ignore the possibility that chains break
in the middle and we also ignore the possibility of two chains merging into one
larger structure. This has some support from calculations, showing that H-bonds
inside the chains are stronger, and thus less likely to break, than the bonds at
the ends of the chains [38]. We also assume that the rate of monomers leaving
the cluster, µ, and the rate of monomers joining the cluster, λ, are independent
of cluster size, n. The master equation describing the dynamics is then

ṡ(1|n0) = µs(2|n0)− λs(1|n0) (4.25)

ṡ(n|n0) = µs(n+ 1|n0) + λs(n− 1|n0)− (µ+ λ)s(n|n0),

where the dot denotes differentiation with respect to time, and s(n|n0) ≡ s(n, t|n0, 0)
is the probability that the cluster will contain n molecules at time t, given that it
contained n0 molecules at time 0. In general we will let s denote time dependent
probabilities and r stationary, equilibrium probabilities. The first line of (4.25)
ensures that the clusters have a positive size, n > 0. The general stationary
distribution, r(n) = limt→∞ s(n|n0), for such a process can be shown to be [92]

r(n) =
λn−1

µn−1
r(1), (4.26)

where r(1) is determined from requiring the probability distribution to be nor-
malised to one. For the theory to be consistent, equations (4.24) and (4.26) must
agree, and the ratio of molecules joining the cluster and molecules leaving the
cluster must consequently be equal to the bonding probability

p =
λ

µ
. (4.27)

This condition is also equivalent to the condition of detailed balance [92]. Equa-
tion (4.25) also describes other scenarios, such as an asymmetric random walk on
the positive half line [93], or a so called M/M/1-queue, with customers arriving
at a rate λ and leaving at rate µ [94, 95] (with the difference that the queue size
≥ 0, while the cluster sizes are > 0). In queuing theory, the ratio p = λ/µ is
referred to as the traffic intensity. If the traffic intensity equals or exceeds 1, the
queue size goes to infinity, which agrees intuitively with the interpretation as a
bonding probability in the case of H-bonded chains of alcohol molecules.
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In Paper IV, we adopt the assumption of Gainaru et al. [9], that the rates
of monomers joining and leaving the clusters, λ, and µ, are similar to the α-
relaxation rate as measured by dielectric spectroscopy. More specifically, when
we fit the dielectric Debye peak, we assume that λ is exactly equal to the peak
frequency of the dielectric α-relaxation. We conclude that the ratio of the two
rates, i.e. p, increases slowly with decreasing temperature, which means that
the two rates have very similar temperature dependencies, but that λ decreases
slightly slower than µ.

The solution to equation (4.25) is known to be [93,96]

s(n|n0) = κn−n0e−Ktλκ
−1

(
In−n0(2tλκ−1) + κ−1In+n0−1(2tλκ−1)

+ (κ−1 − κ)
∞∑

j=1

κ−jIn+n0−1+j(2tλκ
−1)

)
, (4.28)

where κ =
√
p, K = κ + κ−1, and Im(t) = 1/π

∫ π
0
dθet cos θ cosmθ are modified

Bessel functions of the first kind.

For numerical purposes, it is more convenient to use the integral representation
[94]

s(n|n0) = δn,n0 −
λ

π
κn−n0−2

∫ 2π

0

F (θ)

ν
(1− e−νt)dθ, (4.29)

with

F (θ) = (sin[n0 − 1]θ − κ sinn0θ) (sin[n− 1]θ − κ sinnθ) , (4.30)

and ν = λκ−1(K − 2 cos θ).

Other interesting properties derived in the queueing theory literature is the
“busy period of server” which translates to lifetime of a cluster, i.e. the time
spent from that two monomers joins to become a cluster of size two, until the
cluster has size one again. The probability distribution for the lifetime is given
by

p(t) =
1

tκ
e−Ktλκ

−1

I1(2tλκ−1), t > 0 (4.31)

with average 〈t〉 = 1/(µ − λ) = p〈n〉/λ [95]. The average “response time”, i.e.
the average time a molecule spends in the cluster is given by Little’s law [97] as
〈tOH〉 = 〈n〉/λ, and if we identify λ with the α-relaxation time (λ = 1/τα), we
obtain

〈n〉 =
〈tOH〉
τα

. (4.32)

which was used in [9] to estimate average sizes of H-bonded 1-butanol clusters
from dielectric- and NMR measurements.
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4.2.1 The dipole moment distribution

Given the time dependent distribution, s(n|n0), the time dependent probability,
s(D|D0) ≡ s(D, t|D0, 0), of the cluster having dipole moment D at time t, given
that it had dipole moment D0 at time 0, can be expressed using the chain rule of
probabilities as

s(D|D0) =
∞∑

n0=0

∞∑

n=0

s(D|n,D0, n0)s(n|n0, D0)r(D0|n0)r(n0)

r(D0)

=
∞∑

n0=0

∞∑

n=0

s(D|n,D0, n0)s(n|n0)r(D0|n0)r(n0)

r(D0)

(4.33)

where we have assumed that s(n|n0, D0) = s(n|n0), i.e. n is conditionally inde-
pendent of D0 given n0.

For the case of straight chains consisting of monomers with dipole moment
D1, the cluster dipole moment is uniquely given by n, i.e.

s(D|n,D0, n0) = r(D|n) = δ(D − nD1) (4.34)

and r(D0|n0) = δ(D0 − n0D1). The stationary dipole moment distribution is in
this case given by r(D) = pD/D1(1 − p) = r(n), with average 〈D〉 = D1〈n〉, and
equation (4.33) becomes identical to the time dependent cluster size distribution

s(D|D0) = s(n|n0) (4.35)

4.2.2 The dipole moment autocorrelation function

The (auto-) correlation function of the dipole moment distribution is defined as

C(t) ≡ 〈DD0〉 − 〈D〉2
〈D2〉 − 〈D〉2 , (4.36)

where the time dependent part is more explicitly given by

〈DD0〉 =

∫ ∞

0

∫ ∞

0

DD0s(D|D0)r(D0)dD0dD. (4.37)

For the case of straight chains, we can insert equation 4.35 to obtain

〈DD0〉 =
∞∑

n0=0

∞∑

n=0

nn0s(n|n0)r(n0)

= D2
1〈nn0〉. (4.38)
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In the expression for C(t), the monomer dipole moments cancel so that the dipole
moment correlation function is identical to the cluster size correlation function
Cn(t). The time dependent part of Cn(t) can be found in the queueing theory
literature [94] and is given by

〈nn0〉 = 〈n〉2 + 2µ2p〈n〉 1
π

∫ π

0

dθ
sin2 θ

ν3
e−νt, (4.39)

with ν = µ(1 +p)−2µ
√
p cos θ = µκ(K−2 cos θ). By inverting ν(θ) with respect

to θ we can eliminate θ. The integration limits become νmin = µ(1 + p − 2
√
p)

and νmax = µ(1 + p+ 2
√
p), and for C(t) we get

C(t) =

∫ νmax

νmin

f(ν)e−νtdν, (4.40)

with

f(ν) =
µ

2p〈n〉3
1

π

√
4µν − (µ/〈n〉+ ν)2

ν3
. (4.41)

The power spectrum is

Ĉ(ω) ≡ 4

∫ ∞

0

C(t) cosωt dt = 4

∫ νmax

νmin

f(ν)
ν

ν2 + ω2
dν, (4.42)

and hence the response function becomes

χ(ω) = ωĈ(ω) = 4

∫ νmax

νmin

f(ν)
ων

ν2 + ω2
dν. (4.43)

From equations (4.40) and (4.43) we see that the correlation function and its
corresponding response function are integrals over exponential relaxations. We
thus expect a stretched exponential behaviour, rather than a single exponential,
Debye-type relaxation. In Paper IV, however, we show that the model fits the
dielectric Debye peak rather well, and that the bonding probability p, and the
average cluster sizes 〈n〉 = 1/(1− p) are in reasonable agreement with our results
based on neutron diffraction. By allowing the chains to be curved, as suggested
by the neutron diffraction results, as well as rotational diffusion of the clusters,
the agreement is improved further.
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5
Neutron Scattering

5.1 Probing the Structure using neutron diffraction

As mentioned in the introduction, physicist are mainly interested in four quanti-
ties; time, energy, position and momentum. In this chapter it will be explained
how the change of momentum that a neutron suffers as it passes through a piece
of material, in my case, liquid 1-propanol, can tell us about the relative positions
of the atoms in the material. To see how, it is important to remember that neu-
trons, just like light, have a dual nature; they behave both as particles and waves.
In diffraction experiments, it is interference effects caused by the neutrons’ wave
properties that are most important. The neutron impinging on a piece of material
is thus typically modelled as a plane wave,

ψ = ψ0e
i(ki·r−ωit), (5.1)

moving in the direction of a wavevector ki = (0, 0, 2π/λ), where λ is the wave-
length of the wave and ωi is its angular frequency. The wavevector is related to
the momentum and energy of the neutron through [98]

pi = ~ki, (5.2)

and

Ei = ~ωi =
~2|ki|2
2mn

, (5.3)

where ~ is Planck’s constant, and mn = 1.67 × 10−27 kg, is the mass of the
neutron.

When the neutron hits the material, three things can happen: it can be
absorbed, transmitted, or scattered. Due to the interaction between the neutron
and the nuclei of the material, the scattered neutron will in general have a different

29
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Figure 5.1: A Fraunhofer diffraction experiment: a plane wave is scattered
through a number of slits and a diffraction pattern emerges on a screen far away
from the slits

energy, Ef , as well as a different momentum, pf = ~kf , than it had before the
scattering process. The change in momentum, or equivalently the change in
wavevector, Q = ki − kf , contains information about the positions of the atoms
in the material.

To illustrate the relationship between the intensity of a scattered wave and
the scattering system, let’s first consider a simple, one dimensional example [99],
illustrated in figure 5.1. A plane, one dimensional wave, with amplitude ψ =
ψ0e

i(kx−ωt), moving in the positive x-direction, passes through a pattern of slits,
located in the x = 0 plane and described by the aperture function A(y), which
takes on a value of one where there is a slit and is zero otherwise. After the wave
has passed through the slits, it continues and hits a screen at x = D, far away
from the slits. The amplitude of the wave hitting the screen at (D, ys) will have
contributions from all points in all slits the wave has passed though. To find the
phase of all such contributions, the distance d, from the slit at point (0, y) to
the screen (D, ys) has to be calculated. Applying the law of cosines and using√

1 + x = 1 + x/2 +O(x2) results in

d =
√
d2

0 + y2 − 2d0y cos(π/2− θ)

= d0

(
1 +

y2

2d2
0

− y

d0

sin θ

)

= d0 − y sin θ +O(y2/d0) (5.4)

where the term of order y2/d0 < y2/D can be neglected as long as the Fraunhofer
condition

y2

D
� λ, (5.5)
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is satisfied [100]. The path length is thus given by d = d0− y sin θ, and summing
up the contributions from all the slits, we finally get

ψ = ψ0e
i(kd0−ωt)

∫ ∞

−∞
A(y)e−iky sin θdy

= ψ0e
i(kd0−ωt)

∫ ∞

−∞
A(y)e−iQydy

= ψ0e
i(kd0−ωt)Â(Q) (5.6)

where ~Q = ~k sin θ is the y-component of the momentum change ~Q = ~ki−~kf ,

and Â(Q) is the Fourier transform of A(y). If we could measure the wave func-
tion ψ directly, we could calculate the inverse Fourier transform, and obtain the
position and size of the slits through the aperture function A(y). Unfortunately,
what we measure is the intensity, I, on the screen, which is proportional to the
amplitude squared

I(Q) ∝ |ψ|2 = ψ2
0

∣∣∣Â(Q)
∣∣∣
2

= ψ2
0

∫ ∞

−∞

(∫ ∞

−∞
A(y)A(y + y′)dy′

)
eiQydy. (5.7)

The last equality uses the relationship between a convolution and its Fourier
transform, and shows that the intensity is the Fourier transform of the auto-
correlation function of the aperture function A(y). From the measured intensity
one can thus perform an inverse Fourier transform and get the autocorrelation
function of A(y). Unfortunately, there is not a one-to-one relationship between
a function and its autocorrelation function, so additional information is required
to fully recover the aperture function A(y).

The step from the simple slit experiment described above to a (idealised)
neutron diffraction experiment, where neutrons are scattered from a collection of
atoms, figure 5.2, is rather straight forward: In the slit experiment, each point
within a slit can be seen as a point source radiating circular waves, who’s ampli-
tudes are then summed up at the screen. In a neutron diffraction experiment, the
slits are replaced by the atoms’ nuclei, also acting as point sources, from which
the scattered neutrons emanate as spherical waves. Furthermore, the “aperture
function” does not only take on values of one or zero, but instead it takes on
different values, bi, depending on the composition of the nuclei, i.e. atom type,
isotope, and also nuclear spin. The aperture function, or interaction potential, of
a sample consisting of N atoms can thus be written [101]

A(r) =
2π~2

mn

N∑

i=1

biδ(r− ri), (5.8)
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where bi is called the neutron scattering length of atom i, and the prefactor 2π~2

mn
makes sure that the total scattering from a single nucleus with index i, is exactly
bi.

𝜆 ki

kf Q

Figure 5.2: Neutrons with incident wavevector ki are scattered by the atoms in
the sample. The scattered neutrons have wavevector kf = ki −Q, where ~Q is
the momentum transferred during the scattering event, from the neutron to the
sample.

The resulting scattered wave function thus becomes

ψ(Q) = ψ0e
−iωt

∫ ∫ ∫
A(r)eiQ·rd3r

= ψ0e
−iωtÂ(k)

= ψ0e
−iωt2π~2

mn

N∑

i=1

bie
iQ·r, (5.9)

where the one dimensional integral in equation (5.6) has been replaced by its
three dimensional counterpart. Again, if we could measure the wave function
directly, we could do an inverse Fourier transform and get the position of all the
atoms. What we measure is instead the differential scattering cross section,

dσ

dΩ
=

(
mn

2π~2ψ2
0

)2 〈
|ψ(Q)|2

〉

=
N∑

i=1

N∑

j=1

bibj
〈
eiQrie−iQrj

〉
, (5.10)

which is the fraction of neutrons scattered into a solid angle Ω. Over the course
of the experiment, the atoms in the sample will move around, and this is reflected
in the angular brackets, denoting a thermal average of the atom positions. The
bar over the scattering lengths denote an average over isotopes and spin states of
the different nuclei.

Equation (5.10) can be interpreted in terms of the partial pair correlation
functions [101], gαβ(r), defined analogously to the molecular pair distribution
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function in equation (2.4)

Nρcαcβgαβ(r) =
Nα∑

i=1

Nβ∑

j=1

′ 〈δ(r + Ri −Rj)〉 , (5.11)

where ρ = N/V is the number density of the liquid, cα = Nα/N is the concen-
tration of atomic species α and the prime on the second sum means that terms
with i = j are excluded if α = β. From gαβ(r) the partial structure factors are
defined as

Sαβ(Q) = cαδαβ + cαcβρ

∫
dreiQ·r(gαβ(r)− 1), (5.12)

and equation (5.10) becomes

dσ

dΩ
= N

∑

α

cα

(
b2
α − bα

2
)

+N
∑

α

∑

β

b̄αb̄βSαβ(Q), (5.13)

i.e. the differential scattering cross section is a sum of a Q-independent back-
ground, called the incoherent cross section, plus a weighted sum of the partial
structure factors, called the coherent cross section.

In the literature, it is usually not the differential scattering cross section that
is reported, but instead either the total interference function [102],

F (Q) =
∑

α

∑

β

b̄αb̄β(Sαβ(Q)− 1), (5.14)

or the normalised, neutron weighted, total structure factor, given by

S(Q) =

∑
α

∑
β b̄αb̄β(Sαβ(Q)− 1)
∑

α cα
〈
bα
〉2 + 1. (5.15)

Examples of F (Q) for Propanol, Butanol, Propylene Glycol, and Glycerol are

shown in figure 5.3. The main peak, at Q ≈ 1.4 Å
−1

, corresponding to distances
2π/Q ≈ 4.5 Å, comes mainly from the intermolecular separation, i.e. from the
density of the liquids. The contributions at higher values of momentum transfer,
Q, is mainly due to intramolecular correlations.

The partial pair distribution functions, gαβ(r), and thus the partial structure
factors, Sαβ(Q) give the distribution of α atoms around β atoms and vice versa.
If there are m atom types in our liquid, there are m(m + 1)/2 partial structure
factors, and to obtain them all experimentally one has to perform measurements
on equally many samples with different isotopic composition. In practise, be-
cause of the low availability of neutron beam time, this is only possible for the
simplest of liquids, such as water. To compensate for the incomplete information
obtained in the diffraction experiment, one can use information obtained form
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Figure 5.3: Total interference functions, F (Q), for four of the alcohols in Paper I

other techniques when analysing the data. For molecular liquids, the intramolec-
ular structure is usually known quite well from, e.g., quantum mechanical calcu-
lations, and this information can be used in conjunction with the diffraction data
when performing a so called EPSR simulation described in the next chapter.

The diffraction measurements in this work was done using the NIMROD in-
strument at the ISIS spallation source in the U.K. The sample was put in a flat
Titanium-Zirconium can with dimensions 5 cm by 5 cm by 0.1 cm, which was
then inserted into a cryostat used to control the temperature of the sample. The
sample thickness of 0.1 cm should give a scattering probability of about 10%,
and thus unwanted multiple scattering should occur with as little as 1% prob-
ability. The Titanium-Zirconium alloy, with proportions 2.1:1, has a coherent
cross section very close to zero, and is thus transparent to neutrons. To obtain
the differential scattering cross section on an absolute scale, Vanadium, which
scatters almost completely incoherently, is used for normalisation.

5.2 Probing dynamics using QENS and NSE

In section 5.1, the atomic coordinates Ri where assumed to be time independent.
This is off course not true, especially not in a liquid, but as long as the energy
transfer from the neutron to the sample is small, it is a reasonable approximation
known as the static approximation [99]. If, on the other hand, we can measure the
energy transfer, we can obtain information about the motion of the atoms in the
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sample. This is what is accomplished by the techniques of quasi elastic neutron
scattering (QENS) and Neutron Spin Echo (NSE), which will be described here.

5.2.1 Quasi elastic neutron scattering

What makes inelastic scattering different from the elastic counterpart is that the
magnitude of the momentum, and hence the energy, changes during the scattering
event. The change in energy is given by [103]

E = ~ω =
~2|ki|2
2mn

− ~2|kf |2
2mn

=
πh

mn

(
1

λ2
i

− 1

λ2
f

)
. (5.16)

What we measure is now the partial differential cross section

∂2σ

∂Ω∂ω
=
ki
kf

1

2π

∑

i

∑

j

∫ ∞

−∞
b̄αb̄β〈eiQ·Ri(t)eiQ·Rj(0)〉e−iωtdt, (5.17)

which is related to the differential cross section through

dσ

dΩ
=

∫ ∞

0

∂2σ

∂Ω∂ω
dω. (5.18)

The partial differential cross section is essentially the space-time Fourier trans-
form of the van Hove correlation function G(r, t)

∂2σ

∂Ω∂ω
∝ S(Q,ω) ∝ ki

kf

∫ ∫
G(r, t)ei(Q·r−ωt)d3rdt, (5.19)

where G(r, t) is defined similarly to the radial distribution function (2.4):

G(r, t) =

〈
1

N

N∑

i=1

N∑

j=1

δ(r− rj(t) + ri(0))

〉
. (5.20)

The van Hove correlation function contains information about correlation in time
as well as space. It will thus tend to be peaked around values of r corresponding
to units moving together in the liquid, such as neighbouring molecules, or clusters
of molecules. For all values of r, it will decay with respect to time as the molecules
move in a diffusive manner.

The QENS measurement presented in Paper V were performed on the time
focusing time of flight spectrometer IN6 at the Institute Laue Langevin (ILL),
Grenoble, France, which is shown in figure 5.4. The instrument first filters out
three beams, containing neutrons of three distinct wave vectors, using Bragg
scattering from graphite crystals. The continuos flow of neutrons is turned into
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Figure 5.4: The time focusing time of flight spectrometer IN6. Image courtesy of
the ILL, www.ill.eu

short pulses by a rotating anti-overlap chopper, and then passes through a Fermi
chopper, that lets through the slower neutrons first to makes sure all neutrons
end up on the detector simultaneously a known period of time later, as long as
the scattering is fully elastic. Since energy exchange can take place in the sample
however, the time focusing is partially lost, and the time difference between the
elastically and inelastically scattered neutrons can then be used determine the
change in velocity, and thus the energy transfer through equation (5.16) and the
relation between momentum, wave vector, and velocity p = ~k = mnv.

5.2.2 Neutron spin echo

While QENS measures the dynamic structure factor S(Q,ω), neutron spin echo
measures the intermediate scattering function

I(Q, t) ∝
∫
G(r, t)eiQ·rdr ∝ 1

2π

∫
S(Q,ω)eiωtdω (5.21)

directly through a clever trick involving the neutrons’ spin [103,104]. To achieve
this in the NSE instrument IN11 at ILL (see figure 5.5), the neutrons are first
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Figure 5.5: The neutron spin echo instrument IN11C. Image courtesy of the ILL

monochromatised to a narrow range, λ0 ± 10%, by a rotating helical velocity
selector. The beam is then polarised longitudinally by a pair of 60 cm long
supermirrors mounted 1 cm apart inside a solenoid. A π/2-flipper then flips
the spins to make a transversally polarised beam. The neutrons are then made
to precess inside a solenoid containing a magnetic field, perpendicular to the
polarisation of the beam. If the magnetic field has strength H0, the precession
angle after traveling a distance l inside the solenoid is

φ = γn
lH0

v
, (5.22)

where v is the velocity and γn = 1.83e8 Hz T−1 is the gyromagnetic ratio of
the neutron. A π flipper just before the sample flips the spins 180◦ into their
mirror image, and then after passing the sample, the neutrons enter a second
precession field with the same direction as the first one, and strength H1. Because
of the π flipper, the second field re-phases the neutrons, which because of their
different velocities became dephased inside the first solenoid. This only happens,
however, as long as the scattering is completely elastic and doesn’t affect the
neutrons velocities. If the scattering is inelastic on the other hand, it can be
shown [103,104] that, as long as

l0H0

l1H1

=
v̄3
i

v̄3
f

, (5.23)

where v̄i and v̄f are the average initial and final neutron velocities, the final phase
difference is approximately given by

φ1 − φ0 ≈ γn
H1l1
mnv3

f

~ω. (5.24)
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Noting that t = γn
H1l1
mnv3

f
~ has units of time, and that the distribution of ω is given

by S(Q,ω), the measured average polarisation component can be expressed as

Px = 〈cos(ω1 − ω0)〉 =

∫
S(Q,ω) cos(ω1 − ω0)dω∫

S(Q,ω)dω
=
I(Q, t)

I(Q, 0)
, (5.25)

which is the normalised intermediate scattering function.
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Raman Spectroscopy

When light hits a piece of material it will either be absorbed, transmitted or scat-
tered. Most of the scattered light will be of the same wavelength as the incident
light. This process is called Rayleigh scattering. The rest of the scattered light,
which differs in wavelength from the incident light, provides information about
the material, such as the frequencies and symmetries of molecular vibrations.
This second process is called Raman scattering.

In my studies, the focus has primarily been on the vibrations of the hydroxyl
(OH) groups present in water and alcohols. Because of the forces (so called
hydrogen bonds) between OH-groups sitting on neighbouring molecules, the vi-
brational frequency of a molecule’s OH group depends strongly on arrangement
of the molecules in the local neighbourhood and vice versa. The local neigh-
bourhood of a molecule can thus be investigated by measuring the vibrational
frequency of a molecules OH group, e.g. using Raman spectroscopy.

6.1 Classical Theory of Raman Scattering

Some molecules, like water, are polar, i.e. they have a non-zero permanent dipole
moment defined by

µperm =
∑

k

re. (6.1)

Other molecules, like carbon dioxide, do not have a permanent dipole moment.
As will be discussed later, symmetry plays a big role in determining how molecules
scatter light, but already here we find a simple connection to symmetries. Molecules
that have a centre of inversion, i.e. molecules that look identical if you negate al
coordinates, do not have a permanent dipole moment, while molecules without a
centre of inversion usually do have a permanent dipole moment.

39
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Regardless of whether the molecule has a permanent dipole or not, a dipole
moment will be induced if the molecule interacts with light. The induced dipole
moment is

µind = αE + · · · , (6.2)

where E is the electromagnetic field strength of the light and α is called the
polarisability tensor of the molecule. The terms represented by the dots are
higher order in E and can be omitted as long as E is sufficiently weak. The
fact that the polarisability is a tensor means that the induced dipole need not be
parallel with the incoming light represented by E.

The electromagnetic field E varies with time according to

E = E0 cosωEt =
1

2
E0

(
eiωEt + e−iωEt

)
, (6.3)

where ωE is the angular frequency of the light. Since the atoms in a molecule
vibrate around their equilibrium positions, also the polarisability tensor α has
a time dependence. The vibrations are most conveniently described in terms of
so called normal coordinates (more about normal coordinates and why they are
convenient in the symmetry section 6.4). Assuming harmonic vibrations, which
is sufficient if we are not interested in overtones and combination tones of the
vibrational spectrum, the kth normal mode can be written as

Qk = Qk0 cosωkt =
1

2
Qk0

(
eiωkt + e−iωkt

)
, (6.4)

where Qk0 is the amplitude and ωk is the angular frequency of the kth normal
mode of vibration.

To describe the time dependence of the polarisability tensor we can expand
its elements αij in terms of the normal coordinates Qk.

αij = (αij)0 +
∑

k

∂αij
∂Qk

∣∣∣∣
Qk=0

Qk + · · · (6.5)

Neglecting higher order terms means that we, just as we did for the normal
coordinates, use a harmonic approximation for the polarisability which, again,
is sufficient if we do not care about overtones and combination tones in the
vibrational spectrum. By defining the derived polarisability tensor α′k as the
tensor having elements

(α′ij)k =
∂αij
∂Qk

∣∣∣∣
Qk=0

(6.6)

we can write the equation for the whole polarisability tensor as

α = α0 +
∑

k

α′kQk + · · · . (6.7)
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Combining the equations for the induced dipole moment (6.2), the time de-
pendence of the electric field (6.3), and the time dependence of the polarisability
tensor (6.7) gives the time dependence of the induced dipole moment:

µind = α0E0 cosωEt+
∑

k

α′Qk0E0 cosωkt cosωEt =

= α0E0 cosωEt

+
∑

k

1

2
α′Qk0E0 cos(ωE − ωk)t

+
∑

k

1

2
α′Qk0E0 cos(ωE + ωk)t, (6.8)

where the last equality can be easily proven using the complex forms of equations
6.3 and 6.4.

According to classical electrodynamics, a dipole with amplitude µ oscillating
with a certain angular frequency ω will radiate light of that same frequency. The
intensity of the light radiated at an angle θ from the axis of the dipole is given
by the Larmor formula

Itot =
ω4µ2 sin2 θ

32π2ε0c3
0

, (6.9)

where ε0 is the vacuum permittivity and c0 is the speed of light in vacuum. From
equation (6.8) we thus see the induced dipole in our molecule will emit light of
the same angular frequency ω as the incoming light, i.e. Rayleigh scattering, but
it will also emit light with frequencies shifted by the frequencies of the molecular
vibrations ωk. The light with angular frequencies ω−ωk represent Stokes Raman
scattering while the light with frequencies ω + ωk represent Anti-Stokes Raman
scattering.

The classical analysis does not give us the strength of the Raman scattering,
for that we have to resort to a quantum mechanical treatment, but it does tell
us, that in order for Raman scattering to occur, the derived polarisability α′ of
the molecule, needs to be non-zero.

6.2 A Few Words About Units

In the previous section, as well as in the following sections, I used angular fre-
quencies for the scattered light. The relation between the angular frequency ω
and the frequency ν is

ω = 2πν. (6.10)

Both frequency and angular frequency have the unit 1/second, s−1. Sometimes
it is more convenient to use wavelength λ rather than frequency. The wavelength
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in meters is given by
λ = c/ν, (6.11)

where c = 299, 792, 458 m/s is the speed of light. Spectroscopists also often
use wavenumbers which have the unit inverse centimetres, cm−1. Wavenumbers
are usually denoted by ν̃ and the relationships between wavenumber and the
quantities above are given by

ν̃ =
1

100λ
=

ν

100c
=

ω

2π · 100c
. (6.12)

6.3 Quantum Theory of Raman Scattering

In the semi-quantum treatment of Raman scattering presented here, the light im-
pinging on the sample is still treated as a classical electromagnetic wave, while the
vibrating molecules are treated quantum mechanically. This compromise between
classical and quantum mechanics has the advantage over the fully quantised field
theoretical description of being more concise and readable, while still resulting in
the same expression for the scattered radiation in terms of molecular properties.

6.3.1 Derivation of the General Polarisability Tensor

In going from the classical to the quantum description, one first has to exchange
the dipole moments for dipole transition operators. The dipole transition operator
is defined analogously to equation (6.1), µ̂ =

∑
k re, but r is now the quantum

mechanical position operator. Similarly the induced dipole transition operator is
completely analogous to equation (6.2)

µind = αfiE + · · · , (6.13)

where, again, the dots represent terms that are higher order in E and αfi is the
induced transition polarisability operator for going from the initial state |i〉 to
the final state |f〉. The interaction Hamiltonian for a dipole interacting with an
electromagnetic field with field strength E is simply

Ĥ = −µ · E, (6.14)

but to ensure the right initial condition [105], the Hamiltonian used in time-
dependent perturbation theory to obtain the perturbed initial and final states is
the slightly modified

Ĥ = −µ · Eeηt, (6.15)

where the extra factor eηt is used to turn the perturbation on slowly, or, as η → 0,
even adiabatically.
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The perturbed quantum mechanical states |i′〉 of the molecules interacting
with the electric field can be expressed as

|i′〉 = |i(0)〉+ |i(1)〉+ · · · (6.16)

and
|f ′〉 = |f (0)〉+ |f (1)〉+ · · · , (6.17)

where |i(0)〉 = |i〉 represents the unperturbed stationary states of the molecule
with energy Ei, |i(1)〉 represents the first order correction (linear in the perturbing
field E) and so on, and similarly for the final state |f ′〉. The first order correction
can be expressed as

|i(1)〉 =
∑

r

c(1)
r (t)|r〉, (6.18)

where c
(1)
r (t), obtained through standard time dependent perturbation theory (see

e.g. [105]), is given by

c(1)
r (t) =

i

~

∫ t

−∞
eiωrit

′〈r|µ̂ · Eeηt′ |i〉dt′

=
i

~
〈r|µ̂|i〉 · E0

∫ t

−∞
e(iωri+η)t′ 1

2
(eiωEt

′
+ e−iωEt

′
)dt′

=
1

2~
〈r|µ̂|i〉 · E0

(
ei(ωri+ωE)t

ωri + ωE − iη
+

ei(ωri−ωE)t

ωri − ωE − iη

)
eηt, (6.19)

with ωri = (Er−Ei)/~. From the perturbed states of the molecule, the first order
dipole transition amplitude, linear in E, is then obtained through

µ
(1)
fi = 〈f (1)|µ̂|i(0)〉+ 〈f (0)|µ̂|i(1)〉, (6.20)

which, after getting rid of some insignificant terms (see [106] for details) and
going to the adiabatic limit, η → 0, gives

µ(1)
ρ =

1

2~
∑

r

(〈f |µ̂ρ|r〉〈r|µ̂σ|i〉
ωri − ωE

+
〈f |µ̂σ|r〉〈r|µ̂ρ|i〉

ωrf + ωE

)
(E0)σe

−i(ωE−ωfi)t

+ complex conjugate

=
1

2
αfiE0

(
e−i(ωE−ωfi)t + ei(ωE−ωfi)t

)
. (6.21)

Note that summation over the repeated index σ is implied.
The general expression for the components of the induced transition polaris-

ability tensor is thus given by

αρσ =
1

~
∑

r

(〈f |µ̂ρ|r〉〈r|µ̂σ|i〉
ωri − ωE

+
〈f |µ̂σ|r〉〈r|µ̂ρ|i〉

ωrf + ωE

)
(6.22)
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For equation (6.22) to be valid, it is required that the frequency of the electric field
corresponds to an energy (via E = ~ω) that is much smaller than the difference
between electronic levels, but much larger than the spacing of any vibrational
modes (see [106] for a more detail derivation). This type of Raman scattering
is termed ”normal pure vibrational Raman-scattering”, and for the transparent
liquids in my studies, the condition is easily fulfilled using a standard green line
(514.5 nm) from an Ar-ion laser.

6.3.2 Simplification of the Polarisability Tensor

The next step is to introduce enough approximations to make it feasible to ac-
tually calculate the matrix elements in equation (6.22). The first approximation
is a classical one introduced by Born and Oppenheimer wherein one separates
the electronic degrees of freedom from the vibrational and rotational degrees of
freedom

|r〉 = |ervrRr〉 ≈ |er〉|vr〉|Rr〉, (6.23)

where er, vr and Rr are electronic, vibrational and rotational quantum numbers.
Also the energy eigenvalues separate into

ωr = ωervrRr ≈ ωer + ωvr + ωRr . (6.24)

It is usually a reasonable assumption that both the initial and final electronic
states are the ground state with quantum number eg. If further ωE is much
larger than any vibrational frequencies, only the terms in equation (6.22), with
er 6= eg are relevant. In these cases the rotational energy differences, ωRr−ωRi and
ωRr−ωRf , as well as the vibrational energy differences can be neglected compared
to the electronic energy differences, so that ωri ≈ ωerei and ωrf ≈ ωeref , We can
then apply the closure theorem

∑

r

|r〉〈r| = 1, (6.25)

to the vibrational and rotational states and equation (6.22) becomes

αρσ =
1

~
∑

er 6=eg

(〈vf |〈eg|µ̂ρ|er〉〈er|µ̂σ|eg〉|vi〉
ωereg − ωE

+
〈vf |〈eg|µ̂σ|er〉〈er|µ̂ρ|eg〉|vi〉

ωereg + ωE

)
,

(6.26)
where I have also assumed that the rotational degrees of freedom can be neglected,
which is certainly the case in my measurements. This simplified form of the
polarisability tensor is referred to as the ”Placzek pure vibrational polarisability
tensor” [106], and can be conveniently rewritten as

αρσ = 〈vf |α̂ρσ({Qk})|vi〉, (6.27)
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where

α̂ρσ({Qk}) =
1

~
∑

er 6=eg

(〈eg|µ̂ρ|er〉〈er|µ̂σ|eg〉
ωereg − ωE

+
〈eg|µ̂σ|er〉〈er|µ̂ρ|eg〉

ωereg + ωE

)
, (6.28)

can be shown [106] to be a function of the set of vibrational normal coordinates
{Qk} only. Expanding α̂ρσ as a Taylor series in Qk finally gives a result we can
make explicit use of

αρσ = α̂ρσ

∣∣∣∣
Q=0

〈vf |vi〉+
∑

k

∂α̂ρσ
∂Qk

∣∣∣∣
Q=0

〈vf |Qk|vi〉+ · · · (6.29)

6.3.3 The Harmonic Oscillator Approximation

If the vibrational modes of the molecule can be approximated as harmonic oscil-
lators we can write the total vibrational wave function, e.g. |vi〉, as a product of
the harmonic oscillator functions |vik〉 of the individual modes

|vi〉 =
∏

k

|vik〉. (6.30)

We can then use the known properties of the harmonic oscillator (see [105] or vir-
tually any quantum mechanics textbook) to obtain selection rules for the different
transitions. For the first term we make use of

〈vfk |vik〉 = δf,i (6.31)

to realise that this term is non-zero only if f = i, i.e., it relates to Rayleigh
scattering. For the second term we make use of the relations

〈vfk |Qk|vik〉 =





0 for vfk = vik
avk(v

i
k + 1)1/2 for vfk = vik + 1

avk(v
i
k)

1/2 for vfk = vik − 1

(6.32)

where avk = (~/2ωk)1/2, to realise that for Raman scattering to occur for the
vibrational mode k, we need to have vfl = vil for l 6= k, and vfl = vil + 1 for

l = k (Stokes Raman scattering) or vfl = vil − 1 for l = k (anti-Stokes Raman
scattering).

To sum up: In the approximation of electrical (only keeping terms linear i
Q) and mechanical (using harmonic wavefunctions) harmonicity, only transitions
in which only one vibrational quantum number changes are Raman active. In
addition, just as in the classical case, the derivative α′ρσ of the polarisability with
respect to the normal coordinate Qk, has to be non-zero. When these require-
ments are fulfilled, the intensity from a scattering molecule is (Stokes scattering)

αρσ = avk(v
i
k + 1)1/2(α′ρσ)k. (6.33)
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6.3.4 Scattering From a Collection of Molecules

To calculate the scattering intensity from a collection of N molecules, we also
need to take into account that not all molecules are in their ground vibrational
states. More specifically, the fraction of molecules in an initial state with quantum
number vlk is given by the Boltzmann distribution

pvlk =
e−(vlk+1/2)~ωk/kBT

∑
vmk
e−(vmk +1/2)~ωk/kBT

, (6.34)

and to get the total intensity of a vibrational mode we need to calculate the sum
over all allowed transitions

N
∞∑

vlk=0

(vlk + 1)pvlk =
N

1− e−~ωk/kBT . (6.35)

Combining the results from this section with equation (6.9) finally gives us the
intensity of the kth vibrational mode from a collection of N molecules as

IN =
N~ω4

s〈(α′)2〉
32π2ε2

0c
4
0ωk(1− e−~ωk/kBT )

I, (6.36)

where ωs = ωE−ωk is the absolute frequency of the scattered light, the irradiance
I is defined by I = 1

2
ε0c0E

2
0 , and 〈(α′)2〉 denotes an isotropic average over the

derived polarisability tensor, i.e. we have assumed equal probabilities for the
spatial orientation of the N molecules within the scattering volume.

6.4 The Role of Symmetries in Raman Scattering

In the measurements related to this thesis, we use our spectrometer in a back-
scattering geometry, i.e. we measure light in the opposite direction of the incident
laser beam. If the horizontal axis perpendicular to the incident beam is the x-
axis and the vertical axis is the z-axis, we measure the two components of the
derived polarisability tensor 〈(α′xx)2〉 and 〈(α′xz)2〉 and the intensities Ixx and Ixz
are given by substituting these components for the general derived polarisability
tensor in equation (6.36). As long as the polarisability tensor is symmetric, which
it is according to equation (6.28), the components can be expressed in terms of
the mean polarisability a

a =
1

3
(αxx + αyy + αzz), (6.37)

and the anisotropy γ

γ2 =
1

2
(|αxx − αyy|2 + |αyy − αzz|2 + |αzz − αxx|2)

+
3

4
(|αxy + αyx|2 + |αxz + αzx|2 + |αyz + αzy|2) (6.38)
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as

〈(α′xx)2〉 =
45a2 + 4γ2

45
(6.39)

and

〈(α′xz)2〉 =
γ2

15
. (6.40)

The derivation of these formulae is rather lengthy, but can be found in e.g. [106].
Using equations (6.39) and (6.40) we can extract the isotropic and anisotropic
parts of the spectrum:

Ia = Ixx −
4

3
Ixz, (6.41)

Iγ = 15Ixz. (6.42)

As will be explained on the following pages, a relates to vibrational modes which
preserve the symmetry of the molecular- or intermolecular structure that the
mode is related to. γ on the other hand, relates to modes which break this
symmetry.

6.4.1 Molecular symmetries

All molecules belong to a specific symmetry group. A symmetry group consists
of a number of symmetry operations such as rotations, reflections and inversion.
When the operations in a molecule’s symmetry group operate on the molecule,
they will bring the molecule into a configuration identical to the one it was in
before the operation. As an example, consider the water molecule, H2O. Wa-
ter belongs to the symmetry group C2v which has four operations: the identity
operation E, a rotation of 2π/2 radians around (hence the 2 in C2v) an axis C2

that goes through the oxygen and right between the hydrogens, and two vertical
(hence the v) planes of reflection; one through the plane of the molecule called σ,
and one perpendicular to the plane of the molecule that goes through the oxygen
called σ′. The symmetry elements C2, σ, and σ′ are shown in figure 6.1. For the
operations to form a mathematical group, they need to fulfil four properties

• Identity - one of the operations must be the identity operation

• Closure - it must be possible to write two consecutively applied operations
as another operation. For the case of water we notice that the rotation
C2 followed by the reflection σ′ is the same as the reflection σ′ by itself,
σ′ · C2 = σ′. Note that the operations are applied from right to left.

• Associativity - the operations have to be associative, e.g. (C2σ)σ′ = C2(σσ′)

• Inverse - each operation has to have an inverse that is also in the group. In
the case of C2v, all operations are their own inverses, e.g. C2 · C2 = E
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Figure 6.1: The symmetry elements of a water molecule

The operations can be represented by matrices. If we call the atoms in the
water molecule H1, H2, and O we can for example write the reflection σ′ which
interchanges H1 and H2 as

σ′




H1

H2

O


 =




0 1 0
1 0 0
0 0 1






H1

H2

O


 =




H2

H1

O


 . (6.43)

The representations are not unique, but can be decomposed, or reduced, into a
set of unique irreducible representations by block diagonalising the matrix and
taking the block matrices as the new representations. These irreducible represen-
tations can be shown to have the same group properties as the original reducible
representation. Unfortunately, the irreducible representations are not unique ei-
ther, but their characters are. A matrix’ character is the same as the trace, or
the sum of diagonal elements, of the matrix. All the characters of the different
irreducible representations of the point group can then be presented in the form a
character table. The character table for the point group C2v is shown in table 6.1.
The top row of the table starts with the name of the point group followed by the
names of the symmetry elements of the point group. On the second row, the first
column contains the name of the irreducible representation. The representations
labeled A have character 1 under the principal rotation, in this case C2, while the
representations labeled B have character -1. The characters under the identity
operation E are also the dimension of that particular representation. For the case
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C2v E C2 σ σ′

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy
B1 1 -1 1 -1 x, Ry xz
B2 1 -1 -1 1 y, Rx yz

Γx,y,z 3 -1 1 1

Table 6.1: Character table for the point group of water, C2v

of C2v, all the irreducible representations are of order 1.
A1 is called the totally symmetric representation and consists of all ones. To

the right of the characters in the table are basis functions for the respective
representations, i.e. functions which transform as that particular representation.
To determine the representation of a particular basis function we first need to
know that the z-axis is always defined to lie along the principal axis of rotation
and the x-axis is in the plane of the molecule. We can then get the characters
of a basis function, say x, by considering how arrows sitting on the atoms and
pointing in the x-direction transforms under each symmetry operation. An arrow
pointing in the x-direction will for example change sign under a C2-rotation, and
also under a σ′-reflection. The characters of the bilinear functions x2, xy, etc, can
be obtained by multiplying the rows of the linear basis functions. The characters
of xy for example, are given by 1×1, −1×−1, 1×−1, and −1×1. A consequence
of this, that will be of importance, is that the squares x2, y2, z2 always transform
as the totally symmetric representation. If we denote the symmetry species of x
by Γx and the totally symmtric species by Γ1, this can be written as

Γx × Γx = Γ1. (6.44)

6.4.2 Symmetry selection rule

Equation (6.27) enables determination of symmetry based selection rules. This
becomes more evident if (6.27) is written as an integral over wave-functions

αρσ = 〈vf |α̂ρσ({Qk})|vi〉 =

∫
φf (r)α̂ρσ({Qk})φi(r)dr. (6.45)

For a corresponding one-dimensional integral

∫ ∞

−∞
f(x)g(x)h(x)dx, (6.46)

it is obvious that the integrand must be even for the integral not to vanish. Since
the only symmetry operations in one dimension are reflection and inversion, both
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bringing x→ −x, this is the same as saying that the integrand must contain the
totally symmetric species, a statement that is true also for the three dimensional
integrand in equation (6.45). Furthermore vibrational states with even quantum
numbers only contain even powers of the vibrational normal coordinate Qk, and
since symmetry operations always transform Qk into ±Qk, these states are always
totally symmetric. Conversely, states with odd quantum number contain odd
powers of Qk and therefore always transform as the vibrational coordinate itself.
If we assume that the initial state is the ground state and the final state is the
first exited state we thus get

Γφf × Γφi = Γφf , (6.47)

where Γφf then is the symmetry species of the vibration. Since only a product
of two identical symmetry species gives the required totally symmetric species,
α̂ρσ({Qk}) must also belong to the symmetry species of the vibration.

Regarding the transition polarisability tensor, it is essentially given by a prod-
uct of two components 〈f |µρ|r〉 and 〈r|µσ|i〉 of transition dipole moments. Since
the transition dipole moment is a vector, its components transform as the ba-
sis functions x, y and z. The components of the transition polarisability tensor
therefore transform as the bilinear products x2, xy, etc.

And now to the important conclusion of all this: The isotropic spectrum only
involves the totally symmetric parts of the transition polarisability tensor (αxx,
αyy, and αzz), and can therefore only contain vibrational modes that preserve
the symmetry of the molecule, i.e. vibrational modes that are totally symmetric.
It will contain all symmetry preserving vibrations whose intensities are non-zero
(αρσ 6= 0). The anisotropic spectrum, on the other hand, can contain vibrations
of any symmetry, but modes that are only found in the anisotropic spectrum
cannot be symmetry preserving.

It should be noted however, that these selection rules are based on some
approximations (Born-Oppenheimer, non-interacting molecules, etc.) and theo-
retically forbidden modes are therefore sometimes seen experimentally.

6.5 Line Shapes in Vibrational Spectra

The previous sections on the theory of Raman scattering provided means to calcu-
late vibrational frequencies and intensities from given properties of the material.
As experimentalists we typically start from the other end, and the goal is to get
as much information as possible out from a given spectrum or set of spectra. An
important tool here is to fit the spectral lines, and then use the fitting parameters
to get information about the material at hand. The spectral lines we need to fit
are usually not lines at all, but instead broad bands, often tens or even hundreds
of wavenumbers wide. To choose an appropriate fitting function, and to interpret
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the information we get from the fitting parameters we need to understand the
mechanisms behind the broadening of the lines. The mechanisms most important
for this thesis and the appended papers will be discussed here.

I general, broadening of spectral lines are caused by fluctuations of the fre-
quencies of the vibrating molecules, which in turn is caused by a fluctuating
environment. In light of this, it is not surprising that liquids and other disor-
dered materials usually have wider spectral lines than gases or crystalline solids.
If the fluctuations are slow or static compared to the timescale of the experiment,
the line shape simply reflects the distribution of frequencies in the material, which
in turn provides information on the structure [107]. In the other limit of very
fast fluctuations, the frequencies are averaged out, and the result is a spectral
line that is narrower than the frequency distribution of the material.

6.5.1 Kubo’s model

A classic model describing these features is the Kubo model [108]. In the Kubo
model, the frequency fluctuations are described by an exponentially correlated
Gaussian stochastic process, i.e. the momentary distribution of the (angular)
frequency of a vibrational mode Ω is Gaussian:

p(Ω) ∝ e
−(Ω−Ω̄)2

2∆2 , (6.48)

with mean Ω̄ and variance ∆, and the frequency autocovariance function is ex-
ponential

C(t) = 〈δΩ(t)δΩ(0)〉 = ∆2e−t/τ , (6.49)

where δΩ(t) = Ω(t) − Ω̄. The spectral intensity, i.e. the line shape is given by
the power spectrum of the fluctuating induced dipole moment

I(ω) ∝
∫ ∞

−∞
dte−iωt〈µind(t)µind(0)〉. (6.50)

For a non-fluctuating static frequency Ω, the induced dipole moment can be
written as µind(t) = µ(0)e−iΩt and the power spectrum is just a δ-function, I(ω) ∝
δ(ω − Ω). The total intensity of the vibrational mode in equation (6.9) is then
given by the integral over all frequencies Itot =

∫∞
−∞ dωI(ω).

For a time dependent frequency Ω(t) on the other hand, the exponential iΩt
has to be replaced by an integral

µ(t) = µ(0)e−i
∫ t
0 dτΩ(τ) = µ(0)e−iΩ̄t−i

∫ t
0 dτδΩ(τ), (6.51)

and the autocovariance function becomes

〈µ(t)µ(0)〉 = |µ(0)|2e−iΩ̄tF (t), (6.52)
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with

F (t) = 〈e−i
∫ t
0 dτδΩ(τ)〉
= [cumulant expansion, change of variables, etc.]

= e−
∫ t
0 dτ(t−τ)C(τ)

= e−g(t). (6.53)

The intensity thus becomes

I(ω) ∝
∫ ∞

−∞
dte−i(ω−Ω̄)te−g(t). (6.54)

For an exponential time decay g(t) evaluates to

g(t) = ∆2τt+ ∆2τ 2(e−t/τ − 1), (6.55)

and for large times t, the first term ∆2τt will dominate and if ∆2τt� 1 then e−g(t)

will be small and wont contribute to the integral. The times that do contribute
to the integral are thus the times where

∆2τt . 1⇔ ∆t . 1

∆τ
. (6.56)

For ∆τ � 1 we get ∆t� 1 in the contributing time domain and thus t/τ � 1,
and we can expand the exponential in g(t) to obtain

g(t) ≈ ∆τt′ + ∆2τ 2
(
− t′/∆τ +

1

2
(t′/∆τ)2

)
=

∆2t′2

2
, (6.57)

which leads to a Gaussian line shape with width ∆:

IG(ω) ∝ e−
(ω−Ω̄)2

2∆2 . (6.58)

For ∆τ � 1, on the other hand, we get t/τ � 1 and the first term of g(t)
dominates

g(t) ≈ ∆2τt. (6.59)

We then get a Lorentzian line shape with full width at half maximum (FWHM)
∆2τ

IL(ω) ∝ ∆2τ

(ω − Ω̄)2 + (∆2τ)2
. (6.60)
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6.5.2 A Generalised Kubo Model

In Kubo’s original theory, the frequency is only affected by one process with one
single time constant τ . In real systems there are typically more than one process
influencing the frequency, and depending on the system at hand, the different
time scales might be either separated by orders of magnitude or quite close to
each other. In liquids, the latter is often the case [107]. Either way, the simplest
extension of the Kubo model is to write the autocovariance function as a sum of
two exponentials with different relaxation times τ1 and τ2, and different strength
∆1 and ∆2 [107]:

C(t) = 〈δΩ(t)δΩ(0)〉 = ∆2
1e
−t/τ1 + ∆2

2e
−t/τ2 . (6.61)

In this model g(t) becomes

g(t) = ∆2
1τ1t+ ∆2

1τ
2
1 (e−t/τ1 − 1) + ∆2

2τ2t+ ∆2
2τ

2
2 (e−t/τ2 − 1). (6.62)

If one time scale, say τ1 is large enough, and the other time scale small enough,
we can approximate g(t)

g(t) =
∆2

1t
2

2
+ ∆2

2τ2t. (6.63)

F (t) can then be written as product of two functions, one giving a Gaussian
line shape and one giving a Lorentzian line shape. In the frequency domain this
becomes a convolution of the two line shapes

I(ω) ∝
∫ ∞

−∞
dω∗IG(ω∗)IL(ω − ω∗). (6.64)

The convolution of the Gaussian and the Lorentzian line shapes is usually referred
to as the Voigt profile. Skinner [107] showed that if the two amplitudes ∆1 and
∆2 are equal, which is a good approximation in room temperature liquids, then
the Voigt approximation is valid as long as the two time scales fulfil τ1 . 6τ2.

The exponential covariance function implies, according to Doob’s theorem
[92, 109], that the equation of motion of the fluctuating frequency is a Langevin
equation familiar from the theory of Brownian motion

dΩ(t)

dt
= −ξΩ(t) +R(t), (6.65)

where ξ is a damping coefficient and R(t) is a random (generalised) force with
zero mean (〈R(t)〉 = 0) and infinitely short time correlation (〈R(t)R(0)〉 ∝ δ(t)).
Assuming an infinitely short correlation time is the same as saying that the pro-
cess is Markovian or that it has no memory. The Markovian property of this
process, and hence the exponentiality of the frequency autocovariance function
has been questioned [110], but is a good enough approximation in most cases.
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6.6 The Dilor Spectrometer
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Figure 6.2: Schematics of the Dilor spectrometer

The Raman spectrometer used for the experiments presented here is shown
schematically in figure 6.2. The laser was an argon/krypton ion laser from which
we have used the 514.5 nm line to excite vibrations in our liquids. The laser first
passes through a monochromator to make sure the exciting been only contains
514.5 nm light. The combination of a λ/2-plate and a polariser is then used to
choose between horizontal and vertical polarisation of the incident radiation. A
prism is used to guide the light through a lens focused on a µm sized volume
inside the liquid sample, and some of the light scattered from this volume goes
back through the same lens and through the prism. Another lens focuses the
beam on an iris, cutting away unwanted light not coming from the sample. After
the beam has been parallelised by yet another lens it goes through a notch filter
which removes the Rayleigh scattered light of 514.4 nm. Another polariser, or
analyser, is then used to determine the polarisation of the measured spectrum.
The beam then passes a slit that can be adjusted to optimise resolution, and
then, after being made parallel again, finally hits a 300 line/mm grating which
essentially splits the light into its frequency components that are then recorded
by a CCD-camera.

The samples were either placed in a liquid nitrogen cooled cryostat for low
temperature measurements, or a furnace for experiments above 300 K.
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Monte Carlo and EPSR Simulations

To understand a liquids structure in detail it is usually necessary to complement
experiments with computational methods. The options at hand are basically clas-
sical molecular dynamics simulations (MD) or Monte Carlo simulations (MC) or
a variety of quantum mechanical ab initio methods [11,111]. Quantum mechani-
cal methods are more exact, but usually not fast enough to calculate structures
of more than a few molecules. Out of the classical methods I have chosen the MC
approach, together with the closely related EPSR (empirical potential structure
refinement) technique [13]. The latter uses neutron or X-ray diffraction data to re-
fine the intermolecular interactions, to improve the agreement between simulated
and experimental data. The simulations essentially produce a set of equilibrium
configurations of, in this case, 500-2100 molecules. We can then average over
the set of simulated configurations to obtain measures of the structure, such as
pair correlation functions, g(r), cluster size distributions or H-bonding angles.
The results can then be compared with and analysed together with experimental
results to give a better understanding of the liquid structure. Here I will focus
on the inner workings of the Metropolis Monte Carlo algorithm, and the EPSR
technique, while the results of the simulations are presented in the appended pa-
pers. For a more complete text on molecular simulations than the one presented
here, se e.g. [111].

7.1 The Metropolis Algorithm

The task of the Monte Carlo simulation is to sample the Boltzmann distribution
related the potential energy function V (rN) of the system.

p(rN) =
e
−V (rN )

kBT

Z
, (7.1)

55
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Z being the so called configuration integral Z =
∫
e
−V (rN )

kBT drN that is there to
normalise the distribution. The specific algorithm most commonly used, also in
this case, is the Metropolis algorithm which dates back to 1953 [112] and is a
specific case of a Markov chain Monte Carlo approach. It is called Monte Carlo,
as in the gambling resort, because it relies on random numbers and the Markov
chain property means that the algorithm has a very short memory as will be
described shortly. The Metropolis algorithm proceeds in four simple steps:

1. Choose a starting point with positive probability p(rN). As long as there are
no hard core interactions, all configurations rN have non-zero probability,
so the starting configuration can be completely random.

2. Draw a new proposed configuration, rN(∗), from a jumping distribution
J
(
(rN(∗)|rN(t− 1)

)
.

3. Calculate the ratio of probabilities for the new and the old state

r =
p
(
(rN(∗)

)

p
(
(rN(t− 1)

) = e
−V ((rN (∗))−V ((rN (t−1))

kBT . (7.2)

4. Choose the new state according to

rN(t) =

{
rN(∗) with probability min(r, 1)
rN(t− 1) otherwise

(7.3)

A few crucial points about the jumping distribution must also be mentioned.
Typically one moves one atom or molecule at a time, keeping the rest of the coor-
dinates unchanged. The jumping distribution is also where the Markov property
comes in - the proposed new coordinates, rN(∗), only depend on the coordinates
at the nearest previous time t−1 but are independent on the earlier history of the
simulation. In the simple Metropolis algorithm, the jumping distribution must
be symmetric, i.e. it must satisfy J

(
(rN(∗)|rN(t − 1)

)
= J

(
(rN(t − 1)|rN(∗)

)
.

This is typically achieved by simply translating the atom or molecule a uniformly
distributed distance centred at the current position, and rotating the molecule a
uniformly distributed angle, and also randomly choosing which one, translation
or rotation, to do first.

Another crucial point is that it is sufficient to know the relative probabilities
of two different states, i.e. we do not have to know the configuration integral Z
to sample from the distribution. This is essential since the only reasonable way
to get an estimate of Z is through an MC, or MD simulation!
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7.2 Intermolecular Interactions - OPLS-AA

The potential function, or force field, V (rN) is the input to the simulation, and
also what determines the outcome. In the work presented I have used the OPLS-
AA (Optimised Potentials for Liquid Simulations - All Atoms) potential model
as a starting point for the intermolecular interactions. In Paper II, the potential
is then modified according to the EPSR algorithm described below.

The OPLS force field, as the name suggests, is a potential model that have
been optimised to reproduce a number of properties of organic materials, e.g.
heat of vaporisation, heat capacities, isothermal compressibilities, and densities
[113]. The functional form of the OPLS potential is that of a pairwise additive
Lennard-Jones potential plus Coulomb forces, so that the potential energy of two
interacting molecules i and j is

vij(r) =
on i∑

k

on j∑

l

qkql
4πε0rkl

+ 4εkl

[(
σkl
rkl

)12

−
(
σkl
rkl

)6]
, (7.4)

where ε0 is the vacuum permittivity, qk is the (partial) charge on atom k and rkl
is the distance between atoms k and l. The total potential energy is given by the
sum over all molecules

V (rN) =
∑

i

∑

j>i

vij(r). (7.5)

7.3 Intramolecular interactions

Internally in the molecules, the forces between atoms are governed by harmonic
potentials. The inputs are the bond lengths, bond angles and the total intramolec-
ular potential energy is then given by

Vintra =
C

2

∑

i

∑

k 6=l

(rkl − dkl)2

w2
kl

. (7.6)

where a good value of C/2 is determined from matching the high Q part of
the simulated structure factor with measured diffraction data. For the case of
1-propanol, a value of 35JÅ

−1
(atomic mass units)−1/2 gave the best agreement.

The denominator is given by

w2
kl =

dkl√
µkl

= dkl

√
Mk +Ml

MkMl

, (7.7)

with dkl being the equilibrium distance between atom k and l, and Mk is the
mass of atom k.
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7.4 The EPSR technique

In an EPSR simulation [13,16,114], a reference potential, such as the OPLS-AA
forcefield described above is used as a starting point. It is then modified, by
adding an empirical potential, UEP, in order to improve the agreement between
simulated and measured structure factors. The empirical potential

UEP(r) = kBT
∑

i

Cipni(r, σr), (7.8)

is a weighted sum of power exponential functions,

pni(r, σ) =
1

4πρσ3(ni + 2)!

( r
σ

)ni
e−r/σ, (7.9)

where ni = ri/σ − 3 is chosen to give the empirical potential a suitable range.
The advantage of using this form for the empirical potential is that it has an
analytical Fourier transform

ÛEP(Q) = kBT
∑

i

Cip̂ni(Q, σQ), (7.10)

where

p̂ni(Q, σQ) =
1

(n+ 2)(1 +Q2σ2)(n+4)/2

(
2 cos(nα) +

1−Q2σ2

Qσ
sin(nα)

)
, (7.11)

and α = arctan(Qσ). The weights, Ci, are then determined from fitting the
potential in Q-space to the difference between the simulated and the measured
structure factors. As the simulation proceeds the weights, Ci,m, calculated at
step m, should become smaller and smaller, and the empirical potential should
converge to a final form. The simulation then proceeds into the production phase,
where desired properties, such as partial distribution functions, bonding angles,
cluster sizes, etc. are calculated and averaged over the production run.

The most common alternative to using EPSR in analysing diffraction data
is the Reverse Monte Carlo (RMC) approach [115], which uses the difference
between measured and simulated structure factors directly, rather than potential
energy, as acceptance criterion for the trial moves in the Metropolis algorithm
described in section 7.1. While the RMC technique usually gives good agreement
between simulated and measured structure factors, the resulting structures are
often implausible from an energetic point of view. The results of using EPSR
together with neutron diffraction data from 1-propanol are presented in Paper
II.



8
Summary of Appended Papers

Paper I. A statistical model of hydrogen bond net-
works in liquid alcohols

To better understand and interpret experimental results regarding hydrogen bonded
materials, an accurate quantitative model is needed, that captures the structural
properties of the H-bonded clusters. In Paper I we derive a statistical model of
H-bonded clusters in liquid alcohols that extends previous models by allowing
the first H-bond connected to a given hydroxyl group’s oxygen to have a differ-
ent bonding probability compared to the second one. The size distribution of
the tree-like clusters thus obtained, as well as its mean and variance, are cal-
culated in terms of two bonding probabilities, and benchmarked against Monte
Carlo simulation data of six different mono and poly alcohols. The average size
of the H-bonded clusters range from 1.4 for propylene glycol mono-methyl ether,
to 5.9 for methanol. The fraction of “leaves”, “roots”, and internal nodes are also
calculated.

! "##
#! !

! #
#

#
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Figure 8.1: An example cluster as described by the statistical model in Paper I.
The labels β, γ, and δ denote root, leaf, and internal nodes of the cluster.
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Paper II. Temperature dependence of the hydrogen
bond structure of liquid 1-propanol by neutron diffrac-
tion and EPSR Simulations

The size distribution, shape and topology of H-bonded clusters in mono alcohols
are still debated. In Paper II we present the results of a neutron diffraction ex-
periment performed on 1-propanol. We use the EPSR technique, together with
the model in Paper I, to analyse the diffraction data. The focus is on the temper-
ature dependence of the properties of the H-bonded clusters. To characterise the
clusters, we calculate cluster size distributions, the principal components of the
gyration tensor, as well as H-bond angles within the clusters. The average cluster
size increases from 3.3 at 293 K to 6.0 at 155 K. The shapes of the clusters, as
determined from the principal components of the gyration tensor, is ellipsoidal,
with three distinct semi-axis. The H-bonding angles show only a weak temper-
ature dependence, with slightly more straight H-bonds at lower temperatures.
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Figure 8.2: The temperature dependent cluster size distributions of 1-propanol
obtained from neutron diffraction and EPSR simulations.
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Paper III. On the use of vibrational spectroscopy
to determine the temperature dependent hydrogen
bond structure in alcohols

Vibrational spectroscopy (IR and Raman) has often been used to study the struc-
ture of water, alcohols and other H-bonded systems. The degree of H-bonding has
a strong effect on the OH-stretch frequency in the wavenumber region 3000-4000
cm−1 and can thus be used to characterise the H-bonding situation in the material
under investigation. While most IR and Raman studies discuss the structure on
a qualitative level, in Paper III we show that the structure of alcohols, in terms of
the statistical model of Paper I, can be quantitatively related to the OH-stretch
band. The procedure is far from trivial, however, and the results obtained de-
pend heavily on the exact assumptions made about H-bonding species and their
vibrational frequencies and relative scattering cross section (here computed by
DFT methods). Hence, an important conclusion is that, while the results are in
reasonable agreement with results from computer simulations and neutron diffrac-
tion, they are not conclusive on their own, and should always be verified by other
techniques.
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Figure 8.3: The wide OH-stretch band of methanol is fitted by 6 bands corre-
sponding to different H-bonding configurations.
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Paper IV. Queueing theory unravels the transient H-
bonded chain dynamics in liquid alcohols

The dynamics of the H-bonded clusters in mono alcohols has previously been de-
scribed by the transient chain model, wherein H-bonded chains grow and shrink
as an effect of monomers joining and leaving the chain cluster at the ends. This
type of dynamics is suggested to result in the so called Debye peak seen in di-
electric spectra of mono alcohols. The master equation describing this type of
dynamics is identical to the one describing a queue where customers join with
a fixed average rate λ, and leave with a fixed average rate µ. This is referred
to as an M/M/1 queue in the queuing theory literature, and was studied exten-
sively during the mid 20th century. In Paper IV we use the results from queueing
theory, especially the size autocorrelation function, to calculate the dielectric re-
laxation spectrum of the cluster dipole moments. The resulting function is fitted
to dielectric spectra from literature to obtain H-bonding probabilities and cluster
size distributions of 1-propanol. The obtained average cluster sizes range from
1 close to the boiling point, to about 8 just below the melting temperature, in
good agreement with our neutron diffraction results.
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Figure 8.4: The temperature dependent dielectric Debye peak of 1-propanol fitted
by fitting functions based on results from queueing theory. Data taken from
reference [63].



Paper V. High-frequency properties of liquid 1-propanol
studied by neutron scattering, near-infrared, and di-
electric spectroscopy

Dynamics in alcohols has previously been studied by a number of techniques, such
as dielectric spectroscopy, rheology, and NMR. The relationship between the dif-
ferent relaxation time scales found, and their relation to the H-bonded clusters
are still not fully understood. In Paper V we use quasi elastic neutron scattering
and the neutron spin echo technique to investigate the length scale dependence
(in terms of the momentum transfer dependence) of the relaxation times in 1-
propanol. The relaxation times at length scales corresponding to intermolecular
distances is shown to correspond to the relaxation times obtained from temper-
ature dependent viscosity and shear modulus measurements, and is faster but
shows a similar temperature dependence as the dielectric α relaxation. At length
scales corresponding to the pre-peak of the static structure factor, which has been
suggested to correspond to distances between the H-bonded clusters, the relax-
ation time is longer and is in good agreement with the relaxation of OH-groups
within clusters as measure by NMR. This relaxation time has been suggested to
correspond to the average time an OH-group spends in an H-bonded cluster, and
the ratio between this relaxation time and the α-relaxation time should be equal
to the average cluster size.
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Figure 8.5: Comparison of relaxation times obtained by different techniques. The
relaxation times obtained from neutron scattering are in good agreement with
those obtained by mechanical relaxation [116] and NMR respectively. The Debye
relaxation seen in dielectric measurement is not accessible by neutron scattering
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