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ABSTRACT   

This paper presents a pre-amplified detector receiver based on a 250 nm InP/InGaAs/InP double heterojunction bipolar 
transistor (DHBT) process available from the Teledyne scientific. The front end consists of a double slot antenna 
followed by a five stage low noise amplifier and a detector, all integrated onto the same circuit. Results of measured 
responsivity and noise are presented. The receiver is characterized through measuring its response to hot (293) and cold 
(78) K terminations. Measurements of the voltage noise spectrum at the video output of the receiver are presented and 
can be used to derive the temperature resolution of the receiver for a specific video bandwidth. 
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INTRODUCTION  
Applications such as imaging and atmospheric studies require sensitive power detectors. Real-time imaging systems 
require multi-pixel receivers. Within security imaging, there is an obvious need for cheaper and more compact front-ends 
that would allow introducing real-time scanning systems at a reasonable price. Passive systems covering W-band (75-
110 GHz) and  D-band (110-170 GHz)  are available today and are based on an LNA followed by a power detector [1]-
[4]. The low-noise detector technologies available today include zero-bias Schottky [5] and tunnel diodes [1], [6], [7], 
however tunnel diodes are not commercially available above the W-band, and Schottky power-detectors, although 
expensive, are available with high responsivity and low-noise.  
To achieve better spatial resolution and more compact scanners, increasing the frequency above 100 GHz is required. 
Compact and low-cost front ends require a technology where an LNA is integrated with a power detector. Such solutions 
require the use of HBT or HEMT technologies to integrate a detector on the same MMIC as the LNA. Neither Schottky 
nor tunnel diodes are suitable for integration with existing low noise HEMT or HBT technologies. Examples of front-
ends where an LNA and a DC-biased detector are fabricated in the same process and are integrated in one circuit using 
SiGe processes can be found in [2], [3], and [4]. The drawback of this solution is the need for detector biasing, which 
implies increased low-frequency noise and requires good quality biasing sources. Usually, LNA-Power detector circuits 
are designed in such a way that the output level after the LNA is just below the saturation level for the detector, typically 
-30 to -40 dBm. It is obvious that even for zero-bias detectors pumped at RF power close to saturation 1/f noise is 
present. 

This paper presents results including measurements of an integrated passive imaging receiver consisting of a double slot 
antenna, a five stage LNA and a power detector. The circuit is fabricated using a 250 nm InP DHBT process from the 
Teledyne Scientific. The LNA and the detector circuits cover the G-band (140-220 GHz) whereas the band of the 
receiver is limited by the antenna, which has maximum efficiency around 158 GHz. Breakouts of the LNA and the 
detector circuits are also characterized and results are presented. Measurements of receiver DC response to hot (293) and 
cold (78) K are used to calculate receiver noise temperature and thermal sensitivity (dV/dT). Measurements of the 
voltage noise spectrum at the video output of the receiver are used to extract modeling coefficients for the noise power 
spectrum density. These coefficients are used to derive the receiver temperature resolution ΔT for specific video 
bandwidth. The noise spectrum measurement is also given for hot and cold load terminations and is used to verify the 
noise temperature and gain of the receiver. 
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Figure 4 Measured S-parameters. 

 

DETECTOR 
The detector is implemented by using the base-emitter junction of a DHBT with sizes 0.25 x 2 µm. The bias current is 
driven through the base-emitter junction creating a DC voltage component at the base Vb0. The collector port is not short 
circuited with the base and a DC voltage component Vc0 results from collector self-biasing. The DC component of the 
detected voltage can be measured either at the base or at the collector terminals. For the measurements of the detector 
breakout circuit the collector port was used to measure the peak to peak voltage of the detected waveform (as shown in 
Figure 5). For the radiometric measurements detected-voltage reading from the base port was provided by the current 
source (Keithley 2425 source meter) while the collector port was used to take the spectrum of the detected voltage. In 
this configuration, although the transistor is used as three-terminal device, the collector port is not actively biased and 
therefore the detector is essentially a passive diode detector, where the base-emitter junction non-linearity is used for 
detection.  

 
Figure 5 Detector circuit and the setup used to measure responsivity of the detector breakout MMIC. The detector is AC 

coupled to a lock-in-amplifier. Pulse modulation at 1 kHz was used to create the AC waveform. 

Analysis of the measured IVC and the extracted, from measurements, series resistance Rs and junction capacitance 
Cbe(Vbe) shows that the responsivity peaks at Vbe=0.57 V (bias current of 1 µA) and has a value of 10500 V/W at 160 
GHz. This value of responsivity does not include losses in the circuit. The measured maximum responsivity is 9700 V/W 
at 160 GHz, and takes place at 1µA bias current as expected, the video resistance dVbe/dIbe at this bias is 27 kΩ. Results 
of responsivity measurements of a breakout of the detector circuit for three RF frequencies are shown in Figure 7.  

ANTENNA - DETECTOR  
Responsivity of the detector circuit was also measured when integrated together with the double slot antenna. The 
antenna-detector MMIC chip is mounted on a 12 mm diameter Si Lens and the lens is further placed on an elevated 
bench so that it could receive radiated power from below as shown in Figure 6. The RF is radiated underneath the chip 
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LNA gain and the detector responsivity is 17.7 MV/W for bias a) and 5.3 MV/W for bias b). Considering the measured 
responsivity of the break-out circuit of the detector at 160 GHz being 9700 V/W, the LNA gain can be de-embedded and 
is 32 dB for bias point a). This is a higher gain considering the LNA on-wafer measurements for the same bias point 
(S21=24 dB at 160 GHz) and the simulated gain 30 dB.  

Item Ib1, μA Ib2, μA Ib3, μA Ib4, μA Ib5, μA Vc, V Idet, μA 
Emitter L, µm 2 3 3 6 10   

Bias a)  150 300 350 400 550 1.5 1  

Bias b) 80 150 300 400 550 1.5 1 

 
Table 1 Bias points for the LNA stages used in the noise gain characterization. The collector currents are β times higher 

where β is 23 for the first stage and about 25 for stages 2 to 5. 

Noise equivalent power (NEP) is a figure of merit for power detectors and can be used to calculate the temperature 
resolution of the radiometer.  The NEP is defined as the noise power at the input of the detector that produces SNR at the 
output equal to one. The NEP is the input signal power that produces detected voltage equal to the measured noise-
voltage Vn. In this work the NEP is calculated from measurements of Vn at the output of the detector and thus is related 
to the bandwidth over which Vn is measured. To make possible comparison between detectors, Vn is measured over a 
bandwidth of 1 Hz and its value is given in units of V/√Hz. Because of the presence of 1/f noise it is useful to present the 
NEP for a specific video frequency. The NEP is calculated as: 

[ ]HzW/     
R

VNEP n=  

The NEP of the detector and the receiver are shown in Figure 10 and can be used to calculate the temperature resolution 
of the radiometer (eq.(5). 

   
Figure 10 Measured noise voltage and the calculated ENP at 160 GHz for the receiver at bias point a) and for the detector 

only. Responsivity of 17.7 MV/W is considered for the receiver and 9700 V/W for the detector.  

Since the receiver responsivity is considerably higher for the bias point a) this bias was chosen for the calculation of the 
NEP and for the rest of the measurements presented below.  

The noise voltages vs. video frequency are measured for both hot/cold terminations and for the case when the LNA is 
switched off (detector noise only), the result is shown in Figure 10. The noise voltage measurement can also be used to 
verify the Y-factor derived using the DC measurements from Figure 9, as the ratio of ΔTHot/ΔTCold from (4) is by 
definition the Y-factor of the system and is also equal to the ratio of the noise voltages ΔTHot/ΔTCold =VHot

n/ VCold
n.  

101 102 103 104 105

10-7

10-6

10-5

Frequency, Hz

V
no

is
e,

 V
/(H

z)
0 .5

 

Detector only
Hot
Cold

101 102 103 104 105
10-14

10-12

10-10

Frequency, Hz

E
N

P
, W

/(H
z)

0 .5

 

 
Detector only
Receiver

 (3)

Proc. of SPIE Vol. 8715  871502-7



 

 

ττ ⋅
+

=Δ
⋅

+
=Δ

RF

ColdSYS
Cold

RF

HotSYS
Hot B

TTT
B

TTT    ;  

The Y-factor calculated from the measured noise spectrum and shown in Figure 11 is consistent with the DC 
measurement from Figure 9.  

Calculation of the receiver temperature resolution requires knowledge of the type of calibration and video bandwidth 
Δfvid=fv

Max - fv
Min. The maximum video frequency fv

Max is inversely proportional to the integration time τ whereas the 
minimum video frequency fv

Min is related to how often the radiometer is calibrated. The choice of video bandwidth is a 
part of the system design and depends on the type of radiometer and the application. The temperature resolution can be 
calculated by using equation (5) and requires integration of either the noise voltage or NEP.  

 

RF

VIDVID
n

RFLNA

VID
n

Bk
BNEP

TV
BV

BkRG
BV

T
⋅
⋅

=
ΔΔ

⋅
=

⋅⋅⋅
⋅

=Δ
/

 

 

A convenient alternative is given in [1] where the noise power spectrum at video frequencies is modeled and model 
coefficients are extracted. The equation used to model the noise power spectrum at video frequencies is given by: ܵݒሺ݂ሻ = ௌ௪ା௄´	ೇమ೑ೌଵାቀ ೑೑೎ቁమ  

Where a is a constant close to 1, K’ is a dimensionless constant for a=1, V is the detected DC voltage,  f is the video 
frequency and fc is the video cut-off frequency. The video cut-off frequency is defined by the relatively high detector 
video impedance in combination with the input capacitance of the video amplifier (25 pF) and the detector capacitance at 
the video output (2pF). Sw is the white noise spectrum density at the output of the detector, which is a product of the 
Boltzmann constant, the LNA noise temperature (in addition to the scene temperature) and the total responsivity of the 
radiometer. In Figure 11 the measured power spectrum is given for both terminations and for the case of LNA switched 
off.  

  
Figure 11 Left: The noise power spectrum measured at the detector output for hot load and the modeled spectrum. The plot 

also shows the spectrum for the case of broad video band not limited by the voltage amplifier. The measurement is 
performed in three bands 2Hz-100Hz, 100Hz-3kHz and 3kHz-100kHz. The plots are taken with 30 spectrum averages 
in the first band and 50 averages for the second and the third bands. Right: Noise voltages at the output of the detector 
between 300-3 kHz and the ratio of the noise voltages for bias point a) corresponding to Y-factor. 
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The model parameters from eq. (6) are used to fit a curve to the measured spectrum. The estimated model parameters are 
summarized in Table 2.  

Sw fc K’ K a V 

3e-13 fc=22kHz 7*10-7 8.8*10-7 1.07 38.6 mV 

Table 2 The model parameters used to fit the measured noise power spectrum from Figure 11 for hot load termination and for 
bias point a). K is the modified K’ constant according to [1]. 

The noise spectrum parameters and the video bandwidth can then be used to calculate ΔT according to eq. (7), where 
constant K is the modified K’ constant for the case of a≠1 for more details look at reference [1]:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
+⋅+

Δ⋅
=Δ min2 1ln

vid

vidvidw
sys f

fK
V

fSTT  

Using the receiver parameters presented in Table 2 and for an imaging system where a single receiver is scanning 32 
pixels in 0.1s (the video bandwidth is confined within 5 to 160 Hz) the calculated temperature resolution from eq. (7) is 
5.7 K.  

CONCLUSION 
A radiometer receiver centered at 160 GHz is demonstrated using 250 nm InP/InGaAs/ DHBT process. The receiver 
contains a double slot antenna, an LNA and a detector all integrated on one chip. The performance of the radiometer is 
presented in addition to results from on-wafer characterization of the receiver building blocks. The radiometer is a result 
of connecting three circuits designed for other applications. For example the LNA is optimized for wide bandwidth of 
about 80 GHz. Even though wide bandwidth is a figure of merit in passive systems, the substrate integrated antenna 
together with the lens are restricting the RF bandwidth of the radiometer to about 31 GHz.  Therefore the wide 
bandwidth of the LNA is not contributing to better temperature resolution. A better optimized system would have the 
LNA band matching the achievable band from the antenna and optimized for lower noise temperature within this band. 
We believe that 8.5 dB noise figure is possible at 200 GHz with this process. The expected temperature resolution for a 
single receiver scanning 32 pixels in 0.1s is estimated to be about 5.7 K.  

We conclude that, for this particular design, the thermal resolution of the radiometer is not limited by the LNA noise, but 
limited by the noise in the detector and therefore additional LNA gain is needed to improve the resolution. No measures 
to cancel possible noise contributions from bias supplies were considered during the measurements presented in this 
paper. No optimization of detector or LNA bias was used to enhance the performance of the receiver.  
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