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Energy Efficient and Collision Free Motion of Industrial Robots using
Optimal Control

Staffan Björkenstam1, Daniel Gleeson1, Robert Bohlin1, Johan S. Carlson1 and Bengt Lennartson2

Abstract— In a production plant for complex assembled
products there could be up to several hundred of robots used
for handling and joining operations. Thus, improvement in
robot motions can have a huge impact on equipment utilization
and energy consumption. These are two of the most important
aspects of sustainability in a production system. Therefore,
this paper presents an algorithm for generating efficient and
collision free motion of industrial robots using path planning
and direct transcription methods for numerical optimal control.
As a measure of efficiency for moving between configurations
we use a combination of the energy norm of the applied
actuator torques and the cycle time. Velocity and torque limits
are handled and modeled as hard constraints. However, more
general problems can be solved by the same approach.

Our novel algorithm solves the problem in three steps; (i) first
a path planning algorithm calculates an initial collision free
path, (ii) a convex optimal control problem is then formulated
to follow this path, and finally (iii) a nonlinear optimal control
problem is solved to iteratively improve the trajectory. The
resulting trajectory is guaranteed to be collision free by re-
strictions in the configuration space based on a local sensitivity
analysis. The algorithm has been successfully applied to several
industrial cases demonstrating that the proposed method can
be used effectively in practical applications.

I. INTRODUCTION

Sustainable manufacturing is defined as “the creation of
manufactured products that use processes that minimize neg-
ative environmental impacts, conserve energy and natural re-
sources, are safe for employees, communities, and consumers
and are economically sound” by The U.S. Department of
Commerce 2010 [1]. This implies the need to consider and
balance between economical, ecological and social factors
to achieve a sustainable production system. A more detailed
discussion on measures and awareness used at Chalmers
University of Technology can be found in Johansson, Dag-
man, Rex, et al. [2]. By using Computer Aided Engineering
(CAE), physical prototypes can be replaced by simulation,
new products can be introduced faster, the efficiency of
the production system can be optimized using mathematical
methods and algorithms, and it can be done by simulation
experts and production engineers in a safe and healthy
environment.

The automotive industry is an example of an equipment
and energy intensive manufacturing, where up to 28% of
the vehicle life cycle energy is spent during production. For
example, a typical automotive car body consists of about
300 sheet metal parts, joined by about 4000 welds. Typical
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joining methods are spot welding, arc welding, gluing and
stud welding. In car body assembly plants, the welds are dis-
tributed to several hundred industrial welding robots, which
are organized in up to 100 stations. The body shop is indeed
investment intense, with the robots as the main consumer of
energy (Meike and Ribickis [3]). In Almström, Andersson,
Muhammad, et al. [4] it is highlighted how utilization
affects different aspects of sustainable production, the link
between utilization and productivity, as well as practical
considerations when improving utilization in manufacturing
industry. Therefore from a sustainability perspective it is
highly motivated to develop new software methods and
algorithms for further improvement of equipment utilization
and energy efficiency of robotized manufacturing systems.

In Segeborn, Segerdahl, Carlson, et al. [5] it is shown
that the balancing of weld work load between the executing
stations and robots has a significant influence on achievable
production rate and equipment utilization. Robot line balanc-
ing is a complex problem, where a number of welding robots
in a number of stations are available to execute an overall
weld load. Each weld is to be assigned to a specific station
and robot, such that the line cycle time is minimized. Line
balancing efficiency depends on station load balancing, robot
welding sequencing, path planning and effectiveness of robot
coordination for collision free execution within each other’s
working envelopes. Robot coordination impairs cycle time by
inserting waiting positions and signals into the original paths.
At Volvo Cars it has been proven that by using automatic
path planning and line balancing instead of standard off-
line programming the cycle time in welding lines can be
improved by as much as 25%. The next step for improving
the automatic path planning and line balancing is to include
detailed optimization of motion profiles between welds. This
choice is also from an energy efficiency aspect motivated.
Meike and Ribickis [3] investigated different strategies to
operate robots in an energy efficient way. Motion profile
optimization was one of the strategies pointed out among
others such as automatic shut-down and start-up, reusing
braking energy, and brake management.

Direct transcription methods have been applied to solve
minimum time and minimum energy problems for indus-
trial robots before, for example by Stryk and Schlemmer
[6]. In this paper we present a novel method for collision
free and energy-efficient control of an industrial robot. Our
main contribution is the way we incorporate the collision
avoidance into the optimal control problem. This is done
by approximating the geometry in configuration space rather
than R3 making the size of the resulting optimization



Fig. 1. Degrees of freedom of the industrial robot ABB IRB 6640.

problem independent of the complexity of the geometry
which contrasts existing methods, for example Müller [7]
and El Khoury, Lamiraux, and Taix [8].

Our algorithm solves the problem in three steps; (i) first
a path planning algorithm calculates an initial collision
free path, (ii) a convex optimal control problem is then
formulated to follow this path, and finally (iii) a nonlinear
optimal control problem is solved to iteratively improve
the trajectory. The resulting trajectory is guaranteed to be
collision free by restrictions in the configuration space based
on a local sensitivity analysis.

The method described in this paper can also be used
for creating motions for simulation of manual assemblies
considering ergonomics and feasibility of humans, and is
therefore also relevant for the social aspects of sustainability.
An early version of the method can be found in Gleeson
[9] where it is applied in the framework of Bohlin, Delfs,
Hanson, et al. [10].

II. METHOD

In this section we describe the steps of the method we use
to generate energy efficient and collision free robot motions.
The method is generic, but for clarity we restrict our attention
to a typical industrial robot with six degrees of freedom,
where all joints are purely one-dimensional revolute joints.
Fig. 1 shows such a robot, an ABB IRB 6640 robot, where
all six rotational axes are marked out.

In sections II-A through II-C we give some background
on path planning, velocity tuning and numerical optimal
control. In section II-D and II-E we formulate our problem
as an optimal control problem. Finally, in section II-F, we
show how to incorporate collision avoidance into the optimal
control problem, which is our main contribution.

A. Collision free path planning

Automatic path planning addresses the problem of finding
collision free motions of moving objects. It is a well estab-
lished research area and there are a number of distinguished
research groups in the world. Complete algorithms are of
little industrial relevance due to the complexity of the prob-
lem (PSPACE-hard for polyhedral models, see Canny [11]).
Instead, sampling based techniques trading completeness for
speed and simplicity are the methods of choice. Common
for these methods are the needs for efficient collision detec-
tion, nearest neighbor searching, graph searching and graph

representation. Two popular methods are the Probabilistic
Roadmap Method (PRM) and Rapidly-Exploring Random
Trees (RRT). The PRM samples randomly among all con-
figurations of an object, keeps the collision-free samples,
and then connects nodes pairwise if the straight line path
between them is collision-free, see Bohlin and Kavraki [12].
The RRT incrementally builds two trees from the start and
the goal configurations respectively. In each step an attractor
is generated at random and the trees are expanded from their
nearest node towards the attractor. The iteration stops when
the trees overlap, as in LaValle and Kuffner [13].

Inspired by both these probabilistic methods, Fraunhofer-
Chalmers Centre (FCC) has developed a deterministic path
planner that adaptively adjusts a grid in the configuration
space. The goal is to produce short, collision free, piecewise
linear paths that serve as good initial paths for the following
steps.

B. Velocity tuning

The initial velocity profile on the collision free path can
be added, in a straight forward way, by considering each
segment separately. One way of doing this is to formulate
the optimal control problem directly on the line segments.
We use, however, a special formulation of the optimal control
problem defined in the following subsections. In order to find
an initial iterate we simply add constraints to the optimal
control problem that force the solution to stay on the line
segments. In order to allow discontinuous velocities at the
vertices we either add knots at each vertex in the path or
solve for each segment separately with zero velocity at the
start and end of each segment. It can been shown that for a
convex objective function with limits on torque and velocities
this can be formulated as a convex problem, as is done by
Verscheure, Demeulenaere, Swevers, et al. [14], i.e. if we
find an optimal solution it will also be a global optimum.

C. Numerical optimal control

Here, in order to motivate our approach, we discuss al-
gorithms for numerical solution of nonlinear optimal control
problems.

We would like to use the sufficient conditions for an op-
timal control i.e. solve the Hamilton-Jacobi-Bellman (HJB)
equations. Unfortunately analytic solution of the HJB equa-
tions for nonlinear problems is notoriously hard and solving a
discretized problem using a dynamic programming approach
suffers from the curse of dimensionality which renders it
infeasible to systems of even moderate number of degrees
of freedom.

The alternative is to use Pontryagin’s maximum principle
(PMP) to find a locally optimal solution. Numerical methods
to find solutions to PMP are usually divided into indirect
and direct methods. Indirect methods use PMP to derive the
continuous optimality condition which are then discretized
and solved numerically. Indirect methods have the nice
feature that they by construction are consistent with the PMP,
but suffer from more practical problems, for example how to
start the iteration, convergence and handling of more general



constraints. An example based on the indirect approach is
given in Gregory, Olivares, and Staffetti [15].

In direct methods, the continuous-time optimal control
problem is discretized, and the resulting discretized nonlinear
optimization problem can be solved using standard nonlinear
programming algorithms. If care is taken in the discretiza-
tion, the lagrange multipliers in the nonlinear programming
problem converges to the costate and the Karush-Kuhn-
Tucker (KKT) conditions of the nonlinear programming
problem (NLP) are really a well behaved discretization of
PMP, see Benson [16] for details.

With the significant progress in large-scale computational
algorithms and sparse nonlinear programming, direct meth-
ods have become increasingly popular. One such method
that has gained popularity is the pseudospectral method, see
Elnagar, Kazemi, and Razzaghi [17].

In pseudospectral methods the continuous functions are
approximated using polynomials which collocate the dif-
ferential equations and the constraints at a certain set of
points. Different methods use different sets of points, two
common choices are the Gauss-Legendre points and the
Gauss-Lobatto points. It can be shown that the N th order
polynomial interpolation at these nodes converges to f(t) ∈
Cm under L2 norm at the rate of N−m. If f(t) is in
C∞, the polynomial interpolation converges at a spectral
rate, i.e. faster than any given polynomial rate. This is
indeed very impressive but in practice and in particular
when solving time-optimal problems non-smooth solutions
and even discontinuity is not uncommon. We can handle this
by inserting knots where the solution is allowed to be non-
smooth or discontinuous, following the procedure of Ross
and Fahroo [18], but the number of knots needed and where
to insert them is not usually known a priori.

If the solution is non-smooth using high order pseudospec-
tral metods seems wasteful since the derivative matrix for the
pseudospectral method is dense which makes the resulting
NLP less sparse. Further, if the solution is not only non-
smooth but also discontinuous the pseudospectral solution
can exhibit quite large ripples and overshooting which could
lead to large constraint violations in between collocation
points. In order to overcome these problems we use a
piecewise polynomial approximation of relatively low order.

If the system under consideration is a Hamiltonian system
exciting results have been shown from combining discrete
mechanics with direct methods for optimal control (DMOC).
In discrete mechanics the variational principle is discretized
directly which leads to integrators with very nice properties.
A comparison between the implicit midpoint rule and a
second order DMOC-method applied to an optimal control
problem can be found in Junge, Marsden, and Ober-Blöbaum
[19].

D. The continuous optimal control problem

The problem we want to solve can be formulated as an
optimal control problem where we want to minimize the cost

functional

J = Φ(x(ts), ts, x(tf ), tf ) +

∫ tf

ts

L(x(t), u(t), t)dt (1a)

while satisfying

ẋ(t) = f(x(t), u(t), t) (1b)
g(x(t), u(t), t) ≥ 0 (1c)
H(x(ts), ts, x(tf ), tf ) = 0 (1d)

for t ∈ [ts, tf ].
Here the state vector is x(t) = [q(t)T , q̇(t)T ]T ∈ R2n and

the control signal u(t) ∈ Rn is the vector of actuator torques
applied at the joints. Where q(t) belongs to the configuration
space i.e. in our robot case q is the vector of joint angles.

The cost functional to be minimized in (1a) contains
two terms, the function Φ(x(ts), ts, x(tf ), tf ) which ac-
counts for costs associated with the initial and terminal
state, and the integral of the Lagrangian L(x, u, t) which
describes costs incurred along the trajectory. In our problems
Φ(x(ts), ts, x(tf ), tf ) is typically just the duration, tf − ts,
and the Lagrangian is a measure of the power consumption,
modeled by a quadratic function L(x, u, t) = xTQx+uTRu
where Q and R are symmetric positive semi definite matri-
ces.

The differential equations (1b) are called the state equa-
tions and describe the dynamics of the system. Constraints
on the state and control along the trajectory are included in
(1c) while (1d) contains the boundary conditions. Note that
(1c) can include both equality and inequality constraints.

In our case we can write the state equations (1b) as

ẋ(t) =
d

dt

[
q(t)
q̇(t)

]
=
[

q̇(t)
fFD(q(t),q̇(t),u(t))

]
where fFD(q(t), q̇(t), u(t)) is the forward dynamics of the
robot. If we use the generalized acceleration q̈(t) we can
rewrite (1b) as{

ẋ(t) =
[
q̇(t)
q̈(t)

]
u(t) = fID(q(t), q̇(t), q̈(t))

where

fID(q(t), q̇(t), q̈(t)) = M(q(t))q̈(t) +

+ C(q(t), q̇(t)) + G(q(t), q̇(t))

is the inverse dynamics in which M(q(t)) is the system’s
mass matrix, C(q(t), q̇(t)) include the centrifugal and corio-
lis forces and, G(q(t), q̇(t)) are the external forces including
gravity. The inverse dynamics can be calculated efficiently
in a recursive fashion as described in Featherstone [20].

E. The discrete optimal control problem

For our problems we found that a reasonable trade-off
between efficiency and error is to use a discrete approxima-
tion of order two. Betts [21] suggests using the trapezoidal
rule which is equivalent to the piecewise pseudospectral
method of order two using the Gauss-Lobatto points, but
this discretization sometimes caused oscillations for our



problems. Instead we use the corresponding approximation
with the Gauss-Legendre points which amounts to the im-
plicit midpoint method, a symplectic integrator of order two
(Hairer, Lubich, and Wanner [22]).

If we divide the time interval [ts, tf ] into N equidistant
subintervals of duration h, we can formulate a discrete
version of (1), using the midpoint rule, as follows:

Minimize
Φ(x0, t0, xN+1, tN+1) +

+
N∑
i=0

hL

(
xi + xi+1

2
, ui+ 1

2
,
ti + ti+1

2

)
(2a)

subject to

xi+1 − xi = hf

(
xi + xi+1

2
, ui+ 1

2
,
ti + ti+1

2

)
(2b)

g

(
xi + xi+1

2
, ui+ 1

2
,
ti + ti+1

2

)
≥ 0 (2c)

H(x0, t0, xN+1, tN+1) = 0 (2d)
ti+1 = ti + h (2e)
h ≥ 0 (2f)

for i = 0 . . . N .
If we include q̈i+ 1

2
, for i = 0 . . . N , as variables we can

write (2b) as
qi+1 − qi = h q̇i+1+q̇i

2
q̇i+1 − q̇i = hq̈i+ 1

2

ui+ 1
2

= fID

(
qi+qi+1

2 , q̇i+q̇i+1

2 , q̈i+ 1
2

)
for i = 0 . . . N .

In the discrete setting our limits on the angles, velocities
and torques become

qlower ≤ qi ≤ qupper, i = 0 . . . N + 1

q̇lower ≤ q̇i ≤ q̇upper, i = 0 . . . N + 1

ulower ≤ ui+ 1
2
≤ uupper, i = 0 . . . N

Note that we choose to collocate the angle and velocity limits
on the node points and not at the midpoints.

The variables in the NLP are qi, q̇i, ti for i = 0 . . . N + 1
and q̈i+ 1

2
, ui+ 1

2
for i = 0 . . . N i.e. the positions and veloc-

ities are defined on the node points while the accelerations
and the torques are defined on the midpoints. Note that since
we use equidistant time steps it suffices to use t0 and tN+1

as time variables. In our implementation we use t0, tN+1

and h.
To solve the resulting non-linear optimization problem we

use the NLP-solver IPOPT (Interior Point OPTimizer) which
is described in Wächter and Biegler [23].

F. Collision avoidance

The initial path created in Section II-A is collision free.
In this section we describe how this property is maintained
while the optimal control problem is solved.

Let us define the distance function as

ϕ(q) = min
p∈A(q)

d(p)

where A(q) is the space occupied by the robot at configu-
ration q and d(p) : R3 → R is the minimum distance to the
surrounding geometry Γ ⊂ R3, i.e.

d(p) = min
y∈Γ

‖p− y‖2

One way of keeping the solution collision free would be
to add a minimum clearance constraint, i.e include

ϕ(q(t)) ≥ dc, ∀t ∈ [ts, tf ] (3)

in (1c), where dc ∈ R is the minimum allowed clearance
along the path. But ϕ(q) is not generally in C1 so adding the
constraint (3) to the optimal control problem would result in
a nonlinear programming problem which can not be solved
using standard NLP-solvers. To overcome this we formulate
an iterative method based on local sensitivity analysis.

Given a feasible configuration qk ∈ Rn we want to be
able to guarantee that a new configuration qk+1 = qk + ∆qk

has at least a clearance of dc ≥ 0.
Let p be a point on the robot and p(q) be that point at

configuration q. Since d(p) is Lipschitz continuous

max
p

∥∥p(qk+1)− p(qk)
∥∥

2
≤ ϕ(qk)− dc

implies that ϕ(qk+1) ≥ dc.
If we do a Taylor expansion around qk we get

max
p

∥∥p(qk+1)− p(qk)
∥∥

2
≈ max

p

∥∥∥∥∂p∂q (qk)∆qk
∥∥∥∥

2

≤

max
p

∥∥∥∥∂p∂q (qk)∆qk
∥∥∥∥

1

≤
∥∥∆qk

∥∥w(qk)

1
≤ n

∥∥∆qk
∥∥w(qk)

∞

where ‖ · ‖w(q) denotes a weighted norm with weight vector
wi(q) = maxp ‖ ∂p

∂qi
(q)‖1 for i = 1 . . . n. Hence it is

reasonable to use

n
∥∥∆qk

∥∥w(qk)

∞ ≤ ϕ(qk)− dc

in order to approximately satisfy

ϕ(qk+1) ≥ dc.

In the discrete setting the approximate minimum clearance
constraints, for iteration k, can be written as

n
∥∥qk+1

i − qki
∥∥w(qki )

∞ ≤ ϕ(qki )− dc for i = 0 . . . N + 1

which is a simple box constraint in configuration space at
each time step, as illustrated in Fig. 2.

Since we use an approximate clearance constraint we can
not guarantee that the new configuration qk+1 = qk +∆qk is
above our clearance threshold. Hence we need to check the
new iterate and perform a backtracking step if necessary. We
stop the iteration when the reduction in the objective value
is below some given threshold.

Starting with the velocity tuned solution, Fig. 2 illustrates
how the trajectory is iteratively improved using the sensitiv-
ities.

With two degrees of freedom it is possible to plot the state
space of the solution. Fig. 3 compares the velocity tuned
solution to the optimized solution for a problem where the
robot is restricted to only use the second and third joint.



(a) Stage I (b) Stage II (c) Stage III

Fig. 2. Three different stages in the iterative procedure to improve the
collision free path.
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Fig. 3. Comparison between the velocity tuned (cycle travel time T = 6.21s)
and the optimized trajectory (T = 4.82s) for a two-dimensional problem.

III. RESULTS

To validate our method we run the described algorithm
on one of the robots in the virtual stud welding station of
an actual industrial assembly line, see Fig. 4. The limits on
angles and velocities are taken from the robot specification.
These can be seen in Table I along with the estimated torque
limits. Here we use the simple objective function

J =

∫ tf

ts

1 + ceu(t)Tu(t)dt

i.e. a linear combination of the time duration and our energy
measure, the sum of squares of the actuator torques inte-
grated over time. The trajectory for the robot after sequencing
consists of visiting 22 studs, starting and finishing in a home
position. Since we can not affect the time spent welding or
the placement of the studs we are only concerned with the
energy consumption and the travel time in between the welds.
While welding the robot needs to stand still, this enables us
to split the problem into, in this case 23, independent smaller
problems using appropriate boundary conditions.

To assess the trade-off possible between cycle time and
energy consumption we plot the Pareto optimal front for the
optimized trajectory by varying the weight ce, see Fig. 5.

TABLE I
LIMITS OF POSITION, VELOCITY AND TORQUE

Joint 1 2 3 4 5 6
qlower [deg] -170 -65 -180 -300 -120 -360
qupper [deg/s] 170 85 70 300 120 360
q̇lower [deg] -110 -90 -90 -190 -140 -235
q̇upper [deg/s] 110 90 90 190 140 235
ulower [Nm] -15500 -21000 -7000 -130 -120 -0.8
uupper [Nm] 15500 21000 7000 130 120 0.8

TABLE II
TEST CASE PERFORMANCE (ce = 10−8)

Method Cycle travel time Energy consumption
Velocity tuned 11.2 s 100%
Optimized 9.05 s 87.2%

For example if we can accept a 10% increase in travel time
we can reduce our power consumption with about 30%.

In Table II we compare our new optimized solution and the
original velocity-tuned solution path from our path planner.
For this particular case, ce = 10−8, we see that, by having
the freedom to alter the path, we are able to cut down the
cycle travel time by 19.2% while at the same time decreasing
the energy consumption by 12.8%. These solutions are also
indicated in the Pareto plot, Fig. 5.

Even though we do not have an accurate model of the real
power consumption, the example indicates that considerable
savings can be made using our method.

In our calculations we chose N = 50 for each phase
which gave us a total of 1750 discretization points. For the
optimized trajectory in Table II the step size h vary between
1.25 and 14.6 ms. The problem was solved in about 20
minutes on a standard desktop computer.

IV. CONCLUSIONS

In this paper we have presented a new method to gener-
ate trajectories for industrial robots. Our method combines
numerical optimal control with path planning to generate
trajectories that are both energy efficient and collision free. In
order to validate our approach the method has been tested on
actual industrial cases. In order to use our control algorithm
on real world equipment a feedback tracking-controller could
be created by using for example LQR trajectory stabilization.

There are however still areas of improvement in our
method. To accurately model our system a more realistic

Fig. 4. Industrial stud welding station with two ABB IRB 6640 robots.
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model of the power consumption is needed. Also a rigorous
convergence analysis would be in order. It would also be
interesting to compare the performance of our algorithm if
the NLP-solver IPOPT was replaced with a solver based on
for example Sequential Quadratic Programming (SQP). SQP-
methods are easier to warm start compared to an interior
point method, which could both save computer time and
enhance stability of our iterative approach.

The work in this paper could also be extended to include
coordination of multiple robots by combining our approach
with the ideas from Vergnano, Thorstensson, Lennartson, et
al. [24] and Wigström, Lennartson, Vergnano, et al. [25].
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