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ABSTRACT 

Fuel cells are electrochemical devices that transform the chemical energy in hydrogen and 

oxygen into electrical energy at high efficiencies and produce only water vapour emissions. Materials 

with the perovskite or fluorite structure types are commonly employed as the ion conducting ceramic 

electrolyte membranes in intermediate and high temperature fuel cells. However, due to the desire for 

lower operating temperatures of ~ 600 °C, there exists several challenges, namely: i) insufficient ionic 

conductivity (minimum required ~ 10-2 Scm-1), ii) poor densification and iii) poor conductivity across 

grain boundaries. Another problem for proton conducting ceramic fuel cells is the lack of suitable 

cathode materials with appropriate mixed protonic-electronic conduction. In-situ cells to characterize 

these materials with concurrent techniques are also not available. The works herein try to address these 

challenges by exploring the structure property interplay of several candidate materials. The main 

techniques used were: Thermogravimetric Analysis, powder X-ray and neutron diffraction and 

electrochemical impedance spectroscopy.  

The proton conductivity of In3+-BaZrO3 was improved through co-doping with Yb3+ compared to 

individually doped In3+-BaZrO3 and Yb3+-BaZrO3 samples. Spark plasma sintering of In3+-BaZrO3 

achieved high densities (92 %) samples, and the grain boundary conductivity was boosted in comparison 

to conventionally sintered samples. The oxygen deficient perovskite system, Ba3In2ZrO8, substituted with 

Ga3+ and Y3+ and Gd3+ and Y3+ combinations was shown to posses’ mixed ionic-electronic conduction 

with the Ga3+ containing sample having the greatest electron hole contribution. The crystal structure and 

conductivity of an alternative system to BaZrO3, Sc3+ substituted BaSnO3, was explored and 

BaSn0.6Sc0.4O3-δ found to have a proton conductivity as high as the current leading materials, i.e., 

1.07×10-3 S cm-1 at 600 °C. Disorder in the anion sub-lattice of the pyrochlore-fluorite, Y2(Ti1–xZrx)2O7 

system, studied using advanced analysis of neutron diffraction data, was found to significantly enhance 

O2- ion conductivity; in comparison disorder in the cation sub-lattice did not greatly influence the 

conductivity.   

This work also demonstrates two cells developed for in-situ conductivity and hydration studies 

coupled to neutron diffraction using In3+-BaZrO3 samples, and new insights into the hydration behaviour 

with respect to temperature and the thermal parameters of the oxygen anions were gained. 

Keywords: proton conduction, perovskites, oxygen deficient perovskites, neutron diffraction, in-situ 
cells, Rietveld refinements, deuteron position, BaSnO3, BaZrO3, Ba3In2ZrO8 
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TGA Thermogravimetric analysis 

XRPD X-ray powder diffraction 

NPD neutron powder diffraction 

SOFC solid oxide fuel cells 
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EIS  Electrochemical Impedance Spectroscopy 

σ Conductivity (S cm-1) 

Ea  activation energy 

p  partial pressure of a gas e.g., ( p (O2) , p (H2O)) 

SEM Scanning Electron Microscopy 
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1. Introduction  
When the industrial revolution begun, the world’s population was estimated to 

be 700 million persons. It is projected that by the middle of this century it would 

grow to 9 billion [1] bringing with it an explosive growth in energy demand. During 

this time the main source of energy has been, and continues to be, hydrocarbon based, 

with coal and petroleum sources dominating. The problem with this is that these 

energy sources are non-renewable, and their reserves on the planet are a fixed 

amount. As the reserves get depleted, the prices are bound to rise. Therefore there is a 

need to efficiently use the remaining reserves and to also switch to renewable sources 

such as wind and solar. Even though wind and solar sources are unpredictable, when 

available in plenty they can be stored in chemical form (hydrogen) or in 

electrochemical form (batteries) for later use. 

Fuel cells are electrochemical devices capable of continuously converting the 

chemical energy in a fuel such as hydrogen or methane to electricity after a chemical 

reaction with an oxidizing agent. William R. Grove demonstrated the basis of the fuel 

cell over a century and a half ago using the “Grove Cell” consisting of a zinc anode in 

sulphuric acid and a platinum cathode in nitric acid separated by a porous ceramic 

whereby the application of an electrical potential across its electrodes produced 

oxygen and hydrogen gases. The birth of the fuel cell concept came about by the 

realization that by removing the DC power source connected to the cell, the traces of 

gas bubbles on the electrodes produced a weak electrical signal across the electrodes.  

Francis Thomas Bacon (1904-1992, British) first demonstrated a practical 

5kW fuel cell system using potassium hydroxide as the electrolyte. In the same period 

across the Atlantic, Harry Karl Ihlrig rigged up a modified 15kW stack, consisting of 
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1,008 Bacon cells, onto an agricultural tractor manufactured by Allis-Chalmers 

capable of hauling 1.36 tonnes. With the backing of the US Air Force, the tractor 

makers went ahead to develop a submersible vessel, a forklift truck and a golf cart all 

powered by the alkaline fuel cell. Union Carbide in the late 1950’s and in the 1960’s 

demonstrated fuel cell powered mobile radar set for the US Army and also a fuel cell 

powered motorbike [2, 3]. 

In the early 1960’s Pratt & Whitney brought fuel cells to the space age when 

they won a contract to power the Apollo spacecraft with alkali fuel cells, which were 

developed to provide electric power and drinking water for the astronauts. Fuel cells 

were later used to power space shuttle missions [2, 3].  

Among the companies that have successfully commercialized fuel cells are 

UTC Power (PureCell 400 system, based on phosphoric acid) [4], Ballard (FCgen, 

ClearGen) [5], Siemens-Westinghouse and recently Bloom Energy (Bloom Energy 

server, based on a solid oxide fuel cell) [6]. 

Unlike petrol/diesel generators that first convert chemical energy to kinetic 

energy then to mechanical before arriving at electrical energy, fuel cells directly 

convert chemical energy to electrical energy. Through this direct conversion of 

chemical energy to electrical energy without any thermo-mechanical step, fuel cells 

are able to achieve large efficiencies in the conversion. Efficiencies of up to 60% are 

often achieved while efficiencies of roughly 80% can be achieved for the high 

temperature fuel cells in combined heat and power (CHP) setups [7-9]. Fuel cells 

additionally offer fewer greenhouse emissions [10] and lower noise pollution in 

comparison to diesel generators. There are various types of fuel cells classed 
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according to the electrolyte material used, temperature of operation or mode of 

operation [11]. 

The electrolyte, at the heart of the fuel cell, is a membrane whose function is 

to allow the passage of ions such as H+, O2- or CO3
-2 through it whilst blocking both 

gas diffusion and electron. From a practical application view for commercialization, a 

membrane needs to have an electrical conductivity of at least 10-2 S cm-1 [12]. 
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2. Fuel Cell Technologies 

2.1 PEMs 

Polymer electrolyte membrane (PEM) fuel cells have a solid, proton (H+) 

conducting polymer, commonly Nafion by DuPont (C7HF13O5S�C2F4), as the 

electrolyte and operate at low temperatures ~ 80 °C. Typically they require a 

platinum catalyst that splits the hydrogen. The platinum catalyst is susceptible to 

carbon monoxide poisoning apart from being rather expensive and in limited supply. 

The fuel cells are light and hence easily applied in mobile applications such as 

electrically powered vehicles. 

Anode Reaction: 2H →   4H +   4e    over  Pt  Catalyst  

Cathode Reaction: O    +   4H    +   4e →   2H O 

Overall Cell Reaction: 2H    +  O    →   2H O 

2.2 SOFCs 

Solid oxide fuel cells (SOFCs) have an electrolyte based on ceramic materials 

such as yttria-stabilized zirconia (YSZ) [13, 14], that conducts O2- (the charge carriers), 

and operate at high temperatures (~700 °C). They can be deployed in a co-generation 

setup with turbines to achieve efficiencies of > 60% LHV (Lower Heat Value 

calculations assumes all water exhausted at the end of a fuel cell reaction is in the 

vapour form) [7]. Their high operating temperatures enable the use of different fuel 

types such as methane, hydrocarbon based fuels and even CO. 

Anode Reaction: 2H +   2O →   2H O   +   4e  

Cathode Reaction: O    +   4e    →   2O    
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Overall Cell Reaction: 2H    +  O   →   2H O 

The schematic of the SOFC using H2 (g) fuel is illustrated in figure 1. It should 

be noted that on the anode side, the H2O produced dilutes the incoming fuel feed and 

the exhaust gas has to be separated to recover the unspent fuel. 

 

Figure 1:  Schematics of a SOFC using hydrogen gas as the fuel. H2O is 

produced on the Anode. 

2.3 SAFCs 

Solid acid fuel cells (SAFCs) are based on solid acids of selenates, 

phosphates, arsenates or sulphates of caesium that exhibit a super-ionic phase 

transition that is accompanied by a jump in proton conductivity by orders of 

magnitude. They can operate at temperatures of ~250 °C on either hydrogen or 

methanol [15-17]. The proton, H+, is the charge carrier. 
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2.4 MCFCs 

Molten carbonate fuel cells operate at temperatures of ~ 650 °C. In this case 

the carbonate anion (CO3
2-) is the charge carrier. Typically LiKCO3 salt in a molten 

state serves as the electrolyte with carbon based fuels easily being utilized. The cells 

are most suited for stationary applications and offer high resistance to impurities yet 

suffer from short life spans due to corrosion of both the anode and cathode. 

Anode Reaction: 2CO +  2H    →   2H O   +   2CO    +   4e  

Cathode Reaction: 2CO    +  O    +   4e    →   2CO  

Overall Cell Reaction: 2H    +  O    →   2H O 

2.5 PCFCs 

Proton conducting fuel cells (PCFCs) are based on a ceramic electrolyte that 

conducts protons H+ such as Indium-doped BaZrO3 
[18-20] or Yttrium-doped BaZrO3 

[21-25]
 among others. They operate in the intermediate range of 200-600 °C and can be 

fuelled by H2 gas. The advantage of this setup compared to the SOFCs is that water 

does not dilute the fuel on the anode side as it is produced on the cathode side as 

shown in figure 2. Further by being capable of operating at lower temperatures, 

cheaper interconnects can be used and the amount of insulation required is reduced. 

 



 
7 

 

Figure 2:  Schematics of a PCFC using hydrogen as a fuel and showing that H2O 
is produced at the cathode. 
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3. Solid Electrolytes 
An electrolyte is a compound that, when dissolved in a solvent, splits into 

positively charged cations and negatively charged anions i.e. it ionizes. Solid 

electrolytes, on the other hand, are materials that act as solid-state ionic conductors 

bringing about the movement of ions via empty crystallographic positions (vacancies) 

in their crystal lattice structure. Consequently the tuning of the crystal structure and 

vacancy formation has direct consequences on the ionic conducting properties of the 

material. These materials are crystalline in that they possess atomic order on the long 

range. However, no crystalline materials exist without defects, as no structure is 

perfect and deviations in the perfect arrangement will exist at all temperatures.   

3.1 Types Of Defects 

Commonly defects are classified using the dimensional aspect. Consequently 

a point defect is a 0-dimension defect and a line defect is a 1-dimensional defect 

etcetera. 

 0-dimensional (point defects) 

§ Substitution of one atom on a site by a foreign atom of equal, lesser 
(acceptor doping) or greater (donor doping) charge. It is a type of extrinsic 
defect. 

§ Interstitials, a type of intrinsic defect in which an atom sits in the space 
between normal crystallographic positions. 

§ Interstitial foreign atoms. 

§ Schottky defect [26], equal number of positively charged and negatively 
charged ions are absent at their lattice sites. 

§ Frenkel defect, a smaller ion displaced from its lattice position into an 
interstitial site with the accompanying created vacancy. 

 1-dimensional (line defects) 

§ Edge dislocation, an extra half-plane of atoms among full planes of atoms 
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in a crystal 

§ Screw dislocation 

§ Row of point defects such as vacancies 

 2-dimensional (planar defects) 

§ Stacking faults 

§ Grain boundary 

 3-dimensional defects such as secondary phases. 

 Electronic defects such as holes (ℎ∙, positively  charged) and electrons. 

3.2 Migration Of Defects 

Migration of defects occurs when point defects move through the crystalline 

sample. Since a sample may poses a variety of defects, there are various diffusion 

mechanisms present in a sample brought about by differences in mass, charge and 

their electronic structure. Defect diffusion is also affected by temperature, grain 

boundaries, pressure and the crystal structure. A brief overview of some diffusion 

mechanisms is presented below. 

3.2.1 Proton diffusion 

Protons, H+, being extremely small (8.768(69) fm) [27], and having a naked 

nucleus, tend to associate with electron clouds of other atoms such as oxygen when 

incorporated into the structure of a material. There are two possible mechanisms for 

its diffusion namely, the vehicle mechanism and the Grotthuss mechanism. In the 

vehicle mechanism the proton is carried on another ion that then diffuses through the 

structure. In the Grotthuss mechanism[28]  the proton migrates via two steps, first it 

reorients about an oxygen atom to which it is attached and secondly jumps to the next 

oxygen atom breaking its original bond and forming a new bond. The accepted 
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mechanism in protonic conducting ceramics is the Grotthuss mechanism [29, 30] as 

illustrated in figure 3. 

 

Figure 3:  The Grotthuss mechanism for proton transport in acceptor-doped 
perovskites. Two neighbouring octahedra each made up of a dopant 
cation D, surrounded by six oxygen anions and sharing a corner whose 
oxygen has a proton attached to it. With permission from reference[31] 

3.2.2 Vacancy diffusion 

This takes place when an atom occupying its regular lattice site hops to a 

nearby vacant lattice site irrespective of its state of charge. Most important is that the 

atom doing the jump has a similar size as the vacancy it hops on to. This is the 

diffusion mode preferred in oxide ion conducting materials. 

3.2.3 Interstitial diffusion 

When a diffusing interstitial atom happens to be sufficiently small compared 

to the other atoms sitting at regular positions it can simply move from one interstitial 

position to another. 

3.2.4 Indirect Interstitial diffusion 

Occurs when an atom located at an interstitial position kicks out an atom 

occupying a regular lattice position and occupies it while at the same time the 
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displaced atom moves on to occupy another interstitial site. Overall the interstitial 

atom has moved from one site to another. 

 3.3 Electrical Conductivity Of Oxides 

The inverse of resistivity of an oxide is referred to as electrical conductivity 

(σ ) and refers to the capability of a material to electrically conduct or transport 

charged species (i). A number of charged species may be conducted at any particular 

temperature, pressure, and reducing or oxidizing conditions. Hence in terms of 

current density (J ) and the electric field strength (E), of a specie (i), the electrical 

conductivity (σ ) as equation 1:   

Equation 1.  σ =       

Additionally the product of the charge (q), mobility (µ) and concentration (Ci) 

of the charged specie is also referred to as conductivity (σi), equation 2, which can 

alternatively be expressed as the diffusivity, effectively introducing the importance of 

temperature as per equation 3 where T is the absolute temperature and kB is 

Boltzmann’s constant (8.617  3324(78)×10−5 eV  K−1, the molar gas constant divided 

by Avogadro’s number). The temperature dependence results in Arrhenius behaviour 

if the charged specie’s concentration Ci, is held constant, see equation 4. 

Equation 2  σ = Ji
E
= q. µμ . C  

Equation 3  σ = ( . )
( . )

 

Equation 4  σ = A. e( ) 
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Where A is a pre-exponential term containing many factors among them the 

number of mobile species, charge of the species, the number of directions for the 

jump event, the frequency of the jumps and the volume of the system. Ea is the 

activation energy required to be overcome for the conduction process to occur and R 

is the molar gas constant.  

If considering a proton conductor, given that the frequency of the jump in 

proton conductors concerns the O-H bond stretching vibrations, it clear that 

substitution for a heavier isotope in this case deuterium D+, would result in slower 

vibrations of the bond and hence yield a lower jump frequency. Consequently the 

conductivity of the heavier deuterium isotope (atomic mass = 2.014 u) would always 

be discernibly lower than that of the lighter isotope, the proton                           

(atomic mass = 1.007 u). This phenomenon is used as a dependable test to verify that 

indeed proton conduction is present in a sample [32]. It is referred to as the isotope 

effect. The units for σ   are Siemens per centimetre (S cm-1) given the centimetre scale 

samples used in research. 

3.4 Perovskites As Proton Conductors 

The perovskite structure is unique in being so versatile in the range of 

properties materials with the structure display. For example perovskites show 

magnetism [33], catalytic behaviour [34], oxide ion conduction [35] and proton 

conduction [25], leading to applications in areas such as gas sensors, electrolytes and 

thermal barrier coatings. An ideal perovskite can be described by the general formula 

ABO3 that consists of corner sharing BO6 octahedra with the A cations aligned in 

cubic close packed layers together with the oxygen anions as shown in figure 4. Each 

A-site cation has 12 nearest neighbour oxygen anions and is bigger than the B-site 

cation. In this thesis A2+B4+O3 are dealt with. Stability and distortion from the cubic 
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phase is controllable by playing around with both charge and size of the A and B 

cations. For a smaller than ideal A-site cation the BO6 octahedra tilt to fill up space 

while for a larger than ideal A-site cation the BO6 shrinks to compensate.  

 

Figure 4: The structure of a cubic ABO3 perovskite showing the location of the 
big A2+ site and the O2- site. The B3+ site is located within the octahedra 
made up of six O2- sites 

 

3.4.1 Acceptor doped perovskites 

Acceptor doping refers to the substitution of the tetravalent B-site cation with 

one of a lower valence state (e.g. M3+) hence forming extrinsic defects in the form of 

oxygen vacancies. Typical perovskites include BaZrO3, PbZrO3, BaCeO3 
[36] and 

BaSnO3 
[37-43] among others. The doping of the ABO3 type perovskite with a trivalent 

metal cation, M on the B-site, results in the formation of  𝑥𝑥 2 oxygen vacancies where 

x is the fraction of the dopant, and the resulting perovskite formula can be written as 

AB1-xMxO3-x/2. In the Kröger-Vink [44, 45] notation the doping can be notated stepwise 

as, 

Equation 5.    AO + BO →  A× + B× + 3O× (Un-doped system) 
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Equation 5.1 2BO +M 𝑂𝑂 → 2B× + 2M   + 5O× + V•• (doped B-site) 

Where B  denotes a B cation sitting on a regular B-site and a neutral charge 

(×), O   denotes an oxygen anion sitting on a regular oxygen site and V•• denotes an 

oxygen site with an effective charge of +2 (••).  M    denotes the dopant trivalent 

cation sitting on a regular B-site resulting in an effective negative charge. The 

Kroger-Vink notation for negatively charged electrons is 𝑒𝑒  and h•  for positively 

charged holes. Generally small trivalent cations such as Yb3+ (0.86 Å) [26, 46, 47] 

substitute for the B-site while larger cations such as La3+ (1.03 Å) substitute on the A-

site [26, 42] .   

 When the acceptor doped perovskites are exposed to a humid atmosphere the 

oxygen vacancies get substituted for by hydroxyl groups of which the oxygen sits on 

the vacant oxygen site and the remaining proton (H+) occupies an interstitial site. This 

can be represented as, 

Equation 6.  H O( ) + V•• + O    = 2 OH •  

Under reducing conditions i.e. low oxygen partial pressures, the sample may 

lose oxygen and hence electrons form as described below, 

Equation 7.  O = ½O ( ) + V•• + 2e  

Alternatively, in oxidizing conditions i.e. high oxygen partial pressures, the 

following can occur resulting in the formation of electronic holes (h�), 

Equation 8.  ½O   ( ) + V•• = O + 2h• 
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3.4.2 Current Status of Proton Conductors 

In the early 1980’s Iwahara and co-workers [48] demonstrated proton 

conduction in doped SrCeO3 which marked the beginning of intense scientific 

interest into proton conduction in perovskites and related phases such as the 

brownmillerites. To date BaCeO3 doped with acceptor dopants on the B-site has 

demonstrated the highest proton conduction so far with BaCe0.9Y0.1O3-δ being at the 

top [49, 50]. However it suffers from its ease of reaction with CO2 and steam [51, 52] due 

to its high basicity. Alternatively CaZrO3 is less basic and hence more chemically and 

also mechanically stable than BaCeO3 
[49]. It possesses a much lower protonic 

conduction but is used industrially as a hydrogen sensor in the manufacture of 

aluminium alloys [53]. The acceptor doped perovskite BaZrO3 has come to the 

forefront of proton conduction research due to its good chemical stability albeit with 

slightly lower proton conductivity [54].  

BaZr0.8Y0.2O3-δ [25] is currently regarded as the leading option and is, an almost 

pure proton conductor at temperatures below 650 °C. The compound has two main 

challenges, the high temperatures required in achieving high densification and 

secondly the poor grain boundary conductivity [55, 56]. The former presents a 

manufacturing challenge in the production of fuel cell stacks, as the electrodes of a 

fuel cell are required to possess a certain degree of porosity and yet high temperatures 

decrease their porosity. The poor grain boundary conductivity lowers the total 

conductivity of the ceramic samples [56].  

These challenges can be overcome by reducing the total number of grain 

boundaries through the use of sintering aids such as ZnO [57] and NiO [58, 59] or 

through the use of nano-scale  starting materials for fabrication. The use of epitaxially 

grown thin films has further improved the conductivity of BaZr0.8Y0.2O3 to the extent 
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that part of “Norby’s gap” [60], figure 6, has been partially filled, figure 5 [61].In figure 

5 converting the required area specific resistance (ASR) of 0.15 Ω cm2 to the log 

scale of figure 6, we get a y scale value of -0.175 S cm-1 for BaZr0.8Y0.2O3-δ above 

425 °C at which point the conductivity is above 1×10-2 S cm-1. Alternative oxide 

systems showing proton conductivity include Sr/Ca-doped LaNbO4 
[62] with a total 

conductivity of 2×10-4 S cm-1 in wet hydrogen at 600 °C, Ba3Ca1.18Nb1.82O9-δ [63]
 with 

1.8×10-4S cm-1 at 700 °C.  

 

Figure 5 The total conductivity values for select proton conductors as of 2012, 
BaZr0.8Y0.2O3-δ (BZY20) film and pellet, BaZr0.7Pr0.1Y0.2O3-δ (BZPY10), 
Ba3Ca1.18Nb1.82O9-δ (BCN18), Ca0.01La0.99NbO4 (Ca-LNO), 
La1.95Ca0.05Zr2O7 (Ca-LZO). The maximum electrolyte thickness for a 
given electrolyte to achieve the target value for the area specific 
resistance (ASR) of 0.15 Ω cm2 is shown on the right axis. The figure 
also allows estimating the operating temperature for a given electrolyte 
keeping fixed the electrolyte thickness at 15 µm for an ASR of 0.15 
Ωcm2. Adopted with permission from reference [61] 

Our in-house research has so far focused on acceptor doped BaZrO3 

compositions with In3+ [18] as the most common dopant. Other dopants investigated 
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include Yb3+ [64] Sc3+ [65]and Ga3+ [66].The location of the proton site in the 

50%In:BaZrO3 has been described [67]. The effects of wet chemical preparation versus 

solid state synthesis of 50%In:BaZrO3 has been investigated and their effect on 

conductivity demonstrated [68]. 

 

Figure 6 An overview of selected literature data as of 1999 for proton 
conductivity as a function of inverse temperature. IISPAP, imidazole-
intercalated sulfonated polyaromatic polymer; BYSO, Ba2YSnO5.5. The 
curve for Y:BaCeO3 is a calculated estimate. The interpretation of the 
conductivity of Gd:BaPrO3 has been shown to be a hole conductor. 
Graph adopted with permission from reference [60] 
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The works herein attempt to increase both bulk and grain boundary 

conductivity through the use of spark plasma sintering and co-doping of In:BaZrO3. 

A further step is taken to investigate the effect of tuning the conductivity in 

Ba3In2ZrO8 (BaIn0.66Zr0.33O2.67) with GaY or GdY combinations. An alternate system, 

Sc:BaSnO3 is investigated to elucidate its structure and conductivity.  

3.5 Pyrochlores And Fluorites As Oxide Ion Conductors. 

The fluorite structure, is named after the mineral CaF2, and can be thought of 

as having a general formula of BO2 (B O ) and fluorites belongs to the Fm3m 

space group, figure 7.The cations occupy the corners and centres of the cubes faces 

while the 4 anion atoms form a smaller cube inside. 

Pyrochlores, of the formula A2B2O7, are related to the mineral pyrochlore, 

(NaCa)(NbTa)O6F/OH from which they are named. Two families exist with different 

charge combination on the A-site and B-site, (3+, 4+) or (2+, 5+) and consequently 

their formulae are, A B O  and A B O   respectively. Only the former is dealt 

with in this thesis. Typically a completely cubic pyrochlore belongs to the Fd3m 

space group. By fixing the unit cell’s origin at its B-site the structure can be described 

as having four distinct atomic positions, A at 16d, B at 16c, O at 48f and O* at 8b. 

Hence its general formula is more appropriately written as A2B2O6O* indicating the 

two distinct oxygen sites. 

Pyrochlores, figure 8, are related to fluorites, figure 7. An   of a pyrochlore’s 

unit cell can be visualized as a full fluorite unit cell with an unoccupied 8a site and 

half of the B cations replaced with A cations to achieve charge neutrality as shown 

in figure 8. The pyrochlore structure has significant relaxation, from the ideal 
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positions (figure 7) of surrounding 48f anions towards the unoccupied 8a site, figure 

9.  

 

Figure 7: The structure of a fluorite (CaF2) showing the fully occupied anion sites 
and that there is no relaxation of the anions (right). 

Whenever the ionic sizes of the A and B cations become similar in the 

A2B2O7 compounds there is a likelihood that an order-disorder transition into an 

oxygen deficient, disordered fluorite structure, will occur. In which case the A and B 

site cations randomly occupy each other’s positions [69]. Further disorder can occur in 

the anion sub-lattice resulting in the normally vacant 8a position being partially filled 

while the vacancies shift to the 8b or 48f sites that are normally filled. The 

pyrochlore-fluorite transition can also occur as a function of temperature in certain 

compositions close to the pyrochlore-fluorite phase boundary [69]. A pyrochlore 

stability region exists for ratios of the A3+:B4+ ionic radii between 1.46-1.78 Å where 

the cubic pyrochlore structure is exhibited [69, 70]. Examples of pyrochlores include 

Y2Ti2O7 
[71]

, Gd2Zr2O7 
[72]

 and Sm2Ti2O7 
[73]. 
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Figure 8: The ideal pyrochlore structure represented by a ⅛ cuboid of the unit 
cell in the style of a fluorite unit cell showing the vacant anion 8a site 
indicated by the dotted circle. The six 48f sites are occupied by oxygen 
anions coordinated to two A-site and two B-site cations and the 8b site 
is coordinated to four A-site cations respectively in the above 
representation. 

 

Figure 9: A real pyrochlore structure (Y2Ti2O7) represented by a ⅛ cuboid of the 
unit cell in the style of a fluorite unit cell showing the relative relaxation 
of the neighbouring atoms towards the vacant anion 8a site indicated by 
the arrows.  
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3.5.1 Current status of oxide ion conductors 

ZrO2 that has been acceptor doped and stabilized to the cubic fluorite structure 

at lower temperatures, T<1000 C, possess significant amount of vacancies necessary 

to facilitate oxide ion conduction via vacancy hopping. Divalent cations, M, or rare 

earth trivalent cations, R, can substitute the cation site on the host lattice to generate 

vacancies as denoted in the Kroger-Vink notation below,  

Equation 9.  MO + Zr× =   M + ZrO + V��  

Equation 10 R O + 2Zr× + O×   =   2R   + 2ZrO + V�� 

Typical dopants include Ca2+, Sc3+ and Y3+ with the resultant ceramics being 

named as calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ) and 

yttria-stabilized zirconia (YSZ) respectively [74]. YSZ has high oxide ion conductivity 

above 700 °C [75] and is currently the most widely used electrolyte material in SOFCs. 

Doped CeO2 have also been known to be good oxide ion conductors [76]. Of 

this type samarium-doped ceria (SDC) and gadolinia-doped ceria (GDC or CGO) 

possess significantly higher conductivity than YSZ between 500-700 °C. Their only 

limitation is in low oxygen partial pressures at temperatures >600 °C where a non-

negligible electronic conduction is observed as the cerium host cation is reduced to a 

trivalent state [77]. There exists an optimum doping level from which conductivity is 

lowered with increasing dopant concentration [78]. 

The anion deficient delta phase of Bismuth oxide, δ-Bi2O3, has the highest 

known oxide ion conduction at 2.3 S cm-1at 880 °C [79]. Unfortunately it is apt to 

corrode almost all the other cell components at the operating temperatures hence 

limiting its applications in fuel cells. Substitution of part of the bismuth with yttrium 
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gadolinium niobium or tantalum among other cations stabilizes the delta phase to 

lower temperature but lowers the conductivity [80]. 

Most of these compounds have a fluorite or fluorite related structure. 

Therefore it’s increasingly important to study the crystal structure and its relationship 

to the behaviour of conductivity to understand exactly how the cation, anion and 

vacancy ordering affect the oxide ion conductivity. Ideally a system with a high oxide 

ion vacancy concentration should result in good oxygen ion conductivity. But what 

happens if for example the oxygen ion vacancies order in a specific manner in the 

crystal structure? What if the cations order? In this thesis the pyrochlore structured 

Y2Ti2O7 transition to the disordered fluorite structured Zr2Y2O7, of the ZrO2-TiO2-

Y2O3 ternary system is studied with reference to its effect on the electrical 

conductivity for a series of compositions, Y2(Ti1-xZrx)O7  with x = 0.00, 0.15, 0.30, 

0.40, 0.50, 0.65, 0.80, and 1.00. The conduction mechanism in these types of oxides 

is based on the jumping of vacancies through the structure.  

3.6 Mixed Ionic-Electronic Conductors (MIEC) For Proton 
Conducting Fuel Cells 

These are materials possessing both protonic and electronic conduction. They 

are suitable for electrode applications. However to allow for the gas to solid interface 

reactions they need to possess a large surface area and extend their reaction area 

through the entirety of their bulk in addition to their interface with the electrolyte. 

This is very important on the cathode side. Where oxygen adsorbs, dissociates, is 

reduced and diffuses on the surface and in the bulk. Proton migration, water 

formation and evaporation also occur on the cathode side. Therefore simultaneous 

migration of electrons protons and oxygen has to occur in the cathode materials. 
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BaCe0.8−xPrxGd0.2O3−δ 
[81]

 ( σ (𝑡𝑡ℎ𝑒𝑒  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)= 0.75 S cm-1 in air at 

800 °C) and Yb:BaCeO3 
[82]

 (above 600 °C,  σ = 2.3 × 10−2 S cm-1 in wet oxygen at 

800 °C)  are some of the materials that have recently been reported to possess mixed 

ionic-electronic conduction. Both of these compounds react with CO2 and water 

vapour [52, 54, 83]. BaZr0.8−xPrxY0.2O3−δ (x=0.2, 0.3) has been reported as having good 

chemical stability but however has insufficient mixed conductivity for application as 

a cathode [84]. The high surface areas required can be met by wet chemical synthesis 

followed by relatively low temperature (~1000 °C) co-firing of the fuel cell. In this 

thesis we report on the accidental discovery of MIEC in a complex, disordered 

perovskite, Ba3In1.4Y0.3Ga0.3ZrO8. 

3.7 Materials Requirement For The Electrolyte 

As a requirement for a good electrolyte the material should be impermeable to 

gas, be highly dense, block electron conduction and possess ionic conduction of the 

order σ   = 10   S  cm    for practical use. One of the challenges is that some 

materials are not easily sinterable and therefore possess a lot of grain boundaries, 

which reduces the total conductivity. To overcome this, sintering additives [21], wet-

chemical [19] /SOL [85], and epitaxially grown thin films are used to improve 

densification at lower temperatures hence reducing the number of grain boundaries 

present. Further SPS [86] is used to reduce the resistance at the grain boundaries 

towards defect transport. These strategies often result in higher conductivity and 

improved overall fuel cell performance.  
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4. Experimental techniques 

4.1 Sample Preparation 

4.1.1 Solid State Synthesis  

In this work solid state synthesis (SSS) describes the synthesis of materials in 

which stoichiometric quantities of the metal carbonates and oxides, which have been 

heated to remove moisture before weighing, are mixed in an agate mortar and hand 

milled with a pestle in the presence of ethanol (99.5%). The dried powder is then  

1. Calcined at 1000 °C for a given number hours to decompose the 
carbonates. 

2. Pressed into pellets and heated to a higher temperature for a given time 
span. 

3. The pellet is crushed and milled, the resulting powder is checked for 
purity using X-ray powder diffraction and, if found not pure, step 2 and 3 
are repeated until the sample is found to be pure. 

Occasionally ball milling with a planetary ball mill is employed in the 

intermediate stages between the heating steps especially when large sample quantities 

(>5g) are required in a series of compounds. The milling balls and the milling house 

can be made of alumina, zirconia or steel. A typical milling run has the following 

parameters: 500 rpm, 20 minutes of milling, 5 minutes of cooling and 40 repetitions. 

Solid state reactive sintering, SSRS, is a modified solid-state synthesis route 

whereby the complete reaction and the sintering to higher densities of a sample occur 

in one single step. Hence only steps 1 and an extended step 2 are performed to yield a 

high-density sample. 

4.1.2 Spark plasma sintering (SPS) 

In this densification technique the sample is made dense by holding it under 

pressure in a graphite die under vacuum conditions while passing a pulsed DC current 
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through the graphite and sample to provide heating. Pure sample powders are ball 

milled into fine powders and put in a graphite pressure die and then mounted onto a 

die stage inside the SPS equipment, in this case a “Dr. Sinter 2050” (Syntex Inc., 

Japan) SPS setup. The die chamber is evacuated to 6 Pa and a pulsed DC current is 

applied through the die. This rapidly heats the sample under pressure (100 °C/min) to 

a desired final sintering temperature e.g. 1250 °C. The sample is held at that 

temperature for a period of time, say 5 min at 100 MPa then cooled after switching 

off the current and releasing the pressure. The sample is cooled down rapidly to room 

temperature. The SPS sample is then polished and oxidized at higher temperature for 

some time to remove traces of carbon (from the die) on the surface. The samples 

normally have a density of between 90-99% of the theoretical value. 

4.1.3 Hydration. 

The hydration is carried out at 300 °C under N2 gas flow saturated with water 

vapour at 76.2 °C (~0.42 atm, p(H2O)) for several days for powdered and pellet forms 

of the materials. Pellet samples for in-situ neutron diffraction combined with 

electrochemical impedance spectroscopy are deuterated hydrothermally by inserting 

them in a Teflon lined autoclave with a precise amount of D2O equivalent to the 

amount of theoretical oxygen vacancies present in the sample at 210 °C for 12 hours. 

This can also be performed on powdered samples. 

4.1.4 Pellets for conductivity. 

 Sintered pellets for conductivity are first polished preferably to a 

mirror like finish then painted with platinum ink dried at 150 °C and the organics 

burnt off at about 1000 °C using a very slow heating rate.  
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4.2 Characterization Techniques. 

4.2.1 Powder Diffraction. 

The primary method of characterizing the samples purity, crystal structure and 

reaction progress in this study was X-ray powder diffraction technique (XRPD). 

When a crystalline sample is irradiated with beams of X-ray or Neutron radiation of a 

wavelength comparable to its atomic spacing’s, constructive and destructive 

interference of the elastically scattered beams will occur between the lattice planes in 

the crystal, resulting in a diffraction pattern. This pattern presents a detailed picture of 

the crystal structure describing it in terms of the symmetry of the unit cell and its 

dimensions, fractional coordinates of the atoms forming the lattice. For a pure 

material, all its peaks in the diffractogram can be indexed and assigned to a specific 

unit cell. Hence this technique is able to “fingerprint” material’s since the materials 

X-ray pattern is dependent on the atomic number, position of the atoms, and the type 

of unit cell as well as its size which yield specific peaks, peak positions and relative 

intensities unique to a material. Therefore despite two or more materials having the 

same space group, their diffractograms will be essentially unique. 

Crystalline materials are characterized by the orderly periodic arrangement of 

atoms and possess reciprocal lattice points (visible from single crystal diffraction 

data) described by integer values h, k, l known as Miller indices, in which case the 

distance between two of these planes is denoted dhkl. In reciprocal space however the 

distance between reciprocal space planes is ascribed . The reciprocal space is a 

Fourier transform of the direct space in which the unit cell exists. Given a 

monochromatic X-ray beam and a set of parallel planes in the crystal, constructive 

interference will occur only if the Bragg conditions are fulfilled. These conditions 

are: the path length difference between two waves constructively interfering is a 
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multiple integer (n) of the wavelength and the wavelength (λ) is comparable to inter-

atomic distances (inter-lattice distances).  The constructive interference will result in 

peaks appearing in the collected diffraction pattern plotted as the intensity as a 

function of 2𝜃𝜃. This is articulated in the Bragg equation below. 

Equation 11 2𝑑𝑑 sin𝜃𝜃 = 𝑛𝑛. 𝜆𝜆 

For a material like BaZr0.5In0.5O3-δ that has a cubic unit cell, then the cell 

parameter “a” can be calculated as below, 

Equation 12   𝑎𝑎 =   𝑑𝑑 ℎ + 𝑘𝑘 + 𝑙𝑙  

Where h,k,l are the Miller indices , d is the inter-planar spacing (figure 10) . The 

Bragg equation is illustrated below whereby a set of lattice points (dots) in a line 

represent planes of atoms in a sample, while the two parallel X-ray beams are 

represented by wavy lines, d is the inter-planar distance and 𝜃𝜃 is the incident angle to 

the plane. The path difference between the beams, CBD i.e. CB+BD, is hence 

equivalent to 2dsin𝜃𝜃. To pinpoint the expected peak positions the two equations (11 

and 12) can be combined for a cubic system as: 

Equation 13 sin 𝜃𝜃 = (ℎ + 𝑘𝑘 + 𝑙𝑙 )  

The detector samples the diffracted beams intensities over a 2  𝜃𝜃 angular range, which 

itself is the angle between the diffracted beam and the incident beam. The powder 

diffraction analysis utilizes the diffraction peak intensity, profile, and 2  𝜃𝜃 position to 

reveal the crystal structure of the samples being studied. The relative concentration of 

different phases in the sample, the atomic arrangement in the different phases and the 

identity of those phases can hence be obtained. 
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Figure 10:  An illustration of the Braggs law showing that the path length 
difference travelled by the second X-ray beam (green), CBD can be 
calculated using 2dsinθ where d is the interplanar distance, θ is the 
incident angle. 

 

The X-ray instrument used in this project was the Bruker D8 Advance™ 

diffractometer with a monochromatic Cu Kα1 radiation with a wavelength of 1.54056 

Å. The ICDD (International Centre for Diffraction Data) database was used to 

identify the phases in the sample.  

Neutron powder diffraction (NPD) was performed at the POLARIS [87] beam 

line at the ISIS neutron facility, a short pulse spallation source located in the U.K.. 

Neutrons for diffraction studies are generated from nuclear reactors or spallation 

sources.  In a reactor source the neutrons produced as a result of fission processes 

while in a spallation source targeting high-energy protons on a suitable metal target 

produces the neutrons. In the former source the neutrons are produced continuously 

while pulses of neutrons are produced from spallation sources. 
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Among the advantages of using NPD is that diffraction from the nuclei by 

neutrons has no form factor hence the peak intensity in the diffractogram does not 

decay with increasing 2θ values unlike in X-ray powder diffraction (XRPD). Further 

in NPD the scattering power of the atoms is not dependent on the number of electrons 

hence the positions of light atoms such as hydrogen (by substitution with its heavier 

isotope D) and oxygen can be identified in the presence of heavier atoms unlike in 

XRPD. A good application of this ability is the determination of the hydrogen 

positions in metallic hydrides such as europium hydride [88], a hydrogen storage 

candidate.  Additionally the precise atomic positions are best-refined using neutron 

data. Oxide based superconductors require the precise location of the atoms to be 

determined and also the occupancy of oxygen sites to be finely refined so as to 

elucidate the source of superconductivity [89, 90].  

 The energy dispersive principle of neutron diffraction, commonly 

known as time of flight (TOF), is applied in pulsed neutron sources, which deliver 

white band neutrons (neutrons with varying speeds) on to the sample. Given a 

neutron travel path, the fast (shorter λ) neutrons would separate from the slow (longer 

λ) ones in the incident beam. All of these wavelengths (λ’s) hit the sample can, made 

of neutron transparent material, e.g. vanadium, before being diffracted by the 

contained sample onto the detectors. 

The scattered beams’ λ is obtained by measuring the total time of flight (t) 

from the source to the sample and then to the detector given that the total flight path 

length (L) is available. Hence, t can be related to λ via the following equation [91], 

Equation 14 𝑡𝑡 = 252.78 ∗ 𝐿𝐿 𝑚𝑚 ∗ 𝜆𝜆(Å) 
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Therefore, for a wavelength (λ) of 3 Å and a path length (L) of 12 meters the 

TOF would be 9.10 ms. In practice it is important to achieve good resolution of the 

Bragg peaks by having a long flight path. This introduces a frame overlap problem 

that occurs due to faster neutrons overtaking slower neutrons to the detectors hence 

contaminating the collected data. The set of neutron λ’s free of overlapping (∆λ) are 

obtained by considering that [91]: 

Equation 15 𝑡𝑡 − 𝑡𝑡 = ∆𝑡𝑡 =  

Where ν is the pulse frequency of the source and hence ∆λ is 

Equation 16 ∆𝜆𝜆 Å =
  ×     ( )

 

The frame overlap can be removed by inserting waveband choppers between 

the source and the sample to exclude a number of incident beam pulses so that instead 

of collecting the data in a number of wavelength sections, each ∆λ in value, the entire 

diffraction pattern can be collected at one particular setting (a specific pulse of each 

cycle, ν).  

For the POLARIS [87] powder diffractometer at the ISIS facility near Oxford, 

UK, the sample position is 12 m from the source hence the available maximum 

wavelength is 6.59 Å, using equation 16 (above). There are three sets of detector 

banks, the low angle, the 90° and the backscattering banks each covering 14°-27°, 

86°-94° and 130°-155° 2  𝜃𝜃 range respectively. 

4.2.1.1 Rietveld analysis 

The Rietveld method [92, 93] is a least squares refinement method that 

minimizes the difference between a diffraction pattern calculated from a 
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crystallographic model and experimentally observed data. By altering different 

parameters such as; zero point (detector), lattice parameters, background noise, 

temperature factors and atomic coordinates of the atoms, the experimentally 

observed Bragg reflections’ width, height and positions can be modelled. However, it 

is important to remember that convergence of the least-squares calculation between 

the pattern based on the model and experimental pattern provides no guarantee that 

the model is physically meaningful as the convergence of least-square calculation 

may occur due to false minima. Therefore, a good chemical knowledge is essential 

when undertaking a refinement. 

An important aspect with the Rietveld method is that the user is in control of 

the information given through the refinement and can hence be able to re-modify the 

parameters as needed. This can be done by, for example, comparing the bond lengths 

from the Rietveld refinement with known bond lengths from literature or bond 

valence sum (BVS) calculations, hence avoiding unreasonable bond lengths in the 

refinement.     

This data is then fitted into the Rietveld Analysis software such as GSAS [94] 

where the theoretical model is refined by altering different factors with a visual 

inspection of the graphical output. Typically the process involves; 

 Data collection of the diffracted intensities in very small 2  𝜃𝜃 step sizes dwelling 
for as long as necessary per step, and collecting data over a wide 2-theta range. 

 Generating a crystal structure model either from scratch or from a database 
containing compounds with similar x-ray patterns. 

 Modifying the peak profile parameters and background to fit the observed 
intensity properly. 

 Least square refinements of the atomic positions, site occupancies, thermal 
parameters and the unit cell parameters.   
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4.2.2 Thermogravimetric analysis (TGA) 

TGA is an experimental method in which the mass change of a sample is 

measured as a function of temperature or time. The mass change indicates whether 

the sample undergoes decomposition or absorption/desorption when heated, cooled or 

kept at isothermal conditions, under controlled atmospheres. In the case of 

decomposition it’s also possible to calculate which types of molecules are lost in the 

process given a bit of chemical knowledge of the sample. The mass change is this 

case an inherent property of the material and can be quantitatively linked to physical 

or chemical processes occurring in the sample.  

In the case of proton conductors, during the hydration process, protons are 

incorporated into the structure of the material, which results in an increase in mass of 

the sample. Similarly, for pre-hydrated samples a mass loss is observed upon heating 

under a dry inert atmosphere. By following the mass change of the samples 

quantitatively, it is possible to determine the amount of proton defects formed during 

the hydration process.  

The instrument used for the TGA investigations was a NETZSCH STA 409 

PC (Figure 11) with alumina crucibles and nitrogen gas as the supporting gas. The 

empty reference container and empty sample container are first run empty to create a 

background correction file before the sample is introduced and an identical thermal 

procedure repeated. A correction scan is always run before performing a new series 

of investigations. 

Before every run the furnace outlet top valve is shut, then the vacuum pump is 

turned on and the chamber evacuated and refilled twice with an inert gas using the 

back valve for evacuation and the side valve for refilling with inert gas e.g. N2 or Ar 
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(to at least 1mbar). After the second refill, the vacuum and refill valves are shut and 

the pump is turned off. Before a run the initial gas flow conditions are turned on and 

the top valve outlet is opened.  In general, 15 minutes time is elapsed before the 

measurement is started in order to ensure the gas flow has equilibrated with the set 

flow rate.  

 

Figure 11:  The schematics of a NETZSCH STA 409 PC instrument used for the 
TGA measurements. 
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4.2.3 Electrochemical impedance spectroscopy (EIS) 

The method measures the electrical impedance that is frequency dependent 

only. In most cases a ceramic materials electrical properties are composed of various 

processes such as diffusion of various charge carriers and components such as grains 

and grain boundaries. When investigating a material, special interest is paid to 

separate the contributions from the grain bulk, grain boundary, electrode processes 

and diffusion to the electric properties of the material. Ionic conduction, defects and 

electric conduction can be characterized as well as ferroelectric and dielectric 

properties of a material. 

The method samples impedance for a given range of requested frequencies at 

a predetermined AC voltage thereby determining the frequency responses of the 

sample to the applied voltage. The electrode, bulk and grain boundaries have their 

conductivities expressed at different frequencies and hence their semicircles (time 

constants) can often be resolved. Typically a complex plane plot where the imaginary 

impedance (Z”) is plotted against the real impedance (Z’) is used to present the 

results of an experiment. The data is composed of semicircles, each of which can be 

ascribed to the circuit elements the resistor (R) and a constant phase element (CPE), 

an imperfect capacitor, in parallel. For an ideal polycrystalline material, the bulk 

behaviour (B) is found at the high frequency region (to the left of a complex plane 

plot), the grain boundary (GB) in the middle frequencies and the electrode behaviour 

(E) in the low frequency region (to the right) as shown in the figure 12. This is due to 

the fact that grain boundaries generally have resistances higher than those of the grain 

bulk hence it is advantageous to minimize the amount of grain boundaries by having 

larger grains in the sample. However the contributions of the bulk and grain 

boundaries often overlap and then it becomes difficult to separate their semicircles. 
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Figure 12:  A typical impedance plot in the complex plane showing two semi-circles 
in the frequency range scan of interest and a small electrode 
contribution at the of the second semi circle to the right. From the left, 
each semi-circle represents, as modelled in the circuit above, the grain 
bulk (RBQ1) and the grain boundary (RGBQ2) .R denotes a resistor and 
Q a constant phase element.  

The resistances of each of the components in a material are indicated by the 

distance across the semicircle along Z’. In practice the results are fitted with circuit 

models from which the resistances (R (Ω)) are obtained. Impedance accounts for 

capacitance and inductance effects, which vary with the frequency (f) of the electric 

current through the sample. Impedance is only equivalent to resistance if the circuit 

lacks any capacitors or inductors. Impedance (Z) is made up of two parts, the 

resistance R (independent of f) and the reactance X (dependent on f due to 

capacitance and inductance). 

A phase shift between current and voltage is caused by capacitance and/or 

inductance implying that R and X have to be summed up as vectors at right angles to 
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each other to give (Z), see figure 8 where XL is the inductance component and XC is 

the capacitance component of reactance X. 

 

 

Figure 13:  Illustration of the vector addition of resistance and reactance to give the 
impedance. 

The relation between Z’ and Z” as used in the complex plane plot is: 

Equation 17 𝑍𝑍 − 𝑅𝑅 2 + (𝑍𝑍 − 0) = 𝑅𝑅
2  

It should be noted that it’s not always possible to observe three semicircles 

representing the three components of the polycrystalline sample, as some may not be 

expressed in the frequency range selected for the experiment. The capacitances of the 

associated resistances are usually used to classify the resistances as grain bulk 

resistance (~10-12 F), grain boundary resistance (10-11-10-8 F), sample-electrode-

interface resistance (10-7-10-5 F) and electrochemical reactions (10-4 F).  

The conductivity (σ) of a sample extracted from fitting of EIS data is often 

plotted by, taking its logarithmic value as a function of 1/T. The values are always 

normalized for the samples dimensions by equation 18. 
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Equation 18 𝜎𝜎   𝑆𝑆𝑐𝑐𝑐𝑐 = ( )
        ∗   ( )

 

The elements commonly used to model the electrical resistance of solid 

electrolytes are namely, the resistor, the capacitor, the constant phase element and the 

inductor. 

 Resistor: When current flows through it, it produces a voltage 
proportional to the flowing current with both the voltage and current being 
in sync (in phase) hence contributing only to the real part of the 
impedance. Its units are ohms, Ω. 

 Capacitor: When a voltage is applied across a capacitor a current is 
produced that is proportional to the rate of change of the voltage across its 
terminals. The area and the length between two plates and the dielectric 
medium between them determine the capacitance whose units are in 
Farads, F. Since it stores energy and releases it when we stop applying a 
voltage it can impart a voltage lag of 90° behind the AC current therefore 
contributing to the imaginary part of the impedance. 

 Inductor: it generates a voltage across each element proportional to the 
rate of change of a current flowing through it. When there is a coil on the 
circuit a magnetic field that induces a voltage across the conducting coiled 
part of the circuit is produced in the coil’s centre. The induced voltage 
precedes the current by 90° thereby contributing to the imaginary part of 
the impedance known as the reactance. It is commonly found near the 
origin of the complex plane plot as a tail and is mainly due to the 
inductance in the wiring of the setup. It has units of Henries, H. 

 Constant phase element (CPE): Is a general circuit element necessitated 
by the need to account for inhomogeneity of the system due to grain-
boundaries, grain sizes and surface roughness among others and is its 
impedance can be defined as 𝑍𝑍 = =  

  ( )
  where Y0 has the numerical 

value of 1/|Z| at ω=1 rad/s, ω is frequency and n assumes any value 
between -1 and 1.For n=-1 it describes a pure CPE, for n=1 a pure resistor 
and for n=0 a pure inductor. 

A Probostat© impedance cell from Norecs® coupled to a Solartron® 1260 

frequency response analyser was used in the 2 probe impedance measurements. 

Experiments were run from between 150-1000 °C in steps of 50 °C in either wet or 
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dry atmosphere. Typical gas atmospheres used were argon gas and oxygen gas. 

Occasionally 5%H2 in Ar was used, keeping in mind the detrimental effects of 

hydrogen embrittlement on the Pt electrodes used in the experiments. Bubbling 

through water at room temperature generated wet gas while dry gas was generated by 

passing gas through two bottles of P2O5 before entering the cell. Typically an AC 

voltage  of 1V rms and a frequency range of 1Hz-1MHz were used in measurements. 

4.3 In-situ Characterization Techniques 

A major challenge to solid electrolyte research has been the absence of sample 

cells designed to run multiple characterizations during one experiment such as 

impedance and neutron diffraction or in-situ hydration combined with powder 

diffraction. Therefore the development and testing of two in-situ cells for conducting 

simultaneous conductivity or hydration/gas-solid reactions with neutron powder 

diffraction as a function of temperature is demonstrated for proton conductors.  

These techniques are defined by their ability to observe the phenomenon of 

interest as it occurs and in simulated real life conditions. Typically they comprise of a 

specially built sample environment cell that is mounted in a rig that facilitates the 

characterization of the sample under a given set of conditions while observing the 

phenomena of interest using one or more experimental techniques. In the case where 

two probing methods are used, the data sets are in-sync in terms of the timescale and 

experimental conditions (T, partial pressure etc.) experienced. 

In this thesis, in-situ impedance measurements as a function of temperature 

are performed while simultaneously collecting neutron diffraction data from a sample 

of a proton conducting perovskite. Secondly, the hydration and dehydration 

behaviour of the material is investigated using neutron diffraction with a D2O bearing 
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gas as a function of temperature. This setup that can also be used to investigate oxide 

ion conductors under controlled  𝑝𝑝(O2). A further advantage of this approach is that 

all the data collected will be from just one sample and not different batches or pellets 

of the sample, so effects attributable to microstructure for example are the same over 

all the experiments and the samples experimental conditions are identical. The two 

separate setups designed for use at the ISIS beam lines are discussed below. 

4.3.1 IInn-- ss ii ttuu  humidification setup 

This consists of the gas flow cell [95] coupled to a gas humidification system 

which is itself connected to a gas mixing system as illustrated in figure 14 below 

whose components are named in table 1 in the appendix. The gas mixing system 

makes use of mass flow meters and precise pressure regulators that allow for 

simultaneous precision mixing of four gasses, currently O2, Ar, CO2, and CO. This 

allows for the precise setting of the oxygen partial pressure, 𝑝𝑝(O2), of the inlet gas. 

The in-situ gas flow cell consists of an oxygen sensor (3), which is positioned directly 

above the sample (10), usually in the form of porous pellets that are stacked on the 

quartz frit (11), and below is a thermocouple (12). The gas feed (13) is at the bottom 

of the quartz cell and the outlet at the top (1). The inlet is connected to the H2O/D2O 

injector (7) and gas mixing system (8). The furnace setup surrounds the narrower 

bottom part of the cell and consists of an electrical heating element (15) surrounded 

by three heat shields (14) all of which are made of thin vanadium sheets.  

The gas humidification system (7) consists of a thermally insulated gas-

washing bottle partially filled with D2O and covered with a heating cord so that the 

contents can be kept at a constant set temperature. Through ball valves, the liquid 

content can be refilled by, blocking the gas inlet/outlet and opening alternate liquid 

input/output injection via a syringe. This provides the wet gas (6) to the in-situ cells. 
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A thermocouple inside the bottle linked to a temperature controller sets the required 

temperature of the contents allowing the p(D2O) to be controlled. A valve before the 

bottle allows dry gas to bypass the setup completely making it easy to switch between 

a humid and a dry gas flow (5).  

 

Figure 14:  The high temperature in-situ humidification cell setup. The components 
are named in Table 1. Reproduced with permission from [96]. 

4.3.2 IInn-- ss ii ttuu  impedance spectroscopy setup 

The in-situ impedance spectroscopy cell [97], see figure 15, whose components 

are named in table 2 in the appendix, consists of Pt electrodes (12) positioned in a 

recessed cavity inside two boron nitride (BN) shields (8,10), with platinum mesh 

added to ensure good contact. These elecrodes are springloaded and the electrical 

leads are also shielded by BN (14). The sample pellet (9) is positioned between two 

BN shields (8,10) such that diffration occurs only from the sample and not the hidden 

electrodes. A thermocouple (4) connected to a temperature controller (17) sits 

embeded within the bulk of the upper BN sample shield (8) in which the Pt electrical 

leads are embeded. 
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 The furnace consists of an inner electrical heating element (13) and three 

outer heat shields (11) all made of thin vanadium sheets at the centre of which lies the 

quartz tube (3) bearing the mounted sample assembly. There is a gas inlet (15) and 

outlet (2) that can be used to supply and evacuate the cell as required. A Solartron S-

1260 frequency response analyser (1) is coupled to the cells Pt leads and is used to 

collect impedance data. The gas inlet is connected to the gas mixing system (16). A 

series of tight fitting heat radiation baffles (5 - 7) ring the central support column. The 

sample is mounted and tightly held between the BN shields with the electrodes 

(faces) hidden from the neutrons but the side exposed to neutrons. The whole setup is 

then inserted into the neutron beam line. 

 
Figure 15:  Schematics of the in-situ impedance spectroscopy cell. The components 

are named in Table 2. Reproduced with permission from [96]. 
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5. Results and Discussion 
In this section a brief summary of the main findings presented in the appended 

papers is given.  

5.1 Improved proton conductivity through the co-doping of 
BaZr0.5In0.5O3-δ with Yb3+ 

Solid-state synthesis (SSS) and wet chemical preparation (WCR) of pure, 

BaZr0.5In0.5O3-δ, in which half of the In3+ was substituted for Yb3+ was performed. 

Pure cubic, perovskite type BaZr0.5In0.25Yb0.25O3-δ was obtained using the wet 

chemical route unlike in the SSS method whereby Ba3Yb4O9, an impurity phase, was 

detected. The unit cell was found to have expanded on hydration compared to the 

dried sample, which was an indication of vacancy filling, by OH groups. This was 

confirmed by TGA that demonstrated the full filling of the vacancies in the sample on 

pre hydration at 300 °C. The composition of the cations in the sample was confirmed 

to be as expected within experimental error using EDX at 4:1:1:2 for Ba2+ In3+ Yb3+ 

and Zr4+ respectively.  

Proton conductivity dominated below 600 °C in wet Ar gas conditions. This 

was further proven by the use of D2O humidified gas stream whereby the deuteron 

conductivity was found to be lower than that of protons as expected and the value of 

the isotope effect was = 1.7  vs. √2  for the classical isotope effect in close 

agreement with the findings according to Nowick et. al.[98] thereby demonstrating the 

isotope effect. The activation energies were, 0.44 eV for bulk conductivity, in 

agreement with common literature values of 0.4-0.5 eV[29, 99], while for the total 

conductivity it was 0.63 eV, below 350 °C in wet Ar indicating slower migration of 

protons across the grain boundaries. 
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The conductivity of BaZr0.5In0.25Yb0.25O3-δ was found to be greater than the 

singly doped BaZr0.5In0.5O3-δ 
[68]

 and BaZr0.5Yb0.5O3-δ 
[19]systems below 300 °C. 

Through co-doping the grain boundary conductivity and hence the total conductivity 

was increased compared to the singular doped systems, in agreement with the 

findings of Imashuku et. al.[100]. Additionally BaZr0.5In0.25Yb0.25O3-δ was found to 

undergo 100% filling of the vacancies created by doping compared to    

BaZr0.5Yb0.5O3-δ after several days of hydration. 

5.2 Spark plasma sintering of BaZr0.5In0.5O3-δ  

The conductivity of BaZr0.5In0.5O3-δ was investigated using EIS by comparing 

the conductivity of a pellet prepared by solid state sintering (SSS) and a spark plasma 

sintered (SPS) pellet obtained from the same powder. Powder X-ray diffraction 

showed the existence of a single phase in the SSS sample while the SPS processed 

sample had trace impurity peaks that disappeared once the sample was heated to  

1500 °C in air. The main phase was indexed as cubic Pm3m. The impurity in the SPS 

sample originated from the graphite die used, which served as a source of carbon that 

reacted with the sample on heating at 700 °C to remove the graphite. This resulted in 

the formation of BaCO3, hence segregation of the ZrO2 and In2O3 due to barium 

deficiency. However, when the SPS sample was heated to 1500 °C, the three 

components reacted to yield a single phase of the desired material with no impurities.  

A mass loss during TGA in the isothermal step at 900 °C which was attributable to 

the loss of carbon based species given SPS processing was in a graphite die. 

Conductivity wise, wet hydrogen atmosphere exhibited the highest bulk and 

total protonic conductivity in the region of 150-600 °C compared to wet argon and 

dry Ar atmospheres for the SPS sample. The bulk and total conductivities for wet 
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argon runs were slightly lower than those of prehydrated sample on heating under dry 

Ar, see figure 16b.  

The activation energies (150–350 °C, figure 16b) of total conductivity 

samples containing protons were in the range of 0.36–0.62 eV and consistent with 

typical protonic conduction activation energies, 0.4-0.5 eV, of the best proton 

conductors, Y-doped BaZrO3 or BaCeO3 
[30, 101] 

For comparison data from SSS (1500 °C) [68] samples and sol gel synthesis 

(SOL 1100 °C) [68] was plotted together with SPS conductivity data showing that both 

bulk and total conductivity values for SPS sample in wet hydrogen were the highest, 

figure 17a. Protonic conductivity was in the order SPS ≈ SOL > SSS see figure 17b. 

Under dry argon atmosphere for prehydrated samples, on heating the effect of 

the microstructure on conductivity was exposed. Conductivity in dry Ar heating 

followed the following trend SSS > SPS > SOL. This replicated grain size behaviour. 
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5.3 The IInn -- ss ii ttuu  conductivity and hydration studies using 
neutron powder diffraction 

In this paper we reported the development of novel facilities for in-situ 

neutron powder diffraction studies of proton conducting ceramics using samples of 

BaZr0.5In0.5O3-δ to demonstrate the equipment. The facilities allow for the in-situ 

hydration or exposure to a gas stream with variable oxygen partial pressure p(O2) and 

alternatively in-situ impedance measurements of samples pre-treated with deuterium 

(i.e. pre-deuterated). A dense pellet was made by pressing it under 8 tons of pressure 

for impedance measurements while less dense pellets were pressed at 4 tons of 

pressure for the in-situ hydration experiment. 

From the in-situ hydration studies it was found that whenever the sample was 

in a hydrated (with deuterium, i.e. deuterated) state, it consisted of two phases, one 

with deuterons incorporated in the structure and the other phase containing no 

deuterons in it. The deuterated phase itself was approximately 80% deuterated (i.e. 

BaZr0.5In0.5O2.75 (D2O) x., x = 0.20) below 500 K. On cycling between the deuterated 

and dry state, hysteresis was observed in the cell parameter, a, the D2O fraction and 

perhaps most surprisingly, the anisotropic thermal parameter u11 for oxygen and not 

in the u22 (u33) parameter. The latter will perhaps be the subject of further 

investigation to help elucidate an explanation for the cell volume expansion linked to 

hydration. 

In the impedance measurements of the hydrothermally deuterated sample, it 

was discovered that only one phase existed indicating the complete deuteration of the 

sample from the hydrothermal route employed. The conductivity of the in-situ sample 

was found to be an order of magnitude lower than reported values where a H2O gas 
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stream was used to hydrate the sample, an effect primarily associated with the isotope 

effect [98, 102] 

5.4 Structure and conductivity of BaSn0.6Sc0.4O3-δ  

BaSn1-xScxO3-δ was synthesized for the series x = 0, 0.1, 0.2, 0.3, and 0.4 by 

the solid-state synthesis route. Except for BaSnO3 and deuterium treated 

BaSn0.6Sc0.4O3-δ, the samples were found to exhibit complex phase behaviour 

composing of scandium rich and scandium poor phases in addition to Sc2O3 impurity. 

Hence we limited the discussion to the pure BaSnO3 and the vacuum dried and 

deuterated BaSn0.6Sc0.4O3-δ. The samples were characterized by XRPD, EIS, NPD, 

and 119Sn-NMR techniques. Room temperature neutron powder diffraction (NPD) 

data was collected for the samples. The deuterium treated BaSn0.6Sc0.4O3-δ sample 

was used to locate the deuteron site in the unit cell at the crystallographic 24k site 

with x = 0.58(1) and y = 0.22(1), which give an average O-D bond distance of 0.96(1) 

Å.  

119Sn-NMR confirmed that D2O dissolved into the structure of the dried 

sample. The results indicated that locally Sn4+ was surrounded by six Sn4+ in its first 

cation coordination shell i.e. Sn(OSn)6, in BaSnO3 as expected. However the same 

type of local environment persisted in BaSn0.6Sc0.4O3-δ to a weaker extent in addition 

to a broader resonance tentatively assigned to Sn4+ environments with 5 Sn4+ and 1 

Sc3+ in their 1st cation coordination sphere. 

The activation energy of the bulk conductivity obtained by least square fitting 

of the linear region below 250 °C was found to be 0.43 eV close to values reported 

for BaSn1-xYxO3-δ [103]
 of between 0.34-0.41 eV while the total protonic conductivity 

activation energy lay in the 0.67-0.70 eV range, much lower than that of 

BaSn0.875Sc0.125O3-δ (0.87 eV) [41] but much closer to that of BaSn0.75Sc0.25O3-δ (0.73 
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eV) [104] most likely due to the higher doping concentration that enhanced the grain 

growth [103, 104]. 

 The conductivity at 600 °C in wet Ar was 1.07×10-3 S cm-1 similar to that of 

BaIn0.8Ti0.2O2.6 [105]. For related perovskites phases with lower substitution levels, e.g. 

BaSn0.875Y0.125O3-δ [41] and BaZr0.9Sc0.1O3-δ [66], the proton conductivity is reported to 

lie at ~ 5×10-4 S cm-1 suggesting the higher doping level increases proton 

conductivity. Most likely this trend reflects the greater proton concentration in our 

more highly doped system. 

5.5 Proton conduction in oxygen deficient Ba3In1.4Y0.3M0.3ZrO8 
perovskites (M=Ga3+ or Gd3+) 

B-site disordered, oxygen deficient Ba3In1.4Y0.3M0.3ZrO8 (M = Gd3+ or Ga3+) 

perovskites of space group Pm3m, were prepared by a solid-state reactive sintering 

method. The samples were characterised using XRPD, TGA, EIS SEM and EDS. 

79.3% and 55.5% population of the available oxygen vacancies were achieved on 

slow cooling in humidified N2 gas from 400 °C. 74% and 88% relative densities were 

achieved for the Gadolinium containing sample and the Gallium containing sample 

respectively. The cell parameters were found to be 4.2487(1) Å and 4.2133(1) Å in 

the GdY:BIZO and GaY:BIZO respectively. 

Under humid conditions and temperatures below 400 °C protons were found 

to be the dominant charge carriers regardless of the p(O2). Conductivity was found to 

be in the range of 1.7 - 6.7 × 10-4 S cm-1 (M = Gd3+) and 0.9 - 3.79 × 10-4 S cm-1 (M = 

Ga3+) for the temperature interval 300 to 700 °C. Hole conduction was observed by 

comparing conductivity under dry oxygen gas to that under dry argon gas with the 

expected observation being that if hole conduction was present then the conductivity 

under dry oxygen would be higher than in dry argon. Conductivity in dry oxygen was 
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consequently found to be higher than in argon gas above 200 °C for both samples. 

The contribution of hole conduction in the GdY:BIZO was found to be half an order 

of magnitude less than that of GaY:BIZO above 400 °C. Hole conduction occurs due 

to equation 8,  

Equation 19.  ½O   ( ) + V•• = O + 2h•  

Although the density of the GdY:BIZO (74%) was lower than that of  

GaY:BIZO (88%), its conductivity was ~50% higher in the temperature region of 400 

°C to 550 °C under wet Ar gas conditions. The oxide ion conductivity at 1000 °C, i.e. 

conductivity under dry Ar, was found to be approximately twice more in GdY:BIZO 

compared to GaY:BIZO which was rationalized to be due to the larger unit cell of 

GdY:BIZO brought about by Gd3+ doping. 

5.6 Pyrochlore - Fluorite Transition in Y2(Ti1– xZrx )2O7          
(0.0 ≤ x ≤ 1.0) 

Samples of Y2(Ti1–xZrx )2O7 for x=0.00, 0.15, 0.30, 0.40, 0.50, 0.65 and 0.80 

were synthesized using the SSS method using the pre-dried oxides. The densities 

achieved for the samples ranged from 65% to 70%. 

The grain boundary conductivities for all the samples lay in the range             

1-3×10-6 S cm-1 and were largely independent of the temperature unlike the bulk 

conductivities. Samples with x ≤ 0.3 were found to have a bulk conductivity that 

varied in a linear fashion with temperature, as were those with compositions of          

x ≥ 0.3 except for temperatures above 1000 K.  

Plotting the conductivity versus composition revealed that there was an initial 

jump in conductivity over the range 0.00 ≤ x ≥ 0.4 of at least approximately an order 

of magnitude before the conductivity plateaued out at higher x values. This was 
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followed by a small increase at x =1.0 whose data was obtained from a previous 

study[106]. 

To explain this behaviour Rietveld refinements, and thereafter, total scattering 

analysis were undertaken. The starting point was Y2Ti2O7 was modelled in the Fd3𝑚𝑚 

space group with a lattice parameter a ~10.1 Å with Y3+ occupying the A-site with a 

distorted cubic environment, while Ti4+ occupied a distorted octahedral environment 

at the B-site. On examining the neutron diffraction patterns, some Bragg peaks were 

found to broaden at x = 0.65 and disappear at x =0.80 consistent with a pyrochlore-

disordered fluorite transition. Rietveld refinements performed included a variation of 

the scattering lengths over the two crystallographic distinct cation positions as it was 

impossible to reliably determine the three cations’ distributions over the two sites for 

x > 0.0. The results of the Rietveld refinements were used to generate the starting 

models for the detailed reverse Monte Carlo (RMC) analysis of the total neutron 

scattering data (The intricacies of the RMC method are beyond the scope of this 

thesis). 

As a result it was found that Zr4+ initially entered the B-site exclusively 

replacing Ti4+ adopting a cubic rather than octahedral environment. At concentrations 

in excess of x=0.4 there was an increasing tendency of the three cations to disorder 

over the A-site and B-site which was complete at 0.85. This was accompanied by the 

redistribution of the oxygen anion initially involving those on the 48f site. 

In terms of co-ordination numbers, in brackets, Ti4+ (6) co-ordination number 

was found to steadfastly prefer a six-coordination state with increasing x while that of 

Y3+ (8) gradually decreased. Zr4+ (~6) which is initially at the same B-site as Ti 4+ (6) 

increases steadily with x to a slightly lower value than that of Y3+ at x=1, a fact that is 
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most likely due to the preference of anion vacancies to be preferentially located as 

nearest neighbour to the smaller cation within zirconia based oxides [107]. 

Increasing the value of x still resulted in the Y3+ and Ti4+ retaining their cubic 

and distorted octahedral environments respectively even though Y3+ coordination 

number decreased as some vertices becoming vacant as the anions move to the vacant 

anion site. Given that the Zr4+ initially enters the Ti4+ site its preference for a cubic 

environment albeit with some of the vertices vacant results in a significant increase in 

the degree of disorder within the anion sub-lattice. 

Hence it becomes evident that the initial preference of Zr4+ for the Ti4+ site on 

substitution and its preference for a cubic local environment results in a degree of 

disorder in the anion sub lattice, as vacancies tend to associate with it, hence the 

initial jump in conductivity. The dramatic disordering of the cations over the A-site 

and B-site accompanied by the displacement of a significant number of anions into 

the vacant anion site at higher x values does not significantly alter the conductivity. 
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Conclusion and Future Work 
In Paper I the importance of investigating the effects of co-doping has been 

demonstrated. The results indicate a positive effect of Yb as a co-dopant in 

In:BaZrO3. In paper II the various synthesis and processing techniques of 

BaZr0.5In0.5O2.75 have been elaborated in relation to the microstructure, which has 

been shown to affect the behaviour of conductivity. The achievement of a high level 

of densification via SPS is demonstrated and the need for long soaking times to 

achieve large grains is demonstrated.  

Paper III has demonstrated the in-situ experimental characterization facilities 

at ISIS developed in partnership with Chalmers University of Technology using a 

well-known system of BaZr0.5In0.5O2.75. The additional new insight into the hydration 

behaviour with respect to temperature and the structural thermal parameters of the 

oxygen anion has been gained in this work. Further studies of the hydration behaviour 

of other proton conducting perovskites, e.g. BaCe0.8Y0.2O3-δ, are now underway 

which show significant effect of p(D2O) on the structural transition temperatures in 

the material. So far scientists from all over the world have used the two in-situ cells in 

a total of 14 experiments. 

In the fluorite-pyrochlore O2- conducting system, Y2(Ti1-xZrx)2O7, paper IV, it 

has been demonstrated that Zr favours the substitution of the Ti site for lower Zr 

content resulting in the initial jump in conductivity as a function of Zr content which 

brings about the anion disordering hence increasing the oxide ion conductivity. At 

higher Zr substitutions there is a gradual disordering of the cations over the cation 

sites that is associated with a much smaller jump in conductivity. The tuning of the 

anion disordering in the fluorite-pyrochlore system should be further investigated as 

an avenue of improving oxide ion conduction. 
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In paper V, we have demonstrated the surprising finding of having an order of 

magnitude higher conductivity in oxidizing conditions for GaY;BIZO compared to 

GdY:BIZO for such a small percentage Ga on the B-site (15%) in the oxygen 

deficient perovskite. The two systems are ideally compatible and in the future 

GdY:BIZO could possibly be used an electrolyte once its sinterability is addressed 

while GaY;BIZO is used as the mixed conducting cathode material 

A detailed understanding on BaSn0.6Sc0.4O2.8 (paper VI) has been developed 

and the deuteron site plus a detailed atomic model obtained. The contrast between the 

various probing techniques such as XRPD, NPD and NMR and the complimentary 

information they provide was demonstrated. Further, this material also possesses 

electronic conductivity and hence can in the future be applied as a cathode material 

for fuel cells.  

In the future a more detailed understanding of the proton conducting oxygen 

deficient perovskites ability to have enhancement or suppression of the hole 

conductivity would be investigated. The results of experiments using the in-situ gas 

flow cell on Ce0.5Zr0.5O2 and the FeMnO3 system will be presented in the future. 
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Appendix  
Table 1: Key descriptors of the in-situ humidification cell 
 Description 

1 Gas Outlet 

2 Quartz tube 

3, 10 Oxygen sensor 

4 Oxygen sensor controller 

5 Dry gas inlet 

6 Wet gas inlet 

7 Gas humidifier 

8 Gas mixing setup 

9 Temperature controller 

10 Sample 

11 Quartz fritz  

12 Thermocouple 

13 Gas inlet 

14 Vanadium heat shields (3) 
15 Vanadium heating element 

Table 2: Key descriptors of the in-situ impedance spectroscopy cell 
 Description 

1 Solartron 1260 

2 Gas Outlet 

3 Quartz tube 

4 Thermocouple 

5-7 Heat radiation baffles 

8, 10 Boron nitride (BN) shielding 

9 Sample 

11 Vanadium heat shields (3) 

12 Platinum electrode 

13 Vanadium heating element 

14 BN shielding for electrode 

15 Gas inlet 

16 Gas mixing setup 

17 Temperature controller 
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