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Experimental Investigation of the Number
of Independent Samples and the Measurement

Uncertainty in a Reverberation Chamber
Xiaoming Chen

Abstract—Due to the complicated and time-varying boundary
conditions, reverberation chamber (RC) measurements are usu-
ally studied using statistical analysis. Hence, it is of importance to
know the number of independent samples of the measurements.
Different methods for estimating the number of independent sam-
ples has been proposed in the literature. This paper uses the spa-
tial degrees of freedom method to estimate the independent sample
number. Comparing with the commonly used autocorrelation func-
tion method, the proposed method requires less computation time
and provides a smaller estimation bias for correlated samples and
a smaller estimation variance once above a certain sample number.
The estimated independent sample number can be used to explain
the dependences of the measurement uncertainty on frequency,
mode stirrers, and RC loading. Finally, the estimated independent
sample number is used to predict the standard deviation (STD) of
the average power level for different loading configurations, where
good agreements are observed.

Index Terms—Degrees of freedom (DoF), independent sample
number, reverberation chamber (RC), standard deviation (STD).

I. INTRODUCTION

THE reverberation chamber (RC) has been used for elec-
tromagnetic compatibility (EMC) tests [1]–[12] as well as

over-the-air (OTA) measurements of active devices [13]–[16].
Due to the complicated and time-varying test conditions, RC
measurements are usually studied from a statistical point of
view [1]. Therefore, it is of importance to have enough inde-
pendent samples to ensure an accurate statistical analysis of the
measured data. Different methods have been proposed in the lit-
erature for estimating the number of independent samples Nind .
The most commonly used method for estimating Nind is the
autocorrelation function (ACF) method, see e.g., [2]–[7]. It has
been recognized that the ACF method gives only coarse estima-
tions [8]; therefore, modified ACF methods was proposed [2],
which inevitably suffers from high-computational complexity.

In this paper, we resort to a simple yet accurate Nind estimator
that has been used in [9] for determining the independent turn-
table platform positions. As explained in [9], this estimator is
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rooted from majorization theory (cf., [17, Sec. 4.1.2]), which
specifically deals with spatial correlations. It was found out
recently that this estimator had been derived in the 1960s [18].
Later on, this estimator was termed spatial degrees of freedom
(DoF) in [19] and recently used in [10] for estimating Nind of
the whole stirring sequence.

This paper has three main contributions compared with the
previous work (especially [10]). First, the work in [10] used
samples in the frequency domain with up to 1 GHz frequency
bandwidth for the estimation, which limited the frequency res-
olution of the estimated Nind . In this paper, we use the divide
and conquer approach to separate the whole stirring sequence
into different subsets (according to their stirring mechanisms)
and estimate Nind in each subset while treating samples of the
other subsets as observations. In this way, we preserve the finest
frequency resolution (i.e., the measuring frequency step), which
enable us to observe any frequency variation of Nind estimates.
Second, since the DoF estimator suffers from underestimation
with finite observations, effort has been exerted in selecting the
uncorrelated frequency samples and in choosing better covari-
ance matrix estimation [10]. In this paper, however, it is found
out that the underestimation associated with the DoF estimator
is negligible for moderately correlated data (e.g., with a uni-
form complex correlation as small as 0.3 in magnitude). This
implies that the underestimation problem can be circumvented
or alleviated by oversampling the field in the RC. Third, while
almost all the previous Nind estimation studies were conducted
with statistical analyses only, no one has compared the Nind
estimates with the actual measured uncertainty, e.g., standard
deviation (STD) of the average power level. In this paper, the
estimated Nind was compared with the measured STD based
on extensive measurement campaign in an RC, based on which
the DoF estimator (without any estimation correction) is vali-
dated qualitatively. It is shown that the RC uncertainty can be
estimated using the estimated Nind based on only one set of
measurement instead of many sets independent measurements.

In the following Section II, we introduce the ACF and DoF
methods and present a possible way to alleviate the underes-
timation of the DoF method. In Section III, we compare the
estimation performance of the ACF and DoF methods using
Monte Carlo simulations. The superiority of the DoF method is
clearly demonstrated. In Section IV, we apply the DoF method
to measured data in an RC. Based on the extensive measurement
campaign in the RC, we are able to explain the measurement
uncertainty using the estimated Nind . Section V concludes this
paper.

0018-9375 © 2013 IEEE
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II. ESTIMATOR OF INDEPENDENT SAMPLE NUMBER

Before presenting the DoF estimator, we briefly introduce
the commonly used ACF method for performance comparisons
later on. Note that all the equations in this section are related
to a single frequency of interest; yet for notational convenience,
the frequency dependence is omitted.

A. ACF Method

The estimated Nind using the ACF method can be written as

Nind =
Nmeas

Δ
(1)

where Nmeas is the number of measured samples and Δ repre-
sents the offset at which the autocorrelation coefficient of the
measured samples, i.e.,

ACF(Δ) =
∑Nm e a s−Δ−1

n=0 xn+Δx∗
n

∑Nm e a s−1
n=0 xnx∗

n

(2)

where the superscript ∗ is the conjugate operator, has dropped
to 1/e ≈ 0.37.

The ACF method is usually applied to the whole dataset.
However, when antenna, mode, and platform stirrings are em-
ployed in an RC measurement, it is difficult to determine the
optimal stirring sequences if the whole dataset is used. A wiser
choice would be to apply the ACF method to each of the stir-
ring sequences to determine the number of independent fixed
antennas Nind,ant , the number of independent mode-stirring po-
sitions Nind,st , and the number of independent platform-stirring
positions Nind,pf , respectively. In this case, the obtained offset
Δ is a function of the stirring sequence of interest. For example,
if Nind,st is of interest, then the number of realizations N is
the product of the numbers of the other stirring sequences and
the corresponding Δ is a function of mode-stirring position.
To improve the estimation accuracy, we take an average of Δ
over all the Nst mode-stirring positions before substituting it
to (1). Another way of improving the estimation accuracy is to
calculate Nind,st as a function of the mode-stirring sequence
instead and then average Nind,st over all the Nst mode-stirring
positions. One can easily verify by simulations that the latter
way (i.e., averaging Nind,st) results in slower convergence rate
than the former way (i.e., averaging Δ). Therefore, we will use
the former way for the ACF method throughout this paper.

B. DoF Method

Instead of estimating Nind of the whole stirring sequence us-
ing frequency samples as observation [10], we divide the whole
stirring sequence into three subsets and estimate Nind of each
of the subset while treating the other two subsets as observation
(i.e., divide and conquer approach). In this way, we preserve the
finest frequency resolution and avoid the potential problem of
averaging frequency samples with different statistical proper-
ties. Specifically, the number of independent samples in an RC
can be decomposed as (cf., Section II-A)

Nind = Nind,antNind,stNind,pf . (3)

Note that (3) holds when the three stirring sequences are
independent. When there are correlations between the differ-
ent stirring sequences the right-hand side of (3) serves an upper
bound of Nind . Nevertheless, due to the different physical mech-
anisms of the three stirring sequences, (3) holds in practice, as
can be seen in Section IV. Each term at the right-hand side of
(3) Nind,l (l represents ant, st, or pf) can be estimated using the
following procedure [9].

1) Denote the complex field samples at the mth antenna (l =
ant), mode-stirring position (l = st), or platform-stirring
position (l = pf) as a column vector xm , m = 1. . . Nl .

2) Concatenate xm into a matrix X = [x1 ... xNl
].

3) Estimate the correlation matrix of X as

R = XXH . (4)

4) The independent antenna (l = ant), mode-stirrer (l = st),
or platform (l = pf) sample number can be estimated
as [10], [17]–[19]

Nind,l =
tr(R)2

tr(R2)
=

(
∑

i λi)
2

∑
i λ2

i

(5)

where the superscript H denotes conjugate transpose, tr repre-
sents the trace operator, and λi represents the ith eigenvalue of R.
It determines the dimensionality of the column space of X [20]
and therefore the corresponding independent sample number.
Because of (5), the proposed method for estimating Nind is re-
ferred to as the DoF method [19]. The accuracy of this method
depends on the number for realizations. For large realization
numbers, (5) and therefore (3) approach asymptotically to their
corresponding true values, respectively. Apart from the original
derivation in [18], (5) can also be derived using the information
theory technique [10]. Note that electromagnetic functions are
continuous physical function defined in a norm space with in-
ner product well defined whereas signals can be artificial and
usually they are not defined in well-defined spaces. An excel-
lent discussion regarding this point can be found in [11], where
the correlation matrix was related to independent positions of
the stirrer and physical proprieties are also investigated with a
different approach.

Note that although R in (4) is the maximum likelihood estima-
tion of the true correlation matrix R0 , the eigenvalue of R, i.e.,
λi , are biased estimates of the true eigenvalues [21]. Especially,
when the number of realizations is comparable in magnitude to
the number of stirring sequence Nl , estimates of small eigen-
values are biased down, while estimates of large eigenvalues are
biased up. Therefore, the estimated eigenvalue vector majorizes
the true eigenvalue vector [17] and consequently R is more cor-
related than R0 . This results in underestimation of Nind,l for
data with little correlations. To overcome this problem, one can
use the improved eigenvalue estimator [21]

λ
imp
i = Nl(λi − μi) (6)

with μi as the solutions of

N∑

i=1

λi

λi − μi
= Nl. (7)



818 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 5, OCTOBER 2013

Nevertheless, as will be shown in the next section, the im-
proved eigenvalue estimator (6) is only useful for uncorrelated
data and that it is not needed in practice for oversampled (corre-
lated) data, which is actually required for estimating Nind [4].

Comparing the DoF method with the ACF method, it can be
seen that the latter requires more computation because of the
ACF (2) and the inverse mapping needed to determine the offset
Δ. Note that the accuracies of both methods depend also on the
correlations of the measured data, which has been overlooked
in the previous studies. Also note that we assume the data to be
drawn from a zero mean random process so that the correlation
in both methods is equivalent to covariance. The zero mean
random process assumption holds in practice for an RC equipped
with platform stirring (cf., [22]). For RCs with nonnegligible
K-factors, e.g., [23], [24], both methods can be extended to the
covariance case by removing the mean value in a straightforward
manner. In the next section, we will compare the performance
of the DoF method with that of the ACF method and study their
dependences on the number of realizations and correlations of
measured data via simulations.

III. SIMULATION

We resort to simulations to study the performance of the DoF
method and compare it with the ACF method. For the sake of
easy exposition and without loss of generality, we focus on the
estimating Nind,st (estimations of the independent sample num-
bers for the other two stirring sequences will be studied in the
next section with measured data). We first numerically gener-
ated an Nst × N random matrix Xw consisting independent and
identically distributed (i.i.d.) Gaussian elements. Given the true
correlation matrix R0 , the correlations can be introduced to the
mode-stirring positions by [9]

X = R1/2
0 Xw (8)

where the superscript 1/2 can be implemented as, e.g., the
Cholesky decomposition [20].

Note that due to finite realizations, the estimate R = XXH

differs from R0 almost surely, but as N increases the estimated
Nind,st approaches its true value. This is illustrated in Fig. 1 for
uniform correlations with four correlation coefficients, i.e., ρ =
0, 0.3, 0.5, 1, by applying the DoF method to the correlated data
X (where Nst is assumed to be 10). The solid curves in Fig. 1
represents the estimated Nind,st using (5) directly and the dot-
ted curves represents the estimated Nind,st using the improved
eigenvalue estimates (6) [i.e., by replacing the eigenvalue esti-
mates in (5) with the improved eigenvalue estimates (6)]. For
ρ = 0, the mode-stirring positions are independent (to be ex-
act, the random fields are uncorrelated, and since the field in an
RC is Gaussian distributed [1], they are independent as well);
therefore, the asymptotic Nind,st = 10; for ρ = 1 all the mode-
stirring positions are totally dependent, therefore the asymptotic
Nind,pf = 1. As can be seen from Fig. 1, the estimated Nind,st
converges to its true value as N increases and that the Nind,st
underestimation for the uncorrelated data can be partially cor-
rected by using the improved eigenvalue estimates (6) and that
the underestimation (and therefore the estimation error) is more

Fig. 1. Estimated Nind ,st using the DoF method as a function of number
of realizations with Nst = 10. Different colors represent different correlation
cases. The solid curves represents the estimated Nind ,st using (5) directly
and the dotted curves represents the estimated Nind ,st using the improved
eigenvalue estimates (6). For the case of total correlation, the solid and dotted
curves overlap.

severer for less correlated samples. As the sample correlation
increases, the performance of the DoF method improves, i.e.,
the estimates converge faster to their corresponding true values.

Since estimating the number of independent samples requires
oversampling the field (cf., [4]), in practice the measured data
are correlated. It is known from Fig. 1 that with more correlated
data, there is no need to use the improved eigenvalue estimator
(6), which has four times longer computational time according
to simulations. This finding is significant in that employing
any of the improved estimators will drastically increase the
computational complexity. As a result, we will use (5) directly
for the DoF method hereafter.

We next run simulations to compare the estimation perfor-
mance of the DoF method with that of the ACF method, assum-
ing ten mode-stirring positions, i.e., Nst = 10. We first com-
pare the biasness of the two methods by plotting the estimated
Nind,st as a function of number of realizations with uniform
correlations, as shown in Fig. 2. It can be seen that 1) the DoF
method (solid curves) tends to underestimate Nind,st ; 2) the
ACF method has larger estimation bias than the DoF method;
and 3) estimates of the two methods tend to converge to the true
value as the number of realizations increases and, for correlated
samples, the convergence rate of the DoF method is much faster
than that of the ACF method. Note that the underestimation
of the DoF method for uncorrelated data in Fig. 2 is more se-
vere than that in Fig. 1. This is because that the majorization
problem (cf., Section II-B) is more profound when the number
of realization per stirring position (i.e., N /Nst in this case) is
smaller. As explained before, since only the maximum Nind is
of interest, in practice the measured data for determining Nind
are oversampled, which favors the DoF method even more.

To study the variance of the two methods, we then repeat the
simulation 1000 times to calculated the STD of the estimates
of Nind,st . For a realistic comparison, an estimated correlation
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Fig. 2. Estimated Nind ,st using the DoF and ACF methods as a function
of number of realizations with Nst = 10. Different colors represent different
correlation cases. The solid curves represents the estimated Nind ,st using the
DoF method (5) and the dotted curves represents the estimated Nind ,st using
the ACF method.

Fig. 3. Magnitudes of correlation coefficients between measured samples at
different mode-stirring positions in an RC.

matrix from the measured samples at 50 mode-stirring posi-
tions in an RC (cf., Section IV) is used as R0 for this simulation.
For simplicity, we refer to this estimated correlation matrix as
measured correlation matrix. The measured correlation matrix
is shown in Fig. 3, from which it can be seen that the mea-
sured data are correlated (because of oversampling). To reduce
the computation burden and focus on practical sample num-
bers, we confine the number of realizations between 50 and
200. The calculated STDs of the estimates of both methods are
shown in Fig. 4. As can been seen, the accuracy of the DoF
method depends on the number of realization N and that it has
a smaller variance than the ACF method when N is larger than
85. (This sample number is not difficult to obtain for practical
RC measurements.) Moreover, based on the observation of the
simulations, the computation time of the ACF method for one
realization is larger than that of the DoF method by a factor of

Fig. 4. STD of the estimated Nind ,st using DoF and ACF methods with the
measured correlation matrix shown in Fig. 2.

Fig. 5. Drawing of Bluetest RC with two mechanical plate stirrers, one plat-
form and three wall antennas (The inserted little photo in the upper left corner
shows the head phantom and the location of the three absorber-filled PVC
cylinders of load2 configuration.

10 and that this factor increases linearly with increasing number
of realizations for averaging (cf., Section II-A).

IV. MEASUREMENT

Measurements were performed from 500 to 3000 MHz in
the Bluetest HP RC [16] that has a size of 1.80 × 1.75 ×
1.25 m3 (a drawing of which is shown in Fig. 5). This fre-
quency range is chosen because it covers most of the spectrums
of telecommunications for active OTA measurements, e.g., [13].
The RC has two mode-stirring plates, a turn-table platform (on
which a wideband discone antenna is mounted), and three an-
tennas mounted on three orthogonal walls (referred to as wall
antennas hereafter). The wall antennas are actually wideband
half-bow-tie antennas. During the measurement, the turn-table
platform was step-wisely moved to 20 platform stirring posi-
tions evenly distributed over one complete platform rotation; at
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Fig. 6. Estimated Nind ,ant using the DoF method based on measurement in
the RC.

each platform-stirring position the two plates were simultane-
ously and step-wisely moved to 50 positions (equally spanned
on the total distances that they can travel along two RC walls). At
each stirrer position and for each wall antenna a full frequency
sweep was performed by a vector network analyzer (VNA) with
a frequency step of 1 MHz, during which the scattering pa-
rameter (S-parameter) is sampled as a function of frequency
and stirring position. Hence, for this measurement setup, we
have three (fixed) wall antennas, 50 plate-stirring positions, and
20 platform-stirring positions, i.e., Nant = 3, Nst = 50, and
Npf = 20.

To be able to estimate the measurement uncertainty (in terms
of STD of the average power level) and to see the effects
Nind,ant , Nind,st , and Nind,pf on the measurement uncertainty,
the same measurement sequence is repeated nine times, each
time with a different height/orientation of the antenna on the
platform, i.e., the antenna on the platform was placed with three
different heights and at each height it is placed with three dif-
ferent orientations. This nine-measurement procedure was pro-
posed in [16] for uncertainty assessment.

The nine-measurement procedure were repeated for three
loading conditions: load0 (unloaded RC), load1 (head phan-
tom that is equivalent to a human head in terms of microwave
absorption), and load2 (the head phantom plus three Polyvinyl
Chloride (PVC) cylinders filled with electromagnetic absorbers
cut in small pieces), whose quality factor (Q-factor) is around
1000, 550, 300 at 1.5 GHz (see Fig. 3 in [12] for the correspond-
ing Q-factor as a function of frequency). Hereafter measured
data from these different loading configurations are simply re-
ferred to as load0, load1, or load2 data.

The estimated Nind,ant , Nind,st , and Nind,pf are shown in
Figs. 6–8, respectively. Since the three wall antennas are suf-
ficiently away from each other and with orthogonal polariza-
tions, it is natural that Nind,ant is close to 3 for most of the
frequencies (cf., Fig. 7). Note that the drop of Nind,ant below
700 MHz is probably due to the fact that the RC is under-
moded below 700 MHz, i.e., the fundamental mode resonance

Fig. 7. Estimated Nind ,st using the DoF method based on measurement in
the RC.

Fig. 8. Estimated Nind ,pf the DoF method based on measurement in the RC.

frequency for the RC in use is f0 = 119 MHz, giving a low-
est usable frequency of about 6f0 = 717 MHz (see [25] and
reference therein). It can also be seen from Fig. 5 that Nind,ant
is almost independent of the RC loading. This is because that
the wall antennas are uncorrelated, i.e., there is no oversampling
w.r.t. the antenna stirring. This implies that the measurement un-
certainty can be improved by introducing more wall antennas.
Nevertheless, since the wall antennas are connected to the VNA
via a radio frequency (RF) switch (see Fig. 5), the improved
measurement uncertainty by increasing wall antennas will be at
the cost of increasing measurement time and hardware expanses
(e.g., more antennas, more RF cables, and an RF switch with
more ports).

Due to the oversampling of the mode and platform stirrings,
the resulting Nind,st and Nind,pf depend on the RC loading
(see Figs. 7 and 8). As can be seen that Nind,st and Nind,pf
increase with increasing frequency and decrease with increasing
loading. This is rather intuitive: at higher frequencies, the mode-
and platform-stirring positions are less correlated due to the
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increasing electrical distances; by increasing the RC loading,
the angular spread reduces (i.e., the field is less isotropic) and
therefore the correlation length [26] (or coherence distance) that
is inversely proportional to the angular spread [27] increases,
rending more correlated mode- and platform-stirring positions.
Note that Nind,st and Nind,pf are strictly smaller than Nst = 50
and Npf = 20, respectively, over the whole selected frequency
range.

In order to see the impact of Nind on the measurement uncer-
tainty and verify the DoF method by measurements, we calcu-
lated the STD of the average power over the nine-measurements
for each loading. For the conciseness of this paper, we will focus
on the cases of load0 and load2. For clear exhibitions, the cal-
culated STD σ is plotted using the following dB-transformation
[16]:

σdB = 5 log10
(1 + σ)
(1 − σ)

. (9)

The measured STDs with Npf = 20, Nst = 50, and
Nant = {1, 2, 3} (i.e., with 1, 2, or 3 wall antennas) are plot-
ted in Fig. 9. The measured STDs with Nant = 3, Npf = 20,
and Nst = {5, 10, 25, 50} are plotted in Fig. 10. Note that
the mode-stirring positions are chosen as far away from each
other as possible for Nst = {5, 10, 25}, e.g., for Nst = 10, the
mode-stirring positions are chosen with a step of 5 out of the
total Nst = 50 positions. The measured STDs with Nant = 3,
Nst = 50, and Npf = {1, 2, 4, 10, 20} are shown in Fig. 11.
Note that the platform-stirring positions are chosen as far away
from each other as possible in a similar manner as the selection
of the mode-stirring positions described earlier. Also note that,
in order to increase the readability of the plotted STD curves,
a 50-MHz smoothing window [16] is applied to the calculated
STDs before plotting.

Comparing Figs. 6 and 9, it can be seen that the measure-
ment uncertainty improves with increasing Nant from 1 to 3,
while Nind,ant is close to 3 for most of the frequencies, regard-
less of the RC loading. Comparing Figs. 7 and 10, it can be
seen that, for the load0 case, Nind,st exceeds 25 above 2 GHz,
while increasing Nst from 25 to 50 shows clear improvement
of the measurement uncertainty above 2 GHz [see Fig. 10(a)];
it can also be seen that, for the load2 case, increasing Nst more
than 5 only results in negligible improvements the measure-
ment uncertainty [see Fig. 10(b)], while Nind,st is only slightly
larger than 5 at its largest value. Comparing Figs. 8 and 11, it
can be seen that, for the load0 case, Nind,pf is larger than 10
for most of the frequencies, while it is beneficial to use more
than ten platform-stirring positions [see Fig. 11(a)]; it can also
be seen that, for the load2 case, there is little improvement of
the measurement uncertainty by increasing Npf from 10 to 20
[see Fig. 11(b)], while the largest Nind,pf value is around 10 for
load2. In summary, the experimental observation agrees with the
fact that the measurement uncertainty improves with increasing
independent samples number. Therefore, the DoF method for
estimating the number of independent samples is qualitatively
verified by measurements.

To further verify the DoF method, we substitute the estimated
Nind,ant , Nind,st , and Nind,pf into (3) to obtain the estimated

Fig. 9. Estimated STD of average power over the nine-measurements with
different wall antenna numbers for measured data of (a) load0 and (b) load2.

total number of independent samples Nind . The theoretical STD
based on the estimated Nind is

σth =
1√
Nind

. (10)

Applying the dB-transformation (9) to σth , the resulting
dB-valued theoretical STD is shown together with the measured
STD with all the stirring sequences, i.e., Nant = 3, Nst = 50,
and Npf = 20, in Fig. 12. As can be seen, except for the load2
case, the theoretical STDs based on the DoF method agree well
with the estimated STDs based on measurements. The small
discrepancy for the load2 case is reasonable because the field is
more spatially correlated for such heavy loading, rendering less
independent nine measurements (that were described earlier in
this section) for the uncertainty assessment. In other words, the
measured STD for load 2 is less accurate than the other two
loading cases. Since the theoretical STD based on the estimated
Nind using the DoF method is not affected by the independence
of the nine measurements, it is believed that the estimated STD
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Fig. 10. Estimated STD of average power over the nine-measurements with
different numbers of mode-stirring positions for measured data of (a) load0 and
(b) load2.

by (10) using the DoF method is more accurate for the load2
case.

Note that the good agreements between the theoretical STD
(10) using the DoF method and the measured STD is not in
contradiction with the findings in [16], where it is claimed that
the K-factor (that increases with increasing RC loading [23])
represents a residual error for the measurement uncertainty of an
RC, because, unlike the uncertainty model in [16], the estimated
Nind using the DoF method has taken the effect of the RC
loading into account (see Figs. 6 and 7).

Nevertheless, since Nind can be estimated using the DoF
method based on only one set of measurement instead of nine,
the finding shows that the DoF method can actually be used to
predict the measurement uncertainty with much less measure-
ment effort. To the best knowledge of the author, this finding
has not been shown in any of the previous work.

Fig. 11. Estimated STD of average power over the nine-measurements with
different numbers of platform-stirring positions for measured data of (a) load0
and (b) load2.

Fig. 12. Comparisons of theoretical STDs based on the estimated Nind using
the DoF method (dotted curves) with the measured STDs (solid curves).
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Fig. 13. Comparisons of theoretical STDs based on the estimated Nind using
the ACF method (dotted curves) with the measured STDs (solid curves).

Finally, in order to show the superiority of the DoF method to
the ACF one, we apply the ACF method to the same measure-
ment data (in a similar way as the DoF method) and estimate
Nind . Fig. 13 shows the comparisons of the theoretical STDs
based on (10) and the ACF estimates and the measured STDs
using the nine-measurement uncertainty procedure. It is shown
clearly that the ACF method results in a poor prediction of the
STD (and equivalently poor Nind estimation).

V. CONCLUSION

In this paper, the DoF method is applied to estimate the
number of independent samples in an RC. Unlike the work
in [10], we use the divide and conquer approach to estimate
Nind without sacrifice the frequency resolution. In addition, we
avoid the potential problem of averaging frequency samples
(over up to 1 GHz bandwidth [10]) with different statistical
properties. The estimation performance of the DoF method was
compared with that of the commonly used ACF method. It is
found that the estimation bias of the DoF method is smaller
than that of the ACF method for correlated samples and that its
estimation variance decreases with increasing sample number
and is smaller than that of the ACF method when the number
of realizations is larger than a certain number (that is easy to
obtain for practical RC measurements). The computation time
required by the ACF method is at least 10 times larger than
that required by the DoF method. Moreover, it is found that
the underestimation problem of the DoF method can be easily
and effectively alleviated by oversampling (which is a common
practice in determining Nind [4]). Applying the DoF method
to the measured data, the independent sample numbers for dif-
ferent stirring sequences (e.g., mode- and source-stirrings) can
be readily determined. This is extremely helpful in choosing
the optimal stirring sequences, (i.e., stirring sequences without
oversampling yet contain all the necessary information to keep a
minimum measurement uncertainty), which enables a reduction
of the measurement time without sacrifice of the measurement

uncertainty. Finally, we use the nine-measurement uncertainty
procedure proposed in [16] to determine the measurement un-
certainty. It is shown that the estimated independent sample
numbers can be used to well explain the measured STDs with
different stirring sequences. The DoF method was further veri-
fied by comparing the square root of the estimated independent
sample number with the measured STDs, where good agree-
ments are observed. This implies that one can predict the RC
STD based on one set of measurements instead of nine using
the DoF method, which significantly reduces the measurement
effort in RC uncertainty assessment.
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