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Abstract

This thesis presents a parallel intermediate representation for embedded
languages called PIRE, and its incorporation into the Feldspar language.
The original Feldspar backend translates the parallel loops of Feldspar to
ordinary for loops, meaning that they are not actually parallel in the gener-
ated code. We create an alternate backend for the Feldspar project, where
the parallel loops of Feldspar are translated as OpenCL kernels that run on
the GPU. We show that we gain performance using our new backend for
big input sizes compared to the original backend.
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Chapter 1

Introduction

As single-core processors are ceasing to scale, multi-core processors have
over the last decade or so made their way into the mainstream. These kinds
of processors provide programmerswith a high degree of support for paral-
lelism. While few would argue that having more computing power is a bad
thing, it does put more burden on the programmer. High-level languages,
particularly functional languages like Haskell (Haskell.org, 2011), attempt
to relieve some of this burden.

An embeddeddomain-specific language (EDSL) is a particular kind of domain-
specific language (DSL). Such a language exists only as a library within an-
other language, the host language. One popular host language is Haskell.
Throughout this thesis we will see numerous examples of embedded lan-
guages using Haskell as host.

When performance is crucial, EDSLs often end up compiled rather than
interpreted. The compiler for the EDSL, like traditional compilers, uses in-
termediate representations (IRs) to represent a program internally in an ab-
stract fashion. It is intermediate in the sense that it represents the program
while it goes from one representation (the input string) to another (the out-
put string). The IR is an important piece of the puzzle that is compilation,
for it aids in analysis and transformation of the source code.

Recent trends in EDSLs (e.g. Obsidian (Svensson, 2011), Nikola (Mainland
and Morrisett, 2010) and Accelerate (Chakravarty et al., 2011)) indicate that
the graphical processing unit (GPU) is hardware worth exploring. It pro-
vides a massively parallel machinery that is appropriate for data-parallel
computations. With the introduction of programming languages such as
CUDA (Nvidia, 2013) and OpenCL (Khronos Group, 2013), programmers
can use GPUs for general purpose (GPGPU) programming.

Other EDSLs than those for GPGPU programming could also benefit from
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increased parallelism support. For instance, incorporating support for par-
allelism into Feldspar (Axelsson et al., 2010), an EDSL for digital signal pro-
cessing, has been a longtime goal.

A survey of the field of current (compiled) EDSLs indicates that many of
the IRs used are tailored to the domain of the language and influenced by
the target language. As an example, languages for GPU programming of-
ten have their IR designed to fit the CUDA/OpenCL programming model.
Moreover, many EDSLs attempt to exploit the opportunities for parallelism
provided by current hardware, therefore making parallel intermediate rep-
resentations an interesting area to explore.

In response to the lack of generality in existing parallel IRs, this thesis presents
a more general kind of parallel IR. It can be targeted by several kinds of ED-
SLs and in turn it can target different kinds of backends.

1.1 Background

The need for special-purpose programming languages aimed at particular
domains is ever-present. We call such languages domain-specific languages
(DSLs). They are characterised by their functionality in a particular do-
main, and are often unsuitable for other domains. Some common examples
of DSLs include OpenGL for 3D graphics, LATEX for typesetting, HTML for
document markup, YACC for parsing, and SQL for database queries.

DSLs implemented as libraries in existing (general-purpose) languages we
call embedded domain-specific languages (EDSLs). The benefits of this ap-
proach to DSL development are many (Kosar et al., 2008; Hudak, 1998), but
primarily we can bypass the need to develop front-end components like the
lexer and the parser. One language that is particularly well-suited for acting
as host language is the functional languageHaskell. The features ofHaskell,
such as laziness and higher-order functions (Hughes, 1990), polymorphism
and type classes lend themselves nicely for this application (Hudak, 1998).

To give a flavour of the idea of EDSLs, here follows some examples of do-
mains and languages therein. For (functional) imagemanipulation and syn-
thesis there is Pan (Elliott, 2003), for software testing there is the property-
based random testing language QuickCheck (Claessen and Hughes, 2000)
and for circuit design there are Lava (Bjesse et al., 1998) and Wired (Ax-
elsson et al., 2005). For GPGPU programming, there are several examples
including Nikola (Mainland and Morrisett, 2010) and Obsidian (Svensson,
2011). For DSP applications there is the aforementioned Feldspar (Axels-
son et al., 2010). There are even languages for expressing music notation;
Haskore (Hudak et al., 1996) is such a language.
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EDSL programs can easily be interpreted in the host language. While this is
often enough, some applications require performance or predictability bet-
ter than what can be achieved by interpretation. Alternatively, applications
may contain expressions that are not feasible or possible to compute in the
host language. In such cases, we turn to compilation. By developing a code-
generating backend we can target a language other than the host language
and hope to gain benefits. For instance, the Feldspar backend (Dévai et al.,
2010) currently does exactly this with C99 as target language.

1.1.1 Parallelism

This section presents some of the fundamental concepts of parallelism. First
and foremost, we emphasise the difference between concurrency and paral-
lelism. While concurrency is concerned with a lot of things such as threads,
synchronisation and critical sections, parallelism is concernedwith one thing
only - to make things go faster by adding more computing elements (e.g.
CPU cores).

Arguably the two most common forms of parallelism are task-parallelism
and data-parallelism (Subhlok et al., 1993). Task-parallelism is parallelisa-
tion of tasks (of arbitrary size or complexity) over available computing el-
ements. There are many issues involved with task-parallelism. Because of
the arbitrary complexity of tasks, scheduling becomes an issue. We don’t
always know how long a task takes to complete. Moreover, tasks may share
data or rely on each other for control flow, which further complicates things.

Data-parallelism iswherewe exploit the independence of data-setmembers
(Subhlok et al., 1993; Hillis and Steele, 1986; Blelloch et al., 1993b). Data is
distributed over available computing elements, and we achieve parallelism
by applying operations in parallel to each member. Typically, this is done
in a SIMD (single instruction multiple data (Flynn, 1972)) fashion.

We distinguish between flat and nested data-parallelism. An intuitive way
of thinking about the distinction is to imagine the parallelism in levels. Flat
can only provide us with one level of parallelism (see Figure 1.1), whereas
nested can provide several (see Figure 1.2). For nested data-parallelism, op-
erations that we apply in parallel to the data can themselves spark addi-

Figure 1.1: Flat data-parallelism.
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Figure 1.2: Unbalanced, nested data-parallelism.

tional parallelism. This is not the case for the flat kind. Languages support
different nesting depth. For instance, the library Repa (Keller et al., 2010)
for Haskell supports only flat (depth zero) data-parallelism, the language
NESL (Blelloch et al., 1993b) supports nesting of arbitrary depth and Em-
bArBB (Svensson and Sheeran, 2012) (an EDSL for Intel’s Array Building
Blocks) supports one level of nesting.

The CUDA/OpenCL model is classified as SPMD (single program multi-
ple data) (Pharr and Mark, 2012). In SPMD, we run instances of the same
program simultaneously by spreading them over multiple (available) com-
puting elements. The instances all work on different points in the data (that
is, they run with different input).

We briefly note that there is also another quite common form of parallelism
known as pipeline parallelism. We consider pipeline parallelism to be out
of scope for this thesis. However, the interested reader is encouraged to look
at (Trinder et al., 1998, sec. 4.4) and (Gordon et al., 2006).

In Haskell there are several ways of introducing parallelism, and the fol-
lowing is a selection of approaches. Trinder et al. (1998) presents a way of
introducing parallelism via strategies, which builds upon existing parallel
primitives of Haskell (par and pseq). The approach was later refined by
Marlow et al. (2010). Strategies can be used to achieve both task-parallelism
and data-parallelism (among other forms). The Par Monad (Marlow et al.,
2011) gives us a way of modelling data-flow networks and a way of ex-
pressing task-parallelism. The Repa library (Keller et al., 2010) allows us
to express (non-nested) data-parallel computations over regular (i.e. dense),
multi-dimensional arrays. It is related toData-ParallelHaskell (DPH) (Jones
et al., 2008), which is an extension to the Glasgow Haskell Compiler (GHC)
for nested data-parallelism over irregular arrays.

Onemight wonder why there is need for two such (seemingly) similar ways
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of achieving parallelism. The answer is given by (Keller et al., 2010, p. 11):

Both provide a way of writing high-performance parallel pro-
grams butDPHsupports irregular, arbitrarily nestedparallelism
which requires it to sacrifice performancewhen it comes to purely
regular computations.

The Repa library is meant to complement DPH, and the intention is to inte-
grate Repa into DPH, thus providing support for both regular and irregular
arrays.

Adding to this, the first language to fully support nested data-parallelism
was NESL by Blelloch et al. (1993b). It is a functional language for specify-
ing data-parallel programs. One typically uses a set-like notation, similar
to that of list-comprehensions in Haskell, to apply functions to a sequence
of elements. For instance, the NESL-program (taken from Blelloch et al.
(1993b)) that negates all elements in a sequence that are less than four can
be written as:
{ negate(a): a in [3, -4, -9, 5] | a < 4 }

The program returns the sequence [-3, 4, 9].

1.2 Objective

This thesis aims to design and implement a parallel intermediate represen-
tation for EDSLs. The intermediate representation will encompass a code-
generating backend for C, where parallel loops are offloaded to the GPU
using OpenCL.

Moreover, the IRwill be incorporated into the compiled EDSL Feldspar. The
parallel loop construction of Feldspar will be a focal point throughout this
thesis. In the current Feldspar compiler, the parallel loop compiles as an
ordinary C for loop, meaning there is no actual parallelism in the generated
code. We will incorporate our parallel IR into the Feldspar compiler and
use the OpenCL backend to achieve parallelism.

1.2.1 Scope

The parallel IR aims to target single-core, multi-core and GPU systems, but
only one at a time. Heterogeneous systems we consider future work. In
addition, there are several kinds of parallelism that are of interest. This the-
sis will only focus on data-parallelism. Task-parallelism and pipeline par-
allelism, however interesting, we also consider future work. Furthermore,

5



time does not allow for a full-scale implementation of Feldspar. Instead, a
slightly reduced version of Feldspar that excludes monadic constructs and
mutable arrays will be used.

1.3 Thesis Outline

This thesis is structured as follows. In Chapter 2we give an overview of ED-
SLs, and give a case study (in Haskell) that explores the difference between
different kinds of embeddings. Chapter 3 introduces Feldspar, an EDSL for
digital signal processing. Chapter 4 presents the parallel IR for embedded
languages that we call PIRE. Its implementation and backend are described,
with a focus on how parallel loops are compiled. Chapter 5 describes how
PIRE replaces the current low-level IR of the Feldspar compiler. Chapters 6
and 7 discuss the evaluation of the code-generating capabilities of PIRE.
Chapter 8 presents related work, and Chapter 9 aims to discuss the results
from the evaluation. The thesis is concluded with Chapter 10.
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Chapter 2

Embedded Domain-Specific
Languages

This chapter presents the concept of embedded domain-specific languages
(EDSLs). For readers not familiar with embeddings, this chapter will serve
as an introduction to the area. Section 2.1 attempts to make clear the dif-
ferences between different kinds of embeddings. In Section 2.2 we further
explore the concept of compiling embedded languages. The chapter ends
with a description of Feldspar, a language of particular interest for this the-
sis, in Section 3.

Expanding on what was introduced in the background (Section 1.1), it is
generally the view that EDSLs come in two flavours, shallowly embedded
and deeply embedded. One can, however, imagine a combination of the
two. Axelsson and Svenningson (2012) presents a technique that combines
both flavours. This technique is employed in Feldspar, where shallow em-
beddings are built on top of a deeply embedded core-language (Axelsson
and Sheeran, 2012).

A shallow embedding lies closer to the semantics while its counterpart lies
further away. In a shallow embedding, we use functions and values in the
host language to represent functions and values in the domain language.
Typically, a deep embedding is needed when we need to specify compu-
tations that cannot easily be expressed in the host language. From a deep
embedding, we can begin to target a language other than the host language.
This is somethingwewill see throughout this thesis, and it is a fundamental
building-block when compiling EDSLs.

According toHudak (1998), embedding aDSL is nothing new (and certainly
not something limited to just Haskell) and has been done for a long time
in the language Lisp, where macros have been used to develop embedded
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languages.

Common to EDSLs of all types is that they share the concepts of constructor-
functions, combinators and interpretation functions (knownalso as run func-
tions). It is fairly straightforward - constructor-functions introduce values
into the domain, combinators modify values and interpretation functions
take an expression in the domain language and interpret it to a value in the
host language.

Generally, a shallow embedding is represented by a single interpretation
function, making it difficult to add new interpretations. In a deep embed-
ding, this is less of a problem since interpretation functions are cheap to
add. The drawback of deep embeddings is that they are less flexible when
adding new constructs to the language. The following case study on a lan-
guage for vectors aims to make clear these differences.

2.1 Case Study: a Vector Language

This section aims to highlight differences between shallow anddeep embed-
dings by presenting two variations of a small language for vectors. For the
sake of conciseness, the language implements only a few common functions
on vectors. These are vector append (+++), length, head, indexing (!), take
and drop. Additionally, the fromList and toList are the main constructor
and interpretation function, respectively.

The following code implements the language in a deep fashion. We assume
that standard prelude imports as P where needed. For instance, the differ-
ence between head and P.head is that head is a function in the embedded
language (working on the Vector type) while P.head is the standard head
function of Haskell (working on the regular Haskell list type).
data Vector a where

Append :: Vector a → Vector a → Vector a
FromList :: [a] → Vector a

(+++) :: Vector a → Vector a → Vector a
(+++) = Append

infixr 5 +++

fromList :: [a] → Vector a
fromList = FromList

toList :: Vector a → [a]
toList (Append xs ys) = toList xs ++ toList ys
toList (FromList xs) = xs

8



length :: Vector a → Int
length (Append xs ys) = length xs + length ys
length (FromList xs) = P.length xs

head :: Vector a → a
head (Append xs _) = head xs
head (FromList xs) = P.head xs

(!) :: Vector a → Int → a
(!) (Append xs ys) i | i < xsLen = xs ! i

| otherwise = ys ! (i-xsLen)
where xsLen = length xs

(!) (FromList xs) i = xs !! i

infixr 5 !

take :: Int → Vector a → Vector a
take n (Append xs ys) | n > length xs =

take (length xs) xs +++
take (n - length xs) ys

| otherwise = take n xs
take n (FromList xs) = FromList (P.take n xs)

drop :: Int → Vector a → Vector a
drop n (Append xs ys) | n ≤ 0 = xs +++ ys

| n ≤ length xs = drop n xs +++ ys
| otherwise = drop (n-length xs) ys

drop n (FromList xs) = FromList (P.drop n xs)

An important thing to note is that each constructor in the data type has a
corresponding constructor-function. For instance Append is introduced by
the function +++.

Furthermore, a function that works on the data type has to mention all of
the constructors. It now becomes clear to us why this approach can be very
tedious. Imagine adding another constructor — for instance one that ex-
presses cons. Every function has to be modified to accommodate the new
constructor.

As a side-note, the problem of adding cases to data types without recom-
piling, while maintaining type safety, is known as the Expression Prob-
lem (coined by Wadler (1998)). For a recent solution to this problem, the
interested reader is encouraged to look at the work by Axelsson (2012).
It is currently used in Feldspar to increase modularity, in the form of the
library Syntactic. The library also supports embedding of monadic con-
structs (Persson et al., 2012).
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We now turn to the shallow approach. The following code implements the
same language.

data Vector a = Vec { vecLength :: Int
, runVec :: Int → a
}

(+++) :: Vector a → Vector a → Vector a
(Vec l1 ixf1) +++ (Vec l2 ixf2) = Vec (l1 + l2)

(λi → if i ≥ l1 then ixf2 (i-l1) else ixf1 i)

fromList :: [a] → Vector a
fromList xs = Vec (P.length xs) (λx → xs !! x)

toList :: Vector a → [a]
toList (Vec l ixf) = map ixf [0..l-1]

length :: Vector a → Int
length = vecLength

head :: Vector a → a
head xs = xs ! 0

(!) :: Vector a → Int → a
(!) = runVec

take :: Int → Vector a → Vector a
take n (Vec l ixf) = Vec (min l n) ixf

drop :: Int → Vector a → Vector a
drop n (Vec l ixf) = Vec (max (l-n) 0) (λi → ixf (i+n))

In this implementation, a vector is represented by a length and a function
from indices to values. The interface remains the same, but the implemen-
tation is radically different. The functions are smaller, and arguably sim-
pler. It seems vector libraries indeed benefit from being embedded shal-
lowly rather than deeply.

We conclude this case studywith the following observation. Whenworking
with deep embeddings, most work is done in the interpretation functions,
while constructor-functions and combinators are basically free. In the case
of shallow embeddings, the situation is reversed; most of thework is done in
constructor-functions and combinators while the interpretation-functions
often are derived from the data type.
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2.2 Compilers and Embedded Languages

Traditional compilers are made up of many components that together form
these very complex pieces of software. Some of these components are called
intermediate representations, and are intended to aid in the analysis, opti-
misation and transformation of programs. Embedded compilers are often
simpler, since they use already existing features of the host language.

Broadly speaking, there are two different types of IRs – graph-like repre-
sentations and linear representations. These can of course come in various
flavours. We can for instance imagine representing programs as strings,
graphs (Girkar and Polychronopoulos, 1994), trees and in special-purpose
intermediate languages like three-address code and abstract machine in-
structions (Aho et al., 2006; Demange, 2012).

Moreover, we are not limited to just one form of representation, as different
compilation phases may have to scrutinise the program in different ways.
Indeed, as noted by Aho et al. (2006), abstract syntax trees (ASTs) are often
used in early phases of compilation for syntax analysis while abstract ma-
chine instructionsmay be amore appropriate representation in later phases.
For later-phase IRs Aho et al. point out two important properties; the repre-
sentation should be easy to produce, and it should be easily translated to the
target machine. An example of a multi-IR compiler is the Feldspar compiler
(Axelsson et al., 2010). It uses the purely functional core language early on,
and then translates it to abstract imperative code, which is straightforward
to translate to the target machine.

Earlywork on embedded compilers include the circuit-design languageLava
(Bjesse et al., 1998). Lava produces symbolic descriptions of circuits that can
be used to interface with, for instance, external theorem provers. While this
might not be a general-purpose language, the idea is very much the same
as in other embedded compilers. Leijen and Meijer (1999) also presents an
early embedded compiler in Haskell. The EDSL introduced is one for gen-
erating SQL queries called Haskell/DB. Furthermore, Kamin (1996) uses
SML/NJ as host language to embed languages producingC++. Kamin gives
four examples; a top-down parser generator language, a geometric region
server language, amessage specification language and a language for pretty-
printing.

More recent literature includes Elliott et al. (2003), which present techniques
for creating optimising embedded compilers. Furthermore, many current
EDSLs employ compilers, for instanceNikola (Mainland andMorrisett, 2010),
Obsidian (Svensson, 2011; Claessen et al., 2008), Feldspar (Axelsson and
Sheeran, 2012; Axelsson et al., 2010, 2011; Dévai et al., 2010) and Acceler-
ate (Chakravarty et al., 2011).
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Chapter 3

The Language Feldspar

Feldspar (Axelsson et al., 2010) is an EDSL in Haskell for digital signal pro-
cessing (DSP) and high-performance numerical computations. DSP is a do-
main where algorithms traditionally are implemented in low level, sequen-
tial, C code. This is an error-prone and costly approach which offers very
limited portability, due to the use of hardware-specific intrinsics. Moreover,
given the parallel architectures of today, the Feldspar project questions the
aptness of C as the language of choice for DSP applications.

An aim of Feldspar is to raise the level of abstraction. This means that algo-
rithms, primarily over vectors, can be described in a concise manner. Com-
pared to the traditional approach of C programming, the idea of the al-
gorithm becomes clearer since it is shrouded in less boilerplate code. The
high-level descriptions of algorithms are currently resulting in individual
C-functions (Axelsson and Sheeran, 2012).

The language uses a deeply embedded, purely functional, core language
on top of which a collection of shallowly embedded libraries are built, as
illustrated in Figure 3.1 (Axelsson and Sheeran, 2012; Axelsson and Sven-
ningson, 2012). The most prominent of these is the Feldspar vector library.
There are other libraries, but we leave them out as they do not concern this
work.

Feldspar is split up into a language component describing the frontend, and
a compiler component describing the backend. We refer to these as feldspar-
language and feldspar-compiler respectively. The work in this thesis uses a
reduced version of feldspar-language, where monadic constructs (Persson
et al., 2012) and mutable arrays are excluded.
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Figure 3.1: The Feldspar architecture.

3.1 The Core Language

The components feldspar-language and feldspar-compiler are essentially
tied together by the core language - a purely functional intermediate repre-
sentation. Core expressions (ASTs in the core language) constructed by the
frontend can be passed to the compiler for compilation.

A program in the core language has type Data a. For instance, the type
signature of the equality operation is:

(==) :: Eq a ⇒ Data a → Data a → Data a

In the core language there are two types of arrays, sequential and parallel.
A parallel core array is created with the function parallel, which looks as
follows (type constraint omitted):

parallel :: Data Length → (Data Index → Data a) → Data [a]

This is a fairly common way of representing data-parallel arrays. Obsidian
calls this kind of array a pull array, in contrast to a push array (Claessen
et al., 2012). Feldspar has high-level push vectors instead of push arrays.
The push vectors of the Vector library are translated as mutable arrays in
the core language. Mutable arrays require the Mutable module – a module
excluded from the version of Feldspar we are working with in this thesis
(see Section 1.2.1). It follows that we don’t support push vectors.

Using parallel we can encode the program that returns the first n even
numbers:
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evens :: Data Index → Data [Index]
evens n = parallel n (*2)

Naturally, there are functions we cannot express with just parallel arrays.
Therefore we require the existence of sequential arrays, where we rely on a
state being passed along. Since we are concerned with parallelism in this
thesis, sequential arrays are omitted.

In addition to parallel loops, Feldspar also supports sequential loops. The
for loop is straightforward: it takes a length, an initial state value, and a
function that transforms the state. The state after the last iteration becomes
the result of the for loop. We consider the type of forLoop:
forLoop :: Data Length

→ a
→ (Data Index → a → a)
→ a

Using forLoopwe can write (the slightly contrived) program that adds 10 to
its input:
addTen :: Data Index → Data Index
addTen a = forLoop 10 a $ λ_ st → st + 1

The function addTen runs for ten iterations, and the initial value of the state
is the input parameter of the function. We ignore the first argument of the
state-transforming function (as indicated by the underscore), and add 1 to
the state in each iteration.

3.2 The Vector Library

On top of the core language, there are numerous high-level libraries im-
plemented as shallow embeddings. The benefit of having the libraries as
shallow embeddings is that it allows for experimentation and augmenta-
tion without any modification to the (deeply embedded) core.

Vectors in Feldspar are called symbolic vectors, since they do not necessarily
result in actual arrays in the target language (Axelsson and Sheeran, 2012).
The Vector is implemented using the following type:
data Vector a = Empty

| Indexed
{ segmentLength :: Data Length
, segmentIndex :: Data Index → a
, continuation :: Vector a
}
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A vector can either be Empty or non-empty (Indexed). A non-empty vector
has a length (the sum of all its segments’ lengths), an index-to-value func-
tion and possibly also a continuation vector describing the next segment.
The library provides vector-variants of many of the common functions on
Haskell lists, such and append, drop, fold and map.

3.3 Case-Study: Dot Product

In this section we conclude the chapter on Feldspar with a case study on
dot product. We will revisit the dot product problem in Section 6, albeit
with slightly different, more parallel, implementation. Below we give an
implementation which is:
dotProd :: Vector1 Word32

→ Vector1 Word32
→ Data Word32

dotProd xs ys = sum (zipWith (*) xs ys)

We see that it is a call to zipWith using multiplication and the two input
vectors, followed by a call to sum. The function sum is defined in the Feldspar
vector library and is just a shorthand for fold using the addition operator.
We would perhaps expect to generate two loops from this code – one for
zipWith and one for sum. But as we will see, Feldspar will fuse the calls into
a single loop. The fusion takes place in the shallow embedding of the vector
library, and superfluous arrays will be removed before the creation of the
core expression takes place.

When we’ve loaded Feldspar into GHCI, we can call icompile in order to
quickly output a function named testwith the functionality of the program
we provide. Below is the generated C-code from the dotProd program:
void test(struct array * v0 ,

struct array * v1,
uint32_t * out)

{
uint32_t len0;
uint32_t v3;

len0 = min(getLength(v0), getLength(v1));
*out = 0;
for (uint32_t v2 = 0; v2 < len0; v2 += 1)
{

v3 = (*out +
(at(uint32_t ,v0,v2) *

at(uint32_t ,v1 ,v2)));
*out = v3;
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}
}

Arrays are represented as a struct array that is defined in the Feldspar C
files that come with feldspar-compiler. We use the at macro in the C code to
access the data buffer of the array struct and type cast the result.

The two input vectors are translated as pointers to arrays, and the output
pointer is a scalar, as we would expect when seeing the type signature of
dotProd. The two loops we would expect to see have been fused to one, as
noted earlier. The length of the loop is initialised to the length of the shortest
vector (indicated by len0). This behaviour follows from the use of zipWith,
and is mimicking the behaviour of the original Haskell function. The loop
does one multiplication and one accumulation into the output parameter
per iteration.
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Chapter 4

PIRE

This chapter aims to present the idea and design of PIRE – a Parallel In-
termediate Representation for Embedded languages1. PIRE encompasses a
code-generating backend for C with parallel loops using OpenCL kernels.
Kernels are functions that are run on the GPU. They produce output using
only their input parameters. The kernels generated by PIRE are currently
generating global kernels (kernels that only use global memory).

Implemented in Haskell, PIRE is intended to be a low-level parallel IR used
in compiled embedded languages. It is low-level in the sense that it is in-
tended to be the last in a chain of representations before actual code gener-
ation. This means that very few traditional optimisations are done in PIRE
– if optimisations are desired, they should take place higher up the chain of
IRs.

PIRE is an imperative IR as opposed to, for instance, a functional one. Im-
perative code lies closer to the machine and thus gives a better opportuni-
ties for producing specialised code (still future work) and code for special
hardware (e.g. GPUs). Producing sequential C code from a PIRE-AST is
essentially done by pretty-printing, assuming that one translates parallel
loops to ordinary loops.

Following from the thesis scope (Section 1.2.1), the kind of parallelism sup-
ported by PIRE is data-parallelism. There is, for instance, no support for
task parallelism; threads, synchronisation and spawn-primitives are left out
completely.

Throughout the remainder of this thesis we will use the terms host and ker-
nel. TheC code that runs on theCPUandhas access to the ordinarymemory
is what we in OpenCL terms call the host code. A kernel is code that runs

1The repository containing PIRE can be found at https://github.com/rCEx/PIRE.
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on the device (e.g. GPU) and has access only to specific device memory.
Device memory can be both global and local, but this thesis explores only
kernels that use global memory. The host program is responsible for both
transferring thememory needed by the kernel to the device, and for reading
the memory back from the device.

IncorporatingPIRE into an embedded language (inHaskell) consists of three
steps: (1) identify a mapping between its constructs and the constructs of
PIRE, (2) construct a PIREAST from the surface language expressions using
the mapping, and (3) pass the PIRE AST to the PIRE code generator.

4.1 Implementation

PIRE is made up of the two main data types Expr and Program. The type
Expr represents things that can go on the right-hand side of assignments,
or appear simply as expressions within statements. Things of type Program
will form the ASTs that are later passed to the code-generator of PIRE.

The Program type is built in continuation-passing style (Claessen, 1999). This
means that when Program trees are constructed, they are written into a func-
tion that later will create a Program. One benefit of this is that surface lan-
guages (such as Feldspar) do not have to care about generating fresh names.
Our hope is that this will simplify the porting process, by removing tedious
state-carrying (which is typically required to generate fresh names in a func-
tional setting). All actual naming is done within the PIRE backend.

We start by considering the Expr data type and related type synonyms:
data Expr where

Num :: Int → Expr
Index :: Memory → Name → [Expr] → Expr
Call :: Expr → [Expr] → Expr
Cond :: Expr → Expr → Expr → Expr
BinOp :: BOp → Expr
UnOp :: UOp → Expr

type Name = String
type Size = Expr
type Dim = [Size]

In PIRE we are currently limited to the integer type, and the Num construct
introduces an integer literal. The Index constructor allow us to introduce a
variable name that can be indexed into. Giving it the empty list:
Index Host "x" []
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gives us just a regular, non-indexed, variable. For this purpose, we can also
use the function var :: Name → Expr. We note also the Memory field, that
describes in which kind of memory the variable is placed. Either memory
is placed in the host program or in the global memory of the GPU device.
Future work would include allowing variables to also be placed in shared
device memory. The Memory type is defined as:
data Memory = Host

| DevGlobal

Call is the construct for function call – the list describes the parameters. Cond
is for inline conditional expressions (like the ?: operator inC). For the binary
and unary operators, we have two additional data types BOp and UOp. As we
consider them quite self-explanatory, we leave them out. For completeness
they are given in Appendix A.

We now consider the Program data type:
data Program a where

Skip :: Program a
Assign :: Expr → [Expr] → Expr → Program a
Statement :: Expr → Program a
(: >>) :: Program a → Program a → Program a
If :: Expr → Program a → Program a →

Program a
For :: Expr → Expr →

(Expr → Program a) → Program a
Par :: Expr → Expr →

(Expr → Program a) → Program a
Alloc :: Type →

(Name → Name →
(Memory → Dim → Program a) →
Program a) →

Program a
Decl :: Type → (Name → Program a) → Program a

BasicProc :: Program a → Program a
OutParam :: Type → (Name → Program a) → Program a
InParam :: Type → (Name → Program a) → Program a

Many of the constructs of this data type are quite similar, and thus, self-
explanatory once the reader knows how a similar construct works. How-
ever, we recognise that some do require a more thorough explanation. The
Skip construct is simply the empty statement and we can use it when do-
ing AST analysis in order to remove nodes that are unnecessary. Some of
the constructs of Program also have corresponding smart constructors that,
among other things, remove Skip nodes from the AST.
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The Assign construct is a fundamental one, since it allows us to assign ex-
pressions to left-hand side locations (Section 4.1.1).
Assign (var "x") [Num 4] (Num 5)

assigns 5 to the expression x[4]. Each element in the list parameter corre-
sponds to an indexing into the name x. The program
x[4][y] = 5;

can thus be written as:
Assign (var "x") [Num 4, var "y"] (Num 5)

The constructor :>> simplymeans program sequencing, whichmeans doing
Assign (var "x") [Num 4] (Num 5) : >>

Assign (var "x") [Num 5] (Num 6)

yields:
x[4] = 5;
x[5] = 6;

The loops supported by PIRE come in two flavours – parallel and non-
parallel. They are both of the for loop kind and allow us to specify a bound
on the number of iterations. The regular for loop is introduced by the For
construct and the parallel loop by the Par construct. They are very simi-
lar and differ only in execution environment. The parallel loop compiles to
kernel code (code that runs on the GPU) and host code (in our case C code)
which calls the kernel via the OpenCL interface. The regular for loop runs
on the host without GPU involvement.

When we need to introduce variable names in a program, we use either
Decl or Alloc. Decl is intended to be a stack-based declaration, while Alloc
dynamically allocates memory that can be used for arrays. An allocation
always takes place in the host code, but depending on the memory parameter
of the allocation function the allocation will either be intended for use in
the host code, or for being transferred to the device.

The Decl construct we consider to be straight-forward, but we realise that
Alloc requires further explanation. Let us first consider its type again:
Alloc ::
Type → (Name → Name →

(Memory → Dim → Program a) → Program a)
→ Program a

Intuitively, when given a type and a funny-looking continuation it produces
a Program. When breaking down the continuationwe notice three parts, two
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Names and another continuation function which wewill refer to as the alloca-
tion function. The first name is the actual name of the variable and the second
name is the corresponding size descriptor. Typically the second name is in-
volved in the resulting allocation. The actual allocation is not performed
until the allocation function is called. This has one major benefit compared
to outputting the allocation as soon as the Alloc node is seen in the AST.
Namely, it allows us to gather more information about the allocation before
outputting code. The information in question is the Dim parameter. The
drawback is that it is easy to forget to call the function at all, and thus end
up with no memory allocation in the final code. A way of forcing the user
to call the allocation function (possibly only once) we consider important
future work.

Depending on the Memory parameter of the allocation function, memory is
allocated either in the host program via malloc, or allocated as a device
memory buffer in the host program. The device memory buffer can later
be written to and transferred to the device when a kernel call is performed.

Encoding a simple program that allocates and initialises an array of size 10
can be done in the following fashion:
Alloc (TPointer TInt) $ λv vc af →

af Host [Num 10] : >>
(For (Num 0) (var vc) $ λe → Assign (var v) [e] e)

The generated code is what we expect:
int mem0c;
mem0c = 10;
int* mem0 = (int*) malloc(sizeof(int) * mem0c);
for(int j = 0; j < mem0c; j++) {

mem0[j] = j;
}

If we now instead remove the call to the allocation function af:
Alloc (TPointer TInt) $ λv vc af →

(For (Num 0) (var vc) $ λe → Assign (var v) [e] e)

The generated code is broken since the allocation is missing:
int mem0c;
for(int j = 0; j < mem0c; j++) {

mem0[j] = j;
}

At times, it might not even be obvious that the allocation ismissing. This is
especially true for big programs where information easily gets obfuscated.
Since af can be passed around inside the code generator of the EDSL it may
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be called from anywhere and thus place the allocation at an unexpected
place (that is still valid in the final code). Locating such amissing allocation
can be tricky.

Three of the constructs have to do with procedures and their parameters.
Without these constructs, we would only be able to write constant pro-
grams. BasicProc introduces an empty procedure without any parameters.
OutParam adds an out parameter, and InParam adds an in parameter to the
parameter list of the procedure. The program that takes one in parameter
(of integer type) and returns it as the out parameter can be written:
BasicProc $
OutParam TInt $ λout →

InParam TInt $ λn →
Assign (var out) [] (var n)

If we apply the function showProg . gen to the above program we get:
void f0(int out1 , int arg2) {

out1 = arg2;
}

4.1.1 Locations

To model a location, the left-hand side of an assignment, we can use the
type-synonym Loc a b. It is defined as a → Program b, and gives us a sim-
ple way of expressing locations. The type parameter a is the type of the
right-hand side (typically Expr), and b is what Program is parameterised on.

Simply put, a location is a partially applied Assign constructor. In order to
have some use for the type Loc, PIRE comes with a collection of functions
to introduce locations. To introduce a location that is a simple variable, we
use the function
loc :: Name → Loc Expr a
loc v = λx → Assign (var v) [] x

Here, loc is a function that, when given a name, produces a function that
expects an expression. If we proceed to give this function an expression, the
result is an assignment where v is assigned x.

We can also create a location that is an index into an array. We use locArray
for this:
locArray :: Name → Index → Loc Expr a
locArray v i = λx → Assign (var v) [i] x

In order to allow for easy array copying, PIRE also provides uswith a memcpy
location:
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memcpy :: Expr → Size → Type → Loc Expr a
memcpy dst s t = . . .

It writes data to the destination dst from the expression that we eventually
feed the location. It is inspired by the memcpy function of C, but has a twist.
It can transfer memory not just within the host program, but also between
host program and device, and locally on the device. Local transfer means
that memory does not have to be read back to the host program when per-
forming a sequence of kernel calls that all require the output of the previous
call as input. We simply leave the memory buffers sitting on the device and
use them as input parameters to the next kernel call.

4.1.2 Motivations and Limitations

Oneof the early decisions that had to bemadewaswhether or not to support
explicit arrays (i.e. push- and pull-arrays (Claessen et al., 2012)). PIRE does
not currently do this, due to the focus of making it a low-level, concise, IR.
However, this doesn’t mean that there wouldn’t be benefits of having them.
Translating a language like Obsidian, that relies heavily on these arrays,
might be more straightforward if they were to also exist in the intermediate
representation.

A big limitation currently in PIRE is the small set of types. PIRE supports
only integers (type int in C) and pointers to integers. While being an ac-
tive decision in order to keep implementation time down, it does make it
difficult to express things that require floating point types or similar.

Another limitation has to do with the local work item size of OpenCL. This
number is set when calling a kernel on the device. It is, however, dependant
on both problem and device type. The local work item size is constant in
the backend and intended to be tweaked by hand. In OpenCL terms, local
item size is the number of threads within a work group. However, since we
are not using any local memory in kernels, the work group concept does not
concern us much. Lastly, we note that it is generally the case that the global
work item size (the total input size) has to be a multiple of the local work
item size.

4.2 Parallel Loops Using OpenCL

Parallel loops are introducedwith the Par construct of the Programdata type.
The resulting host program carries a lot of boilerplate-style code for each
kernel call, and thus we will elide some of the details throughout this chap-
ter. We will, however, make clear when doing so.
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We recall the program for vector initialisation that we saw earlier:
Alloc (TPointer TInt) $ λv vc af →

af Host [Num 10] : >>
(For (Num 0) (var vc) $ λe → Assign (var v) [e] e)

This program is easily parallelized since it has no form of state that gets
updated between iterations. We substitute Par for For and change Host to
DevGlobal:
Alloc (TPointer TInt) $ λv vc af →

af DevGlobal [Num 10] : >>
(Par (Num 0) (var vc) $ λe → Assign (var v) [e] e)

Running it in the PIRE compiler yields the following kernel:
__kernel void k1( __global int* mem0 ) {

int tid = get_global_id (0);
mem0[tid] = tid;

}

We recognise that it looks very similar to an ordinary function definition
in any C-like language. Instead of using a regular loop variable, we use
the global thread identifier (tid in the code) of the device threads. In this
case, globalmeans that thework group identifier is already factored into the
thread identifier, thus making the thread globally identifiable. The number
of threads that runs on the device is decided by the global_item_size pa-
rameter in the host code (see below).

We use the keyword __global on kernel parameters to denote the use of
global memory (i.e. memory that is accessible by all threads). This is the
only kind of memory currently used by kernels generated by PIRE. Global
memory ismuch slower than localmemory (memorywithin to awork group),
but has the (very minor) benefit that we don’t have to split the problem into
sufficiently small chunks (i.e. work groups) to match local memory restric-
tions. Work group sizes are decided by the local_item_size parameter in
the host code. Ideally, work group size and use of local memory should be
derived automatically. We consider this to be an important piece of future
work, and discuss it further in Section 9.1.

Moreover, all parameters have the possibility of acting as both input and
output parameters. ThroughAST analysis it is automatically decidedwhich
of the parameters are read back to the host program at the end of a kernel
call. This is currently done in a naïve way – all parameters that appear in
the left-hand side of Assignment nodes are read back.

With some details elided, the host code that calls the kernel looks as follows:
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int mem0c;
mem0c = 10;
cl_mem mem0 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem0c * sizeof(int)),
NULL ,
NULL);

clSetKernelArg(k1 , 0, sizeof(cl_mem), &mem0);
size_t global_item_size = mem0c;
size_t local_item_size = 1;
clEnqueueNDRangeKernel(command_queue ,

k1 ,
1,
NULL ,
&global_item_size ,
&local_item_size ,
0,
NULL ,
NULL);

Aswe see, a kernel call carries a fair bit of boilerplate code. What is of inter-
est to us is the call to clSetKernelArg, where the input data is mapped to a
kernel parameter. Also worth noting is that when we change the Host argu-
ment of the allocation function af to DevGlobal, mem0 becomes an OpenCL
memory buffer instead of a regular variable. The actual kernel invocation
is done via
clEnqueueNDRangeKernel.
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Chapter 5

Connecting Feldspar

This chapter describes the incorporation of PIRE into the Feldspar com-
piler1. We substitute PIRE for the original low-level Feldspar IR known as
abstract imperative code (the AST type which is used to output C code).
The Feldspar compiler will instead produce PIRE ASTs, which we pass to
the PIRE backend for OpenCL and C code-generation. Figure 5.1 illustrates
the updated Feldspar architecture after the incorporation of PIRE. The re-
sult is an alternate backend for the Feldspar language.

Due to the size of the feldspar-compiler component, we cannot cover its whole
implementation here. Instead, we try and present the key points and make
clear what separates our new feldspar compiler from the original. We ex-
amine in detail the compilation of some specific core language symbols such
as parallel loops.

The original Feldspar compiler is highly modular and makes good use of
type classes. We see no reason to change this and therefore decided to only
modify this existing framework where necessary. Somemodules are of par-
ticular interest to us and we outline their role in the compilation process.

FromCore The module FromCore is a low-level entry-point of the com-
piler. Traditionally we use the function compile to compile a Feldspar pro-
gram, but the FromCore module is where the actual translation of core-
expressions starts. It defines the function compileProgTop, which compiles
all top-level lambda binders and top-level let-expressions. The top-level
lambdas correspond to the input parameters of the program. Top-level let-
expressions, on the other hand, are the result of invariant code motion.

1The repository of the feldspar-compiler fork used in this thesis can be found at https://
github.com/rCEx/feldspar-compiler/. The (subset) fork of feldspar-language can be found
at https://github.com/rCEx/feldspar-lang-small.
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Figure 5.1: The Feldspar architecture after the incorporation of PIRE. PIRE
replaces the abstract imperative code (AIC) and the result is a new backend.

Interpretation The Interpretationmodule defines the type classes for com-
pilation aswell as helper functions for various tasks. The base cases for com-
pilation are covered by this module; the more specific cases are covered by
a number of other modules. In order to support the continuation-passing
style of PIRE, we define a new function compileProgBasic for Programs in the
Compile class:
compileProgBasic

:: (Expr , Loc Expr ())
→ Maybe Name
→ AllocFun
→ sub a
→ Info (DenResult a)
→ Args (AST (Decor Info dom)) a
→ CodeWriter ()

compileProgBasic name sub = . . .

type CodeWriter a = Alias → Program a
type Alias = M.Map VarId Expr
type AllocFun = Maybe (Dim → Program ())

We also modify the existing function compileExprSym for compilation of ex-
pressions to look as follows:
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compileExprSym
:: sub a
→ Info (DenResult a)
→ Args (AST (Decor Info dom)) a
→ Alias → [Expr]

compileExprSym = . . .

To clarify the above, there is one function (compileProgBasic) for compila-
tion to the Program type of PIRE, and one function (compileExpr) for compi-
lation to the Expr type of PIRE. The idea of the compiler is to define these
two functions for each symbol in the core language (where applicable). It is
simply a case of pattern matching.

Some symbols do not make sense to compile as expressions, while some
are not sensible to compile as Programs. Generally, simple core-language
symbols can be returned as expressions while more complex ones require
something more. compileProgBasic can result in intermediate memory al-
location while compileExpr cannot.

To give an example, it may be natural to compile the length of an array as an
expression. This can be done by returning the name of the array size param-
eter. On the other hand, a for loop is tricky to return as a simple expression.
Therefore we need to provide a name to which we can write the computa-
tion of the for loop. To get access to such a name, we use compileProgBasic
instead of compileExpr.

Array The Parallel symbol of the core language is defined in the Array
module. Since the main topic of this thesis is parallelism, we consider in
detail how parallel loops are compiled to PIRE. Below is the code for the
Parallel symbol. We’ve inserted the type signature for compileProgBasic
to help the reader.
compileProgBasic

:: (Expr , Loc Expr ())
→ Maybe Name
→ AllocFun
→ sub a
→ Info (DenResult a)
→ Args (AST (Decor Info dom)) a
→ CodeWriter ()

compileProgBasic name
namec
af
(C’ Parallel)
info
(len :* (lam :$ ixf) :* Nil)
m
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| Just (SubConstr2 (Lambda v)) ← prjLambda lam
= let bound = (head $ compileExpr len m)

(Index name ’ _) = fst name
in maybe Skip (λf → f [bound]) af

.>> par (Num 0) bound (λe →
compileProgWithName

(fst name , locArray ( name ’) e)
Nothing
Nothing
ixf
(M.insert v e m))

The function compileProgWithName is a high-levelwrapper for compileProgBasic
that hides some work related to Syntactic.

5.1 Case-Study: Dot Product Revisited and Expanded

In Section 3.3we showed how the original Feldspar compiler generates code
for an implementation of dot product. In this section we instead show how
the code generated from the new Feldspar backendwith PIREwill look. We
first recall the Feldspar implementation:
dotProd ’ :: Vector1 Word32

→ Vector1 Word32
→ Data Word32

dotProd ’ xs ys = sum (zipWith (*) xs ys)

This will result in code that is quite funny-looking, since we’re converting
all input parameters to OpenCL memory buffer objects without checking
that we actually need them. We thus omit the generated code. In this case
we are actually hurt by vector fusion. The zipWith should be compiled as
a kernel call, but because of fusion we are left with an ordinary for loop
that does all the work. This is why the OpenCL memory buffers that we
generate from arguments are useless. Instead, we force the resulting vector
of zipWith to manifest (to explicitly appear in the generated code) via the
use of force. The following program does what we want:
dotProd ’’ :: Vector1 Word32

→ Vector1 Word32
→ Data Word32

dotProd ’’ xs ys = sum zs
where zs = force $ (zipWith (*) xs ys)

We are going to take our dot product implementation one step further by
implementing a parallel reduction that will compile to a kernel call. We end
up with the implementation of dot product that we use in the case study
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in Section 6.2 (modulo types). We call the parallel reduction parFold and
implement it as follows:

parFold :: (Syntax a, Num a)
⇒ (a → a → a)
→ Vector a
→ Vector a

parFold f xs = forLoop (log2 (length xs)) xs $
λi’ acc → let i = i’ + 1 in indexed (length acc) $
λj → condition
(j ‘mod ‘ (2^i) == 0)
(f (acc ! j)

(acc ! (j+(2^(i-1)))))
0

We are using a for loop (that runs for log2 times of the length of the input
vector) with an inner, parallel loop. The parallel loop follows from the use
of indexed, which creates a new vector in parallel. In the inner loop we have
to start with the loop variable i’ set to 1, hence the let binding that binds
i to i’ + 1. In the case that the conditional is false, we give the arbitrarily
chosen value 0. It does not matter, as it just acts as a padding – the value
will never be accessed again. Lastly we note that the parFold function only
works if the length of the vector is a power of 2.

Our final, parallel, dot product implementation in Feldspar looks as follows
(we don’t have to call force on zipWith any longer):
dotProd :: Vector1 Word32

→ Vector1 Word32
→ Data Word32

dotProd xs ys = head $ parFold (+) (zipWith (*) xs ys)
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Chapter 6

Case-Studies

We evaluate the Feldspar version inwhichwe incorporated PIRE, described
in Chapter 5, using three example programs and perform measurements
against reference implementations. The examples are scan (Section 6.1), dot
product (Section 6.2) and bitonic sort (Section 6.3). For each case-study, we
implement it in Feldspar and run measurements using both the original
Feldspar backend and PIRE.We also compare these to hand-codedOpenCL
versions.

6.1 Scan

Scan (prefix sum) is a well-known and fundamental operation that, for an
associative operator ◦, produces from the input a0, a1 . . . an−1 the output
bi = a0◦a1◦. . .◦ai for 0 ≤ i < n (Blelloch, 1990). This case-study aims to see
how well a parallel scan implementation in Feldspar will perform in PIRE.
The parallel scan used here is implemented using Sklansky construction
(Sheeran, 2011).

The Sklansky scan implementation is shownbelow,where the function sklansky
is our entry-point. In our case study we use addition as the associative
operator (argument f in the function sklansky).
sklansky :: Syntax a

⇒ (a → a → a)
→ Vector a
→ Vector a

sklansky f a = forLoop (log2 (length a)) a (step f)
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step :: Syntax a
⇒ (a → a → a)
→ Level
→ Vector a
→ Vector a

step f l as = indexed (length as) $ λi →
cond l i

? f (as ! leftIx l i) (as!i)
$ (as!i)

The sklansky program is a nested loop, where the outer, sequential, loop
is the result of forLoop. The inner, parallel, loop is the result of step. The
parallel loop results in the kernel shown in Section 6.1.1.

The helper functions and type aliases are defined below:
type Level = Data Index
type Position = Data Index

leftIx :: Level → Position → Position
leftIx l p = ((p . >>. l) .<<. l) - 1

cond :: Level → Position → Data Bool
cond l p = testBit (p .>> . l) 0

log2 :: Data Length → Data Length
log2 a = bitSize a - 1 - bitScan a

6.1.1 Generated Code by PIRE

The PIRE compiler generates a function, complete with in and out parame-
ters. We omit prologue and epilogue code related to OpenCL features and
memorymanagement. From the code below, we also elide some arguments
from the OpenCL functions that are set to NULL or are otherwise uninterest-
ing.

The for loop runs log2(arg1c) times, which is what we expect after seeing
the Feldspar implementation above. It is made concrete in the generated
code by calling the function bitScan_fun_int32_t, which is defined in the
Feldspar header files. After the outer for loop is finished, we read back the
result from the device to the out parameter of the function.

We note one particular weakness of the code below. The creation of the
mem4memory buffer is completely unnecessary. It gets initialised to the con-
tents of the mem2 memory buffer without any modification whatsoever. A
much neater way of writing the same program would be to solely use mem2
throughout.
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The problem is related to the way the state of the for loop is currently com-
piled. Identifying that a memory buffer already exists for the state would
solve this problem. We note that this is a general problem of our implemen-
tation and not just something isolated to scan. In the case of scan, however,
we only pay the cost of one extra copying. Having nested for loops could
result in significantly more expensive code.
void f0(int* arg1 , int arg1c , int** out3) {

int mem2c;
mem2c = arg1c;
cl_mem mem2 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem2c * sizeof(int)));

clEnqueueWriteBuffer(command_queue ,
mem2 ,
(mem2c * sizeof(int)),
arg1);

int mem4c;
mem4c = mem2c;
cl_mem mem4 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem4c * sizeof(int)));

clEnqueueCopyBuffer(command_queue ,
mem2 ,
mem4 ,
(mem4c * sizeof(int)));

for(int n = 0;
n < (31 - bitScan_fun_int32_t(mem2c));
n++) {

clSetKernelArg(k6 , 0, sizeof(int), &n);
clSetKernelArg(k6 , 1, sizeof(cl_mem), &mem4);
size_t global_item_size = mem4c;
size_t local_item_size = 1024;
clEnqueueNDRangeKernel(command_queue ,

k6 ,
&global_item_size ,
&local_item_size);

}
clEnqueueReadBuffer(command_queue ,

mem4 ,
(mem4c * sizeof(int)),
(*out3));

clReleaseMemObject(mem4);
clReleaseMemObject(mem2);

}
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Scan Kernel

__kernel void k6( int n, __global int* mem4 ) {
int tid = get_global_id (0);
int mem7;
mem7 = (tid >> n);
int mem8;
mem8 = mem4[tid];
mem4[tid] = testBit_fun_int32_t(mem7 ,0) ?

(mem4 [(( mem7 << n) - 1)] + mem8) : mem8;
}

6.2 Dot Product

Dot product (scalar product) is a well-known operation that takes two vec-
tors of equal length and reduces them to a single scalar value. The mathe-
matical definition is a · b =

∑n
i=1 aibi where a and b are vectors of length n.

A simple solution in Haskell can be written as:
dp :: Num a ⇒ [a] → [a] → a
dp a b = sum $ zipWith (*) a b

The Feldspar definition is the very same, modulo types.
dp ’ :: Vector1 Word64 → Vector1 Word64 → Data Word64
dp ’ a b = sum $ zipWith (*) a b

However, the one used in this case study is the following one that uses a
parallel fold. Since it returns a vector, we are interested only in the first
element.
dotProd :: Vector1 Word64

→ Vector1 Word64
→ Vector1 Word64

dotProd xs ys = parFold (+) (zipWith (*) xs ys)

The parFold function has the drawback of only being applicable to vectors
of length 2n for some n. It is defined as follows:
parFold :: (Syntax a, Num a)

⇒ (a → a → a)
→ Vector a
→ Vector a

parFold f xs = forLoop (log2 (length xs)) xs $
λi’ acc → let i = i’ + 1 in indexed (length acc) $
λj → condition
(j ‘mod ‘ (2^i) == 0)
(f (acc ! j)

(acc ! (j+(2^(i-1)))))
0
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We note that the 0 that is given in the last condition statement is necessary,
but the value does not actually matter. It is there simply for padding pur-
poses in order to keep the vector the same length throughout iterations.

6.2.1 Generated Code by PIRE

The code generated by PIRE for the dot product case study is presented in
this section. The two kernels k8 and k12 are presented at the end of the
section. These correspond to the two parallel loops that we would expect
to find in the program. One follows from the use of zipWith and the other
follows from the use of indexed in the parFold function.
void f0(int* arg1 ,

int arg1c ,
int* arg3 ,
int arg3c ,
int** out6) {

int mem2c;
mem2c = arg1c;
cl_mem mem2 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem2c * sizeof(int)));

clEnqueueWriteBuffer(command_queue ,
mem2 ,
CL_TRUE ,
(mem2c * sizeof(int)),
arg1);

int mem4c;
mem4c = arg3c;
cl_mem mem4 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem4c * sizeof(int)));

clEnqueueWriteBuffer(command_queue ,
mem4 ,
CL_TRUE ,
(mem4c * sizeof(int)),
arg3);

int mem5;
mem5 = min(mem2c ,mem4c);
int mem7c;
mem7c = mem5;
cl_mem mem7 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem7c * sizeof(int)));

clSetKernelArg(k8 , 0, sizeof(cl_mem), &mem7);
clSetKernelArg(k8 , 1, sizeof(cl_mem), &mem2);
clSetKernelArg(k8 , 2, sizeof(cl_mem), &mem4);
size_t global_item_size = mem5;
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size_t local_item_size = 1024;
clEnqueueNDRangeKernel(command_queue ,

k8 ,
&global_item_size ,
&local_item_size);

for(int r = 0;
r < (31 - bitScan_fun_int32_t(mem5) - 1);
r++) {

int mem10;
mem10 = pow(2,(r + 1));
int mem11;
mem11 = pow(2,r);
clSetKernelArg(k12 , 0, sizeof(cl_mem), &mem7);
clSetKernelArg(k12 , 1, sizeof(int), &mem10);
clSetKernelArg(k12 , 2, sizeof(int), &mem11);
global_item_size = mem7c;
local_item_size = 1024;
clEnqueueNDRangeKernel(command_queue ,

k12 ,
&global_item_size ,
&local_item_size);

}
clEnqueueReadBuffer(command_queue ,

mem7 ,
(mem7c * sizeof(int)),
(*out6));

clReleaseMemObject(mem7);
clReleaseMemObject(mem4);
clReleaseMemObject(mem2);

}

Dot Product Kernels

__kernel void k8(__global int* mem7 ,
__global int* mem2 ,
__global int* mem4) {

int tid = get_global_id (0);
mem7[tid] = (mem2[tid] * mem4[tid]);

}
__kernel void k12(__global int* mem7 ,

int mem10 ,
int mem11) {

int tid = get_global_id (0);
int mem13;
mem13 = mem7[tid];
mem7[tid] = ((tid % mem10) == 0) ?

(mem13 + mem7[(tid + mem11)]) : mem13;
}
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6.3 Bitonic Sort

Bitonic sort is a sorting algorithm which lends itself nicely for parallelisa-
tion. We construct sorting networks that are made of comparators, and we
sort by swapping elements. The resulting sorting network will consist of
O(nlog2n) comparators, where n is the number of elements to sort. The al-
gortihm we employ is a variation of the original, as described by Claessen
et al. (2012). We give the Feldspar implementation of this variation below.
flipLSBsTo :: Bits a ⇒ Data Index → Data a → Data a
flipLSBsTo i = (‘xor ‘ oneBits (i+1))

vee :: Syntax a
⇒ (a → a → a)
→ (a → a → a)
→ Data Index → Vector a → Vector a

vee f g s v = indexed (length v) ixf
where

ixf i = condition (testBit i s) (g a b) (f a b)
where

a = v ! i
b = v ! flipLSBsTo s i

dee :: Syntax a
⇒ (a → a → a)
→ (a → a → a)
→ Data Index
→ Vector a
→ Vector a

dee f g s v = indexed (length v) ixf
where

ixf i = condition (testBit i s) (g a b) (f a b)
where

a = v ! i
b = v ! (i ‘xor ‘ bit s)

tmerge :: (Type a, Ord a)
⇒ Data Index
→ Vector1 a
→ Vector1 a

tmerge n v = share (vee min max (n-1) v) $ λw →
forLoop (n-1) w $ λi →

dee min max (n-(i+2))

tsort :: (Type a, Ord a)
⇒ Data Index
→ Vector1 a
→ Vector1 a

tsort n v = forLoop n v (λi w → tmerge (i+1) w)
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6.3.1 Generated Code by PIRE

void f0(int arg1 , int* arg2 , int arg2c , int** out4) {
int mem3c;
mem3c = arg2c;
cl_mem mem3 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem3c * sizeof(int)));

clEnqueueWriteBuffer(command_queue ,
mem3 ,
CL_TRUE ,(
mem3c * sizeof(int)),
arg2);

int mem5c;
mem5c = mem3c;
cl_mem mem5 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem5c * sizeof(int)));

clEnqueueCopyBuffer(command_queue ,
mem3 ,
mem5 ,
(mem5c * sizeof(int)));

for(int o = 0; o < arg1; o++) {
int mem7;
mem7 = (~(4294967295 << (o + 1)));
int mem8;
mem8 = (o + 1);
int mem9c;
mem9c = mem5c;
cl_mem mem9 = clCreateBuffer(context ,

CL_MEM_READ_WRITE ,
(mem9c * sizeof(int)));

clSetKernelArg(k10 , 0, sizeof(cl_mem), &mem5);
clSetKernelArg(k10 , 1, sizeof(int), &mem7);
clSetKernelArg(k10 , 2, sizeof(cl_mem), &mem9);
clSetKernelArg(k10 , 3, sizeof(int), &o);
size_t global_item_size = mem5c;
size_t local_item_size = 1024;
clEnqueueNDRangeKernel(command_queue ,

k10 ,
&global_item_size ,
&local_item_size);

clEnqueueCopyBuffer(command_queue ,
mem9 ,
mem5 ,
(mem5c * sizeof(int)));

for(int v = 0; v < o; v++) {
int mem14;
mem14 = (mem8 - (v + 2));
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int mem15;
mem15 = (1 << mem14);
clSetKernelArg(k16 , 0, sizeof(cl_mem), &mem5);
clSetKernelArg(k16 , 1, sizeof(int), &mem15);
clSetKernelArg(k16 , 2, sizeof(int), &mem14);
global_item_size = mem5c;
local_item_size = 1024;
clEnqueueNDRangeKernel(command_queue ,

k16 ,
&global_item_size ,
&local_item_size);

}
clReleaseMemObject(mem9);

}
clEnqueueReadBuffer(command_queue ,

mem5 ,
CL_TRUE ,(mem5c * sizeof(int)),
(*out4));

clReleaseMemObject(mem5);
clReleaseMemObject(mem3);

}

Bitonic Sort Kernels

__kernel void k10(__global int* mem5 ,
int mem7 ,
__global int* mem9 ,
int o) {

int tid = get_global_id (0);
int mem11;
mem11 = mem5[tid];
int mem12;
mem12 = mem5[(tid ^ mem7)];
mem9[tid] = testBit_fun_int32_t(tid ,o) ?

max(mem11 ,mem12) : min(mem11 ,mem12);
}

__kernel void k16(__global int* mem5 ,
int mem15 ,
int mem14) {

int tid = get_global_id (0);
int mem17;
mem17 = mem5[tid];
int mem18;
mem18 = mem5[(tid ^ mem15)];
mem5[tid] = testBit_fun_int32_t(tid ,mem14) ?

max(mem17 ,mem18) : min(mem17 ,mem18);
}
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6.4 Reference Implementations

The reference implementations for dot product, parallel scan and bitonic
sort that are used as comparison are taken from theNVIDIASDK that can be
found at http://developer.download.nvidia.com/compute/cuda/4_2/rel/
sdk/website/OpenCL/html/samples.html
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Chapter 7

Evaluation

This chapter describes the results of running the case studies described in
Chapter 6. Throughout this chapter we will refer to the original Feldspar
compiler as Feldspar, our new Feldspar compiler using PIRE as PIRE, and
the library code from the NVIDIA SDK as reference.

7.1 Test Setup

We are generating code from the Feldspar programs using both the original
Feldspar compiler and the PIRE compiler. In addition to these two, we are
also comparing with OpenCL code from the NVIDIA SDK. Each program
was run 10 timeswith two uncountedwarm-up iterations. The average run-
ning times arewhat is presented. The programsweremeasured using input
vectors of length 2n where 10 ≤ n ≤ 23. The vectors were initialised using
the repeating sequence (0, 1, 2, 3).

The experiments were performed on an Amazon EC2 GPU instance, with
2 × Intel Xeon X5770 quad-core CPUs at 2.93 GHz, 22.5 GiB of Memory,
and one (of the EC2’s two) NVIDIA Tesla M2050 (448 cores @ 1150 MHz).
TheOpenCLprogramswere compiled using nvcc -O3 -std=c99. TheCpro-
grams (from the original Feldspar backend) were compiled using gcc -O3
-std=c99.

The reference code for Scan and Bitonic Sort outputs running times for spe-
cific input sizes, hence the small number of data points. We chose not to
modify the reference code to output more data, since such modifications
would be too great and thus destroy the purpose of having reference code
to beginwith. We also note that the NVIDIA SDK does not output anymea-
surements for its dot product implementation.
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Figure 7.1: Running times for the scan case study.

7.2 Scan

It is not surprising that the sequential C code of Feldspar would outperform
PIRE for smaller input sizes, since we have to expect some overhead for
kernel calls. What perhaps is surprising is that it takes quite large input
sizes (n ≥ 16) for PIRE to outperform Feldspar, as can be seen in Figure 7.1.
The spike for PIRE at 219 is a bit unfortunate, and our guess is that it is
related to memory congestion. It does, however, once again go below the
Feldspar running time when reaching 223 elements. PIRE is 6.95× slower
than the reference for 218 elements, muchdue to the use of globalmemory in
PIRE. For the same number of elements, PIRE is 2.7× faster than Feldspar.
Moreover, we see that for 223 elements the result is very similar: PIRE is
2.6× faster than Feldspar.

For small numbers of inputs, the extra copying thatwe noted in Section 6.1.1
will have a greater impact than for large inputs. This explains the some of
the difference in time between PIRE and Feldspar for input sizes smaller
than 216. Other reasons include memory overhead and use of global mem-
ory.

We also note that even the reference is slower than the sequential C code of
Feldspar for small inputs. This indicates that there needs to be some form
of process for deciding whether a computation is worth offloading or not.
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7.3 Dot Product

The running time of our PIRE-generated code becomes (roughly) equal to
the generated code of Feldspar for 215 elements, and from that point stays
below the Feldspar curve. For 223 elements PIRE is 4.6× faster than Feldspar.
We also note the slight increase in PIRE for 220 elements, which we assume
is (once again) related to memory congestion on the device. This is similar
to the spike we saw in the scan case study in Secion 7.2.
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Figure 7.2: Running times for the dot product case study.

7.4 Bitonic Sort

The bitonic sort case study is the largest one in terms of code size, and is
perhaps also the one that shows the most difference between Feldspar and
PIRE. The point of intersection is at 215, and PIRE keeps below Feldspar
from this point on. For 220 elements PIRE is 5.3× slower than the reference.
However, for the same input size PIRE is 11× faster than Feldspar. Further-
more, for 223 elements, PIRE is 15.6× faster than Feldspar. We also note the
steep increase at 216 elements, similar to what we’ve seen in the scan and
dot product case studies already.
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Chapter 8

Related Work

This chapter addresses relatedwork in the area of embeddeddomain-specific
languages, parallelism and intermediate representations.

8.1 Nikola

Nikola (Mainland andMorrisett, 2010) is an EDSL in Haskell for array com-
putations on GPUs. It is a high-level language, meaning it abstracts away
from many lower-level details that would otherwise concern the program-
mer —marshalling of data, size inference on buffers, memory manage and
automatic loop parallelisation. It targets CUDA and permits the choice of
compile-time or run-time code-generation. Both approaches have draw-
backs and benefits (mainly flexibility vs. efficiency), and as such allows the
programmer to choose whichever is more beneficial.

In an attempt to maintain the syntactic convenience of Haskell, Nikola is
implemented using a deep embedding with a higher-order abstract syntax
(Pfenning and Elliot, 1988). The HOAS allows Nikola to express let-sharing
and λ-sharing, two kinds of optimisations for minimising recomputation of
common subexpressions and for reducing the final code-size.

Nikola relies on size inference to guarantee an upper bound on allocated
memory buffers. To allow for this, the language has certain limitations.
Many functions we expect to be able to write cannot be expressed. As an
example, the following program is not accepted:

replicate (fold (+) xs) 1

The reason for this is that the result of fold (+) xs is not decidable ahead
of time. Therefore, since all memory needs to be allocated before the call
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of a function, the solution employed by Nikola is to simply make the above
program illegal.

Two benchmarks are run to demonstrate effectiveness of the language; the
Black-Scholes call option evaluation and radix sort. The Nikola implemen-
tation of Black-Scholes is compared to hand-written CUDA as well as regu-
lar Haskell-code using Data.Vector-libraries. The Nikola implementation is
evaluated for both compile-time and run-time code generation.

Their implementation of radix sort is a translation of one presented by Blel-
loch (1990). It is compared to an implementation in regular Haskell, again
using Data.Vector, but not to any hand-written CUDA.

For Black-Scholes, compile-time Nikola is on par with hand-written CUDA,
and it greatly outperforms regular Haskell. Run-time Nikola has a greater
initial cost than all other implementations but eventually outperforms regu-
lar Haskell. Given enough data it (seems) to approach hand-written CUDA
and compile-time Nikola for data-sets greater than approximately 2MB.

For radix sort, Nikola outperforms regular Haskell code for data-sets larger
than approximately 32KB. It is unclear whether this is compile-time or run-
time Nikola.

8.2 Accelerate

The Accelerate EDSL (Chakravarty et al., 2011) is aimed at GPGPU array
programming, much in the same vein as Nikola (section 8.1) and Obsid-
ian (Svensson, 2011). The languages all generate CUDA kernel programs,
but Accelerate is the only one with programs that span several kernels. As
we will see later, however, this is not without problem. Chakravarty et al.
identify that fusion of adjacent kernels is a future necessity.

Accelerate works on arrays that are shape-polymorphic, a concept used by
the Repa library (Keller et al., 2010). The notion is that of heterogeneous snoc
lists (snoc being the reverse of cons). This is made concrete by introducing
two data types:
data Z = Z
data tail :. head = tail :. head}

Using these types, we can define dimensions of arrays (i.e. array shapes):
type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
type DIM3 = DIM2 :. Int
(etc)
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DIM0 represents a scalar value. An array has type Array sh e, where sh
is the shape and e is the element type. Thus, the type of arrays of three
dimensions of Floats can be written as:

Array (Z:.Int:.Int:.Int) Float

or equivalently by using the shorthand:

Array DIM3 Float

In traditional EDSL fashion, Accelerate overloads the standardHaskell type
classes such as Num and Integral. Since some Bool operations cannot be
overloaded, special functions are introduced to handle this (including one
for if_then_else). Accelerate also supports functions like replicate, some-
thing that Nikola does not, due to its size inference (Mainland and Mor-
risett, 2010).

The Accelerate operations build an abstract syntax tree (AST) of higher or-
der. The AST is higher order, as it embeds function-valued expressions
(lambda binders). Furthermore, the tree maintains in its nodes the full type
information of the operations, and front-end transformations on the AST
are type-preserving.

The AST has explicit constructs for operations like Fold, ZipWith and Scan.
The constructs are translated to (hand-tuned) skeleton kernels, instantiated
with concrete parameters (e.g. which function to usewhen zipping together
arrays). Programs can be made up of more than one skeleton (ZipWith fol-
lowed by Fold, for instance). This, however, results in several kernels, one
for each such operation. This is often suboptimal, since kernel invocation
carries overhead. Chakravarty et al. propose as future work fusion of adja-
cent kernels.

The front-end, after creating an initial AST, traverses the tree and turns it
into a nameless representation, using de Bruijn indices. The AST becomes
nameless in the sense that lambda binders no longer carry named variables.
Instead we use a natural number to refer to an occurrence of a variable.
This number denotes the number of lambda binders that are in scope be-
tween the occurrence and the binder corresponding to the occurrence. For
instance, the K combinator λx.λy.x (i.e. const in Haskell) is encoded as
λ.λ.1.

The benefit of using de Bruijn indices is that we do not have to rely on α-
conversion when checking syntactic equality (because α-equivalence now
corresponds to syntactic equality). For more information on de Bruijn in-
dices and terms, see chapter 6 in Pierce (2002).

Accelerate employs memoisation to avoid repeated generation of kernels
that are invoked more than once. This is done by hashing the (nameless)
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AST andmapping the hash value to the binary code of the compiled kernel.
This is a way of dealing with the overhead that comes with dynamic kernel
generation. While this approach is still carrying overhead compared to pre-
compiled kernels, Chakravarty et al. (2011) argues that ". . . it is only worth-
while to offload computations to a GPU if they are compute-intensive" and
". . . the overhead of dynamic kernel compilation is often not problematic in
the face of long kernel runtimes and long data-transfer times between host
and device memory".

Evaluation is done by benchmarking against hand-written library imple-
mentations of dot product, black-scholes and matrix multiplication. In the
case of dot product, the library version is almost exactly twice as fast as the
Accelerate version, regardless of input size. This is due to Accelerate im-
plementing dot product using two kernels, whereas the library implements
it with just one. For the black-scholes benchmark, Accelerate is shown to
perform very close to the library implementation. For 9 million options,
Accelerate takes 2.94 ms while the library takes 2.217 ms.

8.3 NESL

The first language that fully supported nested data-parallelism was NESL
(Blelloch et al., 1993b). Concretely, this means that the NESL language and
its implementation support both nested, irregular, data structures andnested
data-parallel function calls.

Originally, NESL was run on the vector (SIMD or MIMD) supercomputers
of the early 90s, like the Connection Machine CM-2 and the Cray C90. A
goal of NESL was to be a portable language, and NESL uses the intermedi-
ate language VCODE (Blelloch and Chatterjee, 1990) and a library of vector
routines called CVL (Blelloch et al., 1993a) to abstract away from low-level
details. Thus, VCODE and CVL are the parts that have to translated when
porting to new architectures.

We recall Figure 1.2, where a case of nested, unbalanced, parallelism is il-
lustrated. Supporting such parallelism is generally considered difficult, but
interestingly enough this is exactly the sort of parallelism that NESL sup-
ports. But just scheduling nested parallel computations as is doesn’t work
very well. We often end up with unbalanced scheduling, as is illustrated in
Figure 8.1. Getting even load balance is a big problem when implementing
nested data-parallelism. To solve the problem of unbalanced scheduling,
NESL employs a technique called flattening nested parallelism Blelloch and
Sabot (1990). The technique transforms a nested structure into a flat vector,
which is much easier to properly load-balance. This vectorization is accom-
plished using so called segment descriptors in the underlying VCODE rep-
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nesting depth

Figure 8.1: Schedulers (grey) with unbalanced workloads that follows from
nesting data-parallel operations.

resentation (Blelloch et al., 1993b; Blelloch and Chatterjee, 1990). A segment
descriptor describes the segmentation of a vector of values. In VCODE vec-
tors are represented as value vectors coupled with segment descriptors. A
one-dimensional vector is a pair:

segdes = [6] values = [4, 8, 15, 16, 23, 42]

In contrast, the nested vector [[4, 8], [15, 16, 23], [42]] is represented as:
segdes1 = [3]
segdes2 = [2, 3, 1]
values = [4, 8, 15, 16, 23, 42]

Here, segdes1 describes the segmentation of segdes2, and segdes2 describes
the segmentation of values.

Blelloch et al. (1993b) compares interpreted NESL (using a VCODE inter-
preter) to native code versions in a number of benchmarks. The benchmarks
are performed on a number of machines, but we consider benchmarks run
on the Cray C90 (since they are the most thorough). The native code of the
C90 is Fortran 77. One of the benchmarks is sparse matrix-vector multipli-
cation – a problem rich with nested parallelism.

In the sparse matrix-vector multiplication benchmark, each (sparse) matrix
has its number of non-zero values fixed at 106 and the row length is what is
variable. The NESL code outperforms the native code by a factor of ten for
short row lengths. Blelloch et al. (1993b) notes that the running time of the
NESL code is essentially independent of the row length. For row lengths
greater than 128, the native code performs roughly equal to the NESL code.
For row lengths greater than 256, the NESL code is also slightly slower due
to interpretation overhead. Additional benchmarks are carried out, and the
curious reader is referred to Blelloch et al. (1993b).
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8.4 ispc

The Intel SPMD Program Compiler (ispc) aims to deliver very high per-
formance on CPUs (Pharr and Mark, 2012), by using both scalar units and
SIMD units of modern CPUs. They present not only a compiler, but also a
language very similar to C/C++. Pharr and Mark take the approach that
no single performance-focused language can be a good fit for both CPUs
and GPUs. They therefore exclude GPUs altogether and focus solely on
attaining high performance on CPUs. The focus is also on providing the
programmer with performance transparency (which we also take to mean
a lack of abstraction). As with C, the programmer should be able to get a
good idea of how the code will perform once compiled.

As indicated by its name, ispc implements SPMD (single programmultiple
data) execution using the SIMD units found in CPUs. The authors call this
model SPMD-on-SIMD. Several instances of a program are instantiated, one
for each available SIMD lane. Each instance is running on its own SIMD
lane, and is operating on its own data. The group of instances is referred to
as a gang. As in CUDA and OpenCL, the program instances has access to
an id descriptor that, for instance, can be used to index into arrays.

In addition to using SIMD as a means to achieve parallelism, the language
also provides a spawn facility for asynchronous task launch. This can be
used to start computation on a different kernel using a different hardware
thread.

By default, data in ispc is replicated across program instances. This means
that a variable like float x might contain a different value for different in-
stances. However, some data such as loop variables we might want to share
between program instances. The data can in such cases be prefixedwith the
keyword uniform, to indicate that data is shared. The ability to mark data as
uniform makes a number of optimisations possible. For instance, uniform
data is stored as a scalar, and since scalar and vector instructions can be is-
sued concurrently it can lead to increased performance. Not only that, but it
also alleviates pressure on vector registers since uniform data lives in scalar
space. Furthermore, sharing data implies a smaller memory footprint.

For performance, ispc implements a way of representing "arrays of struc-
tures" (AOS) as "structures of arrays" (SOA). The SIMD units of modern
CPUs often perform better when reading and writing data that is contigu-
ous. Having an array of structures does not typically result in a contiguous
data layout, but rather a scattered one. Arrays, on the other hand, are con-
tiguous. The difference is illustrated in Figure 8.2. Generally, allowing for
SOA leaves us with code that is quite verbose. By introducing a soa key-
word, ispc achieve SOA layout while still making the rest of the program

50



x0 x1 x2 x3 x4 x5 x6 x7 x8

float x = a[index].x

(a) AOS

x0 x1 x2 x3 x4 x5 x6 x7 x8

float x = a[index].x

(b) SOA

Figure 8.2: Reading data using AOS (left) and SOA (right). SOA results in
more efficient code since data is contiguous and permits the use of vector
read instructions.

(for arrays of length four) look like it was AOS (code from Pharr and Mark
(2012)):
struct Foo{float x,y,z;};
soa <4> struct Foo a[...] = {...};
int index = ...;
float x = a[index].x;

Without the support for the soa keyword, we might instead have written:
struct Foo4{float x[4],y[4],z[4];};
uniform Foo4 a[...] = {...};
int index = ...;
float x = a[index /4].x[index & 3];

Pharr and Mark run seven case studies; ambient occlusion, binomial op-
tions, black-scholes, mandlebrot set, ray tracing, stencil computation and
volume rendering. We outline just some of the results here.

Even on a single core, the speedups using the vector instructions (8-wide
SIMD units) are significant. The theoretical maximum speedup one can
hope for is 8x. The black-scholes benchmark benefits the most and gains
a speedup of 7.43x over sequential C++ code. Ray-tracing is sped up by
6.85x, and the benchmark with the least speedup is volume rendering with
a speedup of 3.24x.

Using a 40-core systemwith 4-wide SIMD units, volume rendering benefits
the most with a 243.18x speedup over sequential code. Noteworthy is that
the stencil computation only gains 9.40x (interestingly this is worse than
when run on just 4 cores, where it gains 12.03x!). Pharr and Mark identify
the problem as that the stencil computation is iterative and spawned asyn-
chronous tasks all have to finish before the next iteration can start.

51



Chapter 9

Discussion

Themost general conclusion that can be drawn from the results is that PIRE
requires a relatively big input size to matter even a little bit. For both the
scan and bitonic sort case study, PIRE outperforms Feldspar only for about
65000 elements. Outperforming Feldspar is, however, only mildly impres-
sive, seeing how it is sequential. The gap between the reference running
time and the running time of PIRE is great, and using local kernel memory
might give us a way of closing the gap. We also suggest that unnecessary
copying of memory needs to be minimised.

There seems to be little hope of beating Feldspar for a small number of ele-
ments. The scan case study indicates that the overhead for device offload-
ing is still great. In our case, even the reference is slower than Feldspar for
1024 elements. It follows that one has to make a decision on whether or
not a computation is actually worth offloading. This view on this kind of
decision-making is shared also by Chakravarty et al. (2011).

Another point brought up by Chakravarty et al. (2011) is the topic of adja-
cent kernel fusion. It’s an interesting concept, and we can expand upon the
idea to fit PIRE even better. We often end up with kernel calls within a for
loop (e.g. the scan case study, Section 6.1.1). By pushing the for loop into
the kernel code, we can eliminate the cost of all but one kernel call.

We’ve seen in all of the case studies that at some point, there is a steep in-
crease in the running time. The exact point varies between the case studies,
however. Since they all show this tendency, we are inclined to believe that it
is not just a random spike but rather something related to hardware. Mem-
ory congestion and limits on bus-speed are things that we expect to cause
this behavior.

The original objective of this master’s thesis was to also include the porting
of the EDSL Obsidian (Svensson, 2011). This would have demonstrated the
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potential generality aspect of PIRE, had it been done. This objective was
clearly over-ambitious, much due to failing to realise how complex Feldspar
is. Furthermore, the original aim was also to make PIRE as independent
as possible of the target language and surface EDSL. While more work is
required to argue for this kind of generality, PIRE has been designed with
generality in mind. The only part of PIRE that mentions anything about the
target platform is the Memory type.

9.1 Future Work

The work presented in this thesis opens up several interesting possibilities
for future work.

9.1.1 Using Local Kernel Memory

Arguably, themost limiting factor with regards to the performance of PIRE-
generated code is the use of global memory in kernels. Global memory ac-
cesses are ubiquitous in our kernels, and each access very costly. We also
guess that the sudden increases in running time that we’ve seen in in Sec-
tion 7 have to do with global memory access. Making use of local memory
is therefore a definite must for the future.

Since local memory is limited, we need to come up with a way of breaking
down a problem into smaller pieces so they fit into local memory. These
smaller pieces we generally refer to as work groups in OpenCL terms, and
local memory is shared between the work items (threads) in a work group.

9.1.2 Running on Non-GPU Hardware

One of the problems of running OpenCL on a discrete device like the GPU
is the overhead of moving data. It would therefore be interesting to explore
the use of PIRE-generated programs on hardware where host and kernels
share memory. OpenCL runs not just on GPUs, but on a wide variety of
hardware. Several manufacturers of hardware like Intel1 and AMD2 have
released OpenCL SDKs.

1http://software.intel.com/en-us/vcsource/tools/opencl-sdk
2http://developer.amd.com/resources/heterogeneous-computing/opencl-zone/
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9.1.3 Mutable Data and Monadic Constructs in Feldspar

We made the decision to not include mutable data and monadic constructs
in the Feldspar subset we are using. While justified from a thesis scope, it
still limits us in what algorithms that can actually implement in Feldspar.
With access tomutable data constructions in Feldspar, we could for instance
implement counting and radix sort using the parallel scan from Section 6.

9.1.4 Additional Languages for Generality

In order to demonstrate the generality aspect of PIRE, it has to be incor-
porated into more languages. One suitable candidate is Obsidian (Svens-
son, 2011). We could also argue for the generality aspect if we add more
backends. Generating code for OpenMP, Pthreads or CUDA are all viable
options.

54



Chapter 10

Conclusion

This thesis has presented PIRE, a parallel IR for embedded languages, and
its incorporation into the Feldspar EDSL. Through experiments, we have
evaluated the code generating backend of PIRE. Despite the naïve approach
we are taking, the results are looking promising. For fairly big input sizes
we are outperforming the original Feldspar backend. Even though we are
slower than the reference code, we are still hopeful. Incorporation of local
memory and reducing copyingwill certainly bring us closer to the reference
in the future. Finally, we hope that the future can better demonstrate some
generality aspects of PIRE – our initial, overly ambitious, goal.

10.1 Looking Back

Working on this thesis has been quite the experience. I set out with a goal
that turned out to be over-ambitious – to create what is now known as PIRE,
and to port not just one, but two languages (Feldspar and Obsidian). We
had to settle for one language – Feldspar – and thus abandon the goal of
generality.

As I try to look back, the most valuable lesson learned has to be that it is
really easy to overestimate one’s self. While trying to grasp the code base
of the Feldspar project was difficult and time consuming (future students
beware – it will take more time than you think), and coming up with PIRE
was challenging, nothing was harder than actually trying to stay within the
time frame.
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Appendix A

Additional PIRE Data Types

data UOp where
BWNeg :: Expr → UOp
Deref :: Expr → UOp

data BOp where
Add :: Expr → Expr → BOp
Sub :: Expr → Expr → BOp
Mul :: Expr → Expr → BOp
Div :: Expr → Expr → BOp
Mod :: Expr → Expr → BOp
LT :: Expr → Expr → BOp
LTE :: Expr → Expr → BOp
GT :: Expr → Expr → BOp
GTE :: Expr → Expr → BOp
EQ :: Expr → Expr → BOp
NEQ :: Expr → Expr → BOp
And :: Expr → Expr → BOp
Or :: Expr → Expr → BOp
BWAnd :: Expr → Expr → BOp
BWOr :: Expr → Expr → BOp
BWXOr :: Expr → Expr → BOp
ShiftL :: Expr → Expr → BOp
ShiftR :: Expr → Expr → BOp
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