
Results

 Proof of principle: time evolution of Te profile and transport
 coefficients

 Muscle's kernel serialization/deserialization overhead:

 Data transfer overhead:

Introduction

 Multiscale simulation involving slow transport and fast 
turbulent scales is a challenging computational problem. 

 Modelling a multiscale problem as a set of coupled single 
scale submodels prevents complexity of monolithic codes. 

 Scales can be spatio-temporal domains or multi-physics. 
 Such approach requires using some coupling framework. 
 Interface agreement, data exchange:
→ submodels using ITM's generic datastructure, CPO [1]

 Need for distributed simulation capabilities:
→ execute a submodel on a specific hardware (accelerators

 or bigger HPC systems)
→ access to a local database (simulation or experiment)

 Target workflow: Transport-Equilibrium-Turbulence

remote
site

TCP

muscle2
(master)

muscle2
(client)

EQUIL
2D axi-symetric

equilibrium
(BDSEQ)

TURB
3D gyrofluid 
turbulence

(GEM, fluxtube)

coreprof

co
re
tr
a
n
sp

eq
uil
ibr
ium

equilibrium

References:
[1] F. Imbeaux, Computer Physics Communications 181, 987 (2010)
[2] J. Borgdorff, et al., Procedia Computer Science 9, 596 (ICCS 2012) 

Acknowledgement: The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement n°261507 (the MAPPER project)

O. Hoenen1, L. Fazendeiro2, B D. Scott1, J. Borgdorff3, A G. Hoekstra3, P. Strand2, D P. Coster1

1 Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748, Garching, Germany  2 Chalmers University of Technology, SE-412 96 Göteborg, Sweden   
3 Institute of Informatics, University of Amsterdam, 1090 GH, The Netherlands

Designing and running turbulence transport simulations
using a distributed multiscale computing approach

MAPPER

 Multiscale APPlications on European e-InfRastructure
http://www.mapper-project.eu

 Provides a formal framework, tools, software and services 
for building and running distributed multiscale applications [2]

 Assists scientists developing multiscale applications from 
scratch or from legacy codes

 Two types of application:
- loosely-coupled: acyclic, data exchange with file
- tightly-coupled: cyclic, data exchange with coupling library

 Software stack on three levels:
- high-level tools: web-based GUI, design and execution 
- middleware: distributed resource manager (grid and HPC)
- coupling library (MUSCLE2): schedules work, transfers data

MUSCLE2

 Java-based library
 Simple API in C/C++ and F90:

- MUSCLE_init/finalize
- MUSCLE_get_property
- MUSCLE_send/recv

 Communication: blocking, inter-
  operable types, byte streams 
 Coupled simulation requires:

→ muscle2 bootstrap program
→ submodels implementation

 (kernels)
→ configuration file

 Transparent remote transfer (clients just need master IP:port)
 Firewall traversal through Muscle Transfer Overlay (MTO)

Muscle kernel
- init
- get workflow parameters
- time loop
   - receive data from in-ports

   - send data to out-ports
- finalize

Muscle kernel
- init
- get workflow parameters
- time loop
   - receive data from in-ports

   - send data to out-ports
- finalize

I/O wrapper
- deserialize CPO

- serialize CPO

I/O wrapper
- deserialize CPO

- serialize CPO

Physics routine
- CPO as interface
- XML specific params

Physics routine
- CPO as interface
- XML specific params

cxa.rb

MTO

MTO

Conclusion
 Simple to use, non-intrusive, adaptable through a config file
 MPI: only main process interacts with muscle ⇒ broadcast
 Serialization overhead is not negligible for fast kernels

CPO
file

CPO
DB

INIT
read CPO

dup

TRANSP
1D transport

equations solver
(ETS)

Configuration file

1. declare parameters
  - global (dt, ...) or local to a kernel

(init file, mpiexec_args for turb)

2. declare kernels
  - name: init, transp, equil, turb, 
    dup
  - type (Core, Native, MPI)
  - path to executable

3. declare ports and relations
  - by pairs of connected kernels 
  - out-ports → in-ports

http://www.mapper-project.eu/

	Slide 1

