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SUMMARY

The temperature changes of land fast lake ice covers will give rise to
loads against shores, dams or other structures. The magnitudes and
recurrence of these thermal pressures are important in respect to

the design.

A numerical model has been developed that calculates the thermal
pressures in a lake ice cover for observed ice and snow cover charac-
teristics and observed weather. The thermal diffusion in the ice is
calculated by an implicit difference scheme. A complete energy budget
is made for the ice or snow cover. The lateral expansion of the ice
cover is supposed to be completely restricted, a constant coefficient
of thermal expansion is adopted, and the deformation of the ice is
supposed to be composed of a linear elastic element in series with a
nonlinear creep element. The creep rate is set proportional to the

stress to a power between 1 and 5 depending on the creep rate.

Those maxima of the calculated pressure that exceed 50 kN/m are
listed as a time series for each lake, and the series is used to form
an annual-maximum series and a peaks over a threshold series for the
lake.

For five lakes in Sweden three types of probability distribution functions
have been fitted to the series of annual maxima namely, the normal dis-
tribution, the lognormal distribution, and the double exponential distri-
bution. Only the exponential distribution was fitted to the peaks over a
threshold series. Because of the fact that weather observations are
available on magnetic tape only for the last 12 to 16 years pressures
could not be calculated for a longer period. This is not satisfactory for
the estimation of events of recurrence intervals of a hundred to a
thousand years. It gives, however, much better estimates than a

single calculation for an intuitively chosen ''extreme situation''.
Reasonable estimates of the expected pressures of the return periods

100, 500, and 1000 years are given for the five lakes in the table below.



Return Period (years)
Position 100 500 1000
Torne trisk 68.3°N 19.5°E | 507 550 569
Stora Bygdetrasket | 64.3°N 20.5°E | 453 532 568
Runn 60.6°N 15.6°E | 410 475 500
Glan 58.6°N 16.0°E | 419 507 543
Vidsstern 57.1°N 14.0°E | 330 380 400

Table Expected thermal ice pressures in kN/m for some return

periods of annual maxima.



PREFACE

The late professor I.ennart Rahm initiated ice engineering research

at the Department of Hydraulics in 1968. Since 1969 the studies have
been focused on the problem of thermal ice pressure against the walls
of reservoirs. During the winters 69/70 and 70/71 field measurements
of the course of temperature in an ice cover with and without snow were
performed. The years 1972 to 1974 laboratory experiments were done

in order to verify the mechanics of the thermal ice pressures.

The theoretical studies, which were roughly verified by the field

and laboratory measurements, seem to show that it is possible to
calculate thermal ice pressure rather accurately under given ambient
conditions. So, if the weather, snow and ice thickness are given for

a lake with steep shores, the ice pressure can be calculated. The
methods of calculation are discussed in the report Thermal Ice Pressure
in Lake Ice Covers (Bergdahl 1978) and other background material in

Physics of Ice and Snow as Affects Thermal Ice Pressure (Bergdahl 1977).

The following study aims at an estimation of the design ice pressure
in terms of periods of recurrence, or probability of extreme pressures.
It has been performed on grants from the Swedish Council for Building

Research and Chalmers University of Technology.

The authors wish to thank Mr Thomas Asp and Mr Bo Ekelund for their
assistance as well as Mrs Gota Bengtsson and Mrs Ann-Marie Holm-
dahl for the typing, and Mrs Alicja Janiszewska for the drawing of the
figures. We are grateful for the readiness of cooperation of the Ice
and Climate Bureaus of the Swedish Meteorological and Hydrological

Institute.
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1. INTRODUCTION

When a land-fast ice cover has been formed on a lake or on a part

of the sea, stresses and movements will arise in it because of tempera-
ture changes caused by the weather. The stresses will give rise to

loads against shores, dams or other structures at the water course.

It is a rather complicated matter to calculate these loads because of

the unlinearity of the deformation of the ice, the complexity of ice covers,
and the amount of weather information that is necessary. For an idea-
lized description of the phenomenon of thermal ice pressure see para-

graph 2.

The aim of this study is to be able to give the magnitude of ex-
pected thermal ice pressures on some lakes, distributed over
Sweden to represent different climates. Therefore ice observations
have been copied from handwritten notes and filed on computer for
the selected lakes. The ice observations have in many cases been
going on since January 1940. The weather records stretches even
further back, but because of the amount of data for each day, only
the years already on magnetic tape at SMHI could be used within
the frame of the available time and money. The study is because
of this limited to the years 1961 to 1976, which is a rather short
time for estimating extreme events for structures usually designed
for recurrence of events of 100 to 1000 years. For Torne trisk

the available period was, unfortunately, only 1965 to 1976,

The methods of calculation are accounted for in this paper, but the
choice of material properties and evaluations of alternative methods
of calculation are not done. Information on these matters are given in

two other reports (Bergdahl 1977, Bergdahl 1978).



2. THERMAL ICE PRESSURES

A very thin sheet of ice has a temperature close to 0°C., When such

a sheet grows in thickness the temperature of its surface decreases
due to the low air temperature. The upper layers of the ice contract
but since the temperature at the lower boundary still is OOC, the
contraction causes tension, creep and cracks in the ice. The growth
rate of the ice cover is mostly rather slow, so that, with the exception
of the first few centimetres, the ice has time to creep without the
formation of tensile cracks, that is, if the ice increases ir; thickness

at a constant temperature of its upper surface.

If, however, at a time when the ice cover already has been formed
and has increased in thickness at constant weather conditions, the

air temperature suddenly falls considerably, the upper surface of the
ice quickly assumes a new temperature of equilibrium, and after some
time a new steady state gradient will be established in the ice cover.
The upper surface will contract fast, but the lower boundary will keep

its length since it is at the constant freezing-point temperature.

Now, the ice is floating on a horizontal water surface, and thus the
free bending of the ice cover is restricted. Instead, the effect will
be a bending moment in the ice cover, and the stresses will mostly
be released in forming deep cracks, see Figure 2.1. If the change
of temperature is very slow the ice may deform viscously without

the formation of cracks.

%‘ "

Figure 2.1 The bending and cracking of a floating ice
cover due to a fast change of temperature
in its upper surface.



The formation of the cracks is often sudden and is followed by a
strong wave motion, which is felt if you are standing on the ice.
You can also hear the cracks propagating across the ice cover,
and it is clearly visible how they are spaced out at intervals of

10 to 20 m. Between these wide parallel cracks there is a system
of thin surface cracks. The cracks will sooner or later be filled
by water and drifting snow. Also cracks not extending all through
the ice cover will partly be filled by snow and rime. The snow will
be packed and recrystallized and the water will freeze in the slots.
The freezing will sometimes cause pressure in the ice cover be-
cause of the increase of volume from water to ice. This pressure

is, however, smaller than the extreme thermal pressures.

Later, if the ice cover is warmed due to mild weather, or water
finding its way on to the ice, the upper layers will expand again.
Depending on the steepness of the shores, the thickness of the ice
and the rate of change of temperature, pressure will develop in the
ice, and may be followed by a shove up onto a beach, or folding of

the ice cover against banks and in zones of weakness, see Figure 2.2,
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Figure 2.2 Examples of expanding ice covers

a) shoving up onto a beach
b) folding out on a lake
c) folding at a shore.

The magnitude of the ice pressure in the ice cover will be due to the
rate of change of temperature in the ice, the coefficient of thermal
expansion, the rheology of ice, the extent to which the cracks have
been filled, the thickness of the ice cover, and the degree of re-

striction from the shores.
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Of course, the rate of change of temperature in an ice cover depends
on the change of weather conditions such as wind speed, air tempera-

ture, solar radiation, and the depth of the snow cover.

FExpected magnitudes of ice pressures due to thermal expansion at a
certain lake is thus obviously a function not only of ice and snow
properties but also of the local climate, ice conditions and lake con-

figuration.



3. PARTAKING PHYSICAL PROCESSES

A survey of the different processes considered when calculating ice

pressures due to the thermal expansion of an ice cover is given below.

Thermal diffusion

Internal

The equation of thermal diffusion can be used to describe the rate of
change of temperature within the ice if appropriate boundary condi-

tions are given.

2
98 870 , plx, t)
22 -4 s ETA ... (3.1
ot E)x2 Cp p
where
t = time coordinate
X = vertical coordinate
= temperature at (x, t)
a = coefficient of thermal diffusion
Cp = gpecific heat capacity
p = bulk density
= effect source per unit volume at (x, t).
a = AN/ C p ... (3.2)
P
where A = specific thermal conductivity.
External

Heat ig convected away at the upper surface of the air, which simpli-

fied can be written

q = -—AA0 .. (3.3)
where ¢ = heat flow per unit area

A = coefficient of heat transfer

AQ = temperature difference between the air and

the ice surface,.

11.
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The heat transfer also depends on the condensation or sublimation of
ice on the surface. Radiation balance at the surface and the absorp-
tion of short-wave radiation within the ice will add to the external
energy exchange. The long-wave radiation balance at the surface

can simply be included by adding the balance to equation (3. 3),
whereas the short-wave energy flux must be included in equation (3. 1)

by for exampie,

P = kJ oL (3.04)
where p = effect source per unit volume

k = absorption coefficient

J = is the intensity of short-wave radiation at the depth x.

A snow cover on the ice will change the external energy flux because
of its low thermal conductivity and because of the change in radiation
balance and its reflexion of short-wave radiation. Sometimes its

weight will cause the ice-cover to sink below the water table, that is,

the cover will be flooded with water.

Thermal expansion

Thermal expansion of ice is usually written

de = d -do ... (3.5)
where de = expansion per unit length caused by d8
a = linear coefficient of thermal expansion

de = temperature change

Sometimes it is easier to use the volume or length as functions of
temperature directly, especially for saline ice where the expansion
coefficient has singular points because of the crystallization of salts,

while the volume always is finite.

Rheology

The mechanics of ice is very complicated and there are several ways
of constructing mathematical models for the deformation. For each
model the coefficients or moduli must then be evaluated from literature
or experiments by curve fitting. A possible four-parameter model is

for example,



& = 36 +KD(g/B) ... (3.6)
where € = rate of deformation, deg /dt

G = gtress rate, dg /dt

E = modulus of elasticity

K,n = coefficients for viscous deformation

D = self diffusion coefficient for the molecules in ice

Nearly all parameters above are functions of ice type and tempera-
ture. The absorption coefficient and radiation balance are functions
of wave-length too. The coefficient of heat transfer is a function of

wind-speed and humidity.

The functions and coefficients used in this report will be specified

for each process in its proper context below.

13.
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4, SELLECTED 1L AKES

Five lakes with ice observations have been gelectedto represent different
types of climate in Sweden. They should also have meteorological stations
within reasonable distance. See Table 4.1 and the map of Figure 4.2 below
for the approximate position of the lakes and their respective meteorological

stations.

em JOCT __NOV DEC JAN FEB__MAR__APR_MAY JUN

50 Torne trisk

|
)
)
)

50

100
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. el
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100

Figure 4.1 Depth of ice and snow the winter 1970/71.

[ snow E= slush
[ snow ice 22

clear ice

Situation referred to water level



The northernmost lake Torne trisk is situated in a mountain area at 341 m
above sea level. It regularly reaches an ice cover thickness of 1 m in late
winter, and it is often free from snow. See Figure 4.1a. Stora Bygde-
trisket lies in a forest area in the coast-land of northern Sweden, and has
very often a complicated ice cover with layers of clear ice, snow slush,
snow ice, and snow. See Figure 4.1b. The other selected lakes in
central and southern Sweden have equally complicated ice covers as Stora
Bygdetrisket, but the winters are shorter and more irregular. Glan and

Vidéstern were, for example, nearly without ice in the winter 1972/73.

Table 4.1 Positions and altitudes for the five lakes and their
weather stations.

L.atitude Longitude Area Altitude

(km2) (m)
Lake Torne trisk 68.3°N 19.5°E 322 341
Station Kattuvuoma (1965-71) 66°17°'N  19°54°E 355
Station Torne trask (1971-76) 68°13°N 19°43°E 393
Lake Stora Bygdetrisket 64.3°N 20.5°E 29 131
Station Hallnds-Lund 64°16°N 19°38°H 181
Lake Runn 60.6°N  15.6°1 68 106
Station Falun 60°37°'N 15°38°E 122
Lake Glan 58.6°N  16.0°R 78 22
Station Norrkdping 58°37°'N  16°07'E 27
Lake Vidostern 57.1°N  14.0° E 45 144

Station Hagshult 57°18°'N  14°08°E 169
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Figure 4.2
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Positions of the selected lakes.
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5. ENERGY BALANCE

The energy balanceofice or snow covers have mostly been studied in
order to evaluate their growth or decay. Although such studies have
often been performed with sophisticated methods, they work with
daily, weekly or monthly mean values, why they can seldom be .used
directly for the calculation of the fast temperature fluctuations that

are responsible for thermal ice pressure.

On the other hand, studies aiming at thermal ice pressures tend to
oversimplify - the energy balance of the surface by simply setting the
surface temperature equal to the air temperature, or only calculating
advective heat transfer. The short and long-wave radiation play, how-
ever, very important roles. The short-wave radiation increases the
rate of change of temperature in the mornings, especially at clear
weather, The long-wave back radiation can cause a considerable
depression of the ice surface temperature, which is very pronounced
by clear and calm weather. Omitting radiation therefore results in

an underestimation of the daily temperature variations in an ice cover.

Below follows the terms of the energy fluxes according to the functions
used in this study. For a discussion of these functions see Paily et al.
(1974). The terms are the fluxes of

net solar radiation (+) (irradiation-reflexion)
long wave radiation from the atmosphere (+)
emitted long wave radiation (-)

heat transfer because of different temperature on the
surface (sensible heat) and in the air (+ or -)

heat transfer due to moisture transport in the air and
condensation (+, or sublimation -) on the surface {latent
heat).

5.1 Heat Transport

Latent Heat
The convective heat transfer from the air to the surface consists of
sensible heat, because of the temperature difference between the air
and the surface, and latent heat, because of the vapour transport to
the surface and condensation on it. The latent heat transfer is often

written



qe=f(u)(ea~e) ... (501)

where e, is the vapour pressure of the air 2 m above the surface

d

e the saturation vapour pressure on the ice surface

The saturation vapour pressure over an ice surface is a function of the

surface temperature and is in this study approximated by a linear

function

e = a(l+bo); -32°< 0<0 ... (5.2)
where a = 610 P a

b = (32°0)7) = 0.031°C7!

0 = the ice surface temperature.

The chosen wind function by Rymsha-Dorichenko has been recommended
by Paily et al. (1974)

f(u) = pLSA(],+bu+c(Q=Qa)) ... (5.3)

11 m/s Pa

where a = 2,42 - 107
b = 0.49 s/m
¢ = 4.36 - 1072 K7
p = 1000 kg/m3 the density of water

L_= 2.84 - 108 J/kg the specific heat of sublimation
(freezing + condensation)

u the wind speed at 2 m above the surface
the surface temperature

Qa the air temperature at 2 m

Sensible Heat

The sensible heat transfer and the latent heat transfer is usually
considered proportional to each other. The ratio between the two

types of heat transfer is called Bowen s ratio

B

1
<
<o)

- 0)/(e_ - e) ... (5.4)

where y = 61 Pa/K is the psycrometric ''constant'.



The sensible heat transfer can now be written

w
w
P

qg = Bae= f(u) y (8, - 0) s
where d, 1s given by equation (5.1)
5.3)

B . equation (5. 4)

f(u) - '""- equation (¢

Finally the total convective heat transfer to the surface is written

Qe = et ag = f(u) [(ea— e)+ v (0,- 0] ... (5.6)

5.2 Radiation Fluxes

The emitted long-wave radiation from the ice surface can be calculated
by the Stefan-Boltzmann law of radiation with due respect to the emissi-

vity of the ice or snow surface.

4

q, = €-0-T .o (507)
- D
where G = 5,6697 - 10 8 W/m“K4
the Stefan-Boltzmann constant
T = the absolute temperature of the ice surface
€ = the emissivity of the surface.

In the calculations € = 0.97 is used for both snow and ice.

The above expression must be linearized in order to make the system
of equations linear and solvable by standard methods. The fourth-order
binomial expansion of (5.7) for T' = A + QS gives if two terms are con-
sidered:

_ 4 3 \
qbue-c'(A + 4 A Qs) ... (5.7Db)

where A = 273.15 K
the temperature of the ice surface in °C.

o)
i

19.
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Absorbed LLong Wave Radiation

The atmosphere is also considered a gray body that emits radiation

at the rate

where ¢ a is the emissivity of the atmosphere
G the Stefan-Boltzmann constant

T the absolute temperature of the air at 2 m above
the surface

The emissivity of the atmosphere is a function of its content of water

vapour. The relation set up by F&ngstrém 1915 (See Paily et al. 1974)

is used
€a=a—bexp(~cea) ... (5.9)
where a = 0.806
b = 0.236
- = -3 -1
c = 1.15 10 Pa
e, is the water vapour pressure at 2 m above ground

The emission of the atmosphere is also influenced by the presence of

cloud-covers. Approximately this can be taken into account by
_. *12
Qe = 9y (1+kCY) ... (5.9D)

where k = 0.0027

C the cloud cover in eighths

The absorbed long wave radiation flux from the atmosphere is finally

B ] 2, .4
q = eeaov(l + k C%) Ta ... (5.10)

where € is the emissivity of the ice or snow surface, € = 0,97.



Absorbed Solar Radiation

21.

The incoming short wave radiation is supposed to be composed of the

direct solar irradiction 0.9 kW/mz, calculated on an area normal to

the sun’s rays, and diffuse sky radiation 0.1 kW/mz. The flux through

a horizontal surface from a clear sky is then written

dep, (a - sind + b)
where a = 0.9 kW/m2
0.1 kW /m?

o is the altitude of the sun

o’
i

The altitude of the sun is approximately set to

o= arc sin (sin ¢ sin & +cos¢cos b cosh)

where & is the declination of the sun
] the latitude

h local hour angle of the sun

6= 0.409 cos((172 - D)- 27/365) rad

. (5.11)

. (5.12)

. (5.13)

where D is the number of the day in a year with D = 1 for January 1.

The local hour angle of the sun

where a = 12 h
H is the solar time of the day 0 < H <24 h

If the sun is below the horizon, that is, sin @ < 0 the short wave

radiation is set to zero q-y = 0.
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written
qe = 9qep, (0.35+0.65 (1 - C/8)) . (5.15)
where Ao, is the radiation from a clear sky, equation (5.11)

C is the cloud cover in eighths

The function (5.15) is correct only for the mean value over a day,
while the short term fluctuationsaremuch greaterwhen clouds inter-

mittently pass the sun.

The incoming short wave radiation is supposed to be distributed in
different wave-length bands so that 50 % of the energy flux lies between

350-700 pm, 25 % between 700-1200 pm, and 25 % between 1200-4000 num.

Some of the incident light is reflected from the snow or ice cover. The
absorbed radiation is for an optically rough surface (snow, snow ice, candled

ice ete.) calculated according to

q, = (0 -71)ae ... (5.16)

where ac is the incident radiation equation (5. 15)

r is the reflection coefficient (albedo)

In Table 5.1 below the used values for the reflection coefficients are

given
Table 5.1 Coefficients of reflection for ice and snow surfaces
used in the calculations
Wave-length band (pm) Snow Snow ice
350 - 700 0.9 0.05
700 - 1200 0.7 0.05
1200 - 4000 0.6 0.05

For clear ice the direct light is calculated as being reflected against

a polished surface. If the angle of incidence is a and the angle

of refraction is B , the coefficient of reflection is calculated as



2
1 sin® (O(]-B) tanz(a -B)
ro= + 1 (5.17)
2 .2 2 T
sin® (o +B) tan® (& +B)
where sin (1] = 1,31 sinf
0<B < ay
a; =7/2 -a

o is the altitude of the sun.

See sketch Figure 5.1.

air o

ice

B

Figure 5.1 Definition sketch of angles.

For the diffuse light the coefficient is set to 0.02 and consequently

the absorbed radiation flux is written
ag - ({1 - r)asina + 0,98 Db) -
(0.35 + 0.65 (1 - C/8)) ... (5.18)

where a = 0.9 kW/mZ
5
b = 0.1 kW/m"

C the cloud cover in eighths

r the reflexion coefficient according to equation (5. 17)

Compare equations (5.11) and (5. 15).

23.
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6. THERMAL DIFFUSION

The equation of thermal diffusion is used to describe the rate of

change of temperature within the ice

90 _ ,
s B o ... (6.1)

o+

where is the time

the vertical coordinate

the temperature at (x,t)

coefficient of thermal diffusion

2120 J/kgK the specific heat capacity

the bulk density

T T AP o K
I

the effect source per unit volume at (x, t)
a= A/Cop ... (6.2)
p
where A is the specific thermal conductivity.

The bulk density p is given the following values

snow 250 kg/m3
snow ice 890 kg/m3
columnar ice 916, 8 kg /m°

The thermal conductivity is set to the following constant values for

the three used materials

snow 0,3 W/mK
snow ice 2,14 W/mK
columnar ice 2,24 W/mK

The long-wave radiation and the heat transfer at the upper surface of
the ice can be included in the source term p but can also be treated
as a boundary condition. The short wave radiation must be separately
considered as it is absorbed not only in the upper surface of the ice

but throughout the thickness of the ice cover.



For an internal layer at the depth x from the upper surface of the ice
the quantity p(x,t) is absorbed
-kx

p(x,t) = qske . (6.3)

where g is the solar radiation that penetrates into the ice,

equation (5. 16) or (5.18). g is a function of time,

t the time
X depth in the ice cover
k absorption coefficient

The used absorption coefficients for the three different materials and

the three wave-length bands are given in the table below.

Table 6.1 Absorption coefficients k(m“l)

wave-length bands

given for different

wave-length (pm) 350-700 700-1200 1200-4000
sSnow 120 200 10 000
snow ice 30 50 10 000
columnar ice 0,2 2 5 000

For the uppermost layer of the ice the source term is now written
(0,t) dx = +q +q ke ¥ ax (6.4)
plU, 4 - a, T a.tag e . .
where qy is the absorbed long wave radiation from the

atmosphere, equation (5.10)

q, the total convective heat transfer to the surface,
(equation 5. 6)

dy, emitted long-wave radiation, equation (5.7)

At the lower boundary of the ice heat is supposed to be taken only
from the freezing of water. The heat diffusion in the underlying water

is thus neglected, and the source term at the lower boundary is written

25,
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p(h, t) dx = qq ke ¥ ax + 1, p-q}l ... (6.5)
where h is the thickness of the ice cover
I. = 3.34 -10° J/kg is the specific heat of fusion

p = 916.8 1<g/n13 the density of ice

The equation of thermal diffusion is solved numerically with the help

of an implicit difference method. The used scheme is described in

paragraph 10.



7. EXPANSION AND DEFORMATION
7.1 Thermal Expansion of the Ice

The linear coefficient of thermal expansion is set constant, and the

free expansion of the ice cover is written

de = o de Lo (701
where o = 4.82 107°/K the linear coefficient of thermal expansion
de temperature increment
de expansion increment per unit length caused by do
7.2 Deformation of the Ice Cover

The thermal expansion of the ice cover is restricted by the shores of
the ice. In the calculations the restriction is supposed to be complete
so that the ice cover does not move horizontally at any point, that is,
the thermal expansion and the deformation is supposed to be equal.
The equation used for the deformation is

G

£ = —— + KD ol . (7.2)

where €= de/dt the rate of deformation eq. (7.1)
G the horizontal siress in the ice

6 = do /dt the rate of change of stress

E  the elastic modulus

K=4.40 - 10710 m % p-on

n = 3.651

D= the coefficient of self diffusion of themolecules in ice.

E = (1-¢c0)-6.1 GPa L (7.3)

D = Do exp(-QS/RT) el (7.4)

217.
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where D 9.13 - 107* mz/s

Qs = 59.8 kJ/mol the activation energy for self diffusion
R = 8.31 J/(mol K) the universal gas constant
T the absolute temperature

7.3 Pressure against the Shore and Buckling

The load per unit of length against the shore or the ice pressure (N/m)
is calculated by integrating the stress over the depth of the ice cover.
That is

h
P(t) = }‘ G (x,t) dx ... (7.5)
0

where t and x are time and vertical coordinates respectively,
G(x,t) the stress calculated according to eq. (7.2)
h the depth of the ice cover

P (t) the thermal ice pressure

If the calculated ice pressure P ig greater than the value for elastic
buckling the value of P is set to that value and the event is listed in

the print-out. The buckling load is hypothetically calculated to

Pb=2\jpngh3/12 (1-v2) . (7.8)



where o

i

i

1000 kg/m3 is the density of water

9.81 m/s2 the earth acceleration

the elastic modulus of the ice at mean depth
of the ice cover, according to equation (7. 3)
the thickness of the ice

§ Poisson’s modulus

29.
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8. WEATHER OBSERVATIONS

8.1 Received Data

The weather parameters that are used in the numerical model are

air temperature

extreme temperature of ditto
wind speed

cloud cover

air vapour pressure

Observations of these parameters have been supplied by SMHI
(Swedish Meteorological and Hydrological Institute). The data was
filed on magnetic tape for the concerned stations. The observations
are performed at 0, 6, 12 and 18 GMT but for some stations there

is no night observation performed. A specification for the different
stations are given in the end of this chapter. The geographical posi-
tion of the stations are given in table 4.1. First, however, a descrip-

tion of the used parameters will be given.

The air temperature is given in degrees Celsius and is read on mercury
thermometers graduated in fifth of a degree. The extreme temperatures
are read on maximum and minimum thermometers graduated in half
degrees. The latter are read and adjusted at 6 and 18 GMT at the con-

cerned stations.

When the night temperature is not available the minimum temperature
observed at 6 GMT is used instead. This is the minimum temperature
of the preceding 12 hours, that is, since 18 GMT the day before. The
minimum thermometers are checked regularly by comparing their
readings with those of the mercury thermometer. From these readings
a mean correction is obtained which is applied to all readings of the

minimum temperature at the station..
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Wind Speed u

At the stations the wind speed has been estimated according to the
Beaufort scale. The wind velocities are the mean equivalents to the

Beaufort scale,

Cloud Cover C

The cloud cover or cloudiness is given in octas, i.e. the figure indi-

cate how many eighths of the sky are covered by clouds.

The humidity contents of the air are expressed by the vapour pressure.
The humidity has been measured by hair hygrometers (Pernix-hair) at

all included stations.

8.2 Modification of the Data

The received metoerological data is only given, at best, for every

sixth hour (0, 6, 12, 18 GMT) during a period. The computational model
works, however, with weather data for every calculation step, in this
case for every hour. For points of time between observations linear

interpolation is performed.

Linear Interpolation

The weather data is, for every hour, obtained through linear inter-
polation between the two sets of observational data. This is generally
true for the data on wind and cloud cover and for almost all air vapour

pressure data.

If the air vapour pressure is missing, it is assumed to be 300 Pa
(3.0 mb) and is calculated exactly as if it had been an originally ob-

served value.
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Concerning the air temperature linear interpolation is performed if
we have observations for four times a day (with extreme temperature)

or three times a day without extreme temperature.

If the air temperature is read three times a day, and the extreme
minimum temperature is read at 6 GMT, too, a special linear inter-
polation is performed for interpolation during the night between 18
and 6 GMT. The minimum temperature observed at 6 GMT in the
morning is used instead of the 0 GMT temperature. The temperature
is, however, not assumed to occur at "'midnight" but at a point of time
at which the minimum temperature usually occurs according to the mean
course of temperature at the latitudes concerned. The chosen points of
time for the minimum temperature are listedin Table 8.1 below. The
points of time have been chosen with the help of diagrams published in

Klimatdata f6r Sverige (Taesler 1972).

Table 8.1 Assumed time (GMT) for the occurrence of the mini-
mum temperatures for the lakes (stations). For local

time, add 1 hour.

Lake (Station) Month
Nov-March April May June
Torne trisk 4 3 2 2
(Torne triask
Kattuvuoma)
Stora Bygdetrisket 5 3 2 2
(H&llnds-ILund)
Runn (Falun) 6 4 3 2
Glan (Norrkdping) 6 4 3 2
Vid&stern 6 4 3
(Hagshult)
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650101 -760630

Table 8.2 Stations for observations of meteorological parameters,
Remarks of limitation of the received data. The data
is given for three/ffour times a day ((0), 6, 12, 18 GMT)
if no remarks.
Station Observation Remark
3 times/day | 3 times/day |4 times/day
without with with
extreme extreme extreme
temperature| temperature| temperature
Kattuvuoma 650101 -710630
Torne Trisk 711101 760630
Hallnds-Lund 610101 -641130 Dec 1964
missing

Falun 610101 -641231
650101 - 760630
Norrkd&ping 610101 -641231
650101 - 760630
Hagshult 610101 - 641231

700101 -700131
(Jan 1970)

710401 -710430
(April 1971)

650101 - 1231

700201 -710331

710501 -760630

3 times/day
4 times/day

observed at

6, 12,

18 GMT
" 0,6,12,18 GMT
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9. ICE OBSERVATIONS

9.1 Description of Available Data

The ice and snow cover on some lakes in Sweden are reported once
a week to SMHI. This has been done since January 1940. The in-

struction for the observations reads as follows:

"The measuring of the ice shall be performed where the thickness of
the ice can be supposed to be representative. The hole must therefore
be bored at least 50 m off the shore and at an assuring distance from
the mouth of streams and the outlet. The measuring shall be performed
once a week, and for each time a new hole shall be bored at a distance

from the former ones''.

On the paper form for the observations the thickness of the different
layers of the ice cover is given from top to bottom. Other information
on the form is notations, whether the snow cover is even, if there is
snow slush all over the lake, if there are leads in the ice cover etc.
For the calculations in this report only the thicknesses of the different
layers are used. The ice cover is supposed to be quite even over the

whole lake. An example of observation is given below from Stora

Bygdetridsket.
Table 9.1 Ice thickness observation (cm) from Stora Bygdetridsket
March 12 March 18 March 26 April 9 1976
SNow 26 23 26 17
snow slush 4 - - -
snow ice 8 - -
snow slush 3 - -
snow ice - - -

snow slush -
snow ice - 14 16

columnar ice 57 a7 57 53

The selected lakes are listed in table 4.1. The ice observations have

been filed on magnetic tape with the help of the criteria stated in para-
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graph 9.2. For all the lakes the observations have been performed
once a week since January 1940 except for Lake Viddstern which has

been observed every fortnight since November 1954, only.

9.2 Selection of Relevant Ice Data

The ice observations are filed at SMHI on the original forms only.
For the purpose of the calculation of the ice pressures only relevant

data has been copied to magnetic tape. The criteria for selection are:

1) Periods with a snow depth greater than 15 cm are omitted. Such
deep layers of snow are supposed to insulate the underlying ice

effectively from the weather fluctuations.

2) Layers below snow slush are not filed either, as these layers
are at constant freezing point temperature till the snow slush has
frozen to snow ice, Periods with snow slush directly under the

snow cover are omitted.

3) The depth of the ice cover is supposed to be 1 ¢cm when the ice
is reported to have formed on the lake, but the observer has not

been able to walk on it.
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10. COMPUTER PROGRAMME

The thermal pressures and deformations of the ice is calculated
with the help of a computer programme, where first the tempera-
tures are solved by the use of an implicit difference scheme, there-
after pressures are calculated by an iteration of the deformation

equation.

Before these calculations can be done it is, however, necessary to
precondition the weather and ice input. Because the calculation of
the energy exchange involves a lot of parameters, and because the
ice cover is often rather complex, the programme is to a great
extent administrating the terms of the system of equations and the

interval limits in the ice.

The programme thus starts by reading the ice and weather input and
preconditions them to fit into the system of equations. Thereafter
follows an analysis of the radiation terms and an arrangement of
the matrix-elements in the equation of diffusion. The temperatures
are solved and the ice pressure is calculated. Finally the growth

of the ice is calculated.

After this cycle of calculation the thickness of the bottom element is
adjusted if necessary, new weather input is read and administrated
for every six hour, or if a week has paséed new ice conditions are
read, and the temperature and pressure calculations are repeated

from an appropriate stage of the programme.

Below follows a description of the most important manipulations in

the programme.

10.1 Preconditioning of Input

In the initial phase of the computer programme the ice observation
for the selected start time is read as well as the connected weather

observation.
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Ice Observations

If a layer of candled ice is registered it is assumed to be equivalent
fo columnar ice. The thickness of the candled ice is added to that of
the columnar ice. This simplification will result in an overestima-

tion of the ice pressure.

If snow slush exists calculations is performed only on layers situated
above the snow slush, that is, snow and snow ice. The snow slush,
which is a mixture of snow and water, has the temperature 0°C and

shields the layers underneath from temperature variations.

The cover as defined above is then divided into intervals with a closer
division near the surface. The rate of change of temperature is greatest
at the surface, and correct surface temperatures are important for cal-
culating the heat transfer and long-wave back radiation. Coordinates
are assigned to the limits of the different intervals starting withx = 0 m
for the upper interface followed by 0.005, 0.015, 0.025, 0.050, 0,100,
0.150 m .... and so on for every fifth cm if there is no new material

interface.

Example 1: 0.12 m columnar ice
x = 0.000, 0.005, 0,015, 0.025, 0.050, 0.100, 0.120.

Example 2: 0.12 m snow and 0.12 m columnar ice
x = 0.000, 0.005, 0.015, 0.025, 0.050, 0.100, 0.120, 0.170,
0.220, 0.240.

For each time-step ice growth is added to the lowest interval, and if
the thickness of the lower element exceeds 55 mm it is divided into
two elements the upper of which is assigned the thickness 50 mm.
The temperatures in the two new elements are interpolated between

the old points.



Weather observations

With respect to the time scale of the considered process and due to
stability problems when calculating the unlinear deformation, a time
step of one hour has proved to be reasonable. As mentioned earlier
the weather observations are performed at 6 to 12 hours” interval,
why linear interpolation is used for the intermediate points of time.

Compare paragraph 8.2.

Initial Temperature and Stress Distribution

The stress is set to zero at the reading of a new ice observation. The
ice observation is entered at 18 GMT in order not to interfere with

possible maximum pressure during the afternoon.

The initial temperatures are also recalculated for every new ice ob-
servation and consequent new division into ice intervals. This is done
by first assigning a linear temperature profile with zero temperature
at the lower boundary and the air temperature at the upper surface.
Then the steady state solution is calculated by repeating the tempera-

ture calculations nine times ( ~ 9 h) for constant ambient conditions.

10.2 Temperature Calculation

The temperatures in the ice cover are calculated by the help of an
implicit difference scheme (Crank-Nicholson). The implicit scheme
was chosen so as to be able to make a rather free internal division
into intervals, as this scheme gives unconditionally stable calcula-
tions for the internal points. The boundary conditions at the upper
surface introduced. instability, however, which was overcome by

giving more weight to the later timestep. The weight given is f =0.6.

The equation of diffusion

2
oo a 28 .. (10.1)

Bx2

©



is fundamentally approximated by the difference equation

0 (x,t+ At) =0 (x,t) +

+ %—[ﬁé (1 ~B){Q (x+Ox,t) - 29(x,‘c)+€)(x-£\x,t)} +
Ax
+ B{Q (x+ D%, t+ At) - 20 (x, t +At) +0 (x - Ax, t+At)H ... (10.2)

where the searched temperature 0 (x, t+ At) is a function of known
temperatures at the point of time, t, and of unknown temperatures

in the neighbour points, x +Ax and x- Ax, at t + At. The equation (10.2)
must thus be solved for all points in the ice simultaneously and this is

done by a double sweep method.

The diffusion equation to be considered has not the simple form (10. 1)
but contains also a source term, p, due to short wave radiation in
internal points, as well as boundary conditions for the uppermost
element. This was formulated in chapter 6 by 86/9t = a 829/8t2 +

+ p(x, t)/Cpp, and this equation is transcribed into a difference form
which will be explained below. For convenience the time average

(1 -B)06(x,t)+ BO (x,t+ At) is denoted by 5i below where i =1

denotes x, = 0 andi =2, x, =X +Ax1 etc.

1 2 1

Upper Interface

The implicit scheme made it convenient to split the source term p
into one part containing terms depending on the temperature of the
ice surface g and another part with terms entirely dependent on the

ambient conditions @ .

39.
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q contains for the uppermost element

4 longwave back-radiation: ch (Eq. 5.7b)
4 part of the total convective heat transfer:
f(Q) (-e - y0) (Eq. 5.6)

a contains for the uppermost element
L2t absorbed long-wave radiation:

Efl (Expanded Eq. 5.10)

absorbed short wave radiation: gy kAx (Eq. 6.3)
part of the total convective heat transfer:

f (u) (ea + Y Qa) (Eq. 5. 6)

® G‘
air
: —o @4 x‘-O
ice or snhow
' 92 xz‘ Ax‘
iCé Orf sSnow

93 Ry ® Ry sz

Figure 10.1 Definition sketch for difference scheme.

The difference formulation for the uppermost element with the

thickness Axl can now be written

Y} Ax A

AT C_p 5 AX1 (92~91)+q+'a ... (10.3)

{1 - =. - =

where bars denote the weighted time average and AQl = 91(t+/_\t) -0, (t).

1 (



Internal Points

The ice cover is composed of different materials, snow, snow ice
and columnar ice. This is automatically concidered by the programme
by writing the difference equation in a form that assumes the material

interface case as the general one.

The diffusion equation for the internal points is written

AB Cp
A o (e Ax e bxy) =
A i-1 —_ _ )\i . -
Ax (g1~l _gi) + Ax, ( i+1°7 Qi) +
i-1 i
+ai_1/2— ai+1/2 ... (10.4)
where q i-lh - @ i+1/2 is short-wave radiation absorbed in the

neighbourhood of X (Long-wave radiation and convective heat trans-

fer influences only the surface element).

Lower Interface

At the ice-water or ice-slush interface the boundary condition 6=0 °c
iz used. The heat conducted away from the boundary is after each
time step used to estimate the ice growth at the boundary. The right

hand side of equation (10.4) will give the ice growth AXX.

Axx' = ‘ 0., . + ai—l/Z - q. ... (10.5)

where I, is the specific heat of fusion and P the density of the fused

1
ice.
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A limitation of the programme is that melting never can occur, as
melting is not allowed in the inner points, but the temperature there

ig never allowed to rise over OOC. A further consequence of this is that
melting does not occur at the lower boundary either. This makes the
programme no good for ice growth calculations. For ice-pressure
calculations the simplification gives an overestimation of pressures,

as the ice is considered dry in the calculations at a start of a cold

period.

The system of equations that develops, when the equations (10.3) and
(10.4) are gathered for all elements, is of the type
AT2 = BT1+D ... (10.6)

where A and B are tridiagonal matrices

T2 the column vector of new (unknown) temperatures
Gi(t+At), i=1,2 ...

T1 the column vector of old (known) temperatures
Qi (t), i=1,2....

D vector of terms that do not depend on ice temperatures (Oti)

The right hand side of Equation (10. 6) consists of known quantities only
why C = BT1 + D can be calculated and finally the double sweep method
gives the solution:

T, = A C Lol (1007)

The accuracy of the used scheme can for internal points be estimated
by expansion in Taylor series. If first B is neglected it is found that
the difference approximation of the right hand side of the equation of

thermal diffusion (10.1) has a truncation error of
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4

ax? /12 - o0 /ot O (axt) ... (10.8)

and the approximation of the left hand side has a truncation error of

at)2 - 9%0/8x° + O (Atd) ... (10.9)

The errors due to B > 0.5 is also of the same order as (10.9),

It can be shown by the von Neuman criterion that the used implicit
scheme is unconditionally stable for all choices of length and time
intervals. It proved, however, to be necessary to putslightly

more weight (B = 0.6) on the later time step because of problems

introduced at the upper boundary.

10.3 Pressure Calculations

The calculated temperature profile is used to calculate the thermal
ice pressure for each interval separately. The pressures are then
integrated over the depth of the ice which gives the total ice pressure
(N/m).

Combining equations (7. 1) and (7.2) gives

ag%=~%~+1® gh ... (10.10)

which is written

de = (6 /E + KD of dt .. (10.11)
For each time step the left hand side can be approximated by the known
quantity, A€ = a A8,

Because the deformation equation is unlinear, a special iterative proce-

dure is used to solve it. The equation is written on the form

n
- _ n WAY
1 " Gk+Em{A€ D K 6 v DK Gk+l)_2_} - (10.12)

new old
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where is the stress at the point of time t = kAt

11 -
Ot - at t+ At = (k+1) At

O+1 ~ Ok = 4O
new, old indicate iterated values on

Ok

G
k+1
Em elasticity of the ice for 0 = (0(t)+6(t+At)) /2

Dk is the self diffusion for 6 (t)

Diq - R for 0 (t+ At)

For o , K, D and E see chapter 7.

The iteration is started by setting the value G

Ok+1,01d" - 9k

Equation (10.12) then gives To avoid instability and some-

o k+1, new"
times to increase the speed of calculations, the new 'old" value of the
next iteration step is formed by the arithmetic mean of the old and

new Gk+1.

Okt1, old ( O k+1,new + Ok+l, old)/2 .. (10.13)

The iteration terminates when the difference between the old and new

iteration value is less than 10 kN/mz.

If the iteration diverges a print=-
out will be obtained. This has not happened since the operation (10, 13)

was included.

The iteration is performed for each ice interval and the result is a
pressure profile. This profile is integrated over the depth of the ice
and gives the total thermal ice pressure per linear meter of the ice
cover. The ice pressure is compared to a buckling load (Eq. 7. 6) and

if this load is exceeded a message is printed.

Maximum Ice Pressure

The calculation above will give a time series of thermal ice pressures.
The series will mostly show a daily variation with peak pressures
dﬁring the afternoons and tension in the early mornings. Because ice
has low tensile strength it will crack when tensioned. In the programme

the ice pressure is allowed to reach its negative minimum value, but
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then the stresses are assumed to be released and they are set to
zero in each interval. When the temperature starts to rise again
the calculation model will react as if there were no cracks and no
old tensile deformations. This will again give an overestimation

of occuring pressures.

The maximum positive pressures are obtained by comparing the
signs of consecutive increments of the total ice pressure. If the
found maximum is greater than 50 kN/m the value is registered

along with date, pressure distribution and temperature profile,

In this way a time series of peaks over a threshold is obtained,

which series is statistically evaluated in the next paragraph.
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11. CAL CULATED AND EXPECTED PRESSURES

The time series of maxima over the threshold 50 kN/m has been used
to form an annual maximum series and a peaks over a threshold
series for each lake. Three types of probability distributions

have been fitted to the annual maximum series and tested with a
Xz—test. The series are, however, too short for the used standard
method, why the results may be questioned. TFor the peaks over a
threshold series the conditional distribution of magnitudes has been

taken to be exponential.

11.1 Annual Maximum Distributions.

In Tables 11.1 - 11.2 the annual maxima for the five lakes are
listed. From north to south the maxima over the years are 437,
357, 319,282 and 256 kN/m. As might have been expected the
greatest pressure was thus found in the northernmost lake. The
maxima occurred the winters 69/70, 60/61, 70/71, 61/62 and 61/62,
the last two at the same time March 8, 1962, 13.00.

The fact that there was no ice on Glan and Vidéstern the winter of
72/73 has caused some trouble, because the true value nil on these
yearly maxima gave outliers that were difficult to take into conside-

ration when fitting the statistical distributions.



Table 11.1

ANNUAL MAXIMA FOR TORNE TRASK

Winter

64 /65
65/66
66/67
67/68
68/69
69/70
70/71
71/72
72/13
73 /74
74/75
75/16

Table 11.2

Date

65
66
67
68
69
70
71
72
73
74
75
76

03
01
02
01
02
02
03
03
03
02
04
04

ANNUAL MAXIMA

60/61
61/62
62/63
63 /64
64 /65
65/66
66/67
87 /67
68/69
69/70
70/71
71/72
72/73
73 /14
74 /15
75/76

61
61
63
64
65
66
67
67
68
70
71
72
73
74
75

03
12
01
01
01
01
04
12
12
05
01
01
01
04
03

75 12

07
29
19
28
23
22
15
12
24
25
11
12

FPOR STORA BYGDETRASKET

23
28
19
29
12
01
19
28
21
09
08
31
10
11
22

21

Hour

23

13
13
15
14

6
13
16
23
13

8

0
20

3
10
16
13

Max Pressure
(kN /m)

379
381
411
353
388
437
271
402
343
283
376
302

357
131
286
330
250
283
202
156
239
130
281
267
212
209
252

222

Remarks

highest maximum

highest maximum
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Table 11.3

ANNUAL MAXIMA FOR RUNN

Winter

60/61
61/62
62 /63
63/64
64/65
65/66
66/67
67/68
68/69
69/70
70/71
71/72
72/73
73 /74
74/75
75/16

Table 11.4

Date

61
61
63
64
65
66
67
68
69
70
71
72
73
74
75
76

02
12
04
03
03
04
03
03

01
01
03
03
04
03
01

ANNUAL MAXIMA

60/61
61/62
62 /63
63/64
64/65
65/66
66/67
67/68
68/69
69/70
70/71
71/12
72/73
73 /74
74/75
75/76

61
62
63
64
65
66
67
68
69
69
71
72

73
75

01
03
03
03
03
04
02
03
02
12
01
03

12
03

76 03

Hour
24 14
28 0
25 12
14 14
26 15
18 18
24 13
17 17
13 14
10 20
07 18
30 16
25 12
12 14
23 14
08 12
FOR GLAN
28 13
08 13
14 14
28 14
26 14
13 13
12 13
14 15
14 13
11 21
31 13
20 12
10 7
31 9
13 17

Max Pressure
(kN /m)

236
267
212
274
251
193
209
255
283
114
318
208
147
267
257
236

161
282
274
237
238
233
194
221
226

71
177
184

196
150
159

Remarks

highest maximum

highest maximum

no ice cover



Table 11.5

ANNUAL MAXIMA FOR VIDOSTERN

Winter

60/61
61/62
62/63
63/64
64 /65
65/66
66/67
67/68
68/69
69/70
70/71
71/72
72/73
73/74
74/75
75/16

Fitted Distributions

61
62
63
64
65
66
67
68
69
70
71
72

73
75
76

01
03
04
02
03
02
03
02
02
02
03
03

12
02
03

Date

26
08
03
20
10

17
17
15
06
12
26

19
16
18

Hour

15
13
15
15
21
16
11
16
13
21
17

14

22
14
14

Max Pressure
(kN /m)

189
256
152
236
159
193
166
244
230
112
187
164
121
145
243
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Remarks

highest maximum

no ice cover

The arithmetic mean X, standard deviation s, coefficient of

variation CV =

s/% and skewness g, are listed in Table 11. 6 below

for the samples of annual maxima. For the lakes Glan and Vidéstern

two populations have been formed called I and II, in the latter of which

the ""annual maxima' 0 kN/m have been skipped. As will be shown be-

low the samples Glan II and Viddstern II fit selected distributions

better.



Table 11.6

Arithmetic mean X, standard deviation s, coefficient of variation Cv’

and skewness g for the samples of annual pressure maxima.

N is the size of the samples.

Torne trisk

Stora Bygdetrasket

Runn
Glan I
I

Vidostern I

II

N %(kN/m) s(kN/m) C_ g scqc’
12 360.50 51.95 0.144 -0.545  0.435
16 237.94 64.75 0.272 -0.096 0.837
16 232.94 51.59 0.221 -0.832 0.675
16 187.69 72.10 0.384 -1,2973  ----
15 200.20 53.72 0.268 -0.6996 0.323
16 174.81 64.68 0,370 -1.1823  ----
15 186.47 46.41 0.249  0.0538 0.762

Three two-parameter distributions have been fitted to the samples,

namely the normal, the lognormal and the Gumbel distribution. The

parameters of these distributions are evaluated by means of the

method of moments. See for example Flood Studies Report (1975).

The result is as follows:

Normal distribution

Variance O 2

Skewness

g=0

Lognormal distribution

2
N
X.
i
=1
1 N
T =
i=1
Inx - ny

..o (1101)

. (11.2)



N

|~

Meanp,n=xn= N 2 lnxi
1=1
N
. 2 _ .2 11 - \211/2
Variance 6, =S, »[ N 2 (1n X, - xn‘) }

Skewness of 1n x g, = 0

If the sample x fits the lognormal distribution the skewness
of Inx is g, = 0 but the skewness of the original sample x

is g =3 CV+ C‘BI where C‘V is estimated as s/%.

fx) = oexp |- (x-P)-exp(-alx-p)) . (11.3)

a=1.28/6 =k /s
B=m-0.4506 = X -k, s
X and s are the sample mean and standard deviation as
for the normal distribution. For big samples (N >200) k1
approaches 1.28 and k2 0.45. For small samples the coeffi-
cients are chosen according to Gumbel (1958). The skewness

is constant with g = 1. 14,

All three two-parameter distributions have been estimated by the
sample mean and standard deviation. The values of skewness for
the samples of annual maxima are negative with the exception of
the sample from Vidéstern II which is slightly positively skewed.
Of the fitted distributions the normal distributions with g = 0

are closest to the skewness of the samples. Maybe a three-para-
meter distribution with negative skewness would have given a better
fit to the values. A possible distribution is the Pearson Type III
distribution. The samples are, however, so short that it is diffi-

cult to draw far-reaching conclusions.
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The parameters of the fitted distributions are listed below in Table 11.7,
11.8 and 11.9, and the annual maxima are plotted in Figures 11.1-5.

The plotting position is given by the Weibull formula p; 7 i/(N+1) where

i is the ranking number. The curves of the fitted distributions are

also drawn in the figures.

Table 11.7

PARAMETERS OF THE FITTED NORMAL DISTRIBUTIONS

Lake % (kN/m) s (kN/m)
Torne trask 360. 50 51.95
Stora Bygdetrisket 237.94 64.75
Runn 232,94 51.59
Glan I 187. 69 72.10
Glan II 200.20 53.72
Vidostern I 174.81 64. 68
Vidoéstern II 186. 47 46,41
Table 11.8

fARZ_\_‘\_T‘I:‘,'I,‘E}/{S OF THE FITTED LOGNORMAL DISTRIBUTIONS.

x = lnx with x in kN/m.

Lake '}Zn s,

Torne trisk 5.8772 0.1513
Stora Bygdetridsket 5.4333 0.2966
Runn 5,4228 0.2583
Glan II 5.2550 0.3354
Vidostern 11 5.1979 0.2587
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Table 11.9
PARAMETERS OF THE FITTED GUMBEL DISTRIBUTIONS

Lake o (m/kN) B (kN/m)

Torne triask 0.018865 333.78
Stora Bygdetrisket . 015907 205.75
Runn 0.019966 207.29
Glan I . 014286 151.85
Glan II . 018988 173.34
Vidostern I . 015925 142,66
Vidoéstern 11 . 021978 163.26

©

o o O O

From the plotted distributions one may visually draw the conclusion
that the Gumbel distribution does not fit the samples as closely as
the other two distributions. The greatest pressures seem to be very
over-estimated. A choice between the normal and lognormal dis-
tributions is more difficult to make just by the shape of the curves.
For Glan and Vidostern it can be observed that the samples that
include the annual maxima zero hardly can be fitted by any of the
tested distributions. The extreme pressures would be unreason-

ably over-estimated. See Table 11.12 below.
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The quality of the fitted distributions has been tested by a chi-square
test although this should not be done when a sample is smaller than 20.
The X2—quantity is tabulated in Table 11.10. Five classes were used
and the distribution was estimated by two parameters. Thus the test
quantity is X 2_distributed with two degrees of freedom. If the mean
of the test quantity is taken for the three types of distributions the
ranking order of the distributions is normal, lognormal and Gumbel
distribution. It is interesting to note that X2 for the normal distribu-
tions of Glan I and Vid&stern I are small although the distributions

fit extreme values very poorly.

Table 11.10 X2 and P(Xz) for fitted annual -maximum

distributions. Two degrees of freedom.

Normal Lognormal Gumbel

% px?) x?  pr?) X% Px?)
Torne Trisk 2.33 <0.75 5.00 <0.95 8.67 <0. 99
Stora Bygdetrisket 0.75 <0,50 1.75 <0.75 2.50 <0.75
Runn 3.75 <0.90 3.75 <0.90 3.75 <0. 90
Glan I 0.50 <0.25 - - 7.50 <0. 99
Glan II 1.00 <0.50 2.33 <0.75 2.33 <0. 75
Vidoéstern I 2.00 <0.75 - - 6.75 <0. 975
Vidostern II 2.07 <0.75 0.20 <0.10 0.47 <0, 25

For the significant levels, 1 - P (X2), 0.10, 0,05, and 0.01 the number

of times out of five (Glan I and Viddstern I ‘excluded) that each type of
distribution is rejected is listed in Table 11.11 below. The differences
are inconclusive, which can be interpreted as a consequence of the
small samples. Great deviations from the parent distributions are ex-
pected for realizations of any statistical variable if the sample is as
small as in these cases. A conservative interpretation of the test would
be that only the normal distributions should be accepted, because on the
significant level 10 % the average percentage of realizations with

P (Xz) > 0. 90 should be 10 %, while in this case the percentages are
0,20 and 20 % respectively for the distributions.
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Table 11.11

Number of times out of five that each type of distribution
is rejected by chi-square test.

Significant Normal Lognormal Gumbel
level

0.10 0 1 1
0.05 0 0 1
0.01 0 0 0

Expected Pressures

Expected pressures calculated fromn the fitted distributions of annual
maxima for the periods of recurrence 100, 500 and 1000 years are
given in Table 11.12. For the reasons just accounted for the normal
or lognormal distributions are preferred. Conservative values are
given by the latter, and the pressures for the recurrence 100 years
are from north to south 507, 453, 410, 419 and 330 kN/m.

Table 11.12

Expected thermal ice pressures for the recurrence period 100, 500,
and 1000 years according to the three tested types of distributions.

g’eex;l?sd) of recurrence 100 500 1000
i J
Torne {réask 12 11480(507 {577} 509|550|661) 5201569698
Stora Bygdetrisket 161388]453 {494 | 424|532(596| 438|568|640
Runn 16353410 {4361} 381|475|517) 3921500550
Glan I 161355 ~ [474 394 - |587j 410 - |663
Glan II 1513241419415} 353|507|500(] 365{543|536
Vidéstern I 16325 - |432|1f 360} - |534}) 374| - 577
Viddstern II 152941330372 320380446} 330|400(|478
N = Normal Distribution
L = Lognormal -''-
G = Gumbel S



11.2 Peaks over a Threshold Series

In order to increase the size of the samples a peaks over a threshold
series have been tested with an exponential function for the diétribu—
tion of magnitudes. The average number of peaks per year was taken
to three so that the size of the sample became 3N, where N is the
number of years. In this way samples were formed that were
allowed to be tested by a chi-square test as the number of peaks
became enough. Furthermore, the problem that there were no
pressures in Glan and Vid&stern one winter disappeared automati-
cally. A new problem may be that the peaks must not be too close
to one another, in which case they might not be statistically inde-
pendent. Below this last aspect is disregarded. From the listed
values it can be seen that the ranked pressures often comes from
days very close to each other. In a few cases they even belong to

the same day.

In Tables 11.13 to 11.17 below the peaks over a threshold series
are listed for the five lakes. The highest maxima in these series
are of course the same as in the earlier annual-maximum series.

The series are plotted in Figures 11.6 - 11. 10,
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Table 11.13

PEAKS OVER A THRESHOLD SERIES FOR TORNE TRASK

Date Hour Pressure (kN/m)
70 02 22 22 437
67 02 27 16 411
67 02 21 3 406
67 02 21 13 403
72 03 12 15 402
69 02 23 21 388
66 01 29 15 381
65 03 07 16 379
67 02 19 15 379
75 04 11 15 376
72 03 13 14 375
65 03 08 14 375
69 02 24 22 367
70 02 22 2 363
65 03 08 2 362
65 03 12 15 357
66 01 06 8 356
65 03 06 16 353
68 01 28 7 353
69 05 02 16 353
72 04 07 15 349
69 05 01 16 349
67 03 06 16 348
69 02 25 14 343
66 03 14 21 343
72 02 19 13 343
73 03 24 15 343
66 03 13 18 342
67 02 22 16 340
66 03 17 18 338
68 01 21 7 3317
70 01 21 13 337
67 01 16 13 334
66 01 22 18 334
72 02 19 1 333

68 01 13 18 331



Table 11.14

PEAKS OVER A THRESHOLD SERIES FOR STORA BYGDETRASKET

Date Hour Pressure (kN/m)
61 03 23 13 357
64 01 29 14 330
64 02 03 22 314
61 03 21 15 293
63 01 19 15 286
66 01 01 13 283
71 01 08 0 281
71 01 20 14 278
63 01 18 15 273
72 01 31 20 267
64 01 29 5 263
72 02 01 15 258
64 01 18 13 257
61 03 15 14 256
63 01 22 19 255
7508 22 16 252
7503 19 14 252
61 03 20 15 250
65 01 12 6 250
7503 19 1 250
7112 13 22 250
61 03 09 17 246
61 03 19 15 246
63 01 11 16 242
63 01 13 16 241
71 01 09 2 240
68 12 21 13 239
71 01 01 20 233
7503 21 16 230
75 03 25 15 227
75 03 02 21 225
64 01 17 14 225
63 01 12 15 224
75 03 04 15 224
75 03 03 14 223
75 12 21 13 222
66 01 01 8 221
63 01 22 3 219
61 03 17 16 219
63 01 23 22 217
7101 19 14 216
65 01 13 20 216
75 12 20 13 216
72 03 29 15 213
64 01 30 14 213
75 03 26 15 212
75 03 23 16 212

73 01 10 3 212
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Table 11.15

PEAKS OVER A THRESHOLD SERIES FOR RUNN

Date Hour Pressure (kN/m)
71 01 07 18 318
71 01 08 10 297
69 03 13 - 14 283
64 03 14 14 274
69 03 14 15 270
61 12 28 0 267
74 04 12 14 267
69 03 09 14 261
64 03 16 15 259
75 03 23 14 257
68 03 17 17 255
71 02 04 14 255
71 02 03 14 253
64 03 20 15 253
65 03 26 15 251
64 03 28 16 251
7503 14 15 250
64 03 22 15 249
7503 19 15 248
69 03 10 15 2417
62 01 16 20 247
7503 18 15 246
64 03 26 16 245
69 03 11 15 244
7503 22 14 243
61 12 28 10 241
69 03 12 15 241
64 03 15 15 240
64 03 25 16 240
74 01 24 19 240
7503 13 15 239
61 02 24 14 236
76 01 08 12 236
74 02 21 14 234
61 02 23 14 233
7503 21 15 232
65 03 23 16 231
74 03 23 15 231
64 03 21 15 229
75 04 17 13 228
7503 12 15 228
64 01 21 12 226
64 03 27 16 226
65 03 25 14 226
76 03 08 15 226
68 04 09 15 226
61 02 22 14 225

64 01 29 13 225



Table 11.16

PEAKS OVER A THRESHOLD SERIES FOR GLAN

Date Hour Pressure (kN/m)
62 03 08 13 282
63 03 14 14 274
63 03 15 14 267
63 03 22 14 262
63 03 21 14 258
63 03 16 14 256
65 03 26 14 238
64 03 28 14 238
63 03 23 14 235
63 03 17 14 233
66 04 13 13 233
62 03 06 15 228
63 03 28 14 228
63 04 01 14 227
69 02 14 13 226
66 01 02 1 222
68 03 14 15 221
64 04 05 14 219
65 03 27 15 215
64 03 17 14 214
64 04 03 14 214
62 02 28 15 211
62 02 16 12 211
65 03 22 14 209
63 03 31 14 209
64 03 27 15 203
65 03 23 14 203
64 04 02 14 203
62 03 07 17 202
69 02 15 13 199
64 03 18 14 198
64 03 26 15 196
68 03 18 13 196
73 12 10 7 196
63 04 02 15 195
67 02 12 13 194
64 03 21 15 192
66 04 12 14 191
66 04 16 13 189
66 04 15 14 187
63 03 20 14 187
63 03 24 16 186
64 04 09 13 185
64 03 22 14 184
72 03 20 12 184
63 03 27 14 183
64 04 04 15 180

68 03 21 13 178



66.

Table 11.17

PEAKS OVER A THRESHOLD SERIES FOR VIDOSTERN

Date Hour Pressure (kN/m)
62 03 08 13 256
68 02 17 16 244
76 03 18 14 244
64 02 20 15 236
64 02 21 13 233
69 02 15 13 230
76 03 19 14 228
62 03 06 15 228
64 03 28 14 223
64 04 02 14 223
62 03 07 15 222
62 02 23 14 219
76 03 12 14 218
62 03 01 15 216
64 03 27 15 215
62 03 05 15 215
64 02 19 15 208
62 03 09 15 208
64 04 03 15 208
76 01 31 15 207
76 02 16 14 206
64 03 26 15 206
76 03 14 15 205
68 02 16 15 204
69 04 03 11 203
76 02 07 14 201
76 01 31 19 199
76 03 20 15 199
62 02 16 8 199
76 03 13 15 193
66 02 14 16 193
61 01 26 15 189
69 02 14 13 188
7103 12 17 187
68 02 14 14 187
76 02 06 14 184
76 03 17 15 182
68 02 15 13 181
66 02 21 16 180
76 01 18 14 179
69 04 09 10 179
76 03 16 14 178
76 01 30 14 176
64 04 08 10 176
64 02 13 16 174
76 02 28 14 174
76 02 21 15 173

69 04 05 11 172
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An exponential distribution has been fitted to the threshold series
according to a method described in Flood Studies Report (1975). The

pressure P(T) with the recurrence T years is given by

P(T) = xo+ B (InXx +1InT) ool (11,4)

where X is the probable threshold for a fixed number of exceedances

per year, which is estimated as

*o 7 Fmin T@W .o (11.5)
B =N mox ) .. (11.6)

X in is the smallest value of the series

B a parameter

A number of exceedances in average per year

N number of years

X arithmetic mean over AN values

The parameters f and X, are given in Table 11. 18 below, and the lines
for the fitted distributions are drawn in figures 11, 6-11.10. It can be
seen that the lines fit the plotted values very well for the three northern

lakes, while the fitness is rather poor for the southernmost lake Vid-
dstern.
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Table 11.18

The parameters B and X

series.

Torne trisk

Stora Bygdetrisket
Runn

Glan

Vidoéstern

AN

36
48
48
48
48

B (kN/m)

31.
35.
21.
35.

31.5

X (kN /m)

330.
210.
224,
177.
171,

of the fitted peaks over a threshold

1-e7Y



The fitted exponential distributions have been tested with a chi-square
test, the result of which is listed in Table 11. 19, It is seen that only
the Vidtstern distribution is rejected on the significant level 10 %,

and none is rejected on the level 5 and 1 %. Thus, the average number
of rejections is 20 % (one out of five) for the level 10 % while it should
be approximately equal to that percentage. As before a conservative
conclusion would be to reject the fitted type of distribtuion on the level

10 %. The number of samples is, however, too small for such con-

clusions.

Table 11.19

X2

r = degrees of freedom.
AN

Torne trisk 36

Stora Bygdetrasket 48

Runn 48

Glan 48

Vidostern 48

The expected pressures with the periods of recurrence 100, 500 and

1000 years for the fitted exponential distributions are listed in Table

11.20.

[« T >N B > o

and P (X2) for the peaks over a threshold series.

O oy o1 W
0 W -1 o w

Table 11,20 Expected thermal ice pressure for the recurrence

period 100, 500 and 1000-years according to the expo-

nential distribution for the peaks over a threshold.

Sample size

AN
Torne trask 36
Stora Bygdetridsket 48
Runn 48
Glan 48

Vidostern 48

Period of Recurrence (years)

100
510
414
350
381
352

500
561
471
385
440
402

1000
583
495
400
463
424

71,
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11.3 The Annual-Maximum Series versus the Peaks over a
Threshold Series

When comparing the exp;e’cted pressures according to the annual-
maximum series Table 11.12 and the expected pressures according
to the peaks over a threshold series Table 11.20, it is seen that

the pressures agree roughly for the log-normal distribution of annual
maxima and the exponential distribution of peaks over a threshold.
For Stora Bygdetridsket the pressures for the threshold series are
smaller and intermediate to the normal and lognormal distributions.

For Runn they are still smaller and closer to the normal distribution.

In spite of the fact that the problem of statistical independence was
disregarded, the threshold series did not give statistical extrapola-
tions of extreme pressures much different from the annual-maximum
series. In fact the independence condition is grossly violated. For
example, for Torne tridsk the pressures ranked as number 3 and 4
were calculated for the same day 67-02-21 at 3.00 and 13.00. In

the same series number 8, 12, 15, 16 and 18 would have occurred
during March 6-12, 1965.

It can be noted that for very rare events the exponential and Gumbel

distribution should converge for the same sample.
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12, RESULT

Provided the mathematical model used for the calculation of the thermal
ice pressure is accepted, the study has produced statistical estimates
of the magnitude of the thermal ice pressure that can be expected in the
ice covers on the five lakes. The most reliable figures on expected
pressures are given by the fitted log-normal distributions for the five
studied lakes. One must notice, however, that the computed time series
are very short. In Table 11.21 below the estimates of the thermal ice
pressure with the recurrence 100, 500 and 1000 years are repeated for
the log-normal distribution. Its parameters are given in Table 11.8.
Values from the other fitted distributions are given in tables 11.12 and
11.20.

Table 11.21 Expected thermal ice pressures for the recurrence
period 100, 500, and 1000 years according to the
fitted log-normal distributions of annual maxima.

Period of Recurrence

Sample 100 500 1000

size
Torne trask 12 507 550 569
Stora Bygdetridsket 16 453 532 568
Runn 16 410 475 500
Glan 15 419 507 543

Vidéstern 15 330 380 400
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13. RECOMMENDATIONS

As has been pointed out the lengths of the computed pressure series
were limited by the fact that the weather observations were not filed
on magnetic tape. A primary improvement of this work would be to
complete the series between 1940 and 1978. If no alterations are made
in the ice-pressure programme the main effort of this task would be
to convert the weather observations into computer accessible form,

If observations are lacking for any period these should be faked by a
stochastic model or by taking data from a neighbouring meteorological

station.

Once the time series have been completed, one has a better opportunity
to test suitable statistical distributions as the number of annual maxima
would increase from 12 and 16 to 37 for the lakes. The testing should
include other types of distributions as well as an investigation of the

criteria of statistical independence of the peaks over a threshold series.

If the rheological model used in the computations is not accepted it can
with a moderate effort be exchange for another type, or its constants

can be changed. The direct computational costs are relatively small.

A wider development would be to build a numerical model for sea
areas, which might be of interest for the future building of bridges
between zland and Sweden or Finland. Such a work involves a complete
renewal of the thermal part of the computer programme as well as
changes in the rheological part. The effort becomes great.mainly be-
cause of the nature of columnar sea ice with its phase changes and

inclusions of brine.
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coefficient of heat transfer

absolute fusion temperature of water
tridiagonal matrix

temperature diffusivity

constants

Bowen s ratio

tridiagonal matrix

constants

cloud cover in eighths (octas)
specific heat capacity

coefficient of variation

constants

self diffusion of the molecules in ice

number of the day in a year with D =1
for January 1

column vector of terms that do not depend
on ice temperatures

constant

differential operator

modulus of elasticity

elasticity of ice for time averaged temperature
saturation vapour pressure at the ice surface
water vapour pressure of the air

wind-speed function

probability density function

Greenwich time

earth acceleration

skewness for f(x) or sample

skewness for In x

solar time of the day

thickness of ice cover

local hour angle of the sun

order number of interval limit

short-wave radiation flux
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coefficient for viscous deformation
absorption coefficient

number of point of time t = kAt
constant

parameters of Gumbel distribution
specific heat of fusion

specific heat of sublimation
sample size

number of years

exponent for viscous deformation
latest iterated value of 0 pt1
ordo, of the order of

second latest iterated value of G jet1
ice pressure with the recurrence interval T
thermal ice pressure as a function of time
buckling load

effect source per unit volume

activation energy for self diffusion

heat flux

time average of source term p containing
terms dependent on surface temperature

emitted long-wave radiation flux

solar and sky radiation flux reduced by
cloud cover

short-wave irradiation through a horizontal surface
total convective heat transfer

latent heat transfer

absorbed long-wave radiation flux

long-wave radiation emitted by the atmosphere

long-wave radiation emitted by the atmosphere
by cloudy weather

sensible heat transfer

absorbed short-wave radiation flux
the universal gas constant
reflection coefficient

sample standard deviation

-2
m

-1
m

N/m
N/m
N/m
VV/m3
J/mol
W/rnz
W/m3

W/m2
W/m2

W/m2
VV/m2
W/m2
W/rn2
W/m2

W/m2
W/m2
W/m2
J/(mol * K)

kN/m
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sample standard deviation of In x

absolute temperature

recurrence interval

absolute temperature of the air

column vector of old (known) temperatures
column vector of new (unknown) temperatures
point of time

wind speed

vertical coordinate

statistical variable

arithmetic mean

smallest value of a threshold gseries
arithmetic mean for.ln x

probable threshold level

altitude of the sun

linear coefficient of thermal expansion
parameter of Gumbel-distribution function

weighted time average of part of source term
depending on ambient conditions only

angle of incidence

angle of refraction

parameter of Gumbel ~ or exponential - distribution

function

weighting factor

psycrometric "constant"
difference operator

ice growth during interval At
decl‘ination of the sun

emissivity of the surface

strain, deformation per unitlength
emissivity of the atmosphere
temperature

air temperature

weighted time average of temperéturé for the i“th

interval limit
temperature of ice surface

specific thermal conductivity

kN /m
kN /m
kN/m

kN/m

rad
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number of exceedances per year in average
mean of x

mean of In x

Poisson s modulus

bulk density of snow or ice
density of water
Stefan-Boltzmann “s constant
stress

stress at point of time t = kAt
standard deviation for x
standard deviation for In x
latitude

statistical test quantity
differential operator

= 8/0t first derivative with respect to time

=82/8t2 second derivative with respect to time

mean, time average, or weighted time average
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