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ABSTRACT 
Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 
3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a 
poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR 
data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were 
analysed. The data were collected on several occasions with different moisture 
conditions during the spring of 2007. Regression models for biomass estimation on 
stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. 
For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-
polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% 
of the mean biomass. For P-band (centre frequency 340 MHz), regression models 
including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. 
Little or no saturation effects were observed up to 290 t/ha for P-band. A model based 
on physical-optics has been developed and was used to predict HH-polarized SAR 
data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing 
on an undulating ground surface. The model shows that ground topography is a critical 
issue in SAR imaging for these frequencies. A regression model for biomass estimation 
which includes a correction for ground slope was developed using multi-polarized P-
band SAR data from Remningstorp as well as from the boreal test site Krycklan in 
northern Sweden. The latter test site has pronounced topographic variability. It was 
shown that the model was able to partly compensate for moisture variability, and that 
the model gave an rmse of 22-33% when trained using data from Krycklan and 
evaluated using data from Remningstorp. Regression modelling based on P-band 
backscatter was also used to estimate biomass change using data acquired in 
Remningstorp during the spring 2007 and during the fall 2010. The results show that 
biomass change can be measured with an rmse of about 15% or 20 tons/ha. This 
suggests that not only deforestation, but also forest growth and degradation (e.g. 
thinning) can be measured using P-band SAR data. 

The thesis also includes result on Faraday rotation, which is an ionospheric effect 
which can have a significant impact on spaceborne UHF-band SAR images. Faraday 
rotation angles are estimated in spaceborne L-band SAR data. Estimates based on 
distributed targets and calibration targets with high signal to clutter ratios are found to 
be in very good agreement. Moreover, a strong correlation with independent 
measurements of Total Electron Content is found, further validating the estimates. 
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1 INTRODUCTION 
This thesis is motivated by the need for improved estimates of forest biomass. 
Evidence suggests that radar imaging, in particular Synthetic Aperture Radar (SAR) 
imaging in the Ultra High Frequency (UHF)-band, is a very useful tool to obtain 
reliable estimates of forest biomass and forest biomass change on a global scale. In this 
thesis data from several airborne campaigns have been used to improve and evaluate 
such estimates. Faraday rotation is an important issue when UHF-band SAR systems 
are placed on spaceborne platforms. The ionosphere affects the propagating 
electromagnetic waves, and distorts the SAR images. Faraday rotation is one such 
distortion effect. In this thesis Faraday rotation is estimated in SAR data from a 
spaceborne UHF-band SAR.  

The outline of the thesis is as follows. In the remainder of this section the concepts 
radar, SAR and biomass are described, and the scope and motivation for the thesis are 
given. In section 2 some technical concepts underlying radar imaging are described. 
Section 3 deals with ionospheric disturbances, as well as correction methods for such 
disturbances. In section 4 the major part of the thesis is presented, namely biomass 
mapping using UHF-band SAR. Finally, conclusions and an outlook are presented in 
section 5. 

1.1 RADAR REMOTE SENSING 
Radar is an acronym for radio detection and ranging. Radars are active systems, in the 
sense that they do not rely on other sources of electromagnetic radiation. Thus, radars 
can operate both day and night. Radars operate in a wide range of frequencies from a 
few MHz to hundreds of GHz. For a large part of this spectrum the electromagnetic 
waves can propagate through clouds, haze and rain. When imaging the Earth’s surface 
this is a strong benefit, since radars images are unaffected by cloud cover. Radars have 
many applications, both civilian and military. This thesis concerns radar for remote 
sensing purposes. Remote sensing is a broad term, defining activities where physical 
objects are “sensed” by some measurement system which is “remotely separated” from 
the physical object. Typical remote sensing applications include atmospheric 
measurements and imaging of the Earth’s surface by means of satellite instruments. 

1.1.1 FREQUENCY BAND LETTER DESIGNATIONS 
The radio spectrum is divided into several letter designated frequency bands by the 
International Telecommunications Union (ITU) (ITU, 2012). Specialized letter 
designations for radar applications are also commonly used (IEEE, 2003). Table 1 
gives a comparison of the nomenclature used by the radar community and the 
nomenclature used in the broader telecommunications field. Note that P-band, which 
is commonly used in radar remote sensing, is not defined. However, it is noted in IEEE 
(2003) that frequencies from 216-450 MHz are sometimes called P-band. Note also that 
the definition of UHF differs in the two nomenclatures. In this thesis we adopt the 
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more general ITU definition and include frequencies between 300 MHz to 3 GHz (0.1 
m to 1 m wavelength) in the UHF-band. Thus, both the P- and L-bands are included in 
the UHF-band, except for the lower part of the P-band. In particular, all SAR data 
used in this thesis are contained in the UHF-band, except VHF band data included in 
paper II. 

Table 1. Comparison of radar-frequency letter band nomenclature with ITU 
nomenclature. Adopted from IEEE (2003). 

Radar nomenclature ITU nomenclature 
Radar 
letter 

designation 

Frequency 
range 

Frequency 
range 

Band 
No. 

Adjectival 
band 

designation 

Corresponding 
metric 

designation 

HF 3-30 MHz 3-30 MHz 7 
High 

frequency 
(HF) 

Dekametric 
waves 

VHF 30-300 MHz 
30-300 
MHz 8 

Very High 
Frequency 

(VHF) 
Metric waves 

UHF 300-1000 MHz 
0.3-3 GHz 9 

Ultra High 
Frequency 

(UHF) 

Decimetric 
waves L 1-2 GHz 

S 2-4 GHz 

3-30 GHz 10 
Super High 
Frequency 

(SHF) 

Centimetric 
waves 

C 4-8 GHz 
X 8-12 GHz 

Ku 12-18 GHz 
K 18-27 GHz 

Ka 27-40 GHz 

30-300 
GHz 

11 

Extremely 
High 

Frequency 
(EHF) 

Millimetric 
waves 

V 40-75 GHz 
W 75-110 GHz 

mm 110-300 GHz 
 

1.1.2 POLARIZATIONS 
One of the basic properties of electromagnetic (EM) waves is the polarization (see e.g. 
Goldstein (2003)). The polarization describes the orientation of oscillation of the 
wave’s electric field. An EM wave propagating in free space can always be partitioned 
into two orthogonal polarization states (polarization basis). Common polarization basis 
are horizontal (H) and vertical (V) polarization (linear polarization), of left- and right 
hand circular polarizations. Radar systems both transmit and receive EM waves. Thus, 
a polarization state is defined both on transmission and reception. Fully polarimetric 
systems are able to both transmit and receive both states in a polarization basis. For a 
linear polarization basis it is common to use the terms HH (horizontal transmit and 
receive), VV (vertical transmit and receive) and cross-polarization (HV or VH, 
horizontal or vertical transmit and reception of the other component).  
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1.2 SYNTHETIC APERTURE RADAR 
An important parameter in imaging radars is the spatial resolution. Resolution in two 
(or three) dimensions is required when imaging the Earth’s surface. For a side-looking 
radar, i.e. a radar that transmits energy in a direction perpendicular to the line of flight, 
the along-track resolution is determined by the transmitted wavelength divided by the 
length of the antenna and multiplied by the distance to the imaged scene. In the UHF-
band (0.1 m to 1 m wavelength) very large antennas are required to obtain good 
resolution. For spaceborne systems constraints on antenna size and long distance to 
targets restricts the resolution of UHF systems to kilometre scales. Synthetic Aperture 
Radar is a technique to overcome this limitation (Brown, 1967). If the radar transmits a 
train of pulses for which the relative phases are known, signal processing can be used 
to synthesize an antenna much larger than the physical antenna. Using this technique 
the resolution in the along-track direction can be brought down to meter scale or 
below even for spaceborne systems.  

1.3 FOREST BIOMASS  
The most significant motivation for wanting to measure biomass on a global scale is 
due to its role in the global carbon cycle (ESA, 2012). As is commonly known mankind 
has significantly altered the level of carbon dioxide in the atmosphere, which in turn 
leads to climate warming. Dealing with this threat to our climate is perhaps one of the 
most important tasks of the global community. While the decisions needed to mitigate 
climate warming lie in areas of politics and economics (far beyond the scope of this 
thesis), it is essential that the scientific community provides understanding of the 
processes underlying this threat to our climate. In this context the ability to model the 
global carbon cycle with low error is an important piece of the puzzle.  

1.3.1 THE GLOBAL CARBON CYCLE 
The carbon cycle can be characterized by the rate of change in atmospheric carbon 
dioxide (flux), partitioned in different parts of the climate system. Mankind contribute 
directly to these fluxes (i.e. a source) by emissions from fossil fuels, but also indirectly 
by land use change (e.g. deforestation). The terrestrial ecosystem also absorbs carbon 
(i.e. a sink) in a process which is poorly understood (IPCC, 2007). The final important 
component of the carbon cycle is the oceans, which act as a sink. The fluxes for the 
different components are constrained by the overall net flux to the atmosphere, which 
can be measured independently with low error.  

Estimated fluxes to the atmosphere and associated errors are presented in Table 2. 
Largest uncertainties are found in the ocean and land fluxes, both of which act as a 
sink. However, there is a large difference in how estimates for the size of the land and 
ocean sinks are derived. The ocean sink is derived from models and observations, 
which also give an error estimate. The net land to atmosphere flux is instead derived by 
subtracting the ocean sink from the total sink. Its errors are also determined indirectly 
by error propagation (IPCC, 2007). The land sink can be partitioned into a source term 
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due to land use change and a residual terrestrial sink. Only the source term can be 
estimated. The sink is inferred from the net land to atmosphere flux and the land use 
flux.  

Table 2. The global carbon budget in GtCyr-1, reproduced from (ESA, 2012). The error 
represent ±1 standard deviation estimates. The uncertainties in the source and sink terms 
making up the net land to atmosphere flux are large and indicated only as ranges. 
 1980-1989 1990-1999 2000-2009 
Atmospheric increase 3.3±0.1 3.2±0.1 4.1±0.1 
Emissions (fossil fuel 
and cement) 5.4±0.3 6.4±0.4 7.9±0.4 

Net ocean to 
atmosphere flux -1.8±0.8 -2.2±0.4 -2.3±0.5 

Net land to 
atmosphere flux -0.3±0.9 -1.0±0.6 -1.5±0.6 

The net land to atmosphere flux is partitioned as 
Land-use change flux 1.4 (0.4 to 2.3) 1.6 (0.5 to 2.7) 1.1 (0.3 to 2.8) 
Residual terrestrial 
sink 

-1.7 (-3.4 to 0.2) -2.6 (-4.3 to -0.9) -2.5 (-4.2 to -0.9) 

 

The observations above clearly illustrate that the lack of knowledge of the terrestrial 
part of the carbon flux is great. Forest biomass comprise about 70-90% of the Earth’s 
above ground biomass (ESA, 2012). One of the great sources of uncertainty lies in the 
currently poor measurements of forest biomass stock, forest degradation and 
deforestation, and forest growth. Therefore there is a strong need for improved 
methods for biomass mapping and monitoring.  

1.3.2 MEASURING BIOMASS ON A GLOBAL SCALE 
Mapping forest biomass and forest biomass change is not only important as a means to 
reduce errors in the global carbon cycle. Forests also have great economic, biological, 
environmental and recreational values. Such values are easier to preserve and manage 
with access to reliable forest biomass maps.  

Forest biomass is defined as the dry weight of woody matter and leaves/needles, and is 
usually measured in units of Mg/ha or tons/ha (also denoted t/ha). The total forest 
biomass is the sum of the biomass located above ground (e.g. trunk and branches) and 
below ground (root system). Within the scope of this thesis forest biomass is defined as 
above ground biomass (AGB). 

Forest biomass can only be measured directly by harvesting, drying and weighing the 
harvested material. This method is necessary for establishment of so called allometric 
equations, i.e. equations relating in-situ measurements to biomass. However, it is 
obvious that destructive harvesting cannot be used to measure forest biomass on a 
global scale. Instead indirect methods must be employed to estimate forest biomass. 
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Such estimation methods can be classified into two broad categories: in-situ 
measurements and remote sensing techniques.  

The first of these techniques relies on in-situ measurements of e.g. tree height and 
diameter, tree age, tree species and classification of growth conditions. Measurements 
are usually made within measurement plots (or elongated transects). Allometric 
equations are then used to estimate forest biomass for the plots, and the plot level data 
are then used to estimate forest biomass on larger scales. Errors in biomass estimates 
based on in-situ data arise from two main sources. First, allometric equations give 
errors on tree level. These errors may be both systematic (bias) or random. These 
errors tend to be larger for heterogeneous multi-species forests (e.g. tropics) than in 
homogeneous managed forest with only few species. The second type of error arises 
when plot level data are up-scaled to larger areas. Unbiased up-scaling relies on the 
assumption that the plot level data are representative samples of the larger biomass 
“population”, and that the number of plots are sufficiently large to produce reliable 
estimates. Both of these conditions are easier to fulfil in homogeneous forests. Strong 
heterogeneity implies that the plots must be both large and numerous. Large plots are 
especially important in the tropics, where plot sizes in the order of 1 ha are required 
(Saatchi et al., 2011). An additional source of error in plot level measurements of in-
situ biomass is associated with the determination of the plot area. In some 
circumstances, e.g. topographic terrain with dense understory, it may be difficult to 
exactly determine the boundaries of the plot in the field. Post processing based on 
position measurements in field is also associated with errors. Since biomass is a density 
measure, errors in plot area directly affects biomass estimates. In cases when other 
error sources are small (e.g. good allometric equations are available), such errors 
should be given proper attention. 

In Europe, Canada and USA there exists large national inventories of in-situ 
measurements, while in other parts of the world there are only limited in-situ data 
available. In-situ measurements can only provide forest biomass data with coarse 
spatial and temporal resolution. Compared to in-situ measurements, remote sensing 
techniques can provide better temporal and spatial resolution as well as coverage. 
There are several different remote sensing techniques for estimation of forest biomass. 
On local to regional scales airborne high density laser scanning can be used to provide 
estimates of forest biomass with low estimation errors (Koch, 2010). However, high 
density laser scanning data are costly and time-consuming to collect and cannot be 
used on a global scale. Satellite based laser systems can also be used for biomass 
estimation (Lefsky et al., 2005), but global coverage is limited to transects. Optical data 
from satellite imagery suffer from weak sensitivity to forest biomass at high biomass 
levels (saturation). SAR backscatter data using frequencies above the UHF-band has 
been shown to saturate at low levels of biomass (Imhoff, 1995b). However, recent 
attempts have been made to use long time series of C-band satellite data used to map 
boreal forests (Santoro et al., 2011; Santoro et al., 2013). At a resolution of 1 km the 
relative estimation error was found to be about 50% or less. Spaceborne 
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interferometric C-band measurements have been modelled based on forest variables, 
and the model has been inverted to obtain forest stem volume (Askne et al., 1997; 
Santoro et al., 2002; Askne et al., 2003). This method has given promising results in 
some test sites, but at present there are no spaceborne SAR systems capable of 
interferometric C-band imaging. Repeat-pass interferometric measurements from 
Siberian forest acquired by the L-band satellite J-ERS are analysed in Eriksson et al. 
(2003) and Eriksson (2004). The analysis showed a clear correlation between JERS 
coherence and forest growing stock volume during winter conditions, while during 
summer results were unreliable. During spring and fall temporal decorrelation caused 
large problems. High resolution interferometric X-band data are currently provided by 
TanDEM-X and COSMO-SkyMed (Krieger et al., 2007; Covello et al., 2012). Recent 
results have shown that such data can be used for forest biomass estimation (Caicoya 
et al., 2012). However, neither TanDEM-X nor COSMO-SkyMed provides global 
coverage, and the main sensitivity is to forest height rather than biomass.  

Several studies have shown that HH-polarized VHF band SAR backscatter has a very 
strong sensitivity to forest stem volume (Israelsson et al., 1997; Israelsson, 1998; 
Fransson, 1999; Fransson et al., 2000; Melon et al., 2001). Dependence on stem volume 
implies dependence on forest above ground biomass since stem volume and biomass 
are strongly related. Fransson et al. (2000) reports no signs of saturation up to 625 
m3ha-1, and Melon et al. (2001) further extends the non-saturated region to 900 m3ha-1. 
The strong dependence between stem volume and HH-polarized VHF-band 
backscatter is explained by the dominant ground-trunk interaction (Smith, 2000; Smith 
and Ulander, 2000). That this scattering mechanism dominates also explains the strong 
dependence on ground slope (Smith et al., 2005; Hallberg, 2007; paper II). In Fransson 
et al. (2004) a heuristic method for improved stem volume retrieval in sloping terrain is 
presented. The method requires data from multiple flight paths. In later studies a 
model based estimation method which includes slope correction is presented and 
validated (Folkesson, 2008; Folkesson et al., 2008; Folkesson et al., 2009). Using these 
methods the estimation error in sloping terrain is comparable to that obtained on flat 
horizontal ground. Results have also indicated the potential of using high resolution 
VHF band SAR data for estimation of stem volume for individual trees (Hallberg et 
al., 2005; Kononov and Ka, 2008). The ionosphere affects VHF SAR imaging more 
strongly than imaging in the UHF-band. However, Belcher (2008) suggests that the 
lowest usable frequency for a spaceborne SAR might be as low as 100 MHz during 
favourable circumstances.  

Many studies have shown that UHF-band SAR backscatter data are strongly 
dependent on forest biomass; especially in the low frequency part of the UHF-band 
(Dobson et al., 1992; Le Toan et al., 1992; Beaudoin et al., 1994). While the sensitivity 
to forest biomass is generally lower than for VHF band, there is currently no frequency 
allocation for spaceborne remote sensing in the VHF band. Within the UHF-band 
several L-band systems have already been launched into space, and a P-band SAR will 
be realized through the BIOMASS mission (see section 1.4.1). Thus, UHF-band SAR 
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imaging is a very promising alternative for global biomass mapping. The principles 
underlying the dependence between biomass and UHF-band SAR backscatter are 
introduced in the following section. A more extensive treatment is presented in section 
4.  

1.4 UHF SAR FOR BIOMASS MAPPING 
Electromagnetic waves interact most strongly with objects with sizes comparable to the 
wavelength. The UHF-band comprises wavelengths between 10 cm to 100 cm. 
Scattering from forests in the UHF-band is therefore dominated by large branches and 
tree trunks, at least for the longer wavelengths in this band. The large branches and 
trunks are holders of the majority of the forest biomass. It is therefore reasonable to 
assume that UHF-band radar images contain information on forest biomass. For 
shorter wavelengths the scattering originates also from smaller objects in the forest, 
such as twigs, leaves and needles. These small objects are not significant bearers of 
biomass, at least not in mature forest. Moreover, the leaves and needles are located 
near the top of the canopy, since the trees strive to optimize intake of solar radiation. 
They therefore act to shield the larger branches and trunks from electromagnetic 
radiation with frequencies above the UHF-band.  

In the UHF-band the backscatter from forest is not solely determined by the forest 
biomass. Surface topography plays an important role, especially for co-polarized 
scattering (see e.g. paper II). The scattering also depends on dielectric properties of the 
trunk, branches and ground surface. These properties are in turn strongly dependent 
on moisture conditions. Another factor which affects scattering is forest structure 
(Imhoff, 1995a; Smith-Jonforsen et al., 2007). Forest structure is a broad term 
encompassing tree number density, orientation and size of branches, vertical 
distribution of woody mass, etc.  

Understanding of the complex scattering process can be obtained by physical models. 
In such models the forest is parameterized and (approximate) solutions to Maxwell’s 
equations are found. Such models are too complex to be directly inverted, but they can 
give insight on the processes underlying the scattering. A more extensive treatment of 
this type of physical models is presented in section 4.2. Estimation of forest biomass 
based on UHF backscatter is often based on empirical models. In such models in-situ 
data are used to derive empirical relationships between SAR data and forest biomass. 
Empirical models are treated in section 4.3. 

1.4.1 THE BIOMASS MISSION 
In May 2013 the satellite mission concept BIOMASS was selected to become the 
European Space Agency’s (ESA) seventh Earth Explorer. The BIOMASS concept 
consists of a SAR operating at 435 MHz (P-band), with a spatial resolution of about 50 
m by 50 m (ESA, 2012). The primary objective of the BIOMASS mission is to provide 
global maps of forest biomass with previously unmatched accuracy and precision. The 



8 
 

 

mission is considered to be especially valuable in tropical regions, where the current 
state of knowledge on forest biomass is very poor. BIOMASS will also improve 
knowledge of boreal and temperate forests, especially in Siberia and China.  

Much of the work in this thesis is motivated by the upcoming launch of BIOMASS. 
Thus, this mission concept plays a central role in the thesis.  

1.5 SCOPE OF THIS THESIS 
The objective of this thesis is to develop methods for estimating forest biomass and 
forest biomass change using UHF-band SAR backscatter data, and to evaluate 
expected errors in these estimates. The main driver for this work was the future P-band 
SAR mission BIOMASS, but existing and future L-band SAR systems such as ALOS 
PALSAR (which failed in 2011) also plays a central role. The work in this thesis is 
confined to boreal and hemiboreal forests. The latter forest biome lies in the transition 
between boreal and temperate forest. Work has also been done concerning ionospheric 
distortions, in particular on Faraday rotation. Ionospheric effects are important in the 
UHF-band. Uncorrected Faraday rotation and other ionospheric distortions can lead 
to unacceptable quality degradation in UHF SAR images.  

The objectives of this thesis are obtained through analysis of data from several data 
acquisition campaigns conducted in Sweden. These campaigns include the BioSAR 
2007, BioSAR 2008 and BioSAR 2010, during which airborne UHF-band SAR data 
were collected (Hajnsek et al., 2008; Hajnsek et al., 2009; Ulander et al., 2011). The 
campaigns also include the Calibration and Validation (CalVal) phase of the ALOS 
PALSAR satellite, during which many L-band SAR images were acquired over an 
area in which calibration targets were deployed. Since the work in this thesis is based 
on campaign data its applicability is in a strict sense restricted to these particular data. 
However, the conclusions drawn in the appended papers also have important 
implications which are applicable in a broader context.   
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2 RADAR IMAGING 
Radar systems range from fairly simple to extremely complex, and many textbooks 
devoted to various aspects of radars and their design are available. In this section a 
brief introduction to radar with focus on radar imaging will be presented. The 
interested reader can find more thorough descriptions of radar, radar systems and 
radar imaging in e.g. Carrara et al. (1995), Skolnik (1990), and Sullivan (2004).  

2.1 RADAR PRINCIPLES 

2.1.1 BASIC SUB-SYSTEMS 
Figure 1 shows a block diagram with the basic radar sub systems. In this figure 
transmission and reception are made with the same antenna (mono-static system). Bi-
static systems in which separate antennas are used for transmission and reception are 
also used. 

 

Figure 1. Block diagram showing the main parts of a radar system. 
 
In the transmission block an EM wave with desired waveform and power is generated. 
The wave is then transferred to the antenna and then into the surrounding medium, 
most commonly air. The wave is then scattered by some target and received again by 
the antenna. The duplexer enables transmission and reception using the same antenna 
by separating the transmit and receive signals from each other. In the reception block 
circuitry such as low-noise-amplifiers, mixers, various filters and analogue-to-digital 
converters are applied to the received signal before it is subjected to further signal 
processing.  

2.1.2 RADIOMETRY 
The received echo from a target is inevitably corrupted by noise in the receiver. Thus, 
a very important question is whether or not the echo can be detected in the presence of 
this noise. This is governed by the radar equation, which gives the Signal-to-Noise-
Ratio (SNR) as a function of properties of the radar system, the range to the target and 
properties of scattering object. The SNR is defined as the ratio between the received 

Transmission 
block 

Reception 
block 

Signal 
processing  

Antenna Target Duplexer 
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power and the noise power. For a mono-static system using coherent integration 
during time 𝑡𝑑𝑤𝑒𝑙𝑙 it is given by (Sullivan, 2004) 

 
SNR =

𝑃𝑎𝑣𝑔𝜆2𝐺2𝑡𝑑𝑤𝑒𝑙𝑙
(4𝜋)3𝑅4𝑘𝐵𝑇𝑠𝐶𝑏𝐿

𝜎 (1) 

   
𝑃𝑎𝑣𝑔is the average transmitted power, 𝜆 is the wavelength of the transmitted wave, 𝐺 is 

the gain of the antenna, 𝑅 is the one-way distance (range) to the target, 𝑘𝐵𝑇𝑠 gives the 
system noise power per unit bandwidth, 𝐶𝑏 is a filter mismatch factor and 𝐿 is a loss 
factor. Finally, 𝜎 is the radar cross section (RCS), with unit m2, which is a measure of 
the scattering strength of a target. A perfectly reflecting sphere has an RCS equal to its 
cross-sectional area. Thus, the RCS can be thought of as the cross-sectional area of a 
sphere which gives the same scattered power as the target. For distributed targets it is 
common to use the backscattering coefficient 𝜎0 [m2/ m2]. The backscattering 
coefficient is defined so that the average RCS from a distributed target with ground 
area 𝐴 is 𝜎 = 𝐴 ⋅ 𝜎0. 

2.1.3 RANGE RESOLUTION 
As explained above, radars measures the electric field induced when the returning 
echo is received by the antenna. If the speed of light (𝑐) in the medium between target 
and antenna is known, and it is possible to calibrate for internal time delays of the 
system, these measurements can be used to measure the range to targets. The 
resolution in the range direction for radar with bandwidth 𝐵 is given by (Sullivan, 
2004) 

 𝛿𝑅 =
𝑐

2𝐵
 (2) 

2.1.4 PHASE MEASUREMENTS 
If the target and/or the antenna move along the range direction, this will cause a 
change in the signal phase. The rate of change of the phase of a signal is called the 
Doppler frequency. The non-relativistic Doppler frequency shift is given by (Ulaby et 
al., 1982) 

 𝑓𝐷 = −
2
𝜆

d𝑅
d𝑡

 = −
2𝑣𝑅
𝜆

 (3) 

   
𝑅 is the range distance, 𝜆 is the wavelength and 𝑣𝑅 is the velocity between the target 
and the radar in the range direction. Pulsed radars generally use too short pulses to be 
able to measure Doppler shifts within a single pulse. Thus, for pulsed radars the 
Doppler shift is determined by the change in phase between pulses.  

2.1.5 RANGE-DOPPLER AMBIGUITY 
For pulsed radars ambiguities can arise for both range and Doppler measurements. If 
the time between transmitted pulses is too short, an echo originating from a 
transmitted pulse scattered of a distant object may be received simultaneously as an 
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echo from a pulse transmitted at a later time scattered from an object closer to the 
radar. This confusion between range echoes is called range ambiguity. The 
requirement to avoid range ambiguities places an upper limit on the pulse repetition 
frequency (PRF). On the other hand, the signal must be sampled with a sampling 
frequency larger than the range of Doppler frequencies encountered in the signal 
(Nyquist sampling). Sampling below the Nyquist frequency results in aliasing effects 
(Doppler ambiguity). For pulsed radars the sampling frequency is the PRF. Thus, if 
both range and Doppler ambiguities are to be avoided the PRF is constrained both 
upwards and downwards. Depending on system configurations these requirements can 
be severe. For spaceborne SAR systems ambiguities place a lower bound on the 
antenna size, as described in section 2.2.1.  

2.2 SAR IMAGE FORMATION 

 
 

 

(a) (b) 
Figure 2. Imaging geometry for a side-looking airborne SAR system. The aircraft travels 
along the x-axis, 𝜃0 is the radar look angle and 𝛼 is the angle over which the target is 
illuminated. 
 
In remote sensing, as well as many other applications, it is desirable to use radars with 
imaging capabilities. Imaging enables covering of large areas and is often preferable to 
line or point measurements. Figure 2 illustrates an imaging geometry for side-looking 
airborne radar. The coordinate system is right-handed and orthogonal. The aircraft 
travels along the x-axis, which is commonly denoted the azimuth or along-track 
direction. The radar transmits pulses perpendicular to the line of flight. The distance 
between the antenna and a target on the ground is called slant-range distance. The 
distance along the ground surface is called ground range. The slant range resolution is 
given by equation 2. To obtain the resolution on the ground surface the slant range 
resolution cell must be projected onto the ground surface, as indicated in Figure 2.  

Without using SAR processing the resolution in the azimuth direction is determined by 
the antenna footprint. Since this is proportional to the range distance, the resolution 
becomes poor unless imaging is done at small range distances. However, by using 
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phase information the azimuth resolution can be significantly improved. There are 
several viewpoints to aid understanding of the SAR concept. One is to consider that 
the phase information can be used to create a synthetic aperture much larger than the 
real antenna. Another viewpoint is that phase information can be used for beam 
sharpening. After signal processing the azimuth resolution for a narrow beam system is 
given by (Brown, 1967) 

 
𝛿𝑎𝑧 ≈

𝜆

4 sin �α2�
≈

𝜆
2𝛼

 (4) 

   
Here 𝛼 is the angle over which the target is illuminated (see Figure 2). The rightmost 
approximation is valid if 𝛼/2 ≪ 1. From equation 4 it is clear that the azimuth 
resolution for SAR systems is independent of range distance. If the antenna aperture 
angle can be approximated by 𝜆/𝐷, where 𝐷 is the size of the antenna in the along-
track direction, and broadside imaging without antenna steering is used, then the 
azimuth resolution can be approximated by 𝐷/2. For systems using wide beams and 
large relative bandwidths the equations for the azimuth resolution are more complex. 
Moreover, for such systems the resolution cannot be separated into two orthogonal 
directions. Resolution considerations in ultra-wideband SAR are analysed in e.g. 
Ulander and Hellsten (1996), Vu et al. (2010) and Vu et al. (2012). For a thorough 
treatment of SAR image formation and processing see e.g. Carrara et al. (1995). 

2.2.1 AMBIGUITY CONSIDERATIONS IN SPACEBORNE SAR 
For airborne SAR systems ambiguities are rarely an issue, but for spaceborne SAR 
ambiguities cause severe constraints on system design. For a given PRF, avoidance of 
range ambiguities translates to an upper limit on range swath size. This in turn places a 
lower limit on the size of the antenna in the direction orthogonal to the range direction 
and to the azimuth direction. The maximum Doppler frequency (assuming stationary 
targets) is determined by the speed of the spacecraft and the antenna beam width in 
the azimuth direction. For a given PRF avoidance of Doppler ambiguities therefore 
translates to a lower limit on the antenna size in the azimuth direction. Combining 
these constraints place a lower limit on the antenna area. The lower limit is 
proportional to the wavelength, so that for long wavelengths large antennas are 
needed. The constraint imposed by range and azimuth ambiguities have the 
consequence that the swath width and the azimuth resolution cannot be adjusted 
independently; high azimuth resolution gives a narrow swath, and vice versa. For a 
detailed discussion on ambiguities in spaceborne SAR see e.g. Ulaby et al. (1982).  

2.2.2 INTERFEROMETRY AND TOMOGRAPHY 
SAR imaging provides a two dimensional map of the covered area. However, in 
general the scattering may have a three dimensional structure. To obtain resolution in 
the vertical direction interferometric or tomographic imaging can be used. The former 
uses a pair of images. The relative phase between the images in the pair contains 
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information on the vertical placement of scatterers. This can be used to create 
elevation maps covering large areas. Interferometry can also be used to track changes 
in the position of scatterers between image acquisitions. This can be used to detect e.g. 
landslides. Tomography is a technique for three dimensional imaging. It requires a two 
dimensional synthetic aperture, which is most commonly obtained by acquiring data 
from multiple parallel flight lines. 

2.3 SPECKLE 
Due to their coherent nature, radar images exhibit a property called speckle, which is 
not seen in normal photographic images. Speckle is a noise-like physical phenomenon 
which is a property of the image itself and is not caused by any external noise. The 
origin of speckle can be understood by investigating the received signal from a single 
resolution cell in a radar image. Invoking the superposition principle, the received 
signals complex amplitude is the sum of the returns from all individual scatterers 
within a resolution cell. If the following assumptions hold: a) the phase of an individual 
scattering object can be assumed to be uniformly distributed, b) there are many 
scattering objects within the resolution cell, and c) no single scatterer dominates over 
all others, then the intensity (𝐼) of the received echo has a probability distribution 
given by (Oliver & Quegan, 2004) 

 𝑝(𝐼|𝜎) =
1
𝜎

exp(−𝐼/𝜎) , 𝐼 ≥ 0,  (5) 

   
where 𝜎 is the total RCS of the targets within the resolution cell. For this distribution 
the mean and the standard deviation are both equal to the RCS. Thus, areas with high 
backscatter will exhibit more variability than areas of low backscatter. It is common to 
speak of speckle as multiplicative noise, even though at its core speckle is not noise but 
a consequence of a coherent imaging system.  

To reduce speckle in SAR imagery, incoherent averaging must be performed. There 
are three principal ways to accomplish this. One method is to split the Doppler spectra 
into several parts, and then forming an image from each of the parts. These different 
images, often called “looks”, are then averaged incoherently. This process is called 
“multi-looking”. A second method for incoherent averaging is to average pixels close 
to each other using a windowing function. A third technique is to average multiple 
SAR images acquired from the same area at different occasions. This third technique 
requires that the “true” backscattering coefficient in the area of interest is constant 
while the speckle changes between image acquisitions. While the term multi-look is 
most descriptive for the first of these techniques, it is often used for all kinds of 
incoherent averaging. 

The intensity in an image formed by 𝐿 independent looks has the following probability 
distribution (Oliver & Quegan, 2004) 
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𝑝(𝐼|𝜎, 𝐿) =

1
Γ(𝐿) �

𝐿
𝜎�

𝐿

𝐼𝐿−1  exp(−𝐿𝐼/𝜎) , 𝐼 ≥ 0  (6) 

   

 
Figure 3. Probability distribution of the intensity in L-look images for different values of 
L. The mean intensity is 0.5 for all distributions.  
 

In Figure 3 probability distributions of the intensity in L-look images are plotted for 
different values of L. For low values of L the distribution is highly skewed with long 
positive tails. For higher L the distribution approaches the normal distribution. The 
expectation value of an L-look intensity distribution is 𝜎, while the variance is 𝜎2/𝐿. 
These properties motivate the definition of an Equivalent Number of Looks (ENL) for 
a multi-look image. The ENL is defined so that its expectation value for an L-look 
image is L (Oliver & Quegan, 2004) 

 ENL = mean(𝐼)2/Var(𝐼) (7) 
   
For real images, the assumptions underlying the speckle distribution are not always 
valid. In areas with a high degree of texture or with strong scatterers (e.g. cities), the 
intensity distribution can seldom be approximated by speckle. However, for distributed 
targets (e.g. forest, fields, and oceans) the speckle approximation often works very 
well, at least for systems with low or medium resolution.  

Important exceptions where the speckle assumptions fail are ultra-wideband VHF and 
UHF systems. For such systems the resolution can be on the same order as the 
wavelength. Since targets close to one another (relative to the wavelength) cannot be 
treated as independent scatterers, the assumptions for speckle cannot be met. An 
example of a treatment of statistical properties of an ultra-wideband system can be 
found in Kononov et al. (2011), where images of forests from the Swedish VHF system 
CARABAS are investigated.  
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2.4 RADIOMETRIC SAR CALIBRATION 
The usefulness of a SAR system is greatly enhanced if it can provide calibrated 
measurements of RCS (radiometric calibration). Calibrated measurements from 
different areas and systems can be compared, and stability over time is ensured. 
Radiometric calibration may be achieved through internal or external calibration, or a 
combination of the two. External calibration is performed by imaging a target with 
known RCS, i.e. calibration targets. For internally calibrated systems calibration 
targets are useful for validation of the radiometric calibration. Both distributed targets 
and point targets can be used for calibration (Dobson et al., 1986). The latter can be 
either passive (e.g. corner reflectors) or active (e.g. transponders). Radiometric 
calibration using point targets can be achieved either by the peak method or the 
integral method (Dobson et al., 1986; Ulander, 1991a). The latter has the advantage of 
being independent of system focus, and does not require detailed knowledge of the 
system impulse response (Gray et al., 1990; Ulander, 1991a; Ulander, 1991b).  

For distributed targets, the quantity of interest is the backscattering coefficient (𝜎0) 
rather than the RCS. As stated in section 2.1.2, 𝜎0 is defined as the average RCS from 
a distributed target divided by the area of the target on the ground surface. Ulander 
(1996) presents an analytic method for calibration from RCS in image coordinates to 
𝜎0 in ground coordinates. The method is based on a projection cosine between the 
image plane normal and the ground surface normal, and is valid when a one-one 
mapping between ground and image coordinates exists (i.e. excludes layover and 
shadowing regions). It is shown that this method is superior to the commonly used 
method based on the local incidence angle in areas with significant azimuth tilts. 
Methods based on numerical integration of elevation maps may also be used for 
calibration to 𝜎0(e.g. Small et al., (1998)).  

2.5 EXAMPLES OF SAR SYSTEMS 
In this thesis data from four different airborne systems (CARABAS, LORA, E-SAR 
and SETHI) and one spaceborne system (ALOS PALSAR) are used, and data from a 
future spaceborne system (BIOMASS) are simulated. This section presents a summary 
of the key technical parameters for each of these systems. 

2.5.1 CARABAS-II AND LORA 
The two ultra-wideband airborne SAR systems CARABAS-II (Hellsten et al., 1996) 
and LORA (Ulander et al., 2003) were developed by the Swedish Defence Research 
Agency (FOI). Their initial flight trials were conducted in 1996 and in 2002, 
respectively. CARABAS-II operates between 20-90 MHz while LORA produces 
images using the frequency range 200-500 MHz. These two systems are described in 
more detail in paper II.  
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2.5.2 E-SAR 
The Experimental Synthetic Aperture Radar (E-SAR) is operated by the German 
Aerospace Centre (DLR) (Horn, 1996). It can operate at P-, L- C- and X-band and is 
fully polarimetric (experimental polarimetric modes at C- and X-band). It also has 
capability for polarimetric interferometry. The bandwidth is up to 100 MHz for all 
frequency bands, giving a range resolution of about 2 m. In azimuth the resolution is 
specified to 0.7 m (single-look). E-SAR is mounted onboard a Dornier DO228-212 
aircraft, and can operate at altitudes up to six kilometres. It delivered its first images in 
1988 and has since then been used in numerous remote sensing campaigns throughout 
the world. Among these campaigns are the BioSAR 2007 and BioSAR 2008 campaigns 
during which SAR data were collected from Remningstorp in southern Sweden and 
Krycklan in northern Sweden, respectively (Hajnsek et al., 2008; Hajnsek et al., 2009). 
Data from these campaigns are used in paper III, IV and V. 

2.5.3 SETHI 
The SETHI system was developed by the French Aerospace Lab (ONERA). It can 
operate at frequencies from X-band to the VHF band, and has polarimetric and 
interferometric capabilities (Angelliaume et al., 2009). The UHF/VHF mode operates 
from 225 MHz to 460 MHz. The single look resolution in this mode is below one meter 
in both slant range and azimuth. The SETHI system was used to acquire data for the 
BioSAR 2010 campaign, during which data were collected from Remningstorp in 
southern Sweden (Ulander et al., 2011). Data from this campaign are used in paper V. 

2.5.4 ALOS PALSAR 
On 24 January 2006 the Phased-Array-Type L-band Synthetic Aperture Radar 
(PALSAR) onboard the Advanced Land Observing Satellite (ALOS) was launched 
into space (Rosenqvist et al., 2007). ALOS was developed by the Japan Aerospace 
Exploration Agency (JAXA). Until its failure in 2011 PALSAR provided high-quality 
L-band images of the globe. PALSAR operated in several imaging modes, including 
single polarization, dual-polarization, fully polarimetric and scan-SAR modes. The 
single look resolution in azimuth was 4.5 m and 4.7 m or 9.6 m in slant range, 
depending on the mode of operation. Scan-SAR modes with coarser resolution were 
also available. The radiometric, polarimetric and geometric calibration of PALSAR 
was proven to meet or exceed expectations (Shimada at al., 2009).  

2.5.5 BIOMASS  
In May 2013 BIOMASS (ESA; 2012) was selected as the European Space Agency’s 
seventh Earth Explorer mission. Its payload consists of a P-band SAR (435 MHz). The 
bandwidth is limited by ITU regulation to a 6 MHz frequency band (432-438 MHz) 
allocated for remote sensing (secondary allocation). The bandwidth restricts the slant 
range resolution to 25 m (single look), resulting in a ground range resolution of about 
60 m for an incidence angle of 25 degrees. In the most recent system configuration the 
azimuth resolution is set to 50 m (six looks).  
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3 IONOSPHERIC DISTURBANCES 

3.1 THE IONOSPHERE 
The ionosphere is the outer layer of the Earth’s atmosphere. This layer is ionized by 
solar radiation, and thus contains free electrons. The ionosphere begins at an altitude 
around 100 km, and the peak electron density is around 250-400 km (Wright et al., 
2003). The electron density in the ionosphere can be classified into large scale 
structures (background ionosphere) and small scale turbulent variations. The large 
scale structures are determined by largely predictable factors such as local time, 
season, latitude, and solar activity. The turbulent variations occur on spatial scales 
from about 10-50 km down to about 2 cm (Belcher, 2008).  

A common way to report the electron density is the Total Electron Content (TEC). 
TEC is the integrated electron density either along a vertical column or along a ray 
path. The latter is usually called slant TEC (van de Kamp et al., 2009). TEC is often 
measured in units of 1016electrons per square meter (TECU). Estimates of TEC can 
be obtained through GPS measurements. On Earth values of TEC are typically 5-100 
TECU (Belcher, 2008). 

3.2 IMPACT ON SAR OBSERVABLES 
When an electromagnetic wave propagates through the ionosphere it interacts with 
both the free electrons and the Earth’s magnetic field. The interaction effects increase 
in strength as the frequency of the EM wave decreases. Spaceborne SAR images using 
frequencies in the UHF-band can be affected by the ionosphere in several ways. Image 
distortion effects include range displacement, range defocus, azimuth displacement, 
azimuth defocus and Faraday rotation (Bickle and Bates, 1965; Ishimaru et al., 1999; 
Liu et al., 2003; Wright et al., 2003; Freeman, 2004; Xu et al., 2004; Belcher, 2008; Xu et 
al., 2008; van de Kamp et al., 2009; Quegan et al., 2012; Rogers at al., 2013). In this 
section a brief overview of ionospheric effects and methods to correct for these effects 
is presented. The main focus is on Faraday rotation, which is also the subject of paper 
I.  

3.2.1 BACKGROUND IONOSPHERE 
The background ionosphere can be characterized by a mean TEC level and its 
gradients in the along- and across-track directions. Higher order TEC variations are 
treated as part of the ionospheric turbulence.  

3.2.1.1 RANGE AND AZIMUTH DISTORTIONS 

The background ionosphere introduces a frequency dependent phase shift, which may 
lead to range defocus. However, range defocus is not a strong concern for systems with 
centre frequency and bandwidth similar to those of BIOMASS or ALOS PALSAR 
(Belcher, 2008; Quegan et al., 2013). The background ionosphere also causes a 
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constant phase shift and a range displacement. If range defocus can be neglected these 
effects are inversely proportional to the centre frequency and the square of the centre 
frequency, respectively. Both effects are proportional to TEC. TEC gradients in the 
across-track direction can cause additional distortions across the swath. A constant 
TEC only cause negligible azimuth distortions. However, TEC gradients in the along-
track direction can lead to displacements in azimuth. For a detailed analysis of these 
effects see e.g. Belcher (2008) and Quegan et al. (2012). 

3.2.1.2 FARADAY ROTATION 

The refractive index of the ionosphere is birefringent in the UHF-band, with different 
propagation velocities for left- and right-hand circularly polarized waves. The different 
propagation velocities cause a phase shift between these two polarization states. For 
linear polarization this corresponds to a polarization rotation. This effect is known as 
Faraday rotation. The one-way rotation angle (Ω), given the frequency (𝑓), the 
strength of the Earth’s magnetic field (𝐵), the total electron content and the angles 𝜓 
and 𝜃 defined in Figure 4, can be approximated by (Wright et al., 2003) 

 Ω =
𝐾
𝑓2
𝐵 cos𝛹 sec𝜃 ����������������� ⋅ TEC (8) 

   
𝐾 is a constant with value 2.365 ⋅ 104[A⋅m2kg-1], and the over-lined expression is 
calculated at an altitude of 400 km. Two-way travel through the ionosphere results in a 
rotation twice as large. For a polar orbiting system the factor cos𝜓 becomes zero near 
the equator. 

 
 
Figure 4. Definition of angles in equation 8. B, Z, and, k are the directions of the Earth’s 
magnetic field, the downward vertical and the propagating EM wave, respectively. The 
image is reproduced from paper I.  
 

Neglecting a radiometric calibration constant and an overall phase term, the complex 
valued measurement matrix (𝑴) for a SAR system transmitting and receiving both 
horizontal (h) and vertical (v) polarizations can in the presence of system noise 
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(𝑁ℎℎ ,  𝑁𝑣ℎ ,𝑁ℎ𝑣 ,𝑁𝑣𝑣), channel imbalance (𝑓1,𝑓2), cross-talk(𝛿1, 𝛿2, 𝛿3, 𝛿4), and Faraday 
rotation be expressed as (from Freeman (1992), Freeman (2004), and van Zyl (1990)) 

 𝑴 = �𝑀ℎℎ 𝑀𝑣ℎ
𝑀ℎ𝑣 𝑀𝑣𝑣
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(9) 

   
𝑆𝑝𝑞 is the element of the complex values scattering matrix corresponding to 

polarization 𝑝𝑞,𝑝 = ℎ, 𝑣 , 𝑞 = ℎ, 𝑣. The rotation matrix is applied both on the 
downward and upward propagation through the ionosphere.  

If system cross-talk, channel imbalance and noise can be neglected and backscatter 
reciprocity (𝑆ℎ𝑣 = 𝑆𝑣ℎ) is evoked, equation 9 can be expanded to  

  𝑀ℎℎ = 𝑆ℎℎ cos2 Ω − 𝑆𝑣𝑣 sin2 Ω (10a) 
  𝑀𝑣ℎ = 𝑆ℎ𝑣 + (𝑆ℎℎ + 𝑆𝑣𝑣) sinΩ cosΩ (10b) 
  𝑀ℎ𝑣 = 𝑆ℎ𝑣 − (𝑆ℎℎ + 𝑆𝑣𝑣) sinΩ cosΩ (10c) 
  𝑀𝑣𝑣 = 𝑆𝑣𝑣 cos2 Ω − 𝑆ℎℎ sin2 Ω (10d) 
    
From these equations it is clear that when Faraday rotation is present, measurement 
reciprocity no longer holds. This can be used to estimate the Faraday rotation angle, 
since there are four complex valued measurements and four parameters (three 
complex valued and one real) to be estimated. For fully polarimetric data Faraday 
rotation can be corrected since the rotation matrix is unitary (and therefore invertible). 
In the presence of uncompensated system calibration effects the estimation problem 
becomes underdetermined. An overview of correction methods, as well as strategies 
for compensating calibration effects, is presented in section 3.3.1.  

An important note based on equations 10a-d is that Faraday rotation transfers power 
from the co-polarized to the cross-polarized channels. For small rotation angles this 
transfer is proportional to the rotation angle. Since for most targets the received power 
is higher in the HH and VV channels than in the cross-polarized channels, this leakage 
leads to large distortions of cross-polarized backscatter measurements even for small 
rotation angles.  

3.2.2 SCINTILLATIONS 
Ionospheric turbulence can cause phase scintillations across the synthetic aperture. 
These phase fluctuations can degrade the impulse response function in azimuth, 
leading to azimuth defocus (Belcher, 2008). Other possible degradations include 
elevated peak-side-lobe ratios, loss of peak power and image shifts (Rogers et al., 
2013). Phase scintillations also degrade interferometric and tomographic image quality.  
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High frequency GPS estimates of TEC are used in van de Kamp et al. (2009) to study 
scintillation effects on SAR data. It is concluded that the probability of defocusing for 
a SAR operating at 435 MHz varies from zero to 45% depending on ionospheric 
conditions. It is also concluded that the probability of defocus depend strongly on local 
time and latitude. In Rogers et al. (2013) simulations of scintillation effects on 
BIOMASS are performed. In this study the wide-band model (WBMOD) is used to 
obtain climatology data from the strength of turbulence. It is found that the orbit 
parameters greatly affect the impact of scintillations. It is also found that by choosing a 
dawn-dusk orbit with an ascending node at 18:00, scintillation “will have little effect on 
the ability of BIOMASS to achieve its primary objectives of measuring forest biomass 
and height, except in the high-latitude North American sector during high solar activity” 
(Rogers et al., 2013, section IV). Techniques for corrections of scintillation effects are 
briefly discussed in section 3.3.2.  

Scintillation effects have been observed for the L-band sensor PALSAR. The observed 
effects are streaks parallel to the magnetic field. Such disturbances have been observed 
in several PALSAR images with low latitudes (Shimada et al., 2008). These 
phenomena are studied in detail in Carrano et al. (2012). In this study scintillation 
effects are simulated for PALSAR images without distortions. Using appropriate 
parameters for the ionospheric turbulence, the authors are able to reproduce the 
observed disturbances. These findings confirm that the distortions observed in 
PALSAR images are caused by scintillation. Note that PALSAR passed over the 
equatorial region at a local time of about 22:30 on the ascending pass (Rosenqvist et 
al., 2007), i.e. when ionospheric turbulence is high (van de Kamp et al., 2009; Rogers et 
al., 2013).  

3.3 OVERVIEW OF CORRECTION METHODS 
Development of correction methods for ionospheric effects is an essential requirement 
for successful operation of a P-band satellite SAR. On L-band correction methods for 
Faraday rotation are needed during high TEC conditions at high latitudes. Moreover, 
as discussed in the previous section scintillation may also impact L-band SAR data. 
This section presents correction methods for Faraday rotation and scintillation, with 
emphasis on the former. Correction methods for other effects, including disturbances 
of interferometric images, are discussed in e.g. Belcher (2008) and Quegan et al. 
(2012). 

3.3.1 FARADAY ROTATION 
ALOS PALSAR created a rise in interest for Faraday correction techniques, and the 
interest is further enhanced by BIOMASS. Freeman (2004) investigates three methods 
for Faraday rotation estimation, two new and one proposed by Bickle and Bates 
(1965). Additional methods are presented by Qi and Jin (2007) (one method) and by 
Chen and Quegan (2010) (six methods). All of these methods are derived assuming 
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scattering reciprocity and that system noise as well as system calibration errors can be 
neglected.  

The methods presented by Chen and Quegan (2010) have an ambiguity of 𝜋, while the 
other methods have an ambiguity of 𝜋/2. In e.g. Chen and Quegan (2010) and Quegan 
et al. (2012) it is proposed that this ambiguity can be resolved by an independent 
estimate of Faraday rotation based on maps of TEC provided by GPS measurements.  

In order to evaluate the performance of different estimation methods several 
simulation studies have been performed. In Freeman (2004) one of the methods 
proposed in that paper as well as the method proposed by Bickle and Bates (1965) are 
evaluated. An evaluation in Meyer and Nicoll (2008) also includes the other method 
proposed by Freeman. In Quegan et al. (2012) the evaluation is further expanded by 
including one of the methods proposed by Chen and Quegan. Later in Rogers and 
Quegan (2013) the method proposed by Qi and Jin is also included. In the two latter 
studies ambiguity corrections based on TEC maps were included. All of these studies 
conclude that a) Faraday rotation may be corrected to within the limits required by 
most applications, and b) the best method for estimation of Faraday rotation is the one 
presented by Bickle and Bates (1965). This method is based on a transformation of the 
measurement matrix to a circular basis, after which estimation of Faraday rotation 
becomes a phase estimation problem. Explicitly, the method is described by the 
following equations  

 𝒁 = �𝑍11 𝑍12
𝑍21 𝑍22

� = �1 𝑖
𝑖 1� �

𝑀ℎℎ 𝑀𝑣ℎ
𝑀ℎ𝑣 𝑀𝑣𝑣

� �1 𝑖
𝑖 1� (11) 

   
 Ω� =

1
4

arg (< 𝑍12𝑍21∗ >) (12) 

   
As is clear from the papers discussed above, Faraday rotation can be corrected for fully 
polarimetric UHF-band SAR data. Note that this conclusion only is valid for fully 
polarimetric systems. By using circular polarizations it is possible to obtain 
measurements undistorted by Faraday rotation without measuring the full scattering 
matrix. However, circular polarizations have been proven to be less sensitive than 
linear polarizations to physical variables such as forest biomass (Rignot et al., 1995). 

3.3.2 SCINTILLATION 
Scintillations may potentially have an impact on the quality of UHF-band SAR images, 
and are discussed in e.g. Belcher (2008), van de Kamp et al. (2009), Quegan et al. 
(2012) and Rogers et al. (2013). As discussed above the most severe effect of 
scintillations is defocusing in azimuth. In Belcher (2008) along-track autofocus is 
discussed as an option for correcting defocus caused by scintillations. However, it is 
noted that high signal-to-clutter ratios are required to obtain reliable results. Thus, 
autofocus techniques are not suitable for homogeneous areas. In Quegan et al. (2012) 
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an alternative method for correction method is proposed. This method is based on the 
following observations: 

a) Defocus is caused by small scale variations in TEC. 
b) It is possible to measure Faraday rotation with low errors and at high 

(kilometre scale) resolution using fully polarimetric P-band SAR data. 
c) Estimates of Faraday rotation can be used to obtain a map of TEC at 

spatial scales dominated by scintillations. 

The TEC map based on Faraday rotation estimates can then be used to correct 
scintillation effects. The method produces promising results, but requires further study 
before definite conclusions on its validity can be drawn. 

3.4 SUMMARY OF PAPER I 
The objectives of paper I were two-fold. The first objective was to assess residual 
system calibration errors of the ALOS PALSAR system, in particular system cross-talk 
and channel imbalance. The other objective was to provide validated estimates of 
Faraday rotation in PALSAR images. To these ends, fully polarimetric PALSAR data 
from the test site Remningstorp in southern Sweden were used. In this site trihedral 
reflectors were deployed (see Figure 5), providing reference targets with high signal to 
clutter ratios (SCR). Data for this study were collected between 20 May 2006 and 4 
December 2006, partly within the Calibration and Validation (CalVal) phase of 
PALSAR. Eight images, four acquired on the ascending and four on the descending 
pass, were used. These images were calibrated by JAXA. Maps of TEC from the 
International Global Navigation Satellite System Service were also used. These maps 
had a reported root mean squared error (rmse) of less than 0.7 TECU.  

As a first step residual cross-talk levels were estimated during conditions of low 
ionospheric electron content (two images for which the TEC was below 3 TECU). 
Under these conditions Faraday rotation was considered to be negligible, and residual 
cross-talk levels were estimated. The cross-talk was found to be below -35 dB, strongly 
indicating that PALSAR was a well isolated system.  

Under the assumption that system cross-talk could be neglected, Faraday rotation and 
channel imbalance were estimated for each of the eight PALSAR images. To estimate 
both these quantities simultaneously reflector responses were used. Moreover, the 
response from an area for which it was assumed that the co- and cross-polarized 
channels were uncorrelated was also used. Faraday rotation angles were estimated 
using two methods. The first method was proposed by Bickle and Bates (1965) (see 
section 3.3.1), while the other method was based on reflector responses.  
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Figure 5. One of the corner reflectors in the process of being adjusted for a ALOS 
PALSAR image acquisition. The image can also be found in paper I.  

The balance between channels was found to be good. Faraday rotation angles up to 3 
degrees were estimated. The two methods for estimation of Faraday rotation showed 
very good agreement. Moreover, estimated Faraday rotation angles showed good 
correlation with TEC, giving further evidence of the validity of the estimates.  

In summary, paper I concludes that PALSAR was well isolated with low channel 
imbalance. It also shows that Faraday rotation can be measured in PALSAR data 
using both the method proposed in Bickle and Bates (1965) and the method based on 
reflector responses.  

3.5 CONCLUSIONS AND OUTLOOK 
As discussed in this section the ionosphere can have a large impact on SAR 
observables in the UHF-band. However, it is clear that by minimizing ionospheric 
disturbances (e.g. selection of orbit parameters) and by utilizing correction techniques, 
this impact can be mitigated. As an example, it is shown in Quegan et al. (2012) that 
ionospheric disturbances do not pose a threat for the fulfilment of the primary 
objectives of BIOMASS.  

The importance of ionospheric mitigation techniques is made clear by the ionospheric 
effects observed for PALSAR. Faraday rotation has been observed in many PALSAR 
images. Although these angles are often small enough to be neglected, large Faraday 
rotation angles can be present in L-band images (Wright et al., 2003). Scintillations 
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effects observed for PALSAR imagery further stress the importance of mitigation 
techniques (Carrano et al., 2012).  

While correction techniques for Faraday rotation are well investigated, correction 
schemes for other effects are less mature. Most notable is corrections for ionospheric 
scintillations. Interesting results are presented in Quegan et al. (2012), but further 
studies are needed. With successful correction techniques it might be possible to obtain 
high quality P-band data also at high latitudes.   
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4 UHF SAR FOR BIOMASS MAPPING 
Over the past decades several studies have illustrated that UHF SAR backscatter show 
a strong dependence on forest biomass (see e.g. Le Toan et al. (1992), Dobson et al. 
(1992), Beaudoin et al. (1994), Israelsson et al. (1994), Israelsson, (1998), Fransson 
(1999), and Saatchi et al. (2007)). Investigations of UHF-band scattering from forests 
are the primary objective of this thesis. A key to understanding the scattering from 
forests are physical scattering models. A scattering model valid for HH-polarized data 
in the VHF band and the lower part of the UHF-band is presented in paper II. In 
paper III and paper IV the possibility to estimate biomass using UHF-band backscatter 
is analysed. In paper V methods for estimation of forest biomass change using P-band 
SAR data are developed and analysed.  

This section is organized as follows. First a general discussion of parameters 
contributing to UHF-band scattering is presented. Then a brief overview of physical 
scattering models is presented, including a summary of paper II. In the following 
section empirical models for estimation of forest biomass based on UHF-band 
backscatter are discussed. Important considerations regarding empirical regression 
modelling are presented, followed by an overview of studies using this approach to 
biomass estimation. Paper III and paper IV are also summarized, and general 
conclusions are discussed. After this the focus is shifted to biomass change 
measurements, and paper V is summarized. Finally, some general conclusions 
concerning biomass estimation using UHF-band backscatter are drawn.  

4.1 WHAT AFFECTS THE SCATTERING? 
It is often useful to divide the scattering from forests into different scattering 
mechanisms. Figure 6 illustrates the main scattering mechanisms for UHF-band. These 
are direct scattering from the ground, canopy (branches and leaves/needles) and trunk. 
Scattering from the ground-trunk and ground-canopy interactions are also included in 
the figure. Note that, due to reciprocity, these mechanisms will add in-phase with their 
reciprocal mechanisms (i.e. trunk-ground and canopy-ground interactions). Higher 
order multiple scattering such as branch-branch or ground-trunk-ground interactions 
may also be considered. An important note is that the separation of the total scattering 
into scattering mechanisms is an approximation in which near-field interactions 
between scatterers are neglected. 

Forests are complex targets which cannot be fully characterized by a single parameter. 
Thus, the backscatter from forests in the UHF-band is not only determined by the 
forest biomass. One important parameter is the ground topography. For HH-polarized 
backscatter the trunk-ground interaction play a significant role, at least for P-band 
(paper II). Recent results based on tomography also indicate that ground-canopy or 
ground-trunk interactions are important for cross-polarized P-band backscatter 
(Tebaldini and Rocca, 2012).  



26 
 

 

 

 

 

Figure 6. Main scattering mechanisms for UHF-band scattering from forests.  

Scattering from ground surfaces depends on small- and large scale topographic 
undulations, as well as on the dielectric properties of the surface (Ulaby et al., 1982). 
The dielectric properties are in turn strongly affected by the moisture content. When 
the trunk-ground interaction is important both large scale slopes and small scale 
undulations play a significant role (paper II; Smith-Jonforsen et al., 2005). The 
dielectric properties of the forest itself also affect the backscatter. For wood the 
dielectric constant is mainly determined by the moisture content and the wood density 
(Torgovnikov, 1993). Since scattering from both the trees and the ground are 
influenced by moisture content, moisture variations affect the scattering strength 
leading to seasonal and environmental variability (Santoro et al., 2009).  

Another important parameter is forest structure, which has been shown to have an 
impact on scattering strength (Imhoff, 1995a; Smith-Jonforsen et al., 2007; Folkesson, 
2008). The structure of the forest can be defined as the vertical and horizontal 
distribution of woody material within a forest. Examples of parameters contributing to 
forests structure are tree species, tree number density, and undergrowth. Forests with 
similar biomass but different structure, e.g. many small trees or a few large trees, can 
give rise to different backscatter levels. In managed forests the structure is to a large 
part determined by management practices such as thinning and plantation. The 
resulting constraints on structure diversity may contribute towards simple relationships 
between UHF backscatter and forest biomass (Imhoff, 1995a). The effects of the more 
complex forest structure in e.g. tropical rainforests are difficult to predict. However, 
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results based on airborne data from tropical rainforests in French Guiana indicate that 
P-band backscatter can be used to estimate forest biomass with estimation errors in the 
order of 20-25% of the mean biomass (ESA, 2012).  

4.2 PHYSICAL FOREST SCATTERING MODELS 
Physical models for prediction of scattering from forests are important tools for gaining 
deeper understanding of the processes underlying the scattering. This type of models 
can be divided into two categories: models based on wave theory and models based on 
energy transport (radiative transfer) (Saatchi and McDonald, 1997). These two 
categories can also be labelled coherent and incoherent modelling.  

In models based on wave theory the starting point is Maxwell’s equations. In principle 
a complete numerical solution can be calculated, but the complex scattering geometries 
in forests make this approach unfeasible except in simplified cases. To decrease the 
computational burden the forest is assumed to consist of a set of scattering objects (e.g. 
trunks, branches, ground), and near-field interactions between scatterers are neglected. 
Moreover, far-field interactions between scatterers (multiple-scattering) are often 
completely or partially neglected. The trunks, branches, leaves and needles are 
modelled as a set of dielectric cylinders and discs, for which approximate solutions to 
Maxwell’s equation exists. This approach has been used to model trunks on flat or 
sloping terrain (Dong and Richards, 1995; Lin and Sarabandi, 1995; Lopez-Sanchez et 
al., 1999) as well as more general forests structures including trunks and canopy (Lin 
and Sarabandi, 1999; Thirion et al., 2006). In paper II, HH-polarized scattering from 
vertical trunks above an undulating ground surface is modelled for VHF and UHF-
band.  

For models based on energy transport the starting point is propagation of energy 
instead of waves. The equations which govern energy transport are called radiative 
transfer equations. This is a simpler approach than wave theory models, which is a 
benefit especially in analytical treatments. Multiple scattering may be modelled by 
including high-order solutions of the radiative transfer equations. Studies adopting this 
modelling approach include Hsu et al. (1994), Imhoff (1995a), Karam et al. (1992), 
Liang et al. (2005), Picard et al. (2004), and Ulaby et al. (1990). 

Although different models vary in details, most studies agree that P-band backscatter 
is more strongly related to biomass than L-band backscatter. Moreover, most studies 
agree that HV-polarized backscatter shows better sensitivity to forest biomass than 
other polarizations. Most models also conclude that the backscatter for HV is 
dominated by direct scattering from the branches, although in Israelsson et al. (1994) 
results from a radiative transfer model indicate that ground-canopy scattering is 
important for P-band HV data. The models tend to agree that P-band VV-polarized 
backscatter is not dominated by a single scattering mechanism, and that VV-polarized 
backscatter shows the least sensitivity to biomass. For HH-polarized backscatter model 
results are less conclusive, as discussed in paper II. Some studies indicate that the 
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ground-trunk interaction is dominant, at least in the low-UHF-band, while other 
results support the conclusion that branch scattering is important. Part of the 
explanation for these discrepancies is that the model results are sensitive to changes in 
input parameters such as branch angle and branch radius (Hsu et al., 1994). The results 
in paper II indicate that for spruce-dominated forest in flat terrain the scattering 
behaviour is well characterized by the ground-trunk interaction if undulations of the 
ground surface are included in the model.  

4.2.1 SUMMARY OF PAPER II 
Paper II presents a model for prediction of HH-polarized backscatter from coniferous 
forest in the VHF and (lower) UHF-bands1. The model is based on a physical-optics 
approach. The ground is modelled as an undulating surface described by a set of 
surface facets, and the trees are modelled as vertical trunks (tapered cylinders). The 
model was validated against data from the airborne SAR systems CARABAS and 
LORA. Detailed in-situ measurements were used to specify the diameters and heights 
of the trunks, and the ground surface was adjusted to match measurements from high-
density laser scanning data. It was found that the model was able to predict much of 
the variation in the backscatter, giving coefficients of determination of 0.44 and 0.65 
for VHF and UHF frequencies, respectively. When using the same model with a flat 
ground surface the coefficient of determination dropped to about 0.1. These results 
indicate that undulations in ground topography on scales similar to the wavelength are 
an important effect in HH-polarized VHF and UHF SAR imagery. The model was not 
able to predict the absolute values of the backscatter, which is believed to be explained 
by the chosen value for the stem dielectric constant, as well as un-modelled effects such 
as wave attenuation, small scale roughness and tilting stems. 

4.3 EMPIRICAL ESTIMATION MODELS 
As described in the previous section physical models for prediction of backscatter from 
forests are extremely complex and rich in parameters. This complexity is a natural 
consequence of the nature of UHF scattering from forests. For these frequencies the 
scattering originates from both trunks and branches, and the interaction with the 
ground surface can in most cases not be neglected. Branches vary in size, shape and 
orientation between different species as well as between individual trees. Moreover, at 
these frequencies the ground is not easily characterised with few parameters (paper II).  

                                                 

 

 

1 Note that paper II used the definition of UHF-band common in the radar community, i.e. 300 MHz to 
1000 MHz. In the rest of this thesis the ITU definition of UHF to include frequencies between 300 MHz 
and 3000 MHz is used.  
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Since the number of parameters in physical scattering models is far greater than the 
number of measurements provided by SAR data, it is unfeasible to invert such physical 
scattering models to estimate biomass. An alternative approach is to collect both SAR 
data and reference forestry data from one or several test sites, and then use regression 
analysis to derive a relationship between SAR measurements and forest variables.  

4.3.1 EMPIRICAL AND SEMI-EMPIRICAL MODELS 
There are two different types of models which can be used in regression modelling. 
One option is to use simplified physical reasoning to determine a functional form for 
the regression model. Some, or all, of the parameters for this model are then 
determined from an (often non-linear) regression analysis. Such models are often 
called semi-empirical, to reflect the fact that they are a combination of physical 
modelling and empirical observations. In the other kind of regression model both the 
functional form of the model and the values for the parameters are inferred from the 
data itself. In the following such models will be referred to as empirical models.  

There are several examples of semi-empirical models which have proved to be 
successful. One example is the description of scattering from sea surfaces by using 
Geophysical Model Functions (GMFs) (Long, 1995; Stoffelen, 1998). Several variants 
of GMFs are used operationally to estimate wind speed over the Earth’s oceans with 
scatterometry and SAR data (Hersbach et al., 2007; Quilfen et al., 1998; Stoffelen, 
1998). Another example of a successful semi-empirical model is found in Folkesson et 
al. (2009). Here a simplified physical model for scattering from forest in sloping terrain 
at the VHF band is presented and analysed. It is shown that with this model it is 
possible to obtain similar estimation errors for sloping terrain as for flat ground.  

Semi-empirical models for backscatter from forests are by nature forward models, i.e. 
they aim to predict the backscatter based on forest properties. Empirical models do not 
have this inherent limitation. To obtain forest properties given a forward model and a 
set of measurements, the model needs to be inverted. This may be a straightforward 
task, but a disadvantage with semi-empirical modelling is that the inversion process 
may be difficult. This problem is discussed in Fransson and Israelsson (1999), where 
the relation between ERS-1 and JERS-1 backscatter and forest stem volume is 
analysed. A semi-empirical model called the water-cloud model (Attema and Ulaby, 
1978) is used to predict backscatter from forest given the stem volume. The water-
cloud model is found to be successful at this task. However, the authors found that this 
model was “unsuitable for developing a radar-based model of stem volume” (Fransson 
and Israelsson, 1999, p. 133). They instead used an empirical model to estimate stem 
volume from radar backscatter. Thus, if the primary goal is to estimate forest variables 
with low error, semi-empirical modelling might not be the best choice.  

A risk with semi-empirical models is that oversimplified physical modelling may lead 
to erroneous physical interpretations. To illustrate this point, consider the following 
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example. A simple semi-empirical model aims to describe backscatter from a forest 
using a function on the form 

 𝜎0 = 𝑓(𝑊|𝜃) + 𝑏(𝑊) + 𝜖(𝑊). (13) 
   
In the equation above 𝜎0 is the backscattering coefficient, 𝑊is the forest biomass, 
𝑏(𝑊)is a modelling bias, 𝜖(𝑊)is a random error with zero mean, and 𝜃 are model 
parameters. Now, in a semi-empirical model the parameters 𝜃 have some physical 
interpretation under the modelling assumptions. However, if the modelling error (bias 
and random error) is large, estimates of 𝜃 may be dominated by the error. This may in 
turn lead to misleading physical interpretations of the fitted model.  

There are of course disadvantages to empirical models as well. Perhaps the strongest 
objection is that the lack of physical modelling increases the risk of adapting the 
empirical model too strongly to a particular dataset. With a semi-empirical model the 
functional form of the model is given, and there are often physical constraints on the 
parameters. Empirical models do not have such constraints, which may result in 
models for different dataset which are very different from one another. Thus, it is very 
important to be careful when developing empirical models.  

One important consideration in empirical modelling is to make sure that the model 
does not lead to strange physical interpretations. A trivial example might be a model 
which predicts that long men weigh less than short ones. Such a model might arise from 
“blind” regression modelling using a small dataset which only includes adults with very 
similar weight, and includes individuals which are very long and thin. Another 
important consideration is to compare new empirical models to similar models which 
already exist. This will help to ensure that results from various datasets are consistent. 
Consistency of course do not imply correctness, but if a new model deviate strongly 
from other published models this must be analysed and discussed. 

Empirical models should be developed in a way which is statistically sound and well-
motivated. This aspect of empirical modelling is the topic of the following section. 

4.3.2 MODEL SELECTION AND EVALUATION 
When developing an empirical model, it is important to realize what the purpose of 
this model development is. Most often the goal is to develop a model to be used for 
prediction, i.e. to estimate a physical variable (e.g. biomass) given a set of 
measurements (e.g. backscatter measurements). In the following the variable to be 
estimated will be referred to as the response variable, and the measurements will be 
called predictor variables or simply predictors. It is important to realize that prediction 
is often performed on new data with similar properties as the data used for model 
development. Thus, the question is not which model that best describes the data, but 
rather which model that can be expected to give the lowest estimation error for new 
data. Moreover, it is also important to estimate how large this estimation error can be 
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expected to be. This section provides an overview of common methods that can be 
used to select and evaluate the “best” model among a set of candidate models.  

Empirical models vary in complexity. On one end there are very complex models such 
as local averaging methods. On the other end there are simple linear models, where the 
relation between the response and predictor variables is a simple linear function with 
known properties. In this section the focus is on linear models, but much of the ideas 
presented here can be generalized to more complex models. Moreover, by using 
transformations of the response and predictor variables, as well as higher order power 
function of the predictor variables, complex functional relationships can be created 
within the bounds of linear models. 

A linear regression model can be described as 

 𝑦 = 𝑓(𝒙|𝜷) + 𝜖 = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑝𝑥𝑝 + 𝜖 (14) 
   
𝑦 is the response variable, 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑝) are the predictor variables, 𝜷 =
( 𝛽0, … ,𝛽𝑝) are the regression coefficients and 𝜖 is a random error. Linear models are 
discussed in detail in e.g. Rawlings et al. (1998). The regression coefficients for a 
standard linear model are usually estimated using least squares. This estimation 
method relies on some model assumptions, which are discussed below. While these are 
basic material in any regression book or course, they are essential when developing 
regression models and deserve to be discussed here. Moreover, the process of 
evaluating these assumptions often leads to a better understanding of the dataset that 
is the basis for the estimation problem. 

4.3.2.1 ASSUMPTIONS IN LINEAR REGRESSION 

First, it is assumed that the linear model is sufficient to describe the data. This 
assumption might be violated if for instance an important predictor variable has been 
omitted from the model, or if a quadratic dependence on a predictor variable is 
modelled as a first power relationship. An inadequate model leads to biased estimates 
of both prediction errors and regression coefficients. The most important tool for 
spotting inadequacies in a model is by plotting the data. There are many kinds of 
diagnostics plots, see Rawlings et al. (1998) for details. Visualizing the data by plotting 
and close study of diagnostic plots is essential in statistical model development. Other 
ways to detect model inadequacies include previous experience with similar datasets, 
as well as theoretical knowledge (e.g. physical reasoning and modelling).  

Further assumptions are that the error variance is constant and that the errors are 
symmetrically distributed (since the square of the error is used to measure dispersion). 
These assumptions are most easily checked using diagnostic plots. For some 
interference analysis the errors are also assumed to be normally distributed, but 
moderate deviations from normality can often be tolerated (Rawlings et al., 1998). 
Violations of these assumptions primarily leads to erroneous estimates of dispersion 
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(e.g. estimation errors), but also results in ineffective and possibly biased estimates of 
regression coefficients. If possible, violations of these assumptions can be remedied 
using variable transformations. Another option is to use weighted and/or non-linear 
least squares (Rawlings et al., 1998).  

Another assumption is that all residuals in the data are uncorrelated. Correlation 
structures can be spotted by careful consideration of how the data was collected. For 
example, data groupings (e.g. data from different test sites) and time sequences are 
causes for concern. Correlations structures in the data lead to loss in precision in 
estimates, as well as serious bias in measures of dispersion. Solutions to these problems 
include time-series analysis, mixed effects models and generalized least squares 
(Rawlings et al., 1998).  

If an observation, or a group of observations, deviate from the rest in one or several of 
the predictor variables, this observation will have a strong impact on the regression 
analysis. This is an undesired effect, since the results will be greatly affected by just a 
few observations. Observations may also deviate in the value of the response variable. 
Such observations can often have large residuals, which may lead to an overestimation 
of the model error since least squares give large relative weight to large residuals. 
Deviating observations (outliers) must be treated with care. A good option is often to 
do the analysis both with and without the outlier in order to investigate its impact. 
However, an outlier should never be excluded from the analysis without careful 
discussion of the reasons for this exclusion.  

4.3.2.2 MODEL SELECTION 

Model selection is, in this context, the process of selecting the model(s) best suited for 
prediction of the response variable. For linear models, model selection simplifies to the 
process of selecting which of the predictor variables to include in the model. It should 
be noted that in the following it is assumed that the basic model assumptions discussed 
above are valid. Checks of model assumptions are often an iterative process; as new 
models are developed the assumptions need to be rechecked.  

Model selection techniques can be divided into two broad categories. One category 
relies on penalization of large models or pairwise model comparisons. Methods based 
on penalization include Mallows’ 𝐶𝑝 (Mallows, 1973), the Akaike information criterion 
(AIC) (Akaike, 1969), the Bayesian information criterion (BIC) (Schwartz, 1978), and 
many variations thereof. Common methods based on pairwise model comparisons are 
forward selection, backward elimination and stepwise regression (Rawlings et al., 
1998). The other category of model selection methods is based on data resampling or 
data splitting, and include bootstrap and cross-validation methods (see e.g. Arlot and 
Celisse (2010), Breiman and Spector (1992), Picard and Cook (1984), Shao (1993), and 
Zhang (1993)). 
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An attempt to judge which of the wide variety of model selection methods that is the 
“best” is far beyond the scope of this thesis. It is sufficient to say that this issue has 
been, and still is, a topic of discussion. One issue in this discussion is that there are 
several ways to define “best”. Note also that none of the selection models can be used 
blindly on a dataset, care must always be taken to ensure that model assumptions are 
valid (see above) and that the final model is reasonable from a scientific point of view.  

Moreover, the goal of model selection is often not to pick a single model and claim that 
this is superior to all others. Instead the most common scenario is that there are a few, 
or many, models which give similar estimation performance, and judging which of 
these that is “best” is often not possible. This ambiguity should be made clear, even if 
only one model is selected. An alternative approach is to select several models and 
compare their results. Yet another option is to use the average of several models when 
using predictions. This option is discussed in e.g. Hoeting et al. (1999).  

4.3.2.3 MEASURES OF GOODNESS OF FIT AND PREDICTION PERFORMANCE 

As is clear from the discussions above, the primary goal of empirical modelling in this 
context is prediction. Thus, it is essential to provide an estimate of the expected 
prediction error. A common measure of prediction error is the mean squared error of 
prediction (MSEP), defined as the average squared difference between independent 
observations and predictions corresponding to these observations (Rawlings et al., 
1998). The most straightforward way to obtain an estimate of MSEP is by applying the 
developed model on an independent dataset (validation). An objection to reserving 
data for validation is that this process decreases the size of the training data, which 
results in larger uncertainties in estimated model parameters. This may in turn lead to 
uncertain error estimates. This issue motivates resampling methods such as cross-
validation and bootstrap. It is important to stress that the residual error, i.e. the error 
obtained for the training data, almost always underestimates the prediction error 
(Rawlings et al., 1998). Thus, the residual error should not be used as an estimate of 
prediction performance.  

A note of caution is that large errors may occur if estimation models are used for data 
different from that used for training. For example, an estimation model for biomass 
developed for boreal conditions should not be used in tropical forests. Determination 
of the proper validity range for models predicting forest variables from remote sensing 
data is a difficult task, which requires data from more than one test site (see e.g. paper 
IV). 

A commonly used quantity for measuring goodness of fit is the coefficient of 
determination (𝑅2), usually given in percentage units. There exist several different 
expressions for 𝑅2, many of which are equivalent in the context of linear regression 
with an intercept term (i.e. 𝛽0 in equation 14) included in the model. In Kvålseth 
(1985) the following expression for 𝑅2 is recommended 
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𝑅2 = 1 −

∑(𝑦 − 𝑦�)2

∑(𝑦 − 𝑦�)2 (15) 

   
Here 𝑦 is the variable to be estimated, 𝑦� are estimates of 𝑦 and 𝑦� is the mean value of 
𝑦. The commonly used interpretation for 𝑅2 is that it indicates how large part of the 
variation in the response variable that is explained by the predictor variables (Rawlings 
et al., 1998). A note of caution is that 𝑅2 can be inflated by single observations with 
predictor values which deviate from those of other observations.  

4.3.3 OVERVIEW OF REGRESSION BASED STUDIES 
There are many studies in which the relation between UHF-band SAR data and forest 
biomass has been investigated. Many of these studies are based on data from the 
airborne sensor AIRSAR, which was developed by the National Aeronautics and 
Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) in the late 
1980s. Later studies have used data from the airborne sensors E-SAR and/or SETHI, 
which provide SAR images with better resolution than AIRSAR. In this section an 
overview of studies on the relation between UHF data and forest biomass is presented. 
Only studies which include P-band data are presented. Thus, studies based solely on 
spaceborne sensors (e.g. JERS-1 and ALOS PALSAR) are not included.  

In Le Toan et al. (1992) and Beaudoin et al. (1994), AIRSAR data collected from the 
Landes forest in south-western France are investigated with respect to its dependence 
on forest biomass. This is a plantation forest completely dominated by maritime pine, 
and consists of large homogeneous forest stands in flat terrain. In a preliminary 
assessment the biomass estimation error is estimated to be about 20%.  

AIRSAR data from the Landes forest are pooled with ARISAR data from Duke 
University Research Forest in North Carolina in Dobson et al. (1992). Both sites 
contain even-aged stands of pine trees. For L- and P-band backscatter the data from 
the two sites have a similar dependence on biomass, and no clear systematic 
differences between the two sites are observed.  

Data from a test site near Howland, Maine were analysed in Ranson and Sun (1994). 
The test site lie on the border between coniferous boreal forest to the north and 
hardwood forest to the south, and consist of mixtures of e.g. hemlock, spruce, fir and 
hardwood (aspen, birch, maple, and beech). The biomass reaches 370 t/ha, with gently 
rolling topography. SAR data from AIRSAR were used to develop regression models 
for biomass estimation. L- and P-band HV data were used in the analysis, as well as the 
ratios between these polarizations and C-band HV. Coefficients of determination of 
0.75 and 0.81 were reported when using L-HV and P-HV, respectively. A multi-
temporal analysis was also performed. This analysis indicated that the regression 
model developed using data from 1991 could be applied to SAR data from 1989. The 
data used by Ranson and Sun (1994) are further analysed in Ranson and Sun (1997). A 
radiative transfer model described in Sun et al. (1991) was used together with a model 
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simulating forest dynamics to obtain a database of simulated radar responses for a 
wide set of forest conditions. The simulated data were then used to develop regression 
models for biomass prediction. Only co-polarized simulated data were used. Using a 
ratio between P-HH and C-HH the model derived from simulated data gave an rmse 
of about 65 t/ha, similar to the error obtained from a similar model developed using 
experimental data. When using HV data the rmse decreased to about 50 t/ha. Lower 
errors were found when the maximum biomass was reduced from 370 t/ha to 150 t/ha.  

In Rauste et al. (1994) AIRSAR data collected from a test site close to Freiburg in 
south-western Germany were used to estimate stem volume, which can be used as a 
proxy for biomass. Note, however, that the conversion from stem volume to biomass 
depends on e.g. species and age (see paper III). The test site is dominated by 
coniferous temperate forests with stem volumes ranging up to 800 m3ha-1 (about 500 
t/ha). Inventory data were available for 230 forests stands, although the inventory 
predated the AIRSAR data collection by nine years. The stands were divided into a 
training set used for model development and a validation set used to estimate the 
prediction errors. Using P-band HV the error was estimated to between 140 m3ha-1 and 
170 m3ha-1 (about 85 t/ha to 100 t/ha). The authors list the following reasons for why 
these errors are higher than in similar studies: a) the nine year separation between the 
in-situ inventory and SAR data acquisition makes the inventory data unreliable b) the 
test site shows strong topographic variability and large species diversity compared to 
other sites, and c) the maximum biomass level is higher than in other sites.  

In Rignot et al. (1995) the possibility to estimate biomass from P-band SAR data is 
evaluated for four test sites. The sites are Landes forest in France (temperate forest), 
Duke University Forest in North Carolina (temperate forest), Bonanza Creek 
experimental forest in Alaska (boreal forest), and finally Manu National park in Peru 
(tropical rainforest). Data from the first and third of these sites were also analysed in 
Rignot et al (1994). Using HV, HH as well as the ratio between HH and VV 
backscatter as predictors, error rates are found to be 14% for Landes forest and about 
30% for Duke University Forest and Bonanza Creek experimental forest. Note that 
these errors are based on mean absolute error rather than the more commonly used 
root mean squared error. For the tropical site the authors state that the sample plot 
areas are too small for a quantitative error evaluation. In Rignot et al. (1994) an 
evaluation of L-band data from Bonanza Creek experimental forest is also included. 
The estimation errors based on L-band data are similar to or slightly worse than those 
based on P-band data for this dataset. 

In Baker et al. (1994) SAR data from the Thetford forest, UK, acquired using 
AIRSAR, are analysed and used to estimate timber volume. This test site is a managed 
productive forest with even-aged stands dominated by pine. Timber volumes up to 500 
m3ha-1 were present within the site, which according to the authors corresponds to 
about 185 t/ha. It is concluded that timber volume can be estimated with an error of 
about 20% using P-band HV backscatter. 
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AIRSAR data from two coniferous (Landes, France and Duke University Forest, 
North Carolina) and one broadleaf evergreen (Volcanoes National Park, Hawaii) test 
sites were analysed in Imhoff (1995b). In this study saturation levels, i.e. biomass levels 
above which SAR backscatter has reduced sensitivity to biomass, are determined. 
Saturation levels are obtained both by fitting of ninth-order polynomials and by visual 
inspection. Saturation levels are determined to be about 40 t/ha and 100 t/ha for L- and 
P-band, respectively. A note in this context is that recent results have demonstrated 
that P-band backscatter may be used to estimate biomass above these saturation limits 
(ESA, 2012, see also paper III and paper IV).  

In Hoekman and Quiriones (2000) AIRSAR data from the Guaviare district in 
Columbia were analysed. The imaged area covers both the Amazon rainforest and 
savannahs, but the focus of the study is on the former. Deforestation and land cover 
change are common in this area. A classification scheme based on multi-frequency and 
multi-polarized data is used to classify the area into four land-cover types: primary 
forest, secondary forest regrowth, recently burnt forest and pastures. Classification 
accuracies of more than 90% were obtained. In addition, the area was classified into 
eight biomass classes. The limited number of areas with in-situ measurements on 
biomass prevented a quantitative evaluation of the accuracy of this classification.  

Another classification analysis was performed in Santos et al. (2003). In this study, data 
from the Brazilian Amazon acquired using the airborne SAR system AeroSensing 
Radar Systeme (AeS-1) were used to classify part of the imaged area into six land-type 
classes. Each land-type class was associated with a forest biomass level. An overall 
classification accuracy of 89% was obtained using P-band SAR data. 

AIRSAR data from the Yellowstone National Park, USA, are analysed in Saatchi et 
al. (2007). This area consists primarily of coniferous forest and sagebrush shrublands, 
and has strong topographic variability. L- and P-band backscatter data are used to 
develop regression models for prediction of crown and stem biomass. The regression 
models include topographic corrections based on the incidence angle (neglecting local 
ground slope) and the local incidence angle (including local ground slope). The model 
for stem biomass and the model for crown biomass include seven regression 
coefficients each. Using a holdout and bootstrap procedure the rmse for estimation of 
stem biomass was found to be about 20 t/ha (𝑅2=0.57) and 11 t/ha (𝑅2=0.81) for L- and 
P-band, respectively. The regression models for stem biomass include second order 
polynomials for all linear polarizations (HH, HV and VV). For estimation of crown 
biomass the best results were found by combining L- and P-band HV backscatter (first 
order polynomials including corrections for topography). This model gave an rmse of 
about 1.9 t/ha (𝑅2=0.73). The study also developed regression models for estimation of 
canopy fuel variables such as canopy bulk density. Such variables are useful for fire 
management purposes.  
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In Saatchi et al. (2011) AIRSAR data from the La Selva Biological Station in Costa 
Rica are used to develop regression models for biomass estimation. Using inventory 
data from old growth, secondary succession, and plantation forest, the impact of spatial 
scale for plot level biomass inventories were investigated. It was found that plot sizes 
of at least 0.25 ha were required to reduce the coefficient of variation below 20% and 
give stationary and normal distributions of biomass. For smaller plots single 
occurrences of sparsely distributed large trees can cause overly large variations in 
biomass between plots. Regression for biomass estimation models based on 
polarimetric L- and P-band backscatter, respectively, were developed for the plot sizes 
0.25 ha, 0.5 ha and 1.0 ha. Best results were found for the largest spatial scale. The 
authors conclude that the decreased sensitivity of radar measurements to forest 
biomass for smaller scales is caused both by increased spatial variability and increased 
levels of speckle. For 1.0 ha plots the rmse was estimated to be about 20 t/ha for P-
band and about 33-40 t/ha for L-band (maximum biomass 270 t/ha, mean biomass 170 
t/ha). In this study forest height estimated from C-band interferometry were also 
added to the regression models, which reduced the rmse by about 40% at L-band and 
20% at P-band.  

In Neumann et al. (2012) data acquired using E-SAR from the Krycklan catchment in 
northern Sweden were analysed. This boreal test site has strong topographic variability 
and biomass at stand level range up to 183 t/ha. L- and P-band backscatter as well as 
indicators derived from polarimetry and polarimetric interferometry was used to 
develop methods for biomass estimation. Three methods for biomass estimation were 
evaluated: multiple linear regression, support vector machine and random forest. The 
latter two methods are non-parametric. The results suggest that inclusion of indicators 
beyond backscatter decreased estimation errors by up to about 25% at L-band and 
40% at P-band. For these data L-band tends to give lower estimation errors than P-
band, which can likely be attributed to topographic effects. Using linear regression the 
lowest rmse was estimated by cross-validation to be about 20 t/ha. The non-parametric 
methods did not improve the estimation errors.  

4.3.4 SUMMARY OF PAPER III 
In paper III data from the BioSAR 2007 campaign are analysed and used to develop 
models for biomass estimation. In this campaign L- and P-band SAR data were 
collected from the test site Remningstorp in southern Sweden using the airborne 
sensor E-SAR. The forest in this site is classified as hemiboreal. Data were collected 
on three occasions between 9 March 2007 and 2 May 2007. The backscatter from 
different dates was generally found to be well correlated, although for L-band cases of 
low correlation were present. For P-band the mean backscatter level increased by 
about 1 dB from 9 March 2007 to 2 May 2007, which is possibly an effect of increased 
soil moisture as late winter progress towards spring. Regression models for biomass 
prediction were developed using reference data consisting of 58 forest stands for which 
biomass estimates based on laser scanning data were available. Stepwise regression and 
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an optimisation technique for finding the best response variable transformation were 
used to derive regression models. The results indicate that the square root of the 
biomass is proportional to the backscatter expressed in dB. For P-band stepwise 
regression analysis indicated that inclusion of both HV and HH in the regression 
model provided a significant improvement compared to models with only one 
polarization. For L-band inclusion of multiple polarizations did not result in significant 
improvement. The rmse was evaluated using leave-one-out cross-validation for the 58 
forest stands used for model development (training stands, biomass range 10-290 t/ha) 
as well as ten 80 m by 80 m stands (validation stands, biomass range 50-270 t/ha) for 
which detailed in-situ measurements were available. The latter stands were only used 
for validation. For L-band the rmse was 40-48 t/ha (31-37%) and 68–83 t/ha (38–46%) 
for the training and validation stands, respectively. The increased estimation error for 
the validation stands was largely explained by the higher biomass levels for these 
stands, since the L-band data showed weaker estimation performance at high biomass 
levels. For P-band the rmse was estimated to be about 30-35 t/ha (23-27%) and 30-45 
t/ha (17-25%) for the training and validation stands, respectively. Models based on 
HV, HH, and HV and HH gave similar results. For P-band no strong indications of 
reduced estimation performance for high biomass levels were seen.  

4.3.5 SUMMARY OF PAPER IV 
In paper IV data from the BioSAR 2007 and the BioSAR 2008 campaigns were used to 
develop models for biomass retrieval. In BioSAR 2008 E-SAR data were collected 
from the test site Krycklan in northern Sweden. This boreal test site has pronounced 
topographic undulations. A new model based on HV backscatter and the HH/VV 
backscatter ratio is proposed and compared to five other models. The proposed model 
also includes a correction for ground slope. The models are subjected to three different 
tests to evaluate estimation performance under different conditions. First, models 
trained using data from Remningstorp acquired on one of the imaging occasions in 
2007 are evaluated using data from the other imaging occasions. Secondly, topographic 
effects are evaluated by using data from Krycklan. In this test, data from different 
flight headings were used for training and evaluation. Lastly, models trained using data 
from one test site were evaluated on the other site. The proposed model performed 
similar or better than the other models in all of these tests. In particular, the proposed 
model showed good estimation performance when training was done using data from 
Krycklan (pronounced topographic variability) and evaluation was done using data 
from Remningstorp (flat topography). In this case the rmse was estimated to 40-59 t/ha 
(22-33%), which was lower than for the other models and similar to the error obtained 
when training was done using data from Remningstorp. When the roles of training and 
evaluation data were reversed the results are inconclusive since the topographic 
variations in Remningstorp were insufficient to correctly estimate the slope correction 
in the proposed model.  
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4.3.6 DISCUSSION AND CONCLUSIONS 
All of the studies summarized in sections 4.3.3 to 4.3.5 agree that UHF-band SAR 
backscatter is sensitive to forest biomass. There is also a general consensus that P-band 
is more suitable for biomass estimation than L-band, except in terrain with pronounced 
topographic variability (Neuman et al., 2012). It can also be concluded that HV and 
HH polarized backscatter is more sensitive to biomass than VV backscatter. However, 
there is no consensus on the functional form of the estimation model, and the reported 
estimation errors vary between different studies. Part of the latter variability can be 
explained by the different approaches used to estimate biomass and errors. Many 
studies report residual errors, which tend to be lower than the expected estimation 
error obtained when predicting biomass on a new dataset (see section 4.3.2). More 
careful approaches to estimation of errors should be used, as is done in e.g. paper II 
and especially paper IV. The estimation error also depends on the quality of reference 
biomass data (e.g. in-situ data and laser scanning data) and SAR data. Thus, an 
important aspect of biomass regression modelling is to analyse and report quality 
measures for both SAR and reference biomass data (see e.g. paper III). Finally, the 
estimation error is also dependent on test site conditions (e.g. topography, stand size, 
and species variability), with lowest estimation errors obtained for flat plantation 
forests with large mono-species forest stands. However, differences in modelling and 
evaluation approaches between sites, as well as differences in the quality of both in-situ 
and SAR data, makes it difficult to assess the estimation error as a function of test site 
conditions based on the published literature. For this purpose new studies covering a 
range of forest conditions and adopting a consistent approach to regression modelling 
as well as to collection and processing of reference biomass data and SAR data, are 
needed. 

4.4 BIOMASS CHANGE 
Changes in forest biomass though deforestation and degradation leads to a decrease in 
the carbon pool stored in forests, resulting in outlet of carbon to the atmosphere. On 
the other hand, growing forest stocks can absorb carbon, thus mitigating the rise of the 
level of carbon dioxide in the atmosphere. The importance of monitoring biomass 
change is illustrated by the United Nations initiative for Reducing Emissions through 
Deforestation and forest Degradation (REDD+). The objective of this initiative is to 
reduce emissions of carbon dioxide through promotion of sustainable forest 
management (ESA, 2012). Many studies in which the relation between forest biomass 
and UHF-band backscatter are analysed have been published. However, studies on 
biomass change based on UHF data are scarce, and for P-band no such study is 
available. In paper V, recently acquired P-band SAR data are used to develop models 
for estimating biomass change.  

4.4.1 SUMMARY OF PAPER V 
In paper V data from the BioSAR 2007 and BioSAR 2010 campaigns are used to 
develop regression models for estimation of biomass change. During these campaigns 
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P-band SAR data from Remningstorp in southern Sweden were collected both during 
the spring 2007 (9 March to 2 May) and on 23 September 2010. Data from 2007 and 
2010 were collected using the airborne systems E-SAR and SETHI, respectively. A 
method based on the HH/VV backscatter ratio was developed which was able to 
correct for backscatter changes caused by changes in environmental conditions and 
calibration errors. After application of this correction method the change in 
backscatter in areas for which the biomass was the same in 2007 and in 2010 was close 
to zero. Regression models based on backscatter change were developed using change 
maps derived from laser scanning data. A two-fold cross-validation approach was used 
both for model selection and for evaluating differences in estimates based on laser 
scanning and SAR data. Estimation errors were also evaluated using six 80 m by 80 m 
plots for which detailed in-situ measurements were available both from 2006-2007 and 
2010-2011. Different regression models were developed for biomass change on 
logarithmic, square root and linear scales. The results indicate that the rmse for 
estimating biomass change is about 15% or 20 t/ha. Simulations were performed in 
order to evaluate the possibilities of measuring biomass change using spaceborne P-
band SAR. The simulations show that it is possible to correctly indicate the sign of the 
biomass change with 95% probability for the following scenarios: a) 50% change in 
biomass and 64 ENL, and b) biomass loss of 75% and 8 ENL.  

4.4.2 CONCLUSIONS AND OUTLOOK 
Monitoring of biomass change on a global scale is an important task for which current 
methods are inadequate (ESA, 2012). The results in paper V suggest that a spaceborne 
P-band SAR such as BIOMASS can be useful for estimation of biomass change. The 
encouraging results from this study should be followed by similar studies to evaluate if 
the results from paper V hold for other datasets. In particular, studies of biomass 
change in tropical forest would be very interesting and useful.  

4.5 SUMMARY AND CONCLUSIONS 
Section 4 have focused primarily on evaluating the usefulness of UHF-band SAR data 
for estimating forest biomass and forest biomass chance. In particular the focus has 
been on the use of P-band SAR data, since a) the future launch of BIOMASS provides 
strong motivation for continued efforts on the use of P-band SAR for biomass 
estimation, and b) many studies have shown that P-band SAR has a stronger potential 
for biomass mapping than higher frequencies. Paper III lends further evidence to this 
claim, and suggests that biomass estimation errors in the order of 20-25% at stand level 
(0.5 ha to 9 ha) can be obtained for (hemi-) boreal forests in flat terrain using airborne 
P-band SAR data. The results in paper II shows that topography can have a significant 
impact on P-band SAR images. Thus, it is of great importance to develop methods for 
correction of topographic effects. A step in this direction was made in paper IV, 
providing a first order correction for ground slope. The across-site evaluation of 
predictive performance used in this paper is a very strong method, and paves the way 
for similar studies. Another important subject which should be further studied is 
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effects of moisture variability. The results on biomass change estimation presented in 
paper V are encouraging; however, further studies are needed to confirm that the 
findings in paper V are repeatable in other areas.   
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5 CONCLUSIONS AND OUTLOOK 
The work in this thesis fits well in the context of biomass mapping using UHF-band 
SAR data. The conclusion in paper I that Faraday rotation can be measured in fully 
polarimetric UHF-band SAR data has strong support in other studies, e.g. Freeman 
(2004), Meyer and Nicoll (2008), and Quegan et al. (2012). The importance of 
topography for HH-imaging in the UHF-band is recognised (Lin and Sarabandi, 1995). 
The results in paper II further supports that topography is important, and also shows 
that small scale topography can have significant effects. The conclusions from paper III 
adds to the established conclusions that UHF-band backscatter can be used for 
estimation of forest biomass, that P-band gives lower estimation errors than L-band, 
and that HV and HH backscatter shows the strongest relations to biomass. Paper IV 
proposes a new model for biomass estimation based on P-band SAR backscatter data. 
This model is based partly on findings in previous studies and partly on novel ideas. 
The across-site evaluation used in this paper is a more difficult test than the single-site 
evaluations used in most other studies. Novelties are also presented in paper V. This 
paper is the first to use P-band SAR data for estimation of biomass change. It also 
proposes a novel method for correction of backscatter changes caused by 
environmental effects and radiometric calibration uncertainty. The results in this paper 
are promising, but further studies are needed to validate the results in other areas. In 
conclusion, the work in this thesis contributes to the growing evidence that UHF-band, 
and in particular P-band, SAR data can be a useful tool for global biomass mapping. 
However, it is important to stress that there are limits to the precision and accuracy 
that can be obtained using such data. An important part of the work in this thesis has 
been to derive well founded estimates of expected prediction errors.  

I would like to conclude this thesis by pinpointing crucial areas in which further 
research are needed. These areas are identified based on the work in this thesis and on 
my experience from several years of working with UHF-band SAR in relation to forest 
biomass. First, the effects of topography on UHF-band SAR data are not yet fully 
understood. Paper IV provides a first step towards correction of topographic effects, 
but this correction is not able to capture the full topographic behaviour. The 
importance of topographic corrections is underlined by recent findings based on 
tomographic imaging, which suggests that topography can have a strong impact on the 
cross-polarized channel (Telbaldini and Rocca, 2012). I believe that a deeper 
understanding of the processes underlying the topographic effects is required to be 
able to develop improved methods for topographic correction. To this end combined 
efforts of physical modelling and data analysis methods such as tomography are 
required. Secondly, the influence of environmental conditions such moisture is a topic 
which requires further attention. Results in paper IV indicate that corrections for 
environmental effects are possible using polarimetric data, but further studies are 
needed to support these findings. Thirdly, the encouraging result that P-band SAR 
data are well suited for estimation of biomass change needs to be confirmed in 
additional studies. Fourth and finally, the on-going efforts towards assessing the 
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performance of a spaceborne P-band SAR should continue. Both system effects (e.g. 
reduced resolution and increased ambiguity levels compared to airborne system) and 
effects of the ionosphere must be included. As noted in Quegan et al. (2012) the key 
issue is not addressing system performance, but rather evaluating the estimation errors 
for biomass and biomass change. With combined efforts from the SAR community 
these challenges can be met, and the state of the art can be pushed forward towards 
new and deeper insight on the possibilities and limitations of monitoring biomass using 
UHF-band radar systems.   
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