
Automating Operational Business Decisions Using
Artificial Intelligence: an Industrial Case Study
Master’s thesis in Software Engineering and Technology

PIER JANSSEN
MACIEJ WICHROWSKI

Department of Computer Science and Engineering
Division of Software Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2012

MASTER’S THESIS IN SOFTWARE ENGINEERING AND TECHNOLOGY

Automating Operational Business Decisions Using Artificial
Intelligence: an Industrial Case Study

PIER JANSSEN
MACIEJ WICHROWSKI

Department of Computer Science and Engineering
Division of Software Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

The Authors grant to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Authors warrant that they are the author to the Work, and
warrant that the Work does not contain text, pictures or other material that violates copyright
law.
The Authors shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Authors have
signed a copyright agreement with a third party regarding the Work, the Authors warrant hereby
that they have obtained any necessary permission from this third party to let Chalmers University
of Technology and University of Gothenburg store the Work electronically and make it accessible
on the Internet.

Automating Operational Business Decisions Using Artificial Intelligence: an Industrial Case Study
PIER JANSSEN
MACIEJ WICHROWSKI

PIER JANSSEN, MACIEJ WICHROWSKI, 2012

Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
HAL 9000 (Heuristically programmed ALgorithmic computer), from 2001: A Space Odyssey.

Göteborg, Sweden 2012

Abstract

The process of making business decisions is increasingly reliant upon analyzing very large data-sets.
Due to the amount of decisions having to be made on a daily basis, this becomes time-consuming
and expensive to carry out manually.

The purpose of this thesis was to determine whether using Artificial Intelligence to automate
business decisions is feasible. This was done by carrying out a proof of concept project at IFS
World, a software company developing Enterprise Resource Planning systems.

Procurement decision making was chosen as a case for this study. Automating these decisions
can not only result in speeding up the decision making process, but also in making more accurate
decisions. To achieve this, three machine learning algorithms were proposed. Their goal was to
learn preferences from historical procurement data and apply this knowledge to new situations.
Prototyped versions of the algorithms were developed, tested and compared using both real-world
and artificial datasets.

The results showed that after a short period of supervised learning, two algorithms were able
to make decisions automatically, with a low error-rate. Furthermore, sensitivity analysis showed
that the algorithms are robust enough to recover from errors in the training data. The study
also revealed several constraints and prerequisites related to feature selection, data freshness, and
completeness. It was concluded that automating operational business decisions using Artificial
Intelligence is achievable if certain preconditions are met. It can provide several advantages
over manual decision making: it will speed up the decision making process, and can, in certain
scenarios, improve the quality of the decisions.

Keywords: artificial intelligence, machine learning, operational business decisions, procurement

Acknowledgements

First and foremost we would like to thank our academic supervisor, Dr. Lars Pareto, for his
support throughout the entire process of creating this thesis. From finding a suitable subject, to
writing the thesis itself, his ideas and feedback have been most valuable.

We are also grateful to IFS World for providing the opportunity to carry out this study at
their facilities. In particular, we want to thank Dan Matthews, David Andersson and Mikael
Hultin for taking time out of their busy schedules and providing input and feedback.

Finally, we would like to express our gratitude towards one of the industrial partners of IFS
World, who supplied us with procurement data from their systems. This has given us a valuable
insight into the procurement process and the parameters involved.

i

ii

Contents

Abstract i

Acknowledgements i

Contents iii

1 Introduction 1

2 Methodology 1

3 Case description 3
3.1 Requisition process . 3
3.2 Problem analysis . 4
3.3 Available data . 4

4 Theoretical framework 5
4.1 Decision making process . 5
4.2 Decision making and Artificial Intelligence . 5
4.3 Artificial Intelligence approaches . 6
4.3.1 Linear Regression and Gradient Descent . 6
4.3.2 Neural Networks . 7
4.3.3 Genetic Programming . 8
4.3.4 Case-Based Reasoning . 9
4.3.5 Intelligent Agents . 9
4.3.6 Artificial Intelligence approaches comparison result 10

5 Solution 11
5.1 Feature selection . 11
5.2 Feature scaling . 11
5.3 Algorithm training . 11
5.3.1 Notation . 12
5.3.2 Algorithm A - Sum of picked values . 12
5.3.3 Algorithm B - Di↵erence from average of picked values 13
5.3.4 Algorithm C - Automatic polarity calculation . 14

6 Prototype overview 14
6.1 Input data . 15
6.2 Error metrics . 15

7 Results 16
7.1 Tests on data from manufacturing company . 16
7.2 Tests on data from hardware price comparison portal 17
7.3 Tests on artificial data . 18
7.4 Sensitivity analysis . 19

8 Discussion 21
8.1 Input data requirements . 21
8.2 Study limitations . 21
8.3 Algorithm limitation . 22

9 Generalization 22
9.1 Within IFS Applications . 22
9.2 Other applications . 23

10 Conclusion 24

iii

11 Future work 24
11.1 Features with discrete values . 25
11.2 Trend analysis . 25

References 26

A Prototype solution - user interface 28

B Test results using artificial data 29

C Output analysis charts 30

D Sensitivity analysis charts 32

E Haskell prototype documentation 34
E.1 MachineLearning.Requisitions.Requisitions . 34
E.1.1 Type Synonyms . 34
E.1.2 Configurations . 34
E.1.3 Functions . 35
E.2 MachineLearning.Requisitions.IO . 35
E.2.1 Read . 36
E.2.2 Write . 36
E.3 MachineLearning.Requisitions.Random . 36
E.3.1 Default values . 36
E.3.2 Generating new sets . 37
E.3.3 Inserting errors . 37
E.3.4 Helpers . 37
E.4 MachineLearning.Maths.Matrix . 38
E.4.1 Constructors . 38
E.4.2 Matrix Properties . 39
E.4.3 Sub-matrices . 39
E.4.4 Matrix Transformations . 40
E.4.5 Arithmetic operations . 41
E.4.6 Miscellaneous functions . 41
E.5 MachineLearning.Maths.Statistics . 41
E.5.1 Sum and mean values . 42
E.5.2 Quantile . 42
E.5.3 Standard Deviation and Normalization . 42
E.5.4 Mean Squared Error . 43
E.5.5 Correlations . 43

iv

1 Introduction

Making business decisions nowadays is increasingly reliant upon analyzing very large data-sets
and the complex relations between them. This makes the task time consuming and complex for
humans to carry out accurately. Algorithms could support or even take over this task by learning
to make certain decisions automatically as part of an Artificial Intelligence (AI) system.

The research area of AI is broad, with topics ranging from cognitive psychology to statistical
analysis and theoretical mathematics. Many of these areas have been heavily researched since the
1960’s. However, applying AI to business intelligence is a relatively unexplored area, and it is not
yet clear whether current technologies are applicable to business decision problems.

Business decisions can be divided into various categories based on their level of abstraction,
ranging from high-level, long term strategic decisions to less complex operational decisions made
on a daily basis. The latter provides the best opportunity for automation, because of their
repetitive nature and relatively small scope [29]. A single operational decision, for example
procuring a part for a product to be assembled, may be perceived as insignificant on its own.
However, because many of these decisions are made every day, their aggregate does become
valuable. This thesis focuses primarily on automating these operational business decisions.

Making operational decisions requires processing large quantities of data, which most modern,
large companies handle using an Enterprise Resource Planning (ERP) system. These systems
provide functions for fast data retrieval, as well as presenting the data to the user in various
forms, such as spreadsheets and diagrams. The main purpose of an ERP system is to enable
companies to implement streamlined business processes. The business logic incorporated in the
system is designed to provide support for automatically repeating certain decisions (e.g. always
buying a part from a specific supplier), but most decisions need to be made manually.

There are many di↵erent approaches to AI in general. Well-known approaches are Intelligent
Agents, case-based reasoning and neural networks. These approaches all have their pro’s and
cons, and some are more developed and sophisticated than others. In addition, some will be more
suitable to making operational business decisions than others. The suitability also depends on the
domain in which the business decision is made. For example: decisions concerning the financial
sector would have di↵erent characteristics compared to decisions made in health care [20].

In this thesis, we investigate how business decision making can be automated with the use of
AI in the context of ERP systems. Specifically, we are interested in the following questions:

Which criteria make an operational business decision a good candidate for automation using
AI?

How can the relative importance of features contributing to an operational decision be
expressed?

With this relative importance, how can an operational business decision be made automati-
cally?

We investigated these questions with a supply chain management system provided by IFS, a
software company developing ERP systems. The test data for this case study was provided by
one of their clients, a large size manufacturer.

2 Methodology

This thesis has been carried out following the proof of concept methodology. This involved the
four main phases shown in figure 2.1. To begin with, we conducted a theory review to investigate
the state of the art in the field of AI, including an exploratory evaluation of available technologies
and frameworks. We also looked at decision making on a psychological level, to understand what
drives the decision makers, and how it relates to AI. By looking at prominent AI publications such
as [20, 10] we picked several candidates which expose di↵erent AI viewpoints. Approaches that
seemed most promising were further evaluated by the creation of small mockups using existing

1

7KHRU\�
UHYLHZ

&DVH�
6HOHFWLRQ

5HTXLUHPHQWV�
(OLFLWDWLRQ

,PSOHPHQWDWLRQ

7HVWLQJ

*HQHUDOL]DWLRQ

3URWRW\SH�SKDVH

(YDOXDWLRQ

Figure 2.1: Schematic view of the research process.

frameworks. In addition to exploring the AI theory, we also looked into the suitability and data
requirements for the automation of di↵erent types of business decisions.

In the case selection phase, an appropriate business decision scenario was selected. We
conducted a series of focus group meetings with R&D department members and developers
from various domains (manufacturing, fault reporting, etc). During these meetings, various AI
approaches were presented and discussed, and ideas for specific business cases were brought up.
This was followed by a brainstorming session with a group of early adopters representing a small
set of customers involved in testing the IFS application suite. The goal of these sessions was to
verify whether the ideas brought up during the focus group meetings had real-world relevance,
as well as to uncover new cases. The selection of the candidate case for a prototype was done
in the final focus group meeting, during which the customers’ ideas were discussed with R&D
department members. The ideas were presented together with what we had found to be the most
suitable AI approaches. From these ideas, one business case was selected based on the following
criteria: data availability within the company, the problem’s complexity, the quantifiability of its
influencing factors, the expected generalisability and real-world relevance.

After the case selection, the prototyping phase started. This phase consisted of several iterations
over four steps. The first step was elicitation of high-level requirements and understanding the
problem and its domain. This was done through a series of interviews with a domain expert,
internal to the company. Afterwards we reviewed previously picked approaches to find the most
suitable one for the case. It turned out that none of the approaches found exactly matched the
situation and therefore needed to be adjusted. Throughout the iterations of the prototyping
phase, a number of variations on the algorithm were implemented. Because obtaining test-data
which exhibited the desired properties proved di�cult, it took several iterations before a clear
benchmark for the algorithms emerged. The testing step was performed using both artificial
data as well as real-world data supplied by various customers. The last step in the iteration (the
evaluation phase) was to evaluate the findings and discuss adjustments for the next iteration.

After the prototyping phase, the solution’s potential for generalization, areas for improvement,
and opportunities for further research were discussed in a focus group meeting with the R&D
department.

2

3 Case description

Our study was conducted in collaboration with IFS Labs, the R&D department of IFS World.
IFS is a large-size, global software development company specialising in ERP systems.

The goal of IFS Applications, their business application suite, is to automate tasks and
processes of large companies, and to support business decision making. The product provides
a complete suite of component-based ERP software as presented in fig. 3.1. The customer can
select which components are required for their business.

Figure 3.1: An overview of the IFS Applications suite [7].

The clients of IFS are mainly large, worldwide companies from many di↵erent domains such as
manufacturing, construction, aviation and the automotive industry. They handle large volumes
of data and have to make many operational decisions on a daily basis.

The IFS Applications suite allows users to create predefined decision paths and policies
configured through parameter setup or process / work-flow maps in order to automate predictable
decisions. However, these configurations are static, and require manual adjustment, making them
both time-consuming and expensive to use. By introducing an AI solution with the ability to
learn and adapt, this problem can be resolved.

The company runs an ‘early adopters’ program for their customers in which they can contribute
to the late stages of product development. Some of them stated that the requisition process
(picking the best supplier for a product purchase) is a typical case where a static system does
not provide an ideal solution. The decision is frequently recurring and involves processing large
volumes of data. There is a relatively limited number of features that influence the decision.
Furthermore, these features can be easily represented as numerical values and are readily available
within the application. The requisition scenario will be used as the case for this thesis.

3.1 Requisition process

The requisition process consists of the following steps that need to be looked into in order to get
a full understanding of the reasoning behind the purchase decision.

3

The process starts by determining the demand for a specific part. This can be done using
various methods, such as KanBan [31] or Material Requirements Planning (MRP) [30]. Some of
these methods are fully automated for recurring part needs, while others are executed manually
for incidental purchases. The result of this step is a purchase requisition which is entered into the
system.

If a part is being bought for the first time, the purchase information (e.g. price, lead time)
from the suppliers is not yet available. In order to get this information, a request for quotation is
made. These are then returned by the suppliers, providing the purchase information.

For some parts the choice of supplier is determined by agreements between the supplier and
purchaser. In this case, the purchase order is made automatically and does not require human
interaction.

Usually the purchaser needs to decide from which supplier a part is going to be ordered.
This is determined by comparing supplier’s o↵ers, and selecting the best matching candidate.
This comparison is done based on the most desired quality (e.g. best price, shortest delivery
time, etc.). The knowledge about the importance of the part’s qualities is intuitive, rather than
explicitly codified. However, the system o↵ers a feature which allows the purchaser to predefine a
“main supplier”, which is the default choice for a specific part. Evaluating which supplier should
be the main supplier is generally done yearly. Because comparing suppliers is time-consuming,
purchasers tend to choose the main supplier without comparing alternatives. This may result in
a sub-optimal choice, which exposes a company to unnecessary expenses.

Once the order is placed and the product has been received, further administration is performed.
Among other things which are not directly relevant to this study, this results in a number of
supplier quality measures that may be used in the previously described steps of the process. For
example the recorded actual delivery time compared to the promised delivery time and the quality
of the product (scrapped quantities).

3.2 Problem analysis

As described in the previous section, it is clear that the selection of the best-matching supplier
can be improved. In particular the “main supplier” default choice can cause many sub-optimal
decisions. To help purchasers make better decisions, a decision making algorithm could be
introduced. This algorithm should ‘learn’ the purchaser’s priorities for each part and use this to
automatically suggest the optimal supplier choice.

Some of the early adopters raised some concerns about fully automating the supplier selection
process. Due to this, the algorithm should first only make suggestions upon which the purchaser
can make the actual decision. Once the purchaser trusts the algorithm enough, it can substitute
the “main supplier” functionality.

Many parts exhibit the same requisition priorities, due to their similarity. For example, it is
highly likely that resistors with a di↵erent resistance still have the exact same priorities. The
system specifies “purchase commodity groups”, which can be used to bundle these parts and make
learning the priorities more accurate.

3.3 Available data

As part of the requisition process, the IFS application suite provides various data concerning
placed orders. Each requisition consist of a requisition identification number and a part number.
Similar parts are grouped by specifying a purchase commodity group identification number.
Furthermore, all requisitions have latest order and wanted delivery data, which determine the
deadline for part to be delivered. For each supplier that can deliver, there are a number of
variables that are specific to that supplier, such as lead time, price etc. After a part is delivered it
is possible to evaluate the supplier based on their punctuality and part’s quality. Those features
are the factors by which the suppliers are compared.

4

4 Theoretical framework

4.1 Decision making process

Over the past decades, much research has been done on the psychology of human decision making,
and this has resulted in several decision making models. One of the first significant models was
the Expected Utility model by Savage [24]. It considers a situation as a set of (external) events
combined with a set of possible actions. For each combination, an expected utility value is defined.
Given a set of probabilities for the events, the decision maker can use these values to choose the
action that provides the highest utility. However, this model has received much criticism over
the years. The main argument was that this model is unrealistic as it requires all events and
their respective probabilities to be known beforehand, which is seldom the case. Furthermore,
the number of combinations of actions and events grow exponentially when consecutive decisions
have to be made, making it unfeasible to compute [26].

More recent models, such as recognition-primed decision (RPD) [12], take a di↵erent approach.
In RPD, the decision maker attempts to pattern-match the given situation with previously
encountered ones and tries to find the best matching solution. If a situation does not match
exactly, the most similar one is chosen and the solution is adapted to the current situation. Then,
the decision maker does a simulation in his mind to consider its suitability. This model has been
refined and developed further by many researchers (Gilboa and Schmeidler [6], Schank [25] and
Kolodner[13] among others), eventually resulting in Case-Based Reasoning, which we’ll describe
and discuss in a later chapter.

In a more generic sense, decision making can be expressed through value-driven thinking
[11, 19]. First you examine your current state and define your goal, then you ‘look ahead’ and
design actions to achieve this goal. One might also consider the influence of the decision maker’s
preferences and biases in choosing the action to take to reach a satisfactory future state. This
gives rise to the concern of di↵erentiating between actions and events. Performing an action may
influence events, for example lowering the price of a product to sell will cause competitors to
follow this. Furthermore, one has to define the boundaries of the model and consider the widening
correlation between events and outcomes of actions as time progresses [3].

One major psychological aspect influencing decision making is cognitive biasing. Humans
don’t make decisions purely rationally, but are a↵ected by irrational, emotional and external
factors. For example people tend to take riskier actions in situations when they can lose. However
in situations when they can profit, the same people prefer to stay conservative. Another example
of biasing human perception is anchoring a point of view while making decisions. In this case the
environmental factors and the human’s previous experiences influence the outcome of the decision
making process. For example, the great holidays at the Mediterranean sea from last year will
shape your perception of next holidays at the Baltic sea. As a final example of biases, it is proven
that most recent events are more relevant to making decision than those far from the past [1, 16].

4.2 Decision making and Artificial Intelligence

Applying the psychological models of human decision making to Artificial Intelligence has proved
to be di�cult for a number of reasons. First of all, computer based support systems require a
high level representation of its surrounding environment to provide meaningful communication
with the user. Without this, the system will not be able to do more than predefined mathematical
computations. Transforming data (i.e. numbers and words without meaning) into information
(i.e. data with relationships and a context for interpretation) requires the presence of a high-level
information model. Capturing the data is relatively easy, whereas expressing the model and
information is di�cult and requires domain expert input [17].

Secondly, humans have the capability to make decisions based on a partial understanding
of the environment [17]. On the other hand, AI systems don’t have this capability and require
a complete model of the world in which it operates. Defining this model completely is usually
unachievable, due to the scale and undiscovered factors [18].

5

Thirdly, most factors that influence a decision have complex relationships, making it hard
to identify the most relevant ones. The engineering principle of breaking a problem down into
smaller sub-problems does not always work for complex decisions: the sum of the individual
smaller decisions may not be equal to the larger decision into which they are combined [18].

Finally, a design decision has to be made about whether or not biases and other human factors
should influence the decision making system. This depends on the purpose of the decision making
system. If the system should mimic the human decision making process, then biases should
be included. Other systems, such as expert systems, make decisions purely based on diagnosis
and rationality. Their goal is to provide the optimal decision rather than to appear human-like.
Therefore, biases are not relevant to these systems [18].

4.3 Artificial Intelligence approaches

For an approach to be suitable for a business decision support system, a form of heuristic ability
is required. This will distinguish it from static pre-configured behaviour. It also means that
before the system can be used, it has to be trained using a real-world data-set, or an accurate
simulation environment. The benefit of this is that once it is in use, it continuously adjusts and
balances itself, ensuring continuing accurate results.

While conducting the thesis we have looked at a number of promising AI paradigms [20, 13,
2]. This section will give a compact overview of the most prominent approaches that are relevant
to this project: Linear regression, Neural Network, Case-Based Reasoning, and Intelligent Agents.
Furthermore, the applicability of each approach will be related to the exemplar case.

4.3.1 Linear Regression and Gradient Descent

Regression analysis attempts to find a relationship between one or more variables X and outcome
values y. Linear regression specifically targets linear relationships. Given a parameter vector ◊,
the hypothesis function typically takes the form:

h(◊) = X◊

T

An additional value of 1 is typically prepended to X, to account for vertical o↵sets.
Calculating the values of ◊ can be done using matrix inversion, but this can be very compu-

tationally intensive, and in some cases impossible (for singular matrices). To avoid this, the ◊

values can be approximated using gradient descent [27]. This is done by first defining a mean
squared error function J(◊), which indicates how well the hypothesis matches the training data.

J(◊) = 1
2m

ÿ !
h(◊) ≠ y)2"

Then the algorithm will attempt to minimize J(◊) by adjusting the values of ◊ based on the
gradient of the cost function.

Figure 4.1 shows a prototyped implementation of gradient descent written in Haskell applied
to a small dataset. Figure 4.1a shows the training data points and resulting hypothesis. It should
be noted that the training data has not been normalised before running gradient descent, which
explains the large number of steps required to obtain reasonably well-fitting ◊ values. Figure 4.1b
shows how the cost function decreases quickly in the first few steps of the algorithm, and after
this only decreases very slowly, eventually coming to a halt.

Applying linear regression to the procurement case described earlier is problematic. One might
attempt to sort a set of suppliers by calculating a score for each supplier using a linear function.
To do this, we would have to find the values of ◊ using gradient descent. Here we encounter a
problem: the training data does not provide supplier scores, it only provides a partially sorted set
(picked, not-picked). So the gradient descent algorithm does not have enough data to train on,
making it unsuitable.

6

0 2 4 6 8 10 12

0
2

4
6

8
10

12
14

x

y

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

(a) Hypothesis after 10.000 gradient descent steps.

0 2 4 6 8 10

0
2

4
6

8
10

12
14

steps

J(
θ)

(b) Cost function for 10 gradient descent steps.

Figure 4.1: Linear regression and gradient descent applied to a simple dataset.

4.3.2 Neural Networks

A neural network is used to solve classification problems based on a set of training data. It is
represented as a graph of forward connected nodes which can be both acyclic and cyclic. Each
node in the graph has a number of inputs with associated weights and typically an additional
bias input and weight. The graph is divided into layers, where the outputs of a node in layer j
connect to an input of all nodes in the next layer, i.























Figure 4.2: Schematic view of a neural network with 1 hidden layer of 2 nodes.

Each node on the input layer represents a single feature from the input data. The number of
output nodes is determined by the number of possible results. For example, assuming fig. 4.2 is a
well-trained net, there are two possible outcomes: either the upper or the lower output node is
activated. The amount of the hidden layers and amount of nodes in these layers, are entirely up
to the designer of the network [21].

The output of a node, a

i

is computed using an activation function g. This is typically a
sign/threshold or sigmoid function, resulting in a boolean (0 or 1) output value.

7

a

i

= g

Q

a
nÿ

j=0
W

j,i

a

j

R

b

Initially, the weights of the network are randomly assigned. The network will then have to be
‘trained’, using supervised learning with a set of input values and expected outcomes. This is
done using backpropagation, a method in which the delta of each node’s output is o↵set against
the expected output for each entry in the training dataset. Based on this, the weight is adjusted
and the process is repeated for the next entry.

The case that we’re trying to solve does not entirely match the concept of Neural Networks,
since it’s a ranking problem rather than a classification problem. So without any modifications,
the Neural Network approach is not suitable. However, some research has been done on using
NN’s as a sorting algorithm [4, 5]. In this modified use of NN’s, the network is used in a sorting
function, comparing the results of a pair of input values. This requires the backpropagation
formula to be adjusted. Whether this could be successful in our case is unclear at this point.
Additionally, it remains to be seen if it would produce a generic enough solution to the decision
making problem.

4.3.3 Genetic Programming

Genetic Programming is a paradigm based on concepts taken from biology, such as evolution and
natural selection. It is a specific version of a stochastic beam search and therefore works best when
a solution can be modelled as a permutation of a finite number of components. Because it largely
depends on randomness and combining di↵erent potential solutions, it is particularly e↵ective in
escaping local minima. This also means that the result of the program can be an unexpected,
novel solution which still satisfies the technical criteria described in the fitness function. [14]
Commonly, a genetic algorithm consists of the following steps: [22, 28]

1. Create an initial population of individuals by generating a random finite sequence over a
finite alphabet. The sequence should describe all the properties of the individual and can
be composed of di↵erent types of data, based on the domain. In a genetic algorithm it
is typically a string or a bitarray. In a more high-level genetic program the alphabet is
generally composed of logic statements.

2. Rate each individual using a fitness function.

3. Choose two random pairs (A, B) to create o↵spring, using the fitness determined at step
2. I.e. an individual with a higher fitness is more likely to be chosen than one with a low
fitness.

4. Randomly choose a crossover point, c.

5. Create two new individuals:A[0..c] + B[c..], andB[0..c] + A[c..]

6. Optionally mutate the newly created individuals by replacing one or more elements by a
randomly chosen one. This should happen with a very low probability.

7. Repeat steps 2-6 until a certain fitness threshold or maximum iteration count has been
reached.

Because of the nature of the case addressed in this thesis, the appliance of genetic programming
seems to bring little benefits. Selecting the best supplier at any requisition situation is taken
from a limited number of given options. Therefore, creating permutations of these options has
no real-world value. The situation simply does not match the areas where genetic programming
is beneficial. Furthermore, genetic programming does not address the entire problem, since it
requires a fitness function to evaluate individuals. This would require knowing the utility of the
features, which is not known beforehand.

8

4.3.4 Case-Based Reasoning

The main concept of Case-Based Reasoning (CBR) is to represent every problem as a case that
contains description of the problem together with the most accurate solution [32]. As presented
in fig. 4.3, the CBR process consists of four main stages [13]. When a new problem occurs, CBR
tries to pattern-match it onto a set of historical cases in order to find the most similar problem
that has happened in the past (retrieval stage). After this, the closest match is returned and its
solution is applied onto the current problem (reuse stage). To assure the correctness of the case
base, CBR requires human interaction in order to revise newly added cases (revise stage). Finally
the new solution can be incorporated into the case base (retain stage) and enlarge CBR problem
solving capabilities.

5(75,(9(

5(7$,1

5(9,6(

5(86(

3URSRVHG
VROXWLRQ

&RQILUPHG
VROXWLRQ

3UREOHP

&DVH�EDVH

Figure 4.3: The CBR Cycle

In order for CBR to be e↵ective, every case needs to be represented as a combination of a
problem description reflecting a state of the world, a revised problem solution and outcome (the
state of the world after the solution was executed).

CBR systems are especially useful in medicine (Medical Diagnosis Systems) [15, 8], Bioinfor-
matics (Genetic classification system), Business (Call center automation).

Due to the nature of the problem, the solution will have to adapt the user’s preferences rather
than blindly pattern match the current state onto the historical case base. The fact that a
particular supplier has been chosen in the past does not ensure that it will be the optimal choice
for the current state. CBR does not compare the di↵erent available choices, but rather compares
situations. For example, one might have a situation where a certain supplier is chosen a number of
times because it is the best choice at that moment. If later on another supplier becomes available
which is better than the previously picked supplier, CBR will not consider it as a better candidate
when pattern matching.

4.3.5 Intelligent Agents

Intelligent Agents is one of the most widely used Artificial Intelligence approach. An agent can
be thought of as anything that has the capability of perceiving the environment (through various

9

sensors) and the ability to act upon those observations [2]. It is a high level rational unit that by
applying the Desire-Believe-Intention model, tries to mimic human reasoning process. The agent’s
reasoning process is driven by goals that try to be realised in the most e�cient way, depending on
its knowledge of the environment (Beliefs). By evaluating its current state and the state of the
world, the agent simulates all the actions (Plans) and picks one that will move it closer towards
its goal (Intention).

The concept itself focuses on structuring reasoning process rather than adding learning skills
[23]. The only learning capability that can be obtained without altering the concept is done by
editing the agent’s plans. In order to add more complex learning methods, the agent would need
to be provided with either a Neural Network or Case-Based Reasoning [9]. The key concept that
make Intelligent Agents attractive is the ability to act autonomously, which allows them to work
in distributed environments and form groups of agents.

(QYLURQP
HQW

$JHQW

6HQVRUV

(IIHFWRUV

:KDW�WKH�ZRUOG
LV�OLNH�QRZ

:KDW�LW�ZLOO�EH�OLNH
LI�,�GR�DFWLRQ�$

+RZ�KDSS\�,�ZLOO�EH
LQ�VXFK�D�VWDWH

:KDW�DFWLRQ�,
VKRXOG�GR�QRZ

6WDWH

+RZ�WKH�ZRUOG�HYROYHV

:KDW�P\�DFWLRQV�GR

8WLOLW\

Figure 4.4: Utility-Based Intelligent Agent design

The application of Intelligent Agents is usually desired in situations when a system needs to
mimic human behaviour. They are therefore widely used in areas such as Military, Robotics,
Avionics and the Gaming Industry. Intelligent Agents are beneficial in situations when the rational
process and emulating human thinking is important. As such, this approach addresses issues that
are on a much higher level of abstraction than our problem. While picking the optimal supplier,
the algorithm does not need to behave as human, but rather compute large volumes of historical
data. It is clear that the algorithm would need to adjust continuously, and thus some form of
learning is required. This is a property which agents do not provide.

4.3.6 Artificial Intelligence approaches comparison result

Even though the inspected solutions are well developed and widely used, they do not entirely fit
our purpose. Some approaches, such as Intelligent Agents and CBR, aim at solving a slightly
di↵erent problem. For others, like Neural Networks and Linear Regression, the major problem is
related to the training data: the data available in our case is not su�cient for these approaches
to work. The data obtained is only partially sorted into those suppliers that are picked and
those that aren’t. Since the order of the non-picked suppliers is not known, determining what is
important among them is not possible. Due to the fact that all of these algorithms require data
that is unknown at the time of training, there is a need to create a custom solution.

10

5 Solution

Our solution is an algorithm that calculates the utility values for each supplier, which can then
be used to rank them. The supplier with the highest utility will be suggested to the procurer.
Calculating a supplier’s utility u is done in a similar fashion to using linear regression: a linear
combination of a set of features s, and a set of weights ◊:

u = s ◊

T = s1◊1 + s2◊2 + . . . + s

n

◊

n

The weight values represent the relative contribution of each feature to the overall utility. For
example, a procurer may be mainly interested in getting the lowest price, while fast delivery is of
secondary importance. In this case, the weight on price should be higher, while the weight on
delivery time should be lower.

5.1 Feature selection

Selecting the relevant features is one of the biggest challenges in suggesting the right supplier.
Based on these selections the algorithm will calculate the purchaser’s preferences. Therefore, the
features need to represent all the most relevant factors that influence the decision making process.
The omission of an important quality may result in miscalculated preferences and therefore
incorrect suggestions. On the other hand, including many irrelevant features may have the same
e↵ect. Therefore our solution relies on the support of a domain expert determining the complete
set of features.

It should be noted that the utility function described earlier requires features to have the same
(positive) polarity. It should hold that for all continuous feature values a higher value means a
higher utility. A straightforward way of achieving this is by letting a domain expert identify the
features that should be inverted. For example, in the requisition case the price of an item should
get a higher utility the lower its value is. In a later subsection (chapter 5.3.4), we propose a way
of automatically determining the polarity of features.

5.2 Feature scaling

In order to make a fair comparison between features, they should all be normalised to a range of
[0, 1]. The lowest value in each column becomes 0, the highest value becomes 1, and all values in
between are scaled proportionally. This means that the relative distances between the feature
values are preserved. This is represented by the following formula, in which c represents a column
vector:

scale(c) = c ≠ min(c)
max(c) ≠ min(c)

For example:

S =

S

U
435 4 5
322 30 2
432 20 3

T

V

scale(S) =

S

U
1.0 0.0 1.0
0.0 1.0 0.0

0.973 0.615 0.333

T

V

5.3 Algorithm training

To calculate the utility of a supplier in a new requisition situation, the algorithm needs to know
the feature weights. These weights represent what distinguishes the picked supplier from the

11

non-picked suppliers. Learning these weights from historical data is the goal of the training phase.
This data contains item features for each supplier, supplier name, item number, the picked and
non-picked suppliers.

The training phase iterates over a set of historical data, refining the weight values in each
iteration. The more training examples are available, the more accurate the resulting weights
become. However, it also means that the training data should be ‘constructed’ carefully. By this
we mean that the decisions should be made considerately. After all, the learned weights will only
be as good as the training data. We propose several approaches to calculate the feature weights.

5.3.1 Notation

Throughout this chapter we’ll use the following notation:

Given a matrix A:

– A

x,

denotes the x

th row of A.

– A

,y

denotes the y

th column of A.

– A

x,y

denotes the element in A at position x, y.

Let s œ Rn be a row-vector with feature values (e.g. price, delivery time, etc.) for a specific
part at a single supplier at a single point in time. n denotes the number of features in s.
E.g.

s =
#
price delivery time . . . s

n

$

Let S be a m x n matrix, representing supplier’s feature values for a single procurement
situation, where m is the number of suppliers available for an order. Each row in the matrix
is an s-vector. E.g.

S =

S

WWWU

s1
s2
...

s

m

T

XXXV
=

S

WWWU

s1,price

s1,delivery time

. . . s1,n

s2,price

s2,delivery time

. . . s2,n

...
...

. . .
...

s

m,price

s

m,delivery time

. . . s

m,n

T

XXXV

Let s

picked

œ S denote the supplier that was chosen to be ordered from.

Let the training data T be a set of tuples, each being a procurement situation S combined
with an integer value picked indicating which supplier in S was chosen. o is the total number
of orders. E.g.

T = {(S1, picked1), (S2, picked2) . . . (S
o

, picked

o

)}

5.3.2 Algorithm A - Sum of picked values

The first approach relies on comparing all suppliers on the same scale and looking at the position
of the supplier that was picked.

As described earlier, the feature values are normalised to a scale of [0, 1], where a higher value
means that the feature gives a higher utility. Doing so gives a comparison between the picked
supplier’s feature values and the extremes in the set of suppliers to pick from. If a feature’s
values of the picked supplier are consistently high across a number of training examples, it means
that this feature must be of importance to the decision. Similarly, if the feature’s values are
consistently low or varying, they must not be significant for the decision. So by summing the
normalised feature values of the picked supplier in a training set, we obtain the feature weights:

◊ =
oÿ

j=1
(T

j,picked

)

12

5.3.3 Algorithm B - Di↵erence from average of picked values

To refine the approach described in the previous section, we introduce the concept of calculating the
weights by taking the average feature value into account. The feature values are first normalised to
a range of < 0, 1 >. In contrast to the previous approach, this approach looks at the distribution
of all candidates in order to find features that stand out from the rest rather than just looking at
the extreme values.

Consider the training example in figure 5.1. The value of feature p for supplier sup5 is very
low, while most other alternatives have a value just below the picked supplier sup3. Using the
first approach, this would result in a high weight on this feature, even though it doesn’t ‘stand
out’ among the alternatives. By calculating distance of the picked value to the average (the blue
line), the algorithm would produce a lower weight, presented as x.

Figure 5.1: Training example with non-equidistant feature distribution.

The following steps are taken to calculate the feature weights:

1. Calculate the average value of each column in S. (s is a row-vector)

s = 1
n

nÿ

i=1
S

i,

2. Subtract s from s

picked

.
” = s

picked

≠ s

3. Apply steps 1, 2 for all orders in T , resulting in a matrix � with the di↵erences for each
feature at each order.

� =

S

WWU

”1
”2
. . .

”

o

T

XXV

4. Calculate ◊ by taking the sum of each column in �, resulting in a row-vector.

◊ =
oÿ

j=1
�

j,

All steps combined gives:

◊ =
oÿ

j=1

A
T

j,picked

≠ 1
n

nÿ

i=1
T

j,i

B

13

5.3.4 Algorithm C - Automatic polarity calculation

In the previous two approaches, the polarity of each feature would have to be known in advance.
To avoid this, we create two new features to replace each individual feature. These represent the
features’ values with di↵erent polarities: a positive polarity means that a higher value gives a
higher utility and a negative polarity means that a lower value gives a higher utility.

p+ = p (5.1)

p≠ = 1 ≠ p (5.2)

◊ =
oÿ

n

T

n,picked

(5.3)

u

p

=
I

◊

p+ >= ◊

p≠ = p+(2◊

p+ ≠ 1)
◊

p+ < ◊

p≠ = p≠(1 ≠ 2◊

p+)
(5.4)

The positive polarity is created by taking the features’ values without modification (1). The
negative polarity is the distance to the highest value (2). The weight of each feature is calculated
in the same manner as in Approach 1: by taking the sum of the feature values for the picked
supplier (3). This results in a double amount of weights, corresponding to the positive and negative
polarities. The most desired quality among p+ and p≠ will also have the highest accumulated
sum.

When calculating supplier scores (4), only one of the polarized features is used, namely the
one which has the highest feature weight. The feature value is multiplied by a weight obtained
by taking the absolute of the di↵erence between the polarized weights. This is done to limit the
influence of the weights if the polarization is not fully certain. The final utility is a sum of the
utilities for all features, as explained in a previous section.

6 Prototype overview

The results of the proposed algorithms have been calculated and presented with the use of an
interactive Haskell program. The program provides a fine-grained overview of the algorithm’s
intermediate calculation, to ease the analysis and verification of the results. The user interface is
divided into three main sections, as shown in figs. 6.1 to 6.3.

The scatter plot in fig. 6.1 shows the scaled feature values, making the interpretation of their
relative positions easier. The table in fig. 6.1 presents the raw feature values (p, q, etc.) of the
picked supplier together with its alternatives. Each supplier is assigned a unique symbol that
helps to trace them throughout di↵erent training examples. To be able to distinguish the picked
supplier from the others, its symbol is shown in green. The scores for the suppliers are shown on
the right-hand side of the table in form of a bar chart together with corresponding numerical
values.

Figure 6.1: Input and results charts.

Figure 6.2 represents di↵erent calculation steps. The leftmost bar chart presents the feature
weight of a current training set. This reflects the relative feature importance calculated based on

14

the current training example. The second chart from the left presents the cumulative of feature
weight up to the current training example. This shows how each training example influences
the final weights. The middle-right chart shows the feature weight calculated after finishing
the training phase. The rightmost diagram displays the error rate plotted against the number
of training examples used to train the algorithm. This metric is described in more detail in
section 6.2.

Figure 6.2: Weights calculation and error rate section.

The last section, fig. 6.3, shows the scores for all supplier throughout the entire training-set. This
can be used for trend analysis, as discussed in Future Work (section 11.2).

Figure 6.3: Trends overview. The vertical axis represents the supplier score, the horizontal axis
represents the training sets.

For the documentation of the prototyped Haskell implementation, see appendix E.

6.1 Input data

The data fed into the algorithm is stored as comma separated values and structured as presented
in table 6.1. The first column represents the order id used to di↵erentiate the training examples.
The other columns represent the suppliers’ specific information for example name, lead time and
price. The program will consider the first row in a training example to be the picked supplier.

O1 S1 3 1.15
O1 S2 15 1.18
O1 S3 3 1.37
O1 S4 3 1.37

Table 6.1: Example training data

6.2 Error metrics

An essential quality of the algorithm is its error-rate: the ratio between incorrect and correct
results. During the training phase the error-rate indicates how well-trained the algorithm is. As
the error-rate nears zero, the algorithm has learned enough to recreate most training example
decisions, and no further training would be required.

15

For each training example we compare the picked supplier of the training data and the
algorithm’s result. The training set provided to the algorithm is divided into two subsets: the
first is used to learn the weights, and the second is used as a control group. The error metrics are
calculated from the latter subset.

7 Results

Various tests were carried out using the prototyped versions of the algorithm to compare their
qualities. In this chapter we will present the results in form of final weights and error rates of
algorithms calculations using di↵erent data sets.

The algorithm variations were tested using real world data sets acquired from two sources: a
large manufacturing company using IFS Applications and a hardware price comparison portal.
The decisions made in the former set were created by purchasers from the company, while the
latter set did not contain decision information. This had to be introduced manually.

Furthermore the algorithm were tested using artificially generated data to verify whether
algorithms keep their properties in presence of fluctuating. This also allowed tests on training
sets with a large number of features, alternatives, and training examples. Additionally, the most
relevant features for the selection of the best alternatives in the training examples could be
controlled.

Finally, sensitivity analysis was performed to test whether the algorithms could recover from
errors in the training data.

7.1 Tests on data from manufacturing company

The manufacturing company supplied an extract of their procurement database to be used as
training data for our algorithms. It contained a wide range of procurement data, many of which
may be selected by a domain expert as features influencing a procurement decision. However,
for the purpose of this thesis, the training-set was limited to price (q) and leadtime (p). Both
features were set to have a reverse polarity, such that a lower price gives a higher utility. The
data set consisted of 14 orders with 4 supplier alternatives.

Figures 7.1a to 7.1c show that the weights found by all three algorithm variations exhibit
similar characteristics. All show that a low leadtime is the most important feature, while price is
of secondary importance, with a significantly lower weight. All three algorithms perform well,
achieving an error-rate of 0 either immediately or after a couple of training-examples (figs. 7.2a
to 7.2c).

Features

Fe
at

ur
e

W
ei

gh
t

p q

0
1

2
3

4
5

6
7

(a) Algorithm A

Features

Fe
at

ur
e

W
ei

gh
t

p q

0
0.

5
1

1.
5

(b) Algorithm B

Features

Fe
at

ur
e

W
ei

gh
t

0
1

2
3

4
5

6
7

p− p+ q− q+

(c) Algorithm C

Figure 7.1: Feature weights for di↵erent algorithms, using manufacturing training set.

16

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ● ● ● ● ● ●

(a) Algorithm A

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ●

● ● ● ● ●

(b) Algorithm B

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

● ● ● ● ● ●

(c) Algorithm C

Figure 7.2: Error-rates for di↵erent algorithms, using manufacturing training set.

7.2 Tests on data from hardware price comparison portal

The data obtained from hardware comparison portal consisted of item price, delivery time and
rating. The suppliers represent di↵erent hardware retailers. The inspected computer hardware
item was an internal memory module. The features price (p) and delivery time (q) were set to
have a reversed polarity. The training data consist of 9 orders with 3 supplier alternatives.

Figure 7.3 presents that algorithm A does not provide a clear distinction in importance between
the features. On the other hand, algorithms B and C determine that the price is by far the most
important feature, whereas the lead-time and rating are less important. The weights calculated
by algorithm C clearly show that determining the polarity of features works: price and lead-time
have a negative polarity, while the rating has a positive polarity.

Features

Fe
at

ur
e

W
ei

gh
t

p q r

0
1

2
3

4

(a) Algorithm A

Features

Fe
at

ur
e

W
ei

gh
t

p q r

0
0.

5
1

1.
5

(b) Algorithm B

Features

Fe
at

ur
e

W
ei

gh
t

0
1

2
3

4

p− p+ q− q+ r− r+

(c) Algorithm C

Figure 7.3: Feature weights for di↵erent algorithms, using hardware training set.

1.0 2.0 3.0 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ● ● ●

(a) Algorithm A

1.0 2.0 3.0 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ● ●

●

(b) Algorithm B

1.0 2.0 3.0 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ● ●

●

(c) Algorithm C

Figure 7.4: Error-rates for di↵erent algorithms, using hardware training set.

17

7.3 Tests on artificial data

To further analyse the error-rates and feature weights of the algorithm variations, 5 artificial
training-sets were created. Every training-set consisted of 100 training examples o, with 4
alternative suppliers m. With each generated training-set, the number of features was incremented
by 1. The feature values were randomly and uniformly selected from a range [0, 100]. One feature
column per training-set was randomly selected to be the quality on which the decision was made.
For each training example, the supplier with the highest feature value was selected as a best
choice.

As in the case of real data, the training-sets were split into two halves. The algorithms were
trained using the first 50 training examples. The second half of the training-set was then used to
verify the correctness of the learned weights. The decisions made by the algorithm were compared
with those made when generating the training-set. The error rates in table 7.1 show that all
algorithms perform without a single error when there is only one feature to base the decision on.
As the number of features increases, the error rate rises. In particular for algorithm A exhibits a
significantly higher error rate than B and C. This phenomenon is caused by the random numbers
used to generate the data. Because of the fact that algorithm A is using sum of the weights it
receives significantly high utility for unimportant qualities. As a result of this, suppliers with a
low value for important qualities, but high values for unimportant qualities may receive a higher
score than the picked supplier’s score.

Features (n) 1 2 3 4 5
Algorithm A 0.00 0.20 0.36 0.36 0.50
Algorithm B 0.00 0.02 0.14 0.20 0.04
Algorithm C 0.00 0.02 0.20 0.18 0.04

Table 7.1: Error rates for decisions made on the control-set, with o = 50, m = 4.

Algorithm B ensures that features occurring frequently below the average (i.e. those that are
not of importance to the purchaser) do not receive high value. Every feature value that is below
the average is subtracting its weight value from the cumulative weights. This prevents high weights
for unimportant features. On the other hand, algorithm C while trying to determine feature
polarities, takes the absolute di↵erence of negative and positive polarities. Because the generated
feature values are uniformly distributed, the polarities of unimportant qualities counterbalance
each other.

To gain a better understanding of the properties of the algorithms while training, the error
rates were plotted against the number of training examples as shown in figs. 7.6a to 7.6c. For
the reasons described above, algorithm A keeps performing poorly, even when a large number of
training examples is used. Algorithms B and C show a good learning progress, eventually reaching
an acceptable error rate. The similarity between the plots of these algorithms is a result of the
similarity in computing weights for unimportant features. Algorithm B progresses slightly more
gradual than algorithm C. The latter is more susceptible to fluctuations in individual training
examples.

The same tests were performed on a training set where the combination of two features
determines the best supplier. The results of these tests were similar to the tests with 1 important
feature. The graphs of these tests can be found in appendix B.

18

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
10

20
30

40
50

(a) Algorithm A

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
5

10
15

20

(b) Algorithm B

Features

Fe
at

ur
e

W
ei

gh
t

0
10

20
30

40
50

p−p+ q−q+ r− r+ s− s+ t− t+

(c) Algorithm C

Figure 7.5: Feature weights for di↵erent algorithms, using artificial training set.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ● ●

● ● ●

●

●

● ●

●

● ●

● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ●

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e ●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

● ● ●

● ● ●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

(b) Algorithm B

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Training examples

Er
ro

r r
at

e

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

● ●

● ● ●

●

●

● ● ● ● ●

(c) Algorithm C

Figure 7.6: Error-rates for di↵erent algorithms, using artificial training set.

7.4 Sensitivity analysis

In real-world situations it is unavoidable to have errors in the training data. These errors should
not have an e↵ect on the outcome of the algorithms. To analyse the robustness of the algorithms,
the error-rates have been calculated in the presence of artificially generated errors. For each
training set, decision errors were emulated on randomly selected orders in the set. The picked
supplier for these orders was changed to one of the non-selected suppliers. Figure 7.7 shows the
error rates for training sets where up to 50 errors were inserted.

Figure 7.7a shows that algorithm A continues performing poorly after error insertion. The
error rate is linearly increasing with every data mistake introduced. Therefore the solution A
does not provide any fault tolerance. On the other hand, the sensitivity diagrams of algorithms B
and C (figs. 7.7b and 7.7b) resemble a sigmoid shape. This means that their desired properties
are preserved, even in the presence of errors.

19

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(c) Algorithm C

Figure 7.7: Algorithm sensitivity using a training-set with 5 features.

When half of the decisions in the training-set are incorrect, the weights calculated by the
algorithms still preserve their characteristics, as seen in figs. 7.8b to 7.10b. With every additional
error introduced to the training-set, the feature weights become further removed from the optimal.

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
10

20
30

40
50

(a) 0 errors

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
10

20
30

(b) 25 errors

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
5

10
15

20
25

30

(c) 50 errors

Figure 7.8: Weights for algorithm A, with varying number of injected errors.

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
5

10
15

20

(a) 0 errors

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

−4
−2

0
2

4
6

8

(b) 25 errors

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

−4
−2

0
2

4
6

8

(c) 50 errors

Figure 7.9: Weights for algorithm B, with varying number of injected errors.

20

Features

Fe
at

ur
e

W
ei

gh
t

0
10

20
30

40
50

p−p+ q−q+ r− r+ s− s+ t− t+

(a) 0 errors

Features

Fe
at

ur
e

W
ei

gh
t

0
5

10
15

20

p−p+ q−q+ r− r+ s− s+ t− t+

(b) 25 errors

Features

Fe
at

ur
e

W
ei

gh
t

0
5

10
15

p−p+ q−q+ r− r+ s− s+ t− t+

(c) 50 errors

Figure 7.10: Weights for algorithm C, with varying number of injected errors.

8 Discussion

In the previous chapter the algorithm variances were tested using both real-world and artificially
generated training-sets. Even though algorithm A performs well in the real-world data tests, it
shows significant deficiencies in the artificial data tests. With error-rates of up to 0.5, it is not
going to be reliable as an autonomous decision making system.

On the other hand, algorithm B and C performed well in all tests, in some cases with error-rates
close to 0. The performance of both algorithms is very similar, and they could therefore be
considered as equivalents. However, it should be noted that algorithm B requires the polarity of
the input data to be known and corrected before running the algorithm, as described in section 5.1.
Algorithm C does not have this requirement, since it determines the feature polarities during the
training phase. Considering this, using algorithm C over algorithm B is preferable.

8.1 Input data requirements

In order to work correctly, the algorithm needs to meet several prerequisites. Firstly, all the
factors influencing the decision need to be captured and represented as a numeric values. This
step is the most crucial for the algorithm to work correctly. Preferably the features that are not
of importance should be omitted in the training set. However with significantly large training set
the algorithm shows resilience to this problem, which was tested with artificially generated data.

Secondly, the data used in training phase need to be up-to-date and the decisions made need
to be consistent. Therefore it is advised to train the algorithm on current cases and switch
of the learning phase when the decisions start to produce satisfying results. Even though the
algorithm keeps performing well in the occurrence of errors, the decisions should exhibit consistent
importance properties and the exceptional cases should be omitted.

Thirdly, the unimportant features should exhibits significant oscillation in their values. This is
a case because the algorithm treats consistently high values as significant to the decision making
process. Therefore if those values are high in a large amount of training cases then they might be
mistakenly considered as important.

8.2 Study limitations

For various reasons, the tests performed on real-world data in this study had a limited scope. It
turned out that obtaining a suitable data-set for the tests was harder than initially estimated.
Even though there was a large quantity of data from various sources, very few matched the
requirements described above. In particular the correctness of the decisions reflected in the data
proved problematic. Most decisions appeared to be made using the predefined ‘main supplier’
functionality. We believe that this is in fact an indication of the need of a more sophisticated
solution, such as the algorithms developed for this study.

21

The data freshness (i.e. the degree to which the available data reflects the current real-world
situation) also proved to be an issue. For example, the data-set from the manufacturing company
contained many purchase lines where it seemed that only values of the chosen supplier were
updated. However, because the data-set is constructed from historical, it is very di�cult to
determine whether this was actually the case, or if it was a coincidence.

Finally, the number of suitable training examples with a su�cient number of alternatives was
limited. This made extracting a meaningful training-set from the real-world data di�cult. To
increase the size of the training-set, we bundled items with similar characteristics. This increased
the number of examples to train on, resulting in better outcomes.

Because of the scope of this study, the number of features used for the supply chain management
case was limited. The feature selection has been done by a Supply Chain Management Expert,
who named the most relevant features for the procurement decision making process. In real-world
use of the algorithm the set of features could be expanded by adding features such as: quality
metrics and delivery time reliability (i.e. does the supplier deliver ordered items on time).

8.3 Algorithm limitation

The testing phase has revealed that none of the algorithm alternatives reach an error-rate of zero.
This is caused by certain rare combinations of feature weights and values. An alternative with
a combination of high values for unimportant features can accumulate a higher utility than an
alternative with a high value for important features.

◊ =
#
1 0.25 0.25

$

S =

S

U
90 10 50
80 20 90
50 50 70

T

V =

S

U
1 0 0

0.75 0.25 1
0 1 0.5

T

V

u =

S

U
1

1.0625
0.365

T

V

The tests with the artificial data have shown that this problem can be largely mitigated by
prolonging the training period.

9 Generalization

The solution presented could be used to help automate various operational decisions which require
a choice between several candidates represented as a finite set of properties. Furthermore the
algorithm is highly scalable in terms of number of alternatives and features. Various business
cases requiring a fairly large number of features can be computed without any adjustment to the
algorithm.

9.1 Within IFS Applications

The procurement case researched in this thesis is one of the examples how automation can be
introduced into IFS Applications, as part of the ‘IFS Supply Chain’ in fig. 9.1. The proposed
algorithm generating suggestions based on users preferences can be used either fully automatically,
or be used to provide a suggestion to the purchaser. Additionally, the business intelligence tools
built around the algorithm can be used to aid evaluation of suppliers (see also section 11.2).

Implementing the algorithm as part of the suite should not require major changes to the
existing architecture. However, it may require preserving additional training data, which is
currently discarded. For example, the information related to suppliers that were not picked and
quality measurements.

22

Figure 9.1: Potencial areas within IFS Applications where the algorythm can be introduced [7].

Another case where this algorithm can be applied is ‘IFS Manufacturing’ (fig. 9.1). For
example, when allocating resources during production line planning, the algorithm could aid in
selecting the best resource for a particular job. This can be done based on various features, such
as availability, reliability, production speed, deadlines and other requirements. The algorithm will
learn preferences of resource allocation and apply them to new cases. The advantage of using the
algorithm over traditional planning would be that it could consider more features than a human
planner.

In ‘IFS Financials’, the algorithm could help to determine how to delay the payment of
incoming invoices. It is common practice for companies to try to pay invoices as late as possible,
without damaging the relationship with the creditor. Similarly, the company itself will have
outstanding bills to their clients. So the longer they can refrain from paying their bills, the
more money they save. Determining how long to delay the payment can be automated using the
following properties as a features and applying them to the algorithm: amount to be paid, the
cost the delay, the due date and the frequency of the situation. In this case, the alternatives the
algorithm will pick from represent di↵erent delay periods.

9.2 Other applications

Additionally, ERP systems are not the only place where the algorithm could be used. An example
of the case outside the IFS Applications could be the insurance industry. The algorithm could aid
to determining the action when processing insurance claims. The system could look into factors
such as the the clients claim history, income, insurance rate, area of residence etc. The output
would present the ranked actions that could be undertaken, which can in have a big impact on
the speed of claim processing.

In addition to making decisions, the algorithm could also be useful as an evaluation tool,
running in parallel with the regular decision making process. In this case employees will continue
making decisions manually, while the algorithm is used a double-check. By doing so it can be
used to compare the human decisions with the software suggestions, and provide performance

23

rankings. This appliance of the algorithm is not restricted to a particular domain.

10 Conclusion

In this thesis, we investigated how business decision making can be automated with the use of AI
in the context of ERP systems. We’ve investigated which criteria influence the suitability of a
business decision for automation, and how this automation can be achieved. Specifically, we’ve
looked at how the relative importance of features influencing a decision can be determined and
how this can be used to automate the decision making process.

Which criteria make an operational business decision a good candidate for automa-
tion using AI?
The theory review (chapters 3 and 4) has shown that in order to automate the decision making
process each decision has to be represented by a set of features that influence it. These features
have to be expressed as continuous values which can be used in mathematical calculations.
Additionally, it was found that in order for these calculations to be correct with respect to the
real-world situation, the features need to represent only those factors that are relevant to the
decision making process. Therefore, selecting these features will require specific domain knowledge.
In our project this was done by consulting a supply chain management expert, who provided the
significant criteria when picking the optimal supplier.

To train the algorithm, decision data has to be preserved. This data should contain all features
used to make the decision as well as the outcome of the decision. The tests on real-world data
obtained from a manufacturing company have shown that the current version of IFS Application
contains just enough data to fulfil this requirement.

How can the relative importance of features contributing to an operational deci-
sion be expressed?
Once it is known which criteria contribute to the decision making process, the relative importance
of these factors has to be determined. To make a fair comparison among features, they are
normalised to an equal scale. Based on the choice among alternatives, we calculate the feature
utility and determine its polarity. The weights learned from all training examples are then
accumulated to express the overall feature weights, as described in chapter 5.

With this relative importance, how can an operational business decision be made
automatically?
The feature weights learned during the training phase can be used to calculate a score value
for each alternative, determining their ranks. It follows that the alternative with the highest
score should be selected as the decision outcome. An ERP system can be configured to use the
algorithm’s outcome to automate the decision making process.

The tests on various data-sets (sections 7.1 and 7.3) have shown that this is a solution which
is capable of making decisions accurately. Sensitivity analysis (section 7.4) has shown that the
algorithm preserves its qualities, even in the presence of errors in the training data.

Our prototyped solution shows that applying AI to automate operational business decisions
is achievable, and can significantly reduce the time required for making these decisions. It is also
plausible that the introduction of an AI algorithm will improve the decision quality in situations
where manual decision making is too time consuming to carry out carefully.

11 Future work

Within this chapter we will present some possibilities of extending the current solution with
features that were outside of the scope of this thesis.

24

11.1 Features with discrete values

During this project we’ve only considered features with continuous values. We can imagine that
there are scenarios where not only continuous but also discrete valued features influence a decision.
Handling these will require some adjustments to the scaling algorithm. A first prerequisite is that
the positions of the discrete values in the feature matrix are known. E.g. columns 3 and 5 are
discrete represent discrete valued features, the others are continuous values. Secondly, all possible
feature values have to be known to be able to determine the value range. Finally, the discrete
values have to be mapped to numeric, continuous values before using the algorithm.

Example: Assume the first feature in the training set represents a color with one of four
di↵erent values: red, green, blue, yellow. The mapping between these colors and numeric values
can be:

color =

S

WWU

red = 0
green = 1/3
blue = 2/3
yellow = 1

T

XXV

Similar to the polarity features, we create new features for each of the possible discrete values n.
p

n

represents the utility of
P

n

= 1 ≠ |v ≠ color

n

|

These are then used in the same way as regular features. However, separating them from the
polarity calculation would require additional work.

11.2 Trend analysis

Currently, purchasers deal with ad-hoc, day-to-day purchase decision making. Because this
takes more time than they actually have available, they will only focus on decisions that they
think are the most important. The decisions deemed less important are done in a suboptimal,
preconfigured way and are evaluated yearly. Using the algorithm’s resulting scores for suppliers
and applying trend analysis to this, the system could identify which suppliers or requisitions need
more attention. For example, if the preconfigured supplier’s scores are gradually decreasing it
may be a indication that the agreement should be reviewed. By doing this, the purchasers can
focus their e↵ort on those parts which are most valuable to the company.

Taking this a step further, the trend analysis can be used to automate a tactical decisions, by
inspecting the gradients of the trending diagram.

Figure 11.1: Example of a trend graph.

25

References

[1] J. R. Anderson. The Architecture of Cognition. Cambridge, MA: Harvard University Press,
1983.

[2] D. C. C. Annapurna Valluri. “Agent learning in supplier selection models”. In: Decision
Support Systems 39.2 (2005), pp. 219–240.

[3] D. Berkeley and P. Humphreys. “Structuring decision problems and the ’bias heuristic’”. In:
Acta Psychologica 50.3 (1982), pp. 201 –252.

[4] C. Burges et al. “Learning to rank using gradient descent”. In: ICML ’05: Proceedings of
the 22nd international conference on Machine learning. New York, NY, USA: ACM, 2005,
pp. 89–96.

[5] C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview. Tech. rep.
Microsoft Research, 2010.

[6] I. Gilboa and D. Schmeidler. “Case-based knowledge and induction.” In: IEEE Transactions
on Systems, Man, and Cybernetics, Part A 30.2 (2000), pp. 85–95.

[7] IFS Applications - Full Suite ERP. http://www.ifsworld.com/en- gb/solutions/
product/. Accessed: 2012-10-04.

[8] C. M. Isabelle Bichindaritz. “Case-based reasoning in the health sciences: What’s next?” In:
Artificial Intelligence in Medicine 36.2 (2006), pp. 127–135.

[9] M. A. P. Juan M. Corchado. “Development of CBR-BDI Agents”. In: IJCSA 2.1 (2005),
pp. 25–32.

[10] J Kacprzyk, ed. Studies in Computational Intelligence 97 (2008).

[11] R. L. Keeney. “Expert judgment and expert systems”. In: ed. by J. L. Mumpower et al.
Springer-Verlag, 1987. Chap. Value-driven expert systems for decision support, pp. 155–171.

[12] G. Klein. “A recognition-primed decision (RPD) model of rapid decision making”. In:
Decision Making in Action: Models and Methods. Norwood: Ablex Publishing Corporation,
1993, pp. 138–147.

[13] J. L. Kolodner. “An introduction to case-based reasoning”. In: Artificial Intelligence Review
6.1 (1992), pp. 3–34.

[14] J. Koza, F. Bennett, and O. Sti↵elman. “Genetic Programming as a Darwinian Invention
Machine”. In: Genetic Programming. Ed. by R. Poli et al. Vol. 1598. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 1999, pp. 651–651.

[15] R. C. W. Monique Frize Lan Yang and A. M. O’Connor. “Conceptual framework of
knowledge management for ethical decision-making support in neonatal intensive care”. In:
IEEE Transactions on Information Technology in Biomedicine 9.2 (2005), pp. 205–215.

[16] A. Newell. Unified theories of cognition / Allen Newell. Harvard University Press, Cambridge,
Mass., 1990.

[17] J. Pohl. “Cognitive Elements of Human Decision Making”. In: Studies in Computational
Intelligence (2008).

[18] J. Pomerol and F. Adam. “Understanding Human Decision Making – A Fundamental Step
Towards E↵ective Intelligent Decision Support”. In: Studies in Computational Intelligence
(2008).

[19] K. R.L. Value-Focused Thinking. A Path to Creative Decision Making. Cambridge: Harvard
University Press, 1992.

[20] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 2003.

26

http://www.ifsworld.com/en-gb/solutions/product/
http://www.ifsworld.com/en-gb/solutions/product/

[21] S. J. Russell and P. Norvig. “Artificial intelligence: a modern approach”. In: Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2003, p. 737.

[22] S. J. Russell and P. Norvig. “Artificial intelligence: a modern approach”. In: Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2003, p. 133.

[23] S. J. Russell and P. Norvig. “Artificial intelligence: a modern approach”. In: Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2003, pp. 31–51.

[24] L. Savage. The Foundations of Statistics. New York: Dover Publications, 1972.

[25] R. C. Schank. Dynamic memory - a theory of reminding and learning in computers and
people. Cambridge University Press, 1983, pp. 1–234.

[26] H. Simon. “Administrative behaviour”. In: Free Press, New York, 1997, pp. 93–94.

[27] J. Snyman. “Practical Mathematical Optimization: An Introduction to Basic Optimization
Theory and Classical and New Gradient-Based Algorithms”. In: Applied Optimization.
Springer, 2005, p. 40.

[28] W. Spears et al. “An overview of evolutionary computation”. In: Machine Learning: ECML-
93. Ed. by P. Brazdil. Vol. 667. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 1993, pp. 442–459.

[29] J. Taylor. “Decision Management Systems: A Practical Guide to Using Business Rules and
Predictive Analytics”. In: IBM Press. Prentice Hall, 2011, pp. 49–53.

[30] T. E. Vollman. “Manufacturing Planning and Control for Supply Chain Management”. In:
McGraw-Hill, 1997. Chap. 1.

[31] J.-B. Waldner. “Principles of Computer Integrated Manufacturing”. In: John Wiley and
Sons, 1992, pp. 128–132.

[32] I. Watson and F. Marir. “Case-based reasoning: A review”. In: The Knowledge Engineering
Review 9.04 (1994), pp. 327–354.

27

A Prototype solution - user interface

28

B Test results using artificial data

These figures show the weights and error rates using an artificially generated dataset with 5
features. When generating the training-set, the sum of 2 randomly selected features was used to
selected the best alternative.

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
10

20
30

40

(a) Weights - Algorithm A

Features

Fe
at

ur
e

W
ei

gh
t

p q r s t

0
5

10
15

(b) Weights - Algorithm B

Features

Fe
at

ur
e

W
ei

gh
t

0
10

20
30

p−p+ q−q+ r− r+ s− s+ t− t+

(c) Weights - Algorithm C

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

● ●

●

●

●

● ●

● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

● ● ● ●

● ●

●

● ●

●

● ● ● ● ●

●

●

●

● ● ●

● ●

●

● ●

(d) Error-rate - Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ● ●

● ● ●

● ● ● ● ● ●

●

● ●

● ●

●

● ● ●

(e) Error-rate - Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

● ● ● ● ●

● ● ● ● ●

●

●

● ● ●

● ●

●

● ●

(f) Error-rate - Algorithm C

29

C Output analysis charts

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ●

(a) Algorithm A

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Training examples

Er
ro

r r
at

e
● ●

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ●

(c) Algorithm C

Figure C.1: Artificial data, n = 1, m = 50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

●

●

●

●

●

● ● ●

● ●

● ● ● ●

●

● ●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ●

● ●

● ● ● ● ●

●

●

● ●

●

●

● ● ●

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

●

● ●

●

●

● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

(c) Algorithm C

Figure C.2: Artificial data, n = 2, m = 50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

● ● ●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

● ● ● ● ●

● ●

● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ●

●

● ● ●

●

● ● ●

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

● ●

●

● ● ●

●

●

● ●

● ●

● ● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

● ●

●

●

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

● ● ●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

● ● ●

● ●

(c) Algorithm C

Figure C.3: Artificial data, n = 3, m = 50

30

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ●

● ●

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ●

●

● ●

●

●

● ● ●

● ●

●

●

● ●

● ●

●

●

● ●

●

●

(c) Algorithm C

Figure C.4: Artificial data, n = 4, m = 50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ● ●

● ● ●

●

●

● ●

●

● ●

● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ●

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training examples

Er
ro

r r
at

e

●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

● ● ●

● ● ●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

(b) Algorithm B

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Training examples

Er
ro

r r
at

e

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

● ●

● ● ●

●

●

● ● ● ● ●

(c) Algorithm C

Figure C.5: Artificial data, n = 5, m = 50

31

D Sensitivity analysis charts

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(a) Algorithm A

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Errors injected

Er
ro

r r
at

e

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(c) Algorithm C

Figure D.1: Artificial data, n = 1, m = 50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(c) Algorithm C

Figure D.2: Artificial data, n = 2, m = 50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(c) Algorithm C

Figure D.3: Artificial data, n = 3, m = 50

32

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(b) Algorithm B

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(c) Algorithm C

Figure D.4: Artificial data, n = 4, m = 50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(a) Algorithm A

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors injected

Er
ro

r r
at

e

(b) Algorithm B

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Errors injected

Er
ro

r r
at

e

(c) Algorithm C

Figure D.5: Artificial data, n = 5, m = 50

33

E Haskell prototype documentation

E.1 MachineLearning.Requisitions.Requisitions

module MachineLearning.Requisitions.Requisitions (

FeatureSet, FeatureWeights, TrainingExample, TrainingSet, RankFunction,

AlgorithmConfig(AlgorithmConfig,

getTrainingFn,

getRankingFn,

getPreScaleFn,

getPostScaleFn,

getFlipPolarities,

getFeatureGroupSize),

algorithmConfigs, getAlgorithmConfig, featureLabels, scaleFeatures,

featureWeightsDAvg, featureWeightsSum, rank, pickBest, errorRate,

flipPolarity, flipPolarity , addPolarizedFeatures,

addPolarizedFeatures , rank , rank

) where

E.1.1 Type Synonyms

type FeatureSet = Matrix Double

A block-matrix with supplier feature values (features across columns).

type FeatureWeights = Matrix Double

A row-vector of feature weights.

type TrainingExample = (FeatureSet, Int)

A combination of a feature matrix and picked supplier index.

type TrainingSet = [TrainingExample]

type RankFunction

= FeatureSet Set of supplier features (matrix).
-> FeatureWeights Feature weights (row vector).
-> Matrix Double Supplier scores (column vector).

E.1.2 Configurations

data AlgorithmConfig

= AlgorithmConfig

getTrainingFn :: TrainingSet -> FeatureWeights

getRankingFn :: RankFunction

getPreScaleFn :: FeatureSet -> FeatureSet

getPostScaleFn :: FeatureSet -> FeatureSet

getFlipPolarities :: Bool

getFeatureGroupSize :: Float

algorithmConfigs :: [(Char, AlgorithmConfig)]

getAlgorithmConfig :: Char -> AlgorithmConfig

featureLabels :: Float -> [String]

34

E.1.3 Functions

scaleFeatures :: FeatureSet -> FeatureSet

Scales the columns of the given matrix such that the values are all within the range <0, 1>.

featureWeightsDAvg :: TrainingSet -> FeatureWeights

Maps distanceToAvg function over all training examples and sums the results.

featureWeightsSum :: TrainingSet -> FeatureWeights

Alternative method of getting feature weights. Instead of distance to average feature value,
it uses the absolute feature values as the weights.

rank :: RankFunction

Ranks the supplier’s feature set, returning a column-vector of scores.

r = features * (weights T)

pickBest :: RankFunction -> FeatureSet -> FeatureWeights -> Int

Returns the index of the highest-ranked supplier.

errorRate :: RankFunction

-> TrainingSet -> FeatureWeights -> Double

Calculates the errorrate of the supplied weights when using them on a training set. Lower
value is better.

flipPolarity :: FeatureSet -> FeatureSet

Flip the polarity of the entire feature set (negating all values)

flipPolarity’ :: [Bool] -> FeatureSet -> FeatureSet

Flips the polarity of the columns in the supplied boolean list.

addPolarizedFeatures :: FeatureSet -> FeatureSet

Add polarized features to feature set. p -> p-, pAverage, p+

addPolarizedFeatures’ :: FeatureSet -> FeatureSet

Add polarized features to feature set. p -> p-, p+

rank’ :: RankFunction

Rank using only highest weight of the polarized features.

rank" :: RankFunction

Rank using only highest weight of the + and - polarities. The resulting weight used is the
(absolute) di↵erence between + and -.

E.2 MachineLearning.Requisitions.IO

module MachineLearning.Requisitions.IO (

trainingSetFromCSV, trainingSetFromCSV , trainingSetToCSV,

trainingSetToCSV

) where

35

E.2.1 Read

trainingSetFromCSV

:: String CSV input string.
-> Bool Flip polarities
-> (FeatureSet -> FeatureSet) Transformation function.
-> IO (TrainingSet, Matrix String)

Reads a set of training examples from a CSV string.

All lines will be grouped into matrices by their first value, REQ ID. At the moment the
first occurrence of a new REQ ID is assumed to be the picked supplier.

Expected input format:

REQ_ID, SUPPLIER_ID, x1, x2, x3

REQ_ID, SUPPLIER_ID, x1, x2, x3

trainingSetFromCSV’

:: FilePath The csv file to read.
-> Bool Flip polarities
-> (FeatureSet -> FeatureSet) Transformation function.
-> IO (TrainingSet, Matrix String)

Reads a set of training examples from a CSV file.

E.2.2 Write

trainingSetToCSV :: TrainingSet -> String

Writes a training set to a comma separated values string. Well..semicolon separated really...

trainingSetToCSV’ :: FilePath -> TrainingSet -> IO ()

Writes a training set to a csv file.

E.3 MachineLearning.Requisitions.Random

module MachineLearning.Requisitions.Random (

defaultFMin, defaultFMax, generateSet, generateSet , generateFeatures,

generateFeatures , generatePicks, insertErrors, randRangeExcept,

randOneOf, uniqueRandList

) where

E.3.1 Default values

defaultFMin :: Int

The default minimum feature value.

defaultFMax :: Int

The default maximum feature value.

36

E.3.2 Generating new sets

generateSet

:: Int The number of orders to generate.
-> Int The number of suppliers per order.
-> Int The number of features per supplier.
-> [Int] The feature to base picking the best supplier on.
-> IO TrainingSet

Generates a random training set.

generateSet’

:: Int The number of orders to generate.
-> Int The number of suppliers per order.
-> Int The number of features per supplier.
-> Int Minimal feature value.
-> Int Maximum feature value.
-> [Int] The feature to base picking the best supplier on.
-> IO TrainingSet

Generates a random training set.

generateFeatures

:: Int The number of suppliers to generate.
-> Int The number of features per supplier.
-> IO FeatureSet

Generates a single random feature set.

generateFeatures’

:: Int The number of suppliers to generate.
-> Int The number of features per supplier.
-> Int Minimal feature value.
-> Int Maximum feature value.
-> IO FeatureSet

Generates a single random feature set.

generatePicks

:: [FeatureSet] The features to compare.
-> [Int] The feature column indices to base the picking on.
-> [Int]

Generates a list of picked supplier indices, based on the highest value in the given columns.

E.3.3 Inserting errors

insertErrors

:: TrainingSet The training set to modify.
-> Int Number of errors to introduce.
-> IO TrainingSet

Changes the picked value in a given number of random training examples to a random
value, where the new value /= original value.

E.3.4 Helpers

randRangeExcept :: Int -> Int -> [Int] -> IO Int

Generates a random integer in the supplied range. It ensures that the generated number is
not an element in the supplied exclude list.

37

randOneOf :: [a] -> IO a

Picks a random element from the supplied list.

uniqueRandList

:: Int The lower range bound.
-> Int The upper range bound.
-> Int The number of numbers to generate.
-> IO [Int]

Generates a list of unique random numbers in the supplied range.

E.4 MachineLearning.Maths.Matrix

module MachineLearning.Maths.Matrix (

Matrix(M, rows), (<+>), (<|>), (<->), (<\>), mIdentity, mEmpty,

mInfinite, numRows, numCols, numElements, size, isEmpty, cols,

elements, element, row, col, (!!!), (!-!), (!|!), mFirst, (+-+),

(+|+), takeR, dropR, takeC, dropC, repeatR, repeatC, mTranspose,

mMap, rMap, cMap, mZip, (!+), (!-), (!*), (!/), mMul, chunksC

) where

A simple matrix module which supports basic matrix transformations such as by-element and
scalar arithmetic operations and matrix multiplication.

E.4.1 Constructors

data Matrix a

= M

rows :: [[a]]

instance Functor Matrix

instance Eq a => Eq (Matrix a)

instance Fractional a => Fractional (Matrix a)

By-element fractional operations (/).

instance Num a => Num (Matrix a)

By-element numerical operations (+), (-), (*).

instance Read a => Read (Matrix a)

instance Show a => Show (Matrix a)

(<+>) :: (Int, Int) -> [a] -> Matrix a

Block-matrix constructor. The first value in the tuple is the number of rows, the second the
number of columns.

>>> (2, 3) <+> [1..]

[1, 2, 3]

[4, 5, 6]

(<|>) :: Int -> [a] -> Matrix a

Column vector constructor.

38

>>> 2 <|> [1..]

[1]

[2]

(<->) :: Int -> [a] -> Matrix a

Row vector constructor.

>>> 3 <-> [1..]

[1, 2, 3]

(<\>) :: (Int, Int) -> (a, a) -> Matrix a

Identity matrix constructor.

>>> (2, 3) <\> (x , y)

[y , x , x]

[x , y , x]

mIdentity :: Num a => Int -> Matrix a

Creates a square numeric identity matrix

>>> mIdentity 2 :: Matrix Float

[1.0, 0.0]

[0.0, 1.0]

mEmpty :: Matrix a

Creates a matrix with 0 elements.

mInfinite :: a -> Matrix a

Creates a matrix with an infinite size.

E.4.2 Matrix Properties

numRows :: Matrix a -> Int

Gets the number of rows in a matrix.

numCols :: Matrix a -> Int

Gets the number of columns in a matrix.

numElements :: Matrix a -> Int

Gets the number of cells in a matrix.

size :: Matrix a -> (Int, Int)

Gets the size of a matrix.

isEmpty :: Eq a => Matrix a -> Bool

Tests if the matrix is empty.

E.4.3 Sub-matrices

cols :: Matrix a -> [[a]]

Gets a list of columns of a matrix.

39

elements :: Matrix a -> [a]

Gets a single list with all elements of a matrix.

element :: Matrix a -> (Int, Int) -> a

Gets the element in row r, column c.

row :: Matrix a -> Int -> Matrix a

Gets the i-th row of a matrix.

col :: Matrix a -> Int -> Matrix a

Gets the i-th column of a matrix.

(!!!) :: Matrix a -> (Int, Int) -> a

Alternative to the element function.

(!-!) :: Matrix a -> Int -> Matrix a

Alternative to the row function.

(!|!) :: Matrix a -> Int -> Matrix a

Alternative to the col function.

mFirst :: Matrix a -> a

Returns the upper-left value of the matrix.

(+-+) :: Matrix a -> Matrix a -> Matrix a

Appends matrix b to matrix a as new rows.

(+|+) :: Matrix a -> Matrix a -> Matrix a

Appends matrix b to matrix a as new columns.

takeR :: Int -> Matrix a -> Matrix a

Takes n rows from a matrix.

dropR :: Int -> Matrix a -> Matrix a

Drops n rows from a matrix.

takeC :: Int -> Matrix a -> Matrix a

Takes n columns from a matrix.

dropC :: Int -> Matrix a -> Matrix a

Drops n rows from a matrix.

repeatR :: Matrix a -> Matrix a

Repeats the rows of a matrix

repeatC :: Matrix a -> Matrix a

Repeats the columns of a matrix

E.4.4 Matrix Transformations

mTranspose :: Matrix a -> Matrix a

Transpose the matrix.

40

mMap :: (a -> b) -> Matrix a -> Matrix b

Maps a function over each element in the matrix.

rMap :: ([a] -> [b]) -> Matrix a -> Matrix b

Maps a function over each row in the matrix.

cMap :: ([a] -> [b]) -> Matrix a -> Matrix b

Maps a function over each column in the matrix.

mZip :: (a -> b -> c) -> Matrix a -> Matrix b -> Matrix c

Zips two matrices with a given function f.

E.4.5 Arithmetic operations

(!+) :: Num a => Matrix a -> a -> Matrix a

Scalar addition.

(!-) :: Num a => Matrix a -> a -> Matrix a

Scalar subtraction.

(!*) :: Num a => Matrix a -> a -> Matrix a

Scalar multiplication.

(!/) :: Fractional a => Matrix a -> a -> Matrix a

Scalar division.

mMul :: Num a => Matrix a -> Matrix a -> Matrix a

Matrix multiplication.

E.4.6 Miscellaneous functions

chunksC’ :: Matrix a -> Int -> [Matrix a]

Chops a matrix into column chunks of the given length.

>>> chunksC ((2, 6) <+> [1..]) 3

[[1,2,3]

[7,8,9],

[4,5,6]

[10,11,12]]

E.5 MachineLearning.Maths.Statistics

module MachineLearning.Maths.Statistics (

rSum, cSum, mSum, rMean, cMean, mMean, quantile, median, quartiles,

fiveNum, rStdDev, cStdDev, rNorm, cNorm, mse, rmse, corr, covariance

) where

A collection of statistical operations on matrices.

41

E.5.1 Sum and mean values

rSum :: Num a => Matrix a -> Matrix a

Sums up all rows and returns the sums as a column vector

cSum :: Num a => Matrix a -> Matrix a

Sums up all columns and returns the sums as a row vector

mSum :: Num a => Matrix a -> a

Sums up all values in a matrix.

rMean :: Floating a => Matrix a -> Matrix a

Calculates the mean value of each row in a matrix.

cMean :: Floating a => Matrix a -> Matrix a

Calculates the mean value of each column in a matrix.

mMean :: Floating a => Matrix a -> a

Calculates the mean over of values in a matrix.

E.5.2 Quantile

quantile :: RealFrac a => a -> [a] -> a

Gets a given quantile from a list of values.

>>> quantile 0.25 [1,2,3,4,5]

2.0

>>> quantile 0.75 [1,2,3,4,5]

4.0

median :: RealFrac a => [a] -> a

Gets the median from a list of values.

quartiles :: RealFrac a => [a] -> (a, a, a)

Gets three values dividing a list into quartiles. (Q1, median, Q3).

>>> quartiles [1,2,3,4]

(1.5,2.5,3.5)

fiveNum :: RealFrac a => [a] -> (a, a, a, a, a)

Gets the five-number summary from a list. (min, Q1, median, Q3, max).

>>> fiveNum [1,2,3,4]

(1.0,1.5,2.5,3.5,4.0)

E.5.3 Standard Deviation and Normalization

rStdDev :: Floating a => Matrix a -> Matrix a

Returns a column vector with the standard deviation of each row in a matrix.

cStdDev :: Floating a => Matrix a -> Matrix a

Returns a row vector with the standard deviation over all rows.

42

rNorm :: Floating a => Matrix a -> (Matrix a, Matrix a, Matrix a)

Normalizes each row in a matrix.

Returns a triple: (Matrix normalized over columns, means column vector, std. dev. column
vector).

cNorm :: Floating a => Matrix a -> (Matrix a, Matrix a, Matrix a)

Normalizes each column in a matrix.

E.5.4 Mean Squared Error

mse :: Floating a => Matrix a -> Matrix a -> a

Mean squared error.

mse(x,y) = 1/2n * sum((x(i) - y(i)) ^ 2)

rmse :: Floating a => Matrix a -> Matrix a -> a

Root mean squared error.

E.5.5 Correlations

corr :: Floating a => Matrix a -> Int -> Int -> a

Pearson’s correlation between columns x and y in matrix m.

corr(X,Y) = cov(X,Y) / (stdDev(X) stdDev(Y))

covariance :: Floating a => Matrix a -> Matrix a -> a

Covariance between two column-vectors.

q(jk) = 1 / (n - 1) * sum (x(ij) - mean(x(j))) * (x(ik) - mean(x(j)))

43

	Abstract
	Acknowledgements
	Contents
	Introduction
	Methodology
	Case description
	Requisition process
	Problem analysis
	Available data

	Theoretical framework
	Decision making process
	Decision making and Artificial Intelligence
	Artificial Intelligence approaches
	Linear Regression and Gradient Descent
	Neural Networks
	Genetic Programming
	Case-Based Reasoning
	Intelligent Agents
	Artificial Intelligence approaches comparison result

	Solution
	Feature selection
	Feature scaling
	Algorithm training
	Notation
	Algorithm A - Sum of picked values
	Algorithm B - Difference from average of picked values
	Algorithm C - Automatic polarity calculation

	Prototype overview
	Input data
	Error metrics

	Results
	Tests on data from manufacturing company
	Tests on data from hardware price comparison portal
	Tests on artificial data
	Sensitivity analysis

	Discussion
	Input data requirements
	Study limitations
	Algorithm limitation

	Generalization
	Within IFS Applications
	Other applications

	Conclusion
	Future work
	Features with discrete values
	Trend analysis

	References
	Prototype solution - user interface
	Test results using artificial data
	Output analysis charts
	Sensitivity analysis charts
	Haskell prototype documentation
	MachineLearning.Requisitions.Requisitions
	Type Synonyms
	Configurations
	Functions

	MachineLearning.Requisitions.IO
	Read
	Write

	MachineLearning.Requisitions.Random
	Default values
	Generating new sets
	Inserting errors
	Helpers

	MachineLearning.Maths.Matrix
	Constructors
	Matrix Properties
	Sub-matrices
	Matrix Transformations
	Arithmetic operations
	Miscellaneous functions

	MachineLearning.Maths.Statistics
	Sum and mean values
	Quantile
	Standard Deviation and Normalization
	Mean Squared Error
	Correlations

