
Faceted search with a large amount of
properties
Exploring opportunities for faceted search for an e-commerce application with a large amount of
dynamic properties

Master of Intelligent Systems Design thesis within Findability and
Human Computer Interaction

Per Fredelius

Department of Applied IT
Chalmers University of Technology
Gothenburg, Sweden 2013
Report No. 2013:014
ISSN: 1651-4769

Contents

1 Abstract 2

1.1 Keywords . 2

2 Introduction 3

2.1 Prototypes . 3

2.2 Questions . 3

2.3 Tasks faced . 3

2.4 Outline . 4

3 Background 4

4 Methods and Tools 6

4.1 Usability - Affordance . 6

4.2 Information retrieval - Precision and Recall . 6

4.3 Faceted search: categories, tags, properties and values 6

4.4 Introducing a few usability heuristics . 7

4.5 Glossary . 8

4.6 Literature study . 8

4.7 Tools . 9

5 Suggested concepts 12

5.1 Visual mapping of articles to axes . 12

5.2 Incorporating multiple axes navigation into result list 12

5.3 Preference collection . 14

5.4 Creating custom filters by dragging from data elements 14

5.5 Dynamic filter lists . 14

5.6 Expand with keywords . 15

5.7 Percolation on article creation . 15

5.8 Sunflower navigation . 17

1

6 Prototype 19

6.1 User interface . 19

6.2 Client architecture . 19

6.3 Algorithmic needs . 20

6.4 Data importer . 22

6.5 Feature roundup . 23

7 Analysis 24

8 Discussion 27

8.1 Suggestions, for academia, industry and for Qalixa 28

9 Appendix 30

9.1 Source code . 30

9.2 Additional papers . 32

10 Citations 32

1 Abstract

Qalixa.com is a online e-commerce meta search engine that consolidate articles from a growing
number of retailers from most lines of retail business. The articles in store entail a variety of
meta data types such as properties, tags, category structures and free text.

In this project, the author try to find ways to exploit the meta data and facilities available through
a modern Enterprise search solution to create suggestions on how to build a User interface with
sufficient competence to deal with this complex search space in an empowering manner, yet
represent a simple enough experience for the end user to allow overview as well as a simple as
possible learning curve.

A few concepts are prototyped and a variety of options of future work are analyzed. Characteristic
issues with applying faceted search to the particular case are found and analyzed to some detail.
Concepts that are tested to some extent are selectable facet filters, grouping of properties with
clustering, fuzzy logic in facet search and implicit ordering of documents given filter order.

1.1 Keywords

Faceted search, Enterprise Search, Dynamic properties, Human-Computer Interaction and Infor-
mation Retrieval

2

2 Introduction

Qalixa is a small start up company that drives the development of a search engine hosted at
qalixa.com. Qalixa aims in this engine to deliver a free-to-post advertisement service, both for
the business to business and for the business to consumer segment.

The purpose of this thesis is to find ways to bring further insight into the particular case that
Qalixa represent in the scope of faceted search and user interface design for faceted search, and if
possible present opportunities for improvement for Qalixa and for users of such technology in
general.

This is realized by analyzing the most prominent issues with the current solution, proposing a set
of concepts to alleviate these problems, implementing prototypes for these suggestions and finally
evaluate these solutions to bring further insight into the challenges of the case.

2.1 Prototypes

The first proposed solution is that of selectable facet filters. It connotes presenting the user with
a set of properties recurring in the set of results currently retrieved, and allow the user to select
from these properties and in so turning the property into a filter. Filters are presented in a
separate list from the properties. In such, the user is allowed to manage preferences of interest
separately from a larger set of properties that are not of immediate interest. The filters can be
expanded to present a set of applicable filter values for the user, allowing him/her to select a span.

Secondly, to deal with cases where the number of applicable properties are large, methods for
arranging such properties in a logical way are needed. To supply structure properties were
arranged in groups using a clustering algorithm.

In order to avoid false negatives in a high entropy and heterogeneous data base, it is desirable to
have filters that does not work in a inclusive/exclusive but promoting/demoting manner. This
method can be compared to the idea of fuzzy logic and is in this thesis referred to as fuzzy facets.
In that way, articles that happen to lack definitions on particular properties that would otherwise
be of the desired kind can be found in the list, albeit further down in the list. In the prototype
and in this thesis a simple method for achieving this behavior is suggested.

Another feature is that of implicit ordering of documents given filter order. Given a moderate
amount of interesting articles that the user wants to compare in detail, being able to compare
properties closely should make it desirable to rearrange the order of articles based on values of
properties. In this thesis a mean for arranging documents based on the order of filters in the
filter list is proposed.

2.2 Questions
• How can faceted search be exploited for cases where dynamic properties are prevailing?
• How can Solr or similar tools be used in a Qalixa?

2.3 Tasks faced
• Production of several GUI concepts for enterprise search and for the e-commerce domain
• Evaluation of search frameworks

3

• Configuration of Solr for enterprise search
• Development of plug-in for optimization of MySql to Solr data migration
• Implementation of e-commerce search GUI prototype with focus on faceted search
• Analysis of problems with the prototype and conclusions taken
• Implementation of a clustering algorithm
• Formalization of a theoretical model for user centric search in the information retrieval

domain

2.4 Outline

This thesis describe the project by first describing the case being studied in chapter 3 after which
some relevant methodology and tools for the domain are described in chapter 4. Then, in chapter
5, some concepts where thought up taking inspiration from challenges and opportunities observed.
Some of these concepts are turned into a working prototype, that is described in chapter 6. The
working prototype is then evaluated and problematized in chapter 7. Lastly, the problems are
discussed further and some ways of tackling the issues are suggested in chapter 8.

3 Background

The project consisted of literature studies, concept creation, configuration and implementation
of a prototype and finally analysis of the implementation and prospective future work, where a
concrete list of issues of the domain could be produced. In the literature studies, the author tried
to find potential ways to tackle perceived technical problems of the case in question, search at
Qalixa.com. Theoretical studies was made in part as a prelude to the implementation task and in
partly after the task, to make use of the lessons learned.

From the outlook it was explicitly of interest to test new search framework technologies. The
scope of this project start out from the premise of applying one such technology on the existing
database of Qalixa. Another interest was to try out interesting features of this framework to
evaluate the opportunity it can bring.

Furthermore, as an academic project, it was of some interest to try to find a research potential.
And for the authors sake, to try out interesting technology for the sake of learning.

While user studies could have brought some additional insight and lessons from the prototype, it
was outside the scope for the project due to time and resource constraints. It was also deemed
that using such method would be premature due to problems with the user experience stemming
from the domain problems identified.

Additionally, little data is available from current user behavior. Facilities for analyzing such is
not yet in place as the Qalixa venture is still a young one.

In future works, user studies on a prototype using coherent input data can be used for adjusting
characteristics of the user interface. And to give an idea of the understandability of the proposed
features. Given well designed user tests; it could be concluded whether exotic features actually
shorten the time for task completions and how likely such features are to be discovered and
understood spontaneously.

4

Case study: Qalixa Looking at the Qalixa use case a few characteristic opportunities were
found. Technical opportunities that are perceived to need a lot of thought in order to leverage
the value of the web service. Applying faceted search onto Qalixa present a certain challenge;
the number of applicable facet properties can vary greatly between queries, as would show by
analyzing the prototype. The total number of properties spanning all articles is unbound as each
article can define and carry an arbitrary amount. The relevance and usefulness of any particular
property is unknown from the outset.

Figure 1: Current property view at Qalixa

Challenge: Empower the user in a complex search space; meta data interactivity
By its nature, Information Retrieval involves navigating a large search space. Most of the time,
the user is left without a map other than that of intrinsic experience derived from previous
interactions with retrieval systems as well as his/her mental model of various searchable concepts.
There is little aid for perceivable affordance from the outset. In many enterprise search solutions,
or verticals, faceted search is a way to provide a map over the search space. The specific qualities
of such map in the Qalixa case will need to be exploited.
For text input alone the visual complexity is relatively small. But for faceted search among an
arbitrary amount of properties the GUI can become crowded. There needs to be ways of lifting
out the most relevant properties given the information available.
One particular interactive element from the current Qalixa web site can be examined for this
particular challenge. When browsing by category, a property view can be called up. The property
view allow the user to specify preferences and to filter out unwanted items from the set. Visually,
the user is presented with a table with a row for each property and cells for each value. Such
presentation is common for such use case. However, for some categories the table become
impractical as is grows to hundreds of rows (See fig 1).

Challenge: Performance and latency In order to convey affordance, a tight feedback loop
is required. Low latency is thus a high priority in any Information Retrieval application. Qalixa
has few special characteristics in this regard. Current solutions are deemed inadequate in this
regard. While a throughout performance profiling investigation of the current solution likely
could help alleviating the situation it is chosen to be outside the scope of this thesis in favor of

5

investigating alternatives. It is deemed that a technology switch is required for solving those
problems.

Challenge: Information structure and coherence; meta data coherence The problem
of structuring data is in large ubiquitous to Information Retrieval but takes a certain shape when
addressing faceted search. Certain problems, like finding synonyms and homonyms, are more
pronounced. Merging properties can be seen as a superset of the problem of merging tags. Other
related problems are automated categorization. Automated categorization can be applied to
documents given statistical models where content is analyzed for finding a likelihood of an object
belonging to a certain category. For this case, there is the additional problem of categorizing the
meta-data itself, like properties.

While this project will only briefly test out a possible solution to this problem, some effort has
been placed into looking for potential future work and recommendations.

4 Methods and Tools

Some inspirations that went into the concepts produced are described below. Concepts such
as affordance, precision and recall are important. Additionally, some heuristics were used as
inspiration as well as for evaluating the prototype. The heuristics draw their motivations mainly
from the idea that a good user interface should tax the attention capacities of the user as little as
possible for any given task and that any task completion should be made quickly and with few
and small steps.

4.1 Usability - Affordance

The concept of affordances was introduced by James J. Gibson and is commonly interpreted as
action possibilities in an environment given an actors capabilities. It can be divided into a few
subcategories, perceived, as affordances that is known by the actor, hidden, as those that are not
perceived and false affordances, as those that are perceived but not actual. (1)

4.2 Information retrieval - Precision and Recall

Precision and Recall are central concepts for evaluating information retrieval systems. Precision
denotes a measure of the fraction of returned results that are relevant to the query. Accuracy
denote the fraction of all relevant items that are contained in the result set. These terms imply a
common method for evaluating IR systems, by measuring precision and recall of IR systems they
can be evaluated against each other. (2) However, for testing purposes, this method requires a
pre-made gold standard. A set of items and queries with relevancy mapping.

4.3 Faceted search: categories, tags, properties and values

Faceted search is the name of an Information Retrieval related HCI methodology where the user
is allowed to navigate the search space by selecting properties and values in order to narrow down
the search result. Technically any field with a value belonging to a document in the search space

6

can be used as a facet. Examples of facet fields can be “keyword”, “tags”, “length”, “description”,
“color” etc.

4.4 Introducing a few usability heuristics

When interacting with an information retrieval or information exploration system, the user is
occupied with the task of finding one or many sets of information. It is of interest to the user that
this task is made as simple as possible. An interpretation of what simple means in this context
follows. But first, we point out a few complementary heuristics.

A graphical interface present a number of elements to the user. An element here constituting a
single unit of perceivable information and sometimes one or more perceived or hidden affordances.
Each piece of information adds a constant amount of complexity to the overall complexity of the
interface. For each actual affordance added, there is also a non negligible amount of complexity
added, although this depends more heavily on the users perception. We should distinguish between
easily measurable structural complexity and the more elusive perceived complexity perceived and
felt by an agent.

Non perceived affordances should not in themselves cause added perceived complexity and
mental load. Potentially, perceived and well understood affordances should not cause very much
affordances either. Mental load is instead expected to be caused by elements not communicating
their affordances well enough, or in other words, the actual affordance can not be unambiguously
determined. It is expected that a perceived and well understood affordance will add a small
constant mental load per item while a affordance that is not well understood could add a
considerably higher load, in worst case causing the user to give up.

Making sure that the maximum amount of hidden affordances are kept low and at the same time
allowing such to be easily explored through interaction should help the user to quickly lower the
perceived complexity of the application. An affordance should be easily explored if similar actions
produce similar results and if the variation of perceived possible actions is low.

For the sake of this project, designing a simple interface is interpreted to denote a minimization
of above described complexity over the course of a task completion. A task can be more or less
well defined. It could be described as ‘finding a nice affordable car’ or finding a car of a particular
brand from a particular year of a particular color. This distinction, between a more and a less
well defined task, is also the distinction between Information Retrieval, for well defined, and
Exploratory Search, for less well defined tasks.

Two relevant heuristics can be defined for making sense of this idea of interface simplicity. The
amount of perceivable elements in a given scene and the amount of perceivable elements over the
course of a task execution. In order to minimize the latter, the former needs to be minimized, as
well as the amount of scenes that needs to be faced by the user before the task is completed.

Simplicity is not the only requirement for a usability however. Understandability is also needed.
Understandability can be seen as the ease of perceiving the affordance of an element given the
element’s and related element’s presented information.

Another concern is that the user needs to solve his task quickly. Two things can be seen to
consume time given the conceptual model so far, technical latency for switching and changing the
scene, and time needed to perceive relevant elements in the scene.

7

4.4.1 Relation of precision and recall to affordance

When looking at affordance in the realm of exploratory search (ES) some related heuristics can
be found. It should be desirable to encounter as little complexity during a task completion as
possible, as described above. Another way of interpreting this in the realm of ES is that we
should maximize precision and recall while minimizing the complexity of the interaction.

Now, there can be many interpretations of this goal. One naive and often used solution is to
present a single element of affordance with a wide space of action possibilities, or in concrete
terms, a search phrase input form. Varying the amount of tools available in the environment
could diminish the amount steps needed for finding a sought article, or it could potentially allow
a faster growing recall curve.

4.5 Glossary

Lexicography study or structure of word relatedness on the

basis of semantics and word features

Taxonomy systematic classification of biological organisms,

also classification of information entities in

general

Semantic the meaning of a word

Ontology a study or structure of meaning of words

Homonym two words of equivalent spelling but

with different meaning

Antonym word with opposite meaning to another word

Polysemy word that can have multiple related interpretations

4.6 Literature study

Various articles where studied to acquire inspiration and finding potential inspiration for the
Qalixa case. A few where selected for having future potential for the case.
(3) demonstrate methods and analyze a prototype implementation, CREW, for using Wikipedia
as a source for creating semantic data and deriving homonyms and synonyms for tags. This could
be used for processing untidy data from third party sources and to aid single article publishers to
clearly define what they mean. Also, building taxonomies and categorizing new articles could
potentially benefit from such technology. A cited article (4), goes further into details on how to
obtain semantic relatedness from Wikipedia’s network of links.
(5) details various methods for semi-automatic clustering; giving the user the ability to influence
how clusters are formed through a proposed user interface. This could be useful for giving retailers
and users the ability to control how their articles are categorized. (6) suggest another method
that focus in particular on leaving the labeling task up to a supervising user.

8

(7) design and analyze a GUI application, Stuff I’ve Seen, for managing search history in
combination with a faceted search. The application allows users to conveniently search through
articles previously viewed. The application is evaluated with extensive user tests.

(8) try to attack the problem of information overload by utilizing clustering techniques and
corresponding GUI design. A clustering based visualization GUI for navigating a large set of
items is presented. The problem of discerning concepts of varying significance is addressed by a
fisheye concept where more significant words take up more space in the GUI.

(9) present an optimized variant of Lloyd’s algorithm using kd-trees. Lloyd’s algorithm is a
popular algorithm for clustering (10).

4.7 Tools

While there are numerous examples of open source frameworks for information retrieval, and
while a exhaustive list is hard to find and probably impractical to maintain, a few frameworks
came out as interesting.(11)

A few distinguishing traits can be seen among the alternatives out there. Firstly, there are either
open source or closed source alternatives. Closed source alternatives where dismissed at an early
stage. The motivation could be that it would narrow down future freedom for the project and
Qalixa if put in use, another motivation is that of project scoping and the need to being able to
quickly evaluate the solution.

Secondly, many of the search systems out there seems to be either ports or projects building upon
Apache Lucene. Examples of the former are Ferret(12) and Lucy (13). Examples of the latter are
Solr and ElasticSearch.

Thirdly, frameworks are either built upon an existing database technology, or built as a database
system of its own. Lucene and its derivates is an example of the latter, while Sphinx and Riak
search could in part be seen as the former (14). Also, Hibernate search could be grouped with
the former with a stretch.

4.7.1 Lucene and Solr

All in all, the Lucene family was perceived as the group of engines with the most prevailing
community support and at a glance, the largest feature set of the engines looked at. Lucene
itself stands out in that it is built for being integrated into a host application(15) rather than
being stand-alone out-of-the-box deployable like Solr(16). Lucene requires you to at least build
a custom data import layer in a jvm language while Solr allows you to design an import layer
meeting many use cases in XML. Similarly, handling of the input query and the process of turning
it into a query understandable by the framework is slightly more involved or more manual in
the Lucene case. For Lucene, components are combined in code while Solr lets you combine
components in XML while being guided by a systematic markup style. Lucene arguably gives
you some additional freedom in defining the interface to the search framework, while its derivates
adds additional features (17)(18).

Features of Solr include faceted search, geospatial search, XML/JSON/CSV REST-like api,
XML configurability. Lucene also cover faceting to some extent (19). Among web services that
are currently using Solr are Instagram, The Guardian, SourceForge, eHarmony, Netflix, eBay
(Germany), digg and reddit (20). Solr supplies means for running clustering on search results

9

and documents using the Carrot2 clustering engine (21). It is meant to be highly customizable,
allowing plugging in implementations of for example clustering algorithms. Solr has shown to
give significant speedup for large scale services, such as Twitter(22).

4.7.2 ElasticSearch

ElasticSearch is another engine in the Lucene family and the closest competitor to Solr. While it
is younger and such would have had less time to mature, it seems to have gained a lot of traction.
It sports a few features that are by some deemed as game changing. It is built from the ground up
with distributed search in mind (23) and has been shown to perform significantly better in some
cases where a large index was continuously updated while also performing queries (24). Solr is
however deemed faster for indices that seldom change. ElasticSearch is made for easy deployment
and it doesn’t require defining a schema for basic use cases (25). An additional feature is the
Percolator, or reverse search, that allows storing queries and then check which queries are matched
by submitting a document (26). Among web services that are currently using ElasticSearch are
Mozilla Foundation, SoundCloud, StumbleUpon, Klout, IGN, Sony Computer Entertainment (27)
and StackOverflow (28). Developer usability wise ElasticSearch is customizeable by the same
JSON REST interface that everything else is passed through. This could be a potential advantage
to the rigid file XML file structure of Solr (25).

4.7.3 Sphinx

Another search framework is Sphinx. Some distinguishing features when compared to the Lucene
family are tight integration to relational databases, for example MySQL, and a focus on speed,
being seemingly faster than Solr for some tasks such as indexing and database queries(29). In
fact, one benchmark, albeit potentially outdated, shows Sphinx consistently outperforming Solr
in terms of both memory and CPU (30). Sphinx’s facilities for faceted search are a bit different.
Allegedly allowing a greater set of use cases but with seemingly a bit more manual work before
running(31). Another distinction is the source code licence. Solr is Apache licenced while Sphinx
is licenced using GPL2 while the maintainers offer commercial licensing as well. Sphinx is used
for such services as Craigslist and Groupon and is known to work with more than 25 billion
documents and more than 300 million queries per day (32). Sphinx is written in C++ which may
bring additional entropy to a Java centric project.

4.7.4 Solr extensions and supporting applications

Some tools that can be used to extend Solr is worth a mention. SolrJ is a java library that serves
as a java search interface to Solr that is otherwise talked to using a REST API. Using SolrJ
some of the flexibility of Lucene can be recovered (33). Tika is a parser library designed to work
with solr, although it is mainly aimed at extracting data from documents (34). Zookeeper is a
framework for coordinating distributed processes. It is planned to become an integrated part of
Solr for version Solr 4(35). Apache Nutch is a search engine solution that adds a crawler and
integrates Tika with Solr (36).

10

4.7.5 Search framework comparison

For this project, Solr was selected. This is not an obvious choice however. Three frameworks
are seen as runner ups - Solr, ElasticSearch and Sphinx. It is appreciated that the choice of
one very much depends on the problem. On the basis of scalability, ElasticSearch seems like
the best choice at the moment, due to it being built with distributed storage in mind. However,
Solr is currently spearheading an initiative to integrate cloud capabilities more tightly (37). Solr
sports its clustering engine. Although clustering could be seen as a feature of uncertain current
footing in the domain, it may hold future potential. Solr is arguably the platform of choice for
experimenting with such techniques, given its Carrot module. Performance tests of Sphinx show
promise and the fact that it is used by some large scale e-commerce vendors could be enough to
motivate testing it out.

4.7.6 Search frameworks as NoSql stores

Solr and its cousins are structurally very similar to NoSql data stores (38). The distinction is
arguably one of marketing strategy (39) although there may be some distinctions in the feature
set as well (40). Likewise, some data stores implement many features of search frameworks (14).

4.7.7 Backbone

Backbone is a javascript module and framework for lightweight MVC modeling. It is regarded
as a library rather than a framework given that it imposes little restriction on the software
architecture(41). It supplies classes (or an approximation for classes) for such things as Collections,
Models and Views and facilities for controlling event propagation between them.

4.7.8 Pure Functional and Functional Reactive programming for client side web
applications

Some time for shallow testing was given to the Elm language (42), a new programming language
that borrows ideas from the pure functional world of Haskell and that focus especially on the
idea of Functional Reactive programming (FRP) (43). It compiles to Javascript and is meant to
be used for developing graphical web clients. While a more throughout investigation of the pros
and cons of using such a language for a complex web application is left outside the scope of this
project, a few remarks can be made: The succinctness of implementations of some recurring web
application features when using Elm can be demonstrated in the examples on its official web site
(44). The Flickr Api example should be the one most relevant to Information retrieval clients(45).
However, small implementation tests showed that debug printouts can be very sparse, potentially
making continuous implementation challenging.

An alternative to Elm that was also tried to some extent was Fay (46). Fay takes the approach of
implenting a subset of Haskell for compilation to Javascript. A second important design choice is
to make the code generated as readable as possible, potentially making debugging easier. However,
Fay does not give the FRP paradigm any precedence, but there is an example on how FRP can
be realized using javascript FRP libraries in Fay (47).

11

5 Suggested concepts

A few concepts where produced, some of which were made into mock-ups.

5.1 Visual mapping of articles to axes

Figure 2: Visual mapping

Some initial ideas explored putting search result items in a map like context, in order to visualize
the grouping of items along facets in a continuous way. This could be particularly effective for
facets that are of number type (See fig 2). Such feature can allow the user to attain an overview
of the distribution of properties over a dimension and also allow faster navigation by supplying
an additional empowered level of freedom.

Additionally, through interaction, drag and drop or other, the user could be allowed to control
both what facets are bound to each dimension; as well as what value should be brought into view
if the interval would not fit on screen. The later could either be controlled by dragging the values
along the axis or by dragging from a list of values to the axis (See fig 3). The motivation for
such feature could be that it would make it easy for the user to switch what dimensions are to
be traversed when selecting out of the result set, and as such, allow the user to navigate a high
number of dimensions more quickly.

5.2 Incorporating multiple axes navigation into result list

A variation of axis mapping of facets is to have columns for each result group or facet value in an
ordinary result list. Such solution could arguably be more friendly to an adaptive layout while

12

Figure 3: Visual mapping 2

Figure 4: Horizontal drag scroll on facets

13

somewhat loosing the aspect of communicating the distribution of items along a dimension (See
figure 4). It would still have the benefit of supplying an additional degree of freedom that can be
used for navigation.

In order to make scrolling to adjacent groups drag scroll could be used. This can expand the
interactive region as the user does not need to access periphery scroll controls and doesn’t need
to know about manipulator key such as shift-scroll. However, drag scroll has so far been avoided
for most desktop inclined application; probability for acceptance might be limited.

5.3 Preference collection

Also referred to as filter tray. In order to separate various tasks and as such make the selection
routine for large heterogeneous data sets less daunting, selection of properties and selection of
their values can be made separate. As suggested by figure 5 properties would reside in a separate
element from the so called filter tray. The filter tray would house those properties selected by
the user to perform filtering on the result set. Each filter represent a property and supply the
necessary controls for selecting a scope of values for that property to select on. Such preference
collection can have the potential benefit of both reducing the number of elements shown and to
bring the properties useful to the user closer at hand.

If expanding on the concept, there could be ways for the user to build customized collections
of preferences. Perhaps as the user return to a category previously visited, the properties and
values that was used last time around could be already selected and appearing in the filter tray.

5.4 Creating custom filters by dragging from data elements

As a proposed solution towards easing the process of narrowing down the result set; the user
should be able to easily find and select properties and values. Properties may not always be
findable in one place, they may live in various spaces of the GUI. The information displayed in
the GUI comprise articles, properties or property values. All those elements could potentially be
used for rephrasing a query. Properties and values could be made into filters and articles could be
seen as a proxy for other keywords, properties or values; either from looking at its own properties,
or by looking at its percolated values (See Percolation on article creation).

This gives the idea of allowing the creation of filters from such elements in order to ease exploratory
search. For example, values present in the columns of the result list could be made draggable and
turned into a facet filter when dropped in the list of filters (See figure 5).

5.5 Dynamic filter lists

Filters, as mentioned above, can be managed in various ways to further lift the capabilities of
the user. Rearranging such lists could be made meaningful. One proposition is to make the
rearrangement of filter lists to influence the sorting of results. The top most filter, if it represent
an interval, should decide the primary sorting feature. Consecutive filters will decide the sorting
of items within each group of items that share the same value of the facet represented by the
previous filter. For example, if there are two filters, ‘price’ and ‘length’, results will be sorted by
price first and length second.

14

Figure 5: Drag a value to create a filter

A second potential of dynamic filter lists, could be that of adapting the selectable range of values
based on what ranges are currently available in the result set. If the price range is changed in the
price filter, some part of the length range showing in the length filter may no longer be valid.
As such, its selectable range should be adjusted. However, this may prove problematic as it can
sometimes be desirable to show ranges that are no longer applicable. A solution to that however,
could be to just ‘grey-out’ values that correspond to empty result sets.

5.6 Expand with keywords

Another venture that could be explored is that of adding keywords to a query, as a lightweight
way of exploratory search. There should be a fair amount of semantic reasoning behind the
suggested words however. Direct synonyms should be searched implicitly and not be part of the
suggestions. So suggested words should be related but not equivalent. Additionally, suggestions
could be used in order to select among homonyms (see fig 7).

In order to meet the need for semantic relatedness data, above suggested technology for using
Wikipedia to that end could be used. While many other applications of the Wikipedia technology
likely are possible, it is left out of the scope of this thesis.

5.7 Percolation on article creation

Percolation, an ElasticSearch specific feature, could potentially be used in a scenario where a
user is about to create an article for a product, to inform the user how to expose an article for
the most relevant search expressions. Percolation works by indexing selected queries so that

15

Figure 6: Expand search using related keywords

Figure 7: Expand search using related keywords

16

Figure 8: Percolation concept

documents can be tested onto them, seeing if using such query would turn that document into a
valid result. This notion could be used to incentivise the user into tagging and otherwise writing
the article for maximum precision. Although care should be placed in avoiding incentivising tag
abuse instead. By only showing a few queries most relevant to the article this should be avoided.
(See fig 8)

Further, percolation could be used for analyzing the impact of entire product feeds coming from
retailers. If used as such, it could help incentivise retailers into delivering cleaner feeds and
also conveying value brought by the search engine. Also, manual tagging and categorization of
multiple products at once could be aided. (48)

Other uses could be thought of as well, but require further feasibility studies. Percolation could
potentially bu used for aiding in maintaining and creating tags from queries for example.

5.8 Sunflower navigation

Sunflower navigation expands on the expand with keywords concept and tries to map it onto
dimensions; creating a graphical vector representation of each significant keyword in the query
phrase and overlaying related, not yet selected, keywords, allowing the user to turn the suggestions
into actual search keywords. (See figure 9)

For such concept to work, there needs to be an adjacency heuristic for each pair of tags. Arrows,
or vectors can then be put into layout by force based means, to visualize concept closeness. This
way, exploring related words can be made quicker as the user is encouraged to first select on
subgroups rather than individual words.

17

Figure 9: Search map/Sunflower

Figure 10: User interface components

18

6 Prototype

6.1 User interface

The prototype selects from various previously mentioned concepts. Concepts that were focused
on were 5.3 and 5.5. 5.4 was tried to some extent but discarded as the overall design did not
supply enough useful data elements for such concept to be useful. An additional set of features
not outlined above, such as 6.5.5 and 6.5.6, were implemented and are described below.

The client consist of a search form, a side pane populated with groups of attributes applicable for
the search phrase currently entered, a list of results and a “filter list”. The latter being initially
hidden.

The attribute list orders attributes in small groups of some conceptual similarity determined by
the clustering algorithm. If the user selects an attribute from the list, it will be added to the
filter list. The internal representation of the filter list is traversed when changed to produce a
new query once a property value has been selected. Filter components can be rearranged by drag
and drop. (See fig. 10)

6.2 Client architecture

Figure 11: Ideal representation of the application model

An ideal representation of the application model can be seen in fig 11. The search form is the
initial interactive component for the user. The search form submit an input phrase to the search
framework interface that in turn communicate with the search server. The interface notify both
result list and facet list when a response is retrieved. The user can then interact with the facet
list to add filters to the filter list. The filter list notifies the search framework when a meaningful
change has happened and again the facet and result list is updated. Optionally, filter content is
updated as well.

The actual implementation (see fig 12) consist of an ApplicationModel that house all other
models except the search interface, SolrInterface. It also handle most of the event bindings and
propagations. The application model contain the collection of Attributes, the collection of Filters,
the collection of Results, the collection of Groupings and the Query model. The Attributes
collection carry the most model logic, collecting all Attribute models. The Attribute model in
turn each own a collection of Values that hold Value models. The Grouping and Filter collection

19

Figure 12: UML representation of the application model

on the other hand only hold references in the form of String ids. At any time when an attribute
that form a filter needs to modify its model, it has to be found inside the Attributes collection.
This was considered a necessary detail at the time of writing, due to the workings of Backbone,
but might be done more elegantly using actual references instead of ids.

There are several view classes used to reflect the state of the models in the GUI. The primary ones
are the FacetList, the FilterList and the ResultList. In addition there is FilterComponent, being
instantiated as subviews of the FilterList and the SearchForm, representing the form element
used for search phrase input.

In addition to the above, there are toolbars. As models and as a view. These are added to allow
removing and locking filters. The locking of filters denoting locking selectable values from being
changed as the result set is changing. (49)

6.3 Algorithmic needs

Looking at challenges that need to be met and the solutions proposed, some algorithmic needs
could be discerned. In order to make the data workable and coherent, documents and attributes
need to be matched with near equivalents. Synonyms, homonyms and polysemic words need
to be recognized somehow. Articles need to be fitted into a suitable category. Articles may be
coming from divergent sources, referencing diverse category structures and strictly incompatible
taxonomies. Sometimes articles may supply little or no pre existing category assignment and
perhaps data to go by.

It should be desirable to automatically extend an existing category structure in some cases, for
example when a category is considered to overflow, when there are too many items in a category

20

Figure 13: Property adjacencies from articles

Figure 14: Adjacency matrix

Figure 15: Clustering using centroids showing the three first dimensions/properties

21

for it being easily navigated. It could perhaps be desirable to show and hide various branches of
a complex category tree depending for example on the size of the branches given a search phrase.

Given a large amount of properties given by search results, to be selected from for allowing further
refinement, there needs to be ways of give structure in order to lower the complexity faced by the
user. Applying clustering techniques could meet this problem to some extent.

6.3.1 Grouping Algorithm

As a partial response for the need of adding some additional structure, a grouping algorithm
was implemented. It is is added to the Solr execution as a plugin component to a custom search
handler in the Solr configuration. The major part of the algorithm runs as a response to a query,
processing the set of articles returned by Solr and producing the relevant output that is attached
to the result object returned to the client.

The algorithm begin by generating a adjacency matrix of all the properties of articles of the
result set, incrementing the adjacency for every time two properties occur together (Fig 13). The
adjacency matrix is then interpreted as an Eucledian space with as many dimensions as there are
properties (Fig 14) and passed into an implementation of Lloyd’s k-means clustering algorithm,
from which a set of groups/clusters are produced (Fig 15). Below is a simplified version of the
clustering algorithm in pseudo code:

lloyd = function () {
centroids := randomCentroids
until (time_out or goodEnough):

for each point:
assignToCluster(point)

centroids := (for each cluster:
recompute centroid of cluster)

}

assignToCluster = function (point) {
closestCluster := find cluster closest to point
assign point to closestCluster
}

The algorithm is done when the time has run out or when the centroids move sufficiently little
per iteration.

6.4 Data importer

A data importer was needed on the server side to correctly and efficiently transfer data from the
original MySql database to Solr. While a standardized data import plugin exist for Solr, it was
deemed a bad fit for the needs of this project. Import schemes made for the standard importer
ran slow and took away the possiblity of multi valued properties. The custom importer showed
a very significant speedup. While there may be means of reaching the same speedup without
custom code it could not be found.

22

6.4.1 Modules

The import handler consist of a worker and a front end class. The front end class, FlatTableIm-
portHandler, is called from Solr when there is an url request to the corresponding request handler
specified in the Solr configuration. With the url a command is passed. If the command is
“full-import” the worker is started in a thread of its own. Any other command, or the lack of a
command will return a status report for the worker.

The worker, ImportWorker, execute a MySql query specified in the Solr configuration and read
the response line by line. As long as a row has the same unique id, properties specified by the
row will aggregate into a document. The document will be submitted to Solr once the id has
changed. This is done so that the document in the Solr database will not risk being overwritten.

6.5 Feature roundup

6.5.1 Filter selection and deletion

The user specify property preferences of the sought results by chosing properties from a list.
Chosen properties will turn into filters that also display applicable values for the result set,
allowing them to be chosen from. Choosing one or more values will cause the document set to be
filtered to match the property-value pairs chosen. In non fuzzy mode, it should match at least
one property-value combination per filter to not be excluded.

6.5.2 Switchable filter value updates (Padlocks)

In order to give a dynamic view of what properties remain meaningful as preferences are specified,
the padlock button allows switching whether the set of values for a particular property should
be dynamically updated as the result set changes. The set of values that remain if the filter is
unlocked corresponds to those property values that can be found in the result set.

6.5.3 Sliders for enumerable facets (deselecting intermediate values?)

Some properties are recognized as enumerable, or of number type. It should in most cases be
interesting for the user to select a span rather than individual values for such cases, avoiding the
extra work of selecting a large number of similar values. Therefore, a slider is used for controlling
such value selection.

6.5.4 Switchable sorting and sorting customization by drag and drop

Without adding additional elements to the scene, a fine grained control for the sorting order of
results is made possible by looking at the ordering of filters. For an attentive user, it can be
seen that the sorting order is made by each column in order. The rationale for this is that the
prioritization of the filters, or preferences of the user, can be signified by the visual order. The
order of the columns in the result list is determined by the order of filters as well. The filter order
can be rearranged by drag and drop.

23

6.5.5 Dynamic column creation

What properties are to be displayed in the result list is determined in part by a predefined list of
default properties and in part by the properties corresponding to the filters in the filter list. This
allows a dynamic display of articles where focus is put on those properties that are likely of most
interest to the user.

6.5.6 Fuzzy facets

The user has an option of enabling facet fuzziness. This causes the filters to become promot-
ing/demoting of matching/non-matching articles rather than excluding filtered articles entirely.
This feature is realized with Solr using query boosting. For example, the following generated
query will only retrieve articles that match the preferences exactly:

car AND (color:blue AND price:[100 TO 10000] AND model:Toyota)

However, adding wildcard queries with a lower prioritization/boost will allow previously unmatched
articles to appear towards the end of the result list:

(car AND (color:blue^1000 OR color:[* TO *]^0.1)
AND (price:[* TO 10000]^0.9 OR price:[* TO *]^0.1)
AND (model:Toyota^1000 OR model:[* TO *]^0.1))

There is a reservation on this solution; articles that does not define the property will still not be
included. Depending on the reliability of the data this may or may not be desirable. An addition
that should include even such articles with an even lower prioritization would be as below. This
possiblity is not demonstrated in the prototype however.

(car AND (color:blue^1000 OR color:[* TO *]^10)
AND (price:[* TO 10000]^0.9 OR price:[* TO *]^10)
AND (model:Toyota^1000 OR model:[* TO *]^10))

OR car^1

7 Analysis

7.0.7 Intended use case

The intended use of the prototype is to first enter a generic search phrase in the search form
and hit ‘Search’. Secondly, zero or more properties are selected from the left according to one’s
preferences. Thirdly, selected properties, now turned into filters in the filter tray above the result
list, can now be used for narrowing down the results. Selecting multiple values from the same
property will cause a non-exclusive multi-value selection on that property. Or in other words an
‘OR’ selection will be made with all selected values in one particular property. If multiple filters
are used, an exclusive selection will happen, combining the filters with ‘AND’ operation.
The intention is that both retrieval of specific known articles, using known properties of such
articles, and exploration of the data set within a certain domain, should be made easier. Allowing

24

direct feedback when alternating both properties and property values should allow exploration
while supplying relevant properties should allow the user to quickly zoom in on an intended
article. Additionally, adding and subtracting filter selections should allow the user to identify
corner cases, highlighting what articles the user is opting out.

7.0.8 Observed issues

Some issues can be observed when looking at the prototype. Issues that are considerable in scope
but that if solved, should significantly elevate the potential of the approach suggested by the
prototype. Some of these challenges are arguably hard to avoid for any attempt at dealing with
e-commerce from the perspective chosen by Qalixa and similar ventures, and should emancipate
considerable value if solved comprehensively. Many of these issues are expected to be especially
relevant when having a great number of dynamic properties coming from varying sources.

The most apparent problem in the prototype is the high amount of property fields that are
available for being selected from by the user. Many of the fields are nonsensical when taken out of
context of their parent articles or seem to be irrelevant for most uses. Many properties and values
are duplicates or are of very similar meaning. Sometimes property names can map to values of
varying type or dimension. Some values may be of number type but this is not recognized and as
such, the property is not given a slider when used as a filter. Some properties have superfluous
characters in their name. Some values are placeholders for non-values, some should be split into
multiple values.

Many properties have only a single selectable value. This is arguably a part of a larger problem.
At the point of retrieving properties, the amount of applicable values for each property given
the current search space is not known (only the number of occurrences of the property fields
throughout the result set is known). Retrieving applicable values for a large result set for all
properties is supposedly very computationally expensive, however possible, using the Solr REST
API. With the current prototype, only the values of the chosen filters are retrieved.

More subtle are the issues that arise once you start the interaction. One possible issue is that of
filtering out false negatives. If a certain attribute is not defined for an item it can not really be
known if it really should be filtered out or not. The default behavior of Solr is to filter it out,
which may be undesirable. Similarly, a lacking in synonym understanding among values should
cause problems of false negatives as well.

Dynamic filter options and Padlocks One issue appear as a result of updating selectable
filter content dynamically. As the result set is diminished, the set of field-value pairs normally
diminish as well. If this is not reflected in the possible preferences of the filters, there is a risk of
allowing the user to select a set of preferences that results in an empty result list. In some cases
this risk may even be higher than selecting preferences resulting in a non-empty result set.

Always allowing dynamic updates of filters is problematic since the filter mix the trait of excluding
existing or including additional articles. When first putting a filter into use, the filter acts to
exclude items from the result set. When selecting additional values, the result set grows. Similar
growth and shrink pattern is reflected in the set of applicable values and properties. Additionally,
whilst using fuzzy facets or working with a large set, the issue is a bit more subtle. Individual
articles, properties and values may be excluded by way of becoming less prominent as the set
grows. As such, filters or values will become treated as being to insignificant for inclusion, causing
it to disappear mysteriously.

25

The Padlock feature exist as to partially adress this problem. To help the user to avoid these
cases the padlock button allows the user to manually switch whether applicable filter values are
dynamically updated. This is far from a perfect solution as it requires the user to figure out when
to apply the dynamic him/herself.

Summarized, the issues in list form:

• Missing context for understand property meaning
• Irrelevant properties
• Synonyms not recognized
• Unit or qualitative/quantitave homonyms not recognized
• Basic sanitization and interpretation of names and values are lacking upstream

– Special characters in property names
– Multi values interpreted as single values
– Non-value placeholders interpreted as values

• Insufficient structuring of large amount of properties
• Over-eager filtering, false negatives

– Synonyms
– No defined value for selected property

• Invalid or missing options among filters after query

7.0.9 Technical issues

Some issues are purely technical. Some property names cause problems due to Solr not being able
to cope with special characters. This could be blamed on insufficient sanitization but there may be
cases where special characters are desired in the displayed name. Additionally, many non-english
languages will require support for Unicode. For these purposes Solr have some support, using the
ASCIIFoldingFilterFactory (50) or UnicodeCollation (51). These are not applied in the prototype
however.

Another issue is the need to associate and infer additional information to the property name,
such as property type. The variation of property types may for example be used for varying
visualization and interaction methods, so that properties with number values may use sliders.
Associating additional data to field names may require creating additional entries to the database.
Such entries could also associate a display name with special characters with a look up name,
without such characters, if needed.

7.0.10 Comparison to current property view of Qalixa.com

Previously, the current element for selecting among properties and property values were described
briefly (See fig 1). Analyzing the current solution while taking inspiration from the suggested
usability heuristics we can make the following observation. For the task of allowing the user to
select preferences given applicable properties the current solution present a number of visual
elements roughly equivalent to the number of properties times the number of values on average.
The proposed solution present a number of visual elements roughly equivalent to the number

26

Figure 16: Diagram comparison of visual complexity

of properties plus the number of selected properties plus the number of values of the property
currently being in focus. This amount is strictly smaller in general and is expected to be
significantly smaller for most cases (See fig 16).

Furthermore, the ratio of visual elements shown clearly to the user, high up on the page, that are
of direct interest versus such elements that are of secondary interest, should also have improved
significantly. Filters corresponding to the users preferences are maintained in plain site and does
not remain among the properties in the property list.

8 Discussion

The prototype tested a few of the ideas presented to some degree. Creation of custom filters
where tried to some extent, but discarded due to adding little purpose to the prototype in its
current form. The most prominent concept in the prototype is that of the filter tray. Dynamic
filter lists were used as well although it was hard to make conclusions about its usefulness.

Apart from the suggestions, the project served to investigate the potential of Solr and similar
technologies for Qalixa and it brought a variety of new lessons on web technology, such Javascript
frameworks, databases and search engines, to its author.

Given that relevant properties can be found in the property list and given that they house sensible
values, some observations can be made about the benefits of the prototype and its approach.

Once properties have been selected, distance in between useful components is small. This is
beneficial for exploring small variations on the same properties. Having sliders for number
properties allows for fast exploration. Having low latency for queries when switching properties
on and off allows for a fast feedback loop on what selections fall off as the scope is narrowed.

Also it can be seen that the set of results are quickly narrowed down as filter scope is narrowed
down. The problem of drop off due to false negatives will still be a problem even with fuzzy faceted
search though. There will be likely be a bias towards articles that has well defined properties.
Although with fuzzy faceted search, recall should become sufficient. Precision due to variations
in how article properties are defined are to be expected. On the other hand it is arguably so
that an article is more likely to be incorrectly excluded/demoted than included/promoted when
filtering on a property. Overlooking the act of setting a property seem more likely than setting
the property wrongly.

27

It is observed that being able to quickly alter between adjusting various property value scopes
is useful. This is partially accomplished by the prototype. Although the later prototype only
allows having one active, as in adjustable, filter at a time. Earlier snapshots allowed filters to
be expanded and collapsed at will. This makes the scene slightly less complex but also hinders
switching between filters quickly.

Having interesting filters clearly separated from the overall property list also seem to make user
preferences manageable. Although here is an ambiguity regarding the persistence of filters. What
should happen when the filters are no longer relevant for the search phrase? The current behavior
of the prototype is to remove such filters. This can sometimes be problematic. A better choice
is perhaps to render those filters inactive and mark them as such. Allowing the user to remove
them at will.

There was an early attempt at allowing the user to select filters by drag and drop, as suggested
by the suggested concepts above. This was deemed to supply little value and some distraction for
the user, and was discarded in favor of simply clicking elements for turning them into filters. A
more complex web of possible interaction potentials between various components, where elements
can move between various parts to a greater extent and in a meaningful way, could make drag
and drop useful again.

The order of the result list is in the prototype determined by the order of used filters in the
filter list. While this may be a useful feature in some edge cases, it is deemed that this is not a
practical default behavior that communicates badly to a user. Having explicit controls to enable
this behavior may be useful, although it is likely that the de facto default behavior of most result
lists out in the wild, to sort if the column header is clicked on, is more intuitive due to its strong
history. However, the method suggested here have the potential advantage of sorting on multiple
criteria. This could be useful but likely only in periphery use cases.

8.1 Suggestions, for academia, industry and for Qalixa

To establish structure and coherency of the meta data, a few things are suggested for further
investigation and for solving related problems in broad terms.

8.1.1 Pruning and sorting properties using statistics and traits

Two methods for grouping properties are recognized. Properties can be grouped by categories
and grouped by traits. Category here denoting and assuming a preexisting grouping of articles in
a category tree. Such structure can be carried over to the properties so that each category is
tied to the categories that occur in the articles that are sorted into it. If a category has been
selected by the user, properties can be shown based on whether they belong to that category as
properties that exist outside the category are likely irrelevant. Further, properties that are part
of a subcategory or a smaller subset of articles in the current category may not be very relevant
either as a filter that would use such category would only be applicable on a small part of the
articles. A generalization of this idea would be that of finding applicability of facet properties in
a given selection, regardless of having a stated category. Bear in mind here that it might not only
be properties that can be found in the current selection that might be of interest. Similarly to
how non-selected values may be of interest, non-used properties may be of interest too, once the
user looks to expand his/her preferences rather than diminishing them.

28

We could introduce a notion called facet traits. A facet property may have more or less values,
and values may be of certain types. A property convey a number of applicable values for a given
selection, the values that exist in the selection, but other values that may be of interest may
exist throughout the database. Facet traits may be made to connote the characteristics of the its
values, throughout the database on one hand, and given a selected context, on the other. Such
traits can be used to further determine how a property is to be presented. The facet trait idea can
also be extended to connote the above described property characteristics. To how large extent of
the current selection does the property exist? To how large extent of the entire database and
in what categories does the property exist? So such traits are in part consistent regardless of
context and in part context dependent.

Having such trait information available could help in building the presentation and allow qualified
decisions on what to present and how to build user interface elements. Examples of using such
traits could be:

• Turning single valued facets into keywords
• Hiding facets that exist for a small subset
• Show facets that does not qualify for the current selection but for a relevant superset, for

example a category

8.1.2 Controlled folksonomies

Having folksonomies, or wiki-like tag systems can be a useful way to establish structure in a large
data set where items are interacted with by users on a regular basis. But to find the best way to
harness it can be a challenge. (52) explain different algorithmic methods for extracting good tag
sets from folksonomies. Taking synonyms and similar problems into account.

8.1.3 Client side facet search

in order to elevate the potential of facet search, and to allow fluid filtering for the user even
if the server load is considerable, using client side facet search could be desirable. There are
implementations for this available that show great promise. While client side search could not
realistically cover the breadth of a server based solution, it can serve as a complement that works
on narrowing down the set of results given by the server. The server could be allowed extended
latency and fill up with new results only when the client side result set is draining out. (53) (54)

8.1.4 Grouping facets by outsourced semantics

One promising approach to enhance structure is to utilize outside sources of semantic structure,
so called semantic web technologies. For example, DbPedia (55) is an initiative for extracting
semantic data from Wikipedia. A derived application, DbPedia Spotlight, can infer context to
words in a text. Inspiration can also be taken from the way a prototype, Sztakipedia (56), helps
the user by suggesting meta data to add to an article while being worked on. Such concept could
be used in conjunction with the percolation concept suggested earlier.

29

8.1.5 Annotating rather than excluding invalid filters and values

The prototype combine different approaches in order to deal with invalid filters and values. Filters
are removed when no longer needed. Values can either update dynamically or remain untouched.
Such approaches are arguably confusing. A better solution, until a comprehensive solution is
found, would be to mark options depending on the effect using them would have. Unused but
selected filters that represent fields no longer found in the result set could be marked red for
invalidity. That way the user can easily backtrack if that property was of interest. Values of
an active filter that represent articles that are not in the result set could be marked blue to
communicate a potential addition.

8.1.6 Multi touch interaction for facet navigation

A suggestion made by (57) is to use multi touch devices for allowing additional levels of freedom
when exploring facets. In the current prototype, only a single preference can be adjusted at a
time. The concepts described above suggest allowing moving in multiple dimensions for allowing
the user to explore multiple dimensions at once. By allowing adjusting multiple preferences at
once, preferably with sliders, utilizing multi touch capability, another variation is possible. The
method would however be limited to such capable devices.

9 Appendix

9.1 Source code

The source code for the prototype can be found at (58). It can be deployed and used by following
the contained README. The instructions as well as known issues will be repeated below for
completeness, but may not be up to date.

9.1.1 Summary of repository contents

All these components are designed to work alone reasonably well. They should depend on each
other only run time wise. Data importer depends on Solr. Grouping component depends on the
data importer. Client depends on grouping component (although search should work without
grouping, possibly you need to disable grouping in Solr config).

Flat table import handler (server/customComponents/dataImport) For importing
data from MySql database to Solr

Field grouping component (server/customComponents/fieldGroupingComponent)
For clustering of attributes when submitting a search query. Has two grouping algorithms
that are switchable by a constant in the code (FieldGroupingComponent.groupingScheme).

Master thesis gui/web client (client) Web front end that talks with solr. Using backbone,
underscore, jquery and some jquery-ui.

30

Documentation Source material for this thesis.

9.1.2 Known issues

As far as known, all of the known buggy behaviors can be escaped by reloading the page.

• The gui does not update if the result of the query was null
• Clustering algorithm is throwing exceptions for some (small or empty?) data sets, causing

failure to update
• Selecting some attribute values containing whitespaces or unconventional symbols may

cause malformed query to solr, failure to update or wrong results
• Submitting an empty phrase (in search field) will return a result
• The maximum number of imports processed by the data importer is currently hard-set by

an if statement in its main while loop. (Intentional for debug purposes)
• The multi valued-ness of properties currently needs to be set in two places in the solr

configuration. In the configuration of the import handler and in the schema. It would be
better if it could be set only in the schema.

• For some queries Solr responds with a null object. However, at other times ‘no documents
found’ results in a result object with no

• The current schema produce a extremely large database. Consider tweaking the schema
and removing long descriptions from index. It is currently not possible to save the entire
database to disk.

9.1.3 Set up

9.1.4 Assumptions

• apache 2 running on machine
• mysql 5.6>= running on machine with database adherent to config in server/solrconfig

9.1.5 How to set up server

• fetch submodules
• run getSolr in server folder
• run runServer to start server
• fill up the database by making data import query to solr: localhost:8983/solr/flattable-

dataimport?command=full-import
• Check its progress by visiting: localhost:8983/solr/flattable-dataimport
• If the data is begining to take up too much space, you can abort and commit with

localhost:8983/solr/flattable-dataimport?command=stop

How to set up client

• Configure apache to point at the client folder
• Go to localhost in the browser
• Use the gui!

31

Build data importer and grouping module

• You should not need to do this to run. There are pre built jar-binaries in server/solrconfig/lib.
• If you want to update the jars. Run the ant build scripts in each eclipse project, default

target.

9.2 Additional papers

Here are a few sources for relevant papers that were discovered to late for being utilized in the
paper; they should be evaluated in future projects:

• Symposium on Human-Computer Interaction and Information Retrieval (59)

Papers that were not included but may be of interest are: - (60) propose a system for mapping
between taxonomies of products in e-commerce applications. - (61) deals with interoperability
of databases by correlating schemas using similarity measures. - (62) describe optimizations for
spectral clustering, a method for allowing dimensionality reduction that may be relevant for cases
where the input set consist of a large adjacency list.

10 Citations

1. WIKIPEDIA. Affordance. In: . 2013. [accessed 25-February-2013] url

2. WIKIPEDIA. Precision and recall. In: . 2013. [accessed 25-February-2013] url

3. LIU, C., OOI, B. C., TUNG, A. K. H. and ZHANG, D. Crew: cross-modal resource searching
by exploiting wikipedia. In: Proceedings of the international conference on Multimedia. S.l.:
ACM, 2010. pp. 1669–1672.

4. WITTEN, Ian H. and MILNE, David. An effective, low-cost measure of semantic relatedness
obtained from Wikipedia links. In: Proceeding of AAAI Workshop on Wikipedia and Artificial
Intelligence: an Evolving Synergy, AAAI Press, Chicago, USA. S.l.: s.n., 2008. pp. 25–30.

5. HU, Y., MILIOS, E. E., BLUSTEIN, J. and LIU, S. Personalized document clustering with
dual supervision. In: Proceedings of the 2012 ACM symposium on Document engineering. S.l.:
ACM, 2012. pp. 161–170.

6. CHEN, K. and LIU, L. Clustermap: Labeling clusters in large datasets via visualization.
In: Proceedings of the thirteenth ACM international conference on Information and knowledge
management. S.l.: ACM, 2004. pp. 285–293.

7. DUMAIS, S., CUTRELL, E., CADIZ, J. J., JANCKE, G., SARIN, R. and ROBBINS, D. C.
Stuff I’ve seen: a system for personal information retrieval and re-use. In: Proceedings of the
26th annual international ACM SIGIR conference on Research and development in informaion
retrieval. S.l.: ACM, 2003. pp. 72–79.

8. TURETKEN, O. and SHARDA, R. Development of a fisheye-based information search
processing aid (FISPA) for managing information overload in the web environment. In: Decision
Support Systems. 2004, Vol. 37, no. 3, pp. 415–434.

32

9. KANUNGO, Tapas, MOUNT, David M., NETANYAHU, Nathan S., PIATKO, Christine D.,
SILVERMAN, Ruth and WU, Angela Y. An efficient k-means clustering algorithm: Analysis and
implementation. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on [online].
2002, Vol. 24, no. 7, pp. 881–892. Available from: http://www.cs.rit.edu/~rpj/courses/bic2/
lectures/kmeansanalysis.pdf.

10. WIKIPEDIA. In: [online]. Available from: http://en.wikipedia.org/wiki/Lloyd’s_algorithm.

11. WIKIAUTHORS. In: [online]. Available from: http://en.wikipedia.org/wiki/List_of_
enterprise_search_vendors.

12. FERRETMAINTAINERS. In: [online]. Available from: https://github.com/xing/ferret
readme. Online; accessed 2013-02-28

13. LUCY, Apache. In: [online]. Available from: http://lucy.apache.org/. Online; accessed
2013-02-28

14. KOVÁCS, Kristóf. Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs
Couchbase vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison.
In: [online]. Available from: http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis.
Online; accessed 2013-02-28

15. LUCENETUTORIAL.COM. Lucene in 5 minutes. In: [online]. Available from: http:
//www.lucenetutorial.com/lucene-in-5-minutes.html. Online; accessed 2013-02-28

16. SOLR. In: [online]. Available from: http://lucene.apache.org/solr/api-3_6_2/doc-files/
tutorial.html. Online; accessed 2013-02-28

17. Solr Features. In: [online]. Available from: http://lucene.apache.org/solr/features.html.

18. TAN, Kelvin. Apache Solr vs ElasticSearch. In: [online]. Available from: http://
solr-vs-elasticsearch.com/. Online; accessed 2013-02-28

19. Apache Lucene Faceted Search User’s Guide. In: [online]. Available from: http://lucene.
apache.org/core/3_6_1/api/contrib-facet/org/apache/lucene/facet/doc-files/userguide.html.
Online; accessed 2013-02-28

20. APACHE-WIKI-AUTHORS. PublicServers. In: [online]. Available from: http://wiki.apache.
org/solr/PublicServers?action=recall&rev=380. Online; accessed 2013-02-28

21. SOLR-WIKI-USERS. Clustering Component. In: [online]. Available from: http://wiki.
apache.org/solr/ClusteringComponent?action=recall&rev=61. Online; accessed 2013-02-28

22. TWITTER. Twitter Search is Now 3x Faster. In: [online]. Available from: http://engineering.
twitter.com/2011/04/twitter-search-is-now-3x-faster_1656.html. Online; accessed 2013-02-28

23. BANON, Shay. In: [online]. Available from: http://stackoverflow.com/revisions/2288211/3.
Online; accessed 2013-02-28

24. SONNEK, Ryan. Realtime Search: Solr vs Elasticsearch. In: [online]. Available from:
http://blog.socialcast.com/realtime-search-solr-vs-elasticsearch/. Online; accessed 2013-02-28

25. ELASTIC-SEARCH-MAINTAINERS. Schema Free & Document Oriented. In: [online].
Available from: http://www.elasticsearch.org/. Online; accessed 2013-02-28

26. BANON, Shay. Percolator. In: [online]. Available from: http://www.elasticsearch.org/blog/
2011/02/08/percolator.html. Online; accessed 2013-02-28

33

http://www.cs.rit.edu/~rpj/courses/bic2/lectures/kmeansanalysis.pdf
http://www.cs.rit.edu/~rpj/courses/bic2/lectures/kmeansanalysis.pdf
http://en.wikipedia.org/wiki/Lloyd's_algorithm
http://en.wikipedia.org/wiki/List_of_enterprise_search_vendors
http://en.wikipedia.org/wiki/List_of_enterprise_search_vendors
https://github.com/xing/ferret readme
https://github.com/xing/ferret readme
http://lucy.apache.org/
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://lucene.apache.org/solr/api-3_6_2/doc-files/tutorial.html
http://lucene.apache.org/solr/api-3_6_2/doc-files/tutorial.html
http://lucene.apache.org/solr/features.html
http://solr-vs-elasticsearch.com/
http://solr-vs-elasticsearch.com/
http://lucene.apache.org/core/3_6_1/api/contrib-facet/org/apache/lucene/facet/doc-files/userguide.html
http://lucene.apache.org/core/3_6_1/api/contrib-facet/org/apache/lucene/facet/doc-files/userguide.html
http://wiki.apache.org/solr/PublicServers?action=recall&rev=380
http://wiki.apache.org/solr/PublicServers?action=recall&rev=380
http://wiki.apache.org/solr/ClusteringComponent?action=recall&rev=61
http://wiki.apache.org/solr/ClusteringComponent?action=recall&rev=61
http://engineering.twitter.com/2011/04/twitter-search-is-now-3x-faster_1656.html
http://engineering.twitter.com/2011/04/twitter-search-is-now-3x-faster_1656.html
http://stackoverflow.com/revisions/2288211/3
http://blog.socialcast.com/realtime-search-solr-vs-elasticsearch/
http://www.elasticsearch.org/
http://www.elasticsearch.org/blog/2011/02/08/percolator.html
http://www.elasticsearch.org/blog/2011/02/08/percolator.html

27. ELASTICSEARCH. ElasticSearch users. In: [online]. Available from: http://www.
elasticsearch.org/users/. Online; accessed 2013-02-28

28. CRAVER, Nick. A new search engine for Stack Exchange. In: [online]. Available from:
http://meta.stackoverflow.com/revisions/160100/15. Online; accessed 2013-02-28

29. UGS. Choosing a stand-alone full-text search server: Sphinx or SOLR? In: [online]. Available
from: http://stackoverflow.com/a/6166581/439034. Online; accessed 2013-02-28

30. WEAVER, Evan. rails search benchmarks. In: [online]. Available from: http://blog.
evanweaver.com/2008/03/17/rails-search-benchmarks/. Online; accessed 2013-02-28

31. SPHINX. In: [online]. Available from: http://sphinxsearch.com/docs/1.10/multi-queries.html.
Online; accessed 2013-02-28

32. Sphinx overview. In: [online]. Available from: http://sphinxsearch.com/about/sphinx/.
Online; accessed 2013-02-28

33. CASSANDRA TARGETT, Elna Tymes and ET AL. Using SolrJ. In: [online]. Available
from: http://lucidworks.lucidimagination.com/pages/viewpage.action?pageId=14647724. Online;
accessed 2013-02-28

34. ERICKSON, Erick. Indexing with SolrJ. In: [online]. Available from: http://java.dzone.com/
articles/indexing-solrj. Online; accessed 2013-02-28

35. SOLR-WIKI-USERS. Solr 4.0. In: [online]. Available from: http://wiki.apache.org/solr/
Solr4.0?action=recall&rev=8. Online; accessed 2013-02-28

36. About Apache Nutch. In: [online]. Available from: http://nutch.apache.org/about.html.
Online; accessed 2013-02-28

37. SOLR-WIKI-AUTHORS. SolrCloud. In: [online]. Available from: http://wiki.apache.org/
solr/SolrCloud?action=recall&rev=93. Online; accessed 2013-02-28

38. INGERSOLL, Grant. NoSQL, Lucene and Solr. In: [online]. Available from: http:
//searchhub.org/dev/2010/04/30/nosql-lucene-and-solr/. Online; accessed 2013-02-28

39. KARWIN, Bill. Why are document stores like Lucene / Solr not included in NoSQL
conversations? In: [online]. Available from: http://stackoverflow.com/a/3339826/439034. Online;
accessed 2013-02-28

40. KULLMANN, David. Elasticsearch and NoSql database. In: [online]. Available from:
http://stackoverflow.com/revisions/8059103/2. Online; accessed 2013-02-28

41. SANDERSON, Steven. Rich JavaScript Applications – the Seven Frameworks. In: [online].
Available from: http://blog.stevensanderson.com/2012/08/01/rich-javascript-applications-the-seven-frameworks-throne-of-js-2012/.
Online; accessed 2013-02-28

42. CZAPLICKI, Evan. The Elm Programming Language. In: [online]. Available from:
http://elm-lang.org/. Online; accessed 2013-02-28

43. HUDAK, Paul, COURTNEY, Antony, NILSSON, Henrik and PETERSON, John. Arrows,
robots, and functional reactive programming. In: Advanced Functional Programming [online].
2003, pp. 1949–1949. Available from: http://www.staff.science.uu.nl/~jeuri101/afp/afp4/hudak.
pdf.

44. CZAPLICKI, Evan. Learn by Example. In: [online]. Available from: http://elm-lang.org/
Examples.elm. Online; accessed 2013-02-28

34

http://www.elasticsearch.org/users/
http://www.elasticsearch.org/users/
http://meta.stackoverflow.com/revisions/160100/15
http://stackoverflow.com/a/6166581/439034
http://blog.evanweaver.com/2008/03/17/rails-search-benchmarks/
http://blog.evanweaver.com/2008/03/17/rails-search-benchmarks/
http://sphinxsearch.com/docs/1.10/multi-queries.html
http://sphinxsearch.com/about/sphinx/
http://lucidworks.lucidimagination.com/pages/viewpage.action?pageId=14647724
http://java.dzone.com/articles/indexing-solrj
http://java.dzone.com/articles/indexing-solrj
http://wiki.apache.org/solr/Solr4.0?action=recall&rev=8
http://wiki.apache.org/solr/Solr4.0?action=recall&rev=8
http://nutch.apache.org/about.html
http://wiki.apache.org/solr/SolrCloud?action=recall&rev=93
http://wiki.apache.org/solr/SolrCloud?action=recall&rev=93
http://searchhub.org/dev/2010/04/30/nosql-lucene-and-solr/
http://searchhub.org/dev/2010/04/30/nosql-lucene-and-solr/
http://stackoverflow.com/a/3339826/439034
http://stackoverflow.com/revisions/8059103/2
http://blog.stevensanderson.com/2012/08/01/rich-javascript-applications-the-seven-frameworks-throne-of-js-2012/
http://elm-lang.org/
http://www.staff.science.uu.nl/~jeuri101/afp/afp4/hudak.pdf
http://www.staff.science.uu.nl/~jeuri101/afp/afp4/hudak.pdf
http://elm-lang.org/Examples.elm
http://elm-lang.org/Examples.elm

45. CZAPLICKI, Evan. Flickr. In: [online]. Available from: http://elm-lang.org/edit/examples/
Intermediate/Flickr.elm. Online; accessed 2013-02-28

46. DONE, Chris and ET AL. Fay Home. In: [online]. Available from: fay-lang.org. Online;
accessed 2013-02-28

47. TRANGEZ, Nicolas. Bacon-n-Fay. In: [online]. Available from: https://github.com/NicolasT/
Bacon-n-Fay. Online; accessed 2013-02-28

48. SUCHAL, Ján. Elasticsearch - advanced features in practice. In: [online]. Available from:
http://www.slideshare.net/jsuchal/elasticsearch-advanced-features-in-practice. Online; accessed
2013-02-28

49. FREDELIUS, Per. Project GUI source. In: [online]. Available from: https://bitbucket.org/
worldsayshi/master_thesis-gui/src. Online; accessed 2013-02-28

50. SOLR-WIKI-USERS. solr.ASCIIFoldingFilterFactory. In: [online]. Available from:
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters?action=recall&rev=141
solr.ASCIIFoldingFilterFactory. Online; accessed 2013-02-28

51. SOLR-WIKI-USERS. In: [online]. Available from: http://wiki.apache.org/solr/
UnicodeCollation?action=recall&rev=5. Online; accessed 2013-02-28

52. DATTOLO, Antonina, EYNARD, Davide and MAZZOLA, Luca. An integrated approach to
discover tag semantics. In: Proceedings of the 2011 ACM Symposium on Applied Computing. S.l.:
ACM, 2011. pp. 814–820.

53. M, Vinay. In: [online]. Available from: https://github.com/rmdort/backbone-faceted-search.
Online; accessed 2013-02-28

54. M, Vinay. In: [online]. Available from: http://eikes.github.com/facetedsearch/. Online;
accessed 2013-02-28

55. DBPEDIA. In: [online]. Available from: http://wiki.dbpedia.org. Online; accessed 2013-02-28

56. HÉDER, Mihály. In: [online]. Available from: http://pedia.sztaki.hu. Online; accessed
2013-02-28

57. FJELD, Morten. 2013. S.l.: personal communication.

58. FREDELIUS, Per. In: [online]. Available from: https://bitbucket.org/worldsayshi/master_
thesis-all. Online; accessed 2013-02-28

59. CAPRA, Rob and ET AL. Symposium on Human-Computer Interaction and Information
Retrieval. In: [online]. Available from: https://sites.google.com/site/hcirworkshop/. Online;
accessed 2013-02-28

60. AANEN, Steven, NEDERSTIGT, Lennart, VANDIĆ, Damir and FRĂSINCAR, Flavius.
SCHEMA-an algorithm for automated product taxonomy mapping in e-commerce. In: The
Semantic Web: Research and Applications. 2012, pp. 300–314.

61. YU, C., SUN, W., DAO, S. and KEIRSEY, D. Determining relationships among attributes
for interoperability of multi-database systems. In: Interoperability in Multidatabase Systems,
1991. IMS’91. Proceedings., First International Workshop on. S.l.: IEEE, 1991. pp. 251–257.

62. WAUTHIER, F. L., JOJIC, N. and JORDAN, M. I. Active Spectral Clustering via Iterative
Uncertainty Reduction. In: Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. S.l.: ACM, 2012. pp. 1339–1347.

35

http://elm-lang.org/edit/examples/Intermediate/Flickr.elm
http://elm-lang.org/edit/examples/Intermediate/Flickr.elm
fay-lang.org
https://github.com/NicolasT/Bacon-n-Fay
https://github.com/NicolasT/Bacon-n-Fay
http://www.slideshare.net/jsuchal/elasticsearch-advanced-features-in-practice
https://bitbucket.org/worldsayshi/master_thesis-gui/src
https://bitbucket.org/worldsayshi/master_thesis-gui/src
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters?action=recall&rev=141 solr.ASCIIFoldingFilterFactory
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters?action=recall&rev=141 solr.ASCIIFoldingFilterFactory
http://wiki.apache.org/solr/UnicodeCollation?action=recall&rev=5
http://wiki.apache.org/solr/UnicodeCollation?action=recall&rev=5
https://github.com/rmdort/backbone-faceted-search
http://eikes.github.com/facetedsearch/
http://wiki.dbpedia.org
http://pedia.sztaki.hu
https://bitbucket.org/worldsayshi/master_thesis-all
https://bitbucket.org/worldsayshi/master_thesis-all
https://sites.google.com/site/hcirworkshop/

	Abstract
	Keywords

	Introduction
	Prototypes
	Questions
	Tasks faced
	Outline

	Background
	Methods and Tools
	Usability - Affordance
	Information retrieval - Precision and Recall
	Faceted search: categories, tags, properties and values
	Introducing a few usability heuristics
	Glossary
	Literature study
	Tools

	Suggested concepts
	Visual mapping of articles to axes
	Incorporating multiple axes navigation into result list
	Preference collection
	Creating custom filters by dragging from data elements
	Dynamic filter lists
	Expand with keywords
	Percolation on article creation
	Sunflower navigation

	Prototype
	User interface
	Client architecture
	Algorithmic needs
	Data importer
	Feature roundup

	Analysis
	Discussion
	Suggestions, for academia, industry and for Qalixa

	Appendix
	Source code
	Additional papers

	Citations

