
Results

 Proof of principle: time evolution of Te profile and transport
 coefficients

 Muscle's kernel serialization/deserialization overhead:

 Data transfer overhead:

Introduction

 Multiscale simulation involving slow transport and fast 
turbulent scales is a challenging computational problem. 

 Modelling a multiscale problem as a set of coupled single 
scale submodels prevents complexity of monolithic codes. 

 Scales can be spatio-temporal domains or multi-physics. 
 Such approach requires using some coupling framework. 
 Interface agreement, data exchange:
→ submodels using ITM's generic datastructure, CPO [1]

 Need for distributed simulation capabilities:
→ execute a submodel on a specific hardware (accelerators

 or bigger HPC systems)
→ access to a local database (simulation or experiment)

 Target workflow: Transport-Equilibrium-Turbulence
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Designing and running turbulence transport simulations
using a distributed multiscale computing approach

MAPPER

 Multiscale APPlications on European e-InfRastructure
http://www.mapper-project.eu

 Provides a formal framework, tools, software and services 
for building and running distributed multiscale applications [2]

 Assists scientists developing multiscale applications from 
scratch or from legacy codes

 Two types of application:
- loosely-coupled: acyclic, data exchange with file
- tightly-coupled: cyclic, data exchange with coupling library

 Software stack on three levels:
- high-level tools: web-based GUI, design and execution 
- middleware: distributed resource manager (grid and HPC)
- coupling library (MUSCLE2): schedules work, transfers data

MUSCLE2

 Java-based library
 Simple API in C/C++ and F90:

- MUSCLE_init/finalize
- MUSCLE_get_property
- MUSCLE_send/recv

 Communication: blocking, inter-
  operable types, byte streams 
 Coupled simulation requires:

→ muscle2 bootstrap program
→ submodels implementation

 (kernels)
→ configuration file

 Transparent remote transfer (clients just need master IP:port)
 Firewall traversal through Muscle Transfer Overlay (MTO)
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Conclusion
 Simple to use, non-intrusive, adaptable through a config file
 MPI: only main process interacts with muscle ⇒ broadcast
 Serialization overhead is not negligible for fast kernels
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Configuration file

1. declare parameters
  - global (dt, ...) or local to a kernel

(init file, mpiexec_args for turb)

2. declare kernels
  - name: init, transp, equil, turb, 
    dup
  - type (Core, Native, MPI)
  - path to executable

3. declare ports and relations
  - by pairs of connected kernels 
  - out-ports → in-ports

http://www.mapper-project.eu/
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