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Using Akaike Information Criterion for Selecting the
Field Distribution in a Reverberation Chamber

Xiaoming Chen

Abstract—Previous studies on modeling the random field
(amplitude) in a reverberation chamber (RC) were conducted ei-
ther by fitting a given distribution to measured data or by com-
paring different distributions using goodness-of-fit (GOF) tests.
However, the GOF tests are inappropriate for comparing differ-
ent distribution candidates in that they are meant to check if a
given distribution provides an adequate fit for a set of data or not
and they cannot provide correct relative fitness between different
candidate distributions in general. A fair comparison of different
distributions in modeling the RC field is missing in the literature.
In this paper, Akaike’s information criterion (AIC), which allows
fair comparisons of different distributions, is introduced. With
Rayleigh, Rician, Nakagami, Bessel K, and Weibull distributions
as the candidate set, the AIC approach is applied to measured data
in an RC. Results show that the Weibull distribution provides the
best fit to the field in an undermoded RC and that the Rayleigh
distribution provides the best approximation of the field in an over-
moded RC. In addition, it is found that both the Rician and Weibull
distributions provide improved approximations of the field in an
RC loaded with lossy objects. This study provides correct comple-
mentary results to the previous RC studies.

Index Terms—AKkaike’s information criterion (AIC), field distri-
bution, goodness-of-fit (GOF), reverberation chamber (RC).

I. INTRODUCTION

HE reverberation chamber (RC) has been used for electro-

magnetic compatibility (EMC) tests as well as over-the-air
(OTA) measurements of wireless devices [1]-[16]. Due to the
complicated test conditions (e.g., inhomogeneous test objects,
irregular mode stirrers, changing boundary conditions, etc.),
various RC measurements are ubiquitously studied from a sta-
tistical point of view. Since the overmoded RC represents a rich
scattering environment, it is natural to assume that the com-
plex (electromagnetic) field inside is Gaussian distributed. In
other words, the amplitude of the field in an overmoded RC
is Rayleigh distributed [1]-[4], [10]. On the other hand, there
are studies showing that the field in an undermoded RC fol-
lows the Weibull or Bessel K distribution [5]-[8]. However, the
study in [9] claims that the Weibull distribution fits the field
distribution of the overmoded RC but not the undermoded one.
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Interestingly, the superiority of the Weibull fit has been shown
based on measurements in indoor/outdoor multipath environ-
ments [17], [18]. In the course of finding a distribution from
a set of candidates to fit the measured data, the relevant prior
studies (e.g., [9], [17], and [18]) used various goodness-of-fit
(GOF) tests [19].

GOF tests are basically special versions of hypothesis tests.
The general procedure for testing a null hypothesis H, is to par-
tition the sample space into a rejection region and an acceptance
region based on a test statistic. Usually, a significance level is
chosen to ensure a small probability that the true H) is rejected.
A good GOF test should minimize the probability that a false H
is accepted for a given significance level. Powerful as they are
for examining a specific distribution, GOF tests are not suitable
for examining a set of distribution candidates. In other words,
GOF tests are meant to check if a given distribution provides an
adequate fit for a set of data or not and they do not provide a
relative measure of how good the fit actually is. For this reason,
it is usually suggested that several types of GOF tests should
be applied to examine the given distribution [19]. Nevertheless,
there are studies applying the GOF test for several distributions
in the candidate set, where the percentage with which each fitted
distribution passes the test is used as the performance metric.
Such studies assume that the GOF test in use is equally powerful
for all distributions, which does not hold in general [20], [21].

While [1]-[7] did not compare different distributions, [9] used
a GOF test for comparing Rayleigh and Weibull distributions. To
overcome the drawbacks of GOF tests in distribution selection,
this paper uses Akaike’s information criterion (AIC) [20] to
test the field distribution in an RC. The AIC approach falls
into the category of model selection [21], which is suitable for
choosing the best fitted distribution among the candidate set
for the random variable under test. The AIC approach has been
used in [22] and [23] for model selection for wireless fading
channels. In this paper, based on the measurements in an RC
and with Rayleigh, Rician, Nakagami, Bessel K, and Weibull
distributions as the candidate set, it is found that the Weibull
distribution offers the best fit for the undermoded RC and that
the Rayleigh distribution provides the best fit for the overmoded
RC.

It is shown in [5] and [7] by fitting the Weibull distribution
to RC measurements that the field in an undermoded RC is
Weibull distributed. On the contrary, using GOF tests [9] shows
that the Weibull distribution well approximates the field in an
overmoded RC but not that in an undermoded RC. It is believed
that the reason of the superiority of the Weibull distribution
over the Rayleigh one in [9] is partially due to the facts that
the Weibull distribution has two scalar parameters while the
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Rayleigh distribution has only one scalar parameter and that
GOF tests cannot take the overfitting (i.e., the parameter vector
with a large p tends to offer more flexibility in fitting specific
data and the nice fitting tends to break down for another inde-
pendent data) problem of the Weibull distribution into account.
On the other hand, different distributions with possibly differ-
ent scalar parameter numbers can be fairly compared using the
AIC approach [20]. In addition, based on measurements with
different RC loadings, it is found in this paper that the Weibull
distribution provides better fit to the measured data with increas-
ing loading. Another explanation for the disagreement between
this work and that in [9] may be that a loaded RC has relatively
more unstirred components (and thus resembles an RC with
less effective mode stirrers or an undermoded RC) [24]. This
work provides correct complementary results to the previous
RC studies [1]-[9].

II. AIC APPROACH

The selection of a suitable distribution out of a given candidate
set J involves the calculation of the discrepancy between the true
cumulative distribution function (CDF or simply distribution) F'
and each candidate distribution G;j9 j = 1,..., |J|, where |.J|
denotes the cardinality of J and @ represents the p x 1 parameter
vector (with p being a positive integer). The detailed derivation
of the AIC approach can be found in [20]-[23]. For the sake of
conciseness, the AIC is given here directly

]\T
AIC; = =2 "Ing, o(w,) +2p (1)

n=1

where In denotes the natural logarithm, 9i16 is the corresponding
probability density functions (PDF) of G i1 and z, denotes
the nth sample of the measured N sample. The corresponding
maximum likelihood (ML) parameter estimator is

N
- 1
0= arg;nax N Z Ingje(x,). 2)

n=1

The AIC values are difficult to interpret directly in that the
AIC values of different (reasonable) candidate distributions are
usually of the same order of magnitude. Similarly, comparisons
of the empirical CDF of the measured data and those of the
distribution candidates do not provide interpretable distinctions
(the corresponding results are therefore omitted). Therefore, one
has to resort to the AIC weights [20] for better distinctions. The
AIC weights are defined as

o — XD (;/2)
TS exp(an/2)

where ¢; = AIC; — min; {AIC; }. It represents relative feasibil-
ities of different candidates, ranging from O (the worst fit) to 1
(the best fit). In other words, a larger AIC weight means a better
fit.

Note that (3) is only accurate for a reasonably large N /p and
that for N /p < 40 a correction term should be added to the

3)

AIC [25]

2p(p+1)
N-p—-1

The weights of the AIC with the correction term (AICC) can
be obtained by replacing AIC; with AICC; in (3).

There are different information criteria in the literature, e.g.,
the Bayesian information criterion (BIC). A comparison of
AIC/AICC and BIC is given in [26], showing that AIC/AICC
has theoretical advantages over BIC in that AIC/AICC is derived
from principles of information theory [29]. It was also shown
by simulations that suggest AICC tends to have practical perfor-
mance advantages over BIC [26]. Further comparison of AIC
and BIC shows that AIC is asymptotically optimal in selecting
the model with the least mean square error, under the assump-
tion that the true model is not in the candidate set (as is virtually
always the case in practice) and that BIC is not asymptotically
optimal under the assumption [27]. Therefore, this paper will
use the AIC approach.

AICC; = AIC; + 4)

III. CANDIDATE DISTRIBUTION SET

The Rayleigh, Rician, Nakagami, Bessel K, and Weibull dis-
tributions are believed to be the most relevant models. Their
PDFs and corresponding free parameter ML estimators are given
in the following sections.

A. Rayleigh Distribution

If the field in an RC is complex Gaussian distributed with
a zero mean, then the amplitude of the field is Rayleigh dis-
tributed. The Rayleigh distribution is probably the most com-
mon statistical model for an overmoded RC [1], [2], [10]. Its
PDF can be expressed as (for the sake of notational convenience,
the subscript ;g is dropped hereafter)

x x?
= — -—— 5
g(z) = —exp ( 572 ) ©)
where the free parameter is = o. Thus, the Rayleigh distribu-

tion has only one scalar parameter, i.e., p = 1. The ML estimator
of o is [28]

(6)

B. Rician Distribution

If the field in the RC is complex Gaussian distributed with
a nonzero mean (representing an unstirred component [3], [4]),
then the amplitude of the field is Rician distributed. The PDF of
the Rician distribution is

x % + v? xTv
9(x) = Zexp (— - ) 1 (%) @)

where I is the modified Bessel function of the first kind with
order zero and the free parameter vector is 8 = [v o]7 (the
superscript 7 denotes transpose). Thus, the Rician distribution
has two scalar parameters, i.e., p = 2. The well-known Rician
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K-factor K is related to these parameters as K = v? /o2, As
will be shown in the next section, a vector network analyzer
(VNA) is used to sample the complex field Sa; (x = |S21]).
Denote the total power of the field as Q = 202 + v2, whose ML
estimator is [28]

N
A 2
Q-—}Zlmn. (®)
The ML estimator of v is

1 &
N ZSQML .

n=1

0=

®

It is then natural to use ({2 — ©?)/2 as the estimator of o2, but
this is not an ML estimator. Therefore, we have to resort to the
numerical ML estimation [28], which utilizes the fininsearch
function in MATLAB.

C. Nakagami Distribution

The Nakagami distribution (that includes Rayleigh and Rician
distributions as special cases) is a popular statistical model. The
PDF of the Nakagami distribution is

_ 2 my\™ 2m—1 me
g(w)—m(ﬁ) 2" lexp (—Q> (10)

where I is the gamma function and the free parameter vector is
0 = [m Q]T. Hence, the Nakagami distribution has two scalar
parameters, i.e., p = 2. For m = 1, the Nakagami distribution
reduces to the Rayleigh distribution. The Nakagami distribution
can well approximate the Rician distribution by letting K =
m — 1+ +vm? — m. The ML estimator of ) is given by (8).
The ML estimator of m is [28]

2 & -
A 2 2
m—<21nQ—N21nxn> .

n=1

an

D. Bessel K Distribution

It is shown in [8] that the Bessel K distribution can be used
to model the field in an imperfect RC. The PDF of the Bessel K
distribution is

t]\rf-'rl

o) = g K )

(12)
where the free parameter vector is @ = [M #]7, and Kj; 4
denotes the modified Bessel function of the second kind with
the order of M — 1. The closed-form ML parameter estimator
does not exist for the Bessel K distribution. Hence, we resort to
the numerical ML estimation @ [28] (based on the fiminsearch
function in MATLAB).

E. Weibull Distribution

The Weibull distribution was originally proposed to model
failure rate (see [9] and reference therein). It also finds appli-
cations in modeling random fields in the RC [5]-[7], [9]. The

TABLE I
ML ESTIMATORS FOR THE CANDIDATE DISTRIBUTIONS

Candidate distributions ML parameter estimator
Rayleigh (6) [28]
Rician numerical estimator [28]
Nakagami (8) and (11) [28]
Bessel K numerical estimator [28]
Weibull MATLAB function wblfit

! e

D E
1 2
Network
Analyzer
Fig. 1. Drawing of Bluetest reverberation chamber with two mechanical plate

stirrers, a platform, and three wall antennas.

PDF of the Weibull distribution is

g(x) = ba 2" exp(—(z/a)’) (13)

where the free parameter vector is 8 = [a b]T. For b = 2,
the Weibull distribution reduces to the Rayleigh distribution. A
closed-form ML estimator for the Weibull distribution does not
exist in the literature. Thus, one has to resort to the numerical
ML estimation [28]. In this case, 8 can be obtained by calling
the available function whlfit(x) in MATLAB, where X is a vector
of the measured field amplitudes.

All the aforementioned ML estimators are summarized in
Table 1.

IV. MEASUREMENTS AND RESULTS

Although the main focus of this paper is to apply the AIC
approach for a fair distribution selection, it is helpful to present
the GOF tests results for the sake of comparison of GOF and
AIC for distribution selection. Thus, in this section, the results
of GOF tests are presented briefly prior to the AIC results.

A. Measurements

Measurements were performed from 500 to 2000 MHz in an
RC with a size of 1.80 x 1.75 x 1.25 m? (a drawing of which is
shown in Fig. 1). Its fundamental mode resonance frequency is
fo =119 MHz, giving a lowest usable frequency (LUF) of about
6 fy = 717 MHz (see [24] and reference therein). Note that this
LUF corresponds to a well-stirred and unloaded RC. Provided
that the stirrers are less effective and/or the RC is loaded, the ac-
tual LUF should be larger than 717 MHz. It has two plate mode
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Fig. 2. Photograph of the load2 configuration in the RC.

stirrers (that are equivalent to the translated stirrer in [30]),
a turn-table platform (on which a wideband discone antenna
is mounted), and three antennas mounted on three orthogonal
walls (referred to as wall antennas hereafter). The wall antennas
are actually wideband half-bow-tie (or triangular sheet) anten-
nas. The measurement setup (or stirring sequence) of the RC is
chosen such that the turn-table platform was step-wisely moved
to 20 platform positions evenly distributed over one complete
platform rotation; at each platform position the two plates were
simultaneously and step-wisely moved to 50 positions (equally
spanned on the total distances that they can move). At each stir-
rer position and for each wall antenna a full frequency sweep
was performed by the VNA with a frequency step of 1 MHz,
during which the Sy, is sampled as a function of frequency and
stirrer position. Thus, there are 20 x 50 = 1000 stirrer positions
per frequency point. The same measurement procedure were re-
peated for three loading conditions: load0 (unloaded RC), loadl
(head phantom that is equivalent to a human head in terms of
microwave absorption), and load?2 [the head phantom plus three
Polyvinyl Chloride (PVC) cylinders filled with microwave ab-
sorbers cut in small pieces]. Fig. 2 shows a photograph of the
load2 configuration (where the three gray colored PVC tubes
are mounted orthogonally in the corner). Hereafter measured
data from these different loading configurations are simply re-
ferred to as load0, loadl, or load2 data, whose corresponding
Q-factors are shown in Fig. 3.

In the postprocessing, only the S5; samples corresponding to
one of the wall antennas are used (the statistics of the samples
corresponding to the other two wall antennas are quite similar).
As mentioned in Section III, the random field amplitude is de-
noted as =z = |S2;| and the measured (N = 1000) amplitude
samples are stacked into one column vector denoted as x. Both
transmit and receive antennas have a moderately low average
reflection coefficient. Fig. 4 shows the [(S11)| of the transmit
antenna for all loading conditions, where ( ) denotes average
over all the stirrer positions. The receive antenna has slightly
lower |{S11)| and are omitted for conciseness. The average re-

1500

1000

Q-factor

500

500 1000 1500
Frequency (MHz)

2000

Fig. 3. The Q-factor for measurement data at load0, loadl, and load?2 cases.
A frequency stirring (see [24] and reference therein) of 20 MHz (corresponding
to 20 frequency points) was applied to smoothen the curves.

-6

load0
— - —load1
load2

S11 (dB)
1
©
(4]

-1 .
500 1000

Frequency (MHz)

1500 2000

Fig. 4. Reflection coefficient (averaged over all the stirrer positions) of the
transmit antenna at load0, loadl, and load2 cases (all three curves almost
overlap).

flection coefficient of the antenna is almost not affected by the
loading (which affects the field distribution, as can be seen in
Section IV-C).

B. GOF Tests

The Kolmogorov—Smirnov (KS) GOF test and the Anderson—
Darling (AD) GOF test have been used in [9] for comparison
of the fitness of Rayleigh and Weibull distributions to the RC
measurements. The AD GOF test makes use of the specific
distribution in calculating the critical values [19]. Therefore,
it allows more sensitive tests (the drawback is that the critical
values must be calculated for each distribution), compared with
the KS GOF test. Therefore, the AD GOF test is employed in
this paper; and we confine the tests to Rayleigh and Weibull dis-
tributions for conciseness and direct comparison with previous
RC work.

Itis shown in [24] that the AD GOF test rejects not only fields
in the low-frequency range, but also in the high-frequency range.
In this paper, we use the rejection significance level (as in [24])
to present the test results. Fig. 5 shows the rejection significance
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Rejection significance level (%)
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Rayleigh
= —— Weibull
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Fig. 5. Rejection significance levels of Rayleigh and Weibull distributions
obtained by applying the AD GOF test to the load0 data.

levels (where 100% means the best fit and 0% means the worst
fit) of Rayleigh and Weibull distributions by applying the AD
GOF test to the measurement data x of the load0 case. The result
of the Rayleigh test agrees with that in [24]. In addition, it shows
that its rejection rate is larger at the low frequencies, which is
reasonable in that it is well known that the field in an overmoded
(higher frequencies) RC is Rayleigh distributed and that the field
of an undermoded (lower frequencies) RC is not. The results are
also in agreement with that of [5], which shows that the Weibull
distribution fits the data of the undermoded RC better than that
of the Rayleigh distribution. Nevertheless, it should be noted
that the comparison is only valid when the GOF test is equally
powerful in both distributions, which does not hold in general.
In addition, the GOF test also suffers from the overfitting prob-
lem (cf., Section I), which prevents fair comparison of different
distributions with different parameter numbers (i.e., the Weibull
distribution has two scalar parameters and the Rayleigh distri-
bution has only one scalar parameter). Therefore, one has to
resort to the AIC test for fair comparisons of different candidate
distributions.

C. AIC Tests

Since the AIC test is more suitable for the selection of differ-
ent candidate distributions (as explained in Sections I and II), it
will be studied in more detail in this subsection by applying the
AIC test to various measurement data.

Fig. 6 shows the comparison of the AIC weights for the can-
didate distribution based on the load0 data. It can be seen that
in the higher frequencies the Rayleigh distribution provides the
best fit (the largest AIC weight) and that in the lower frequencies
both Bessel K and Weibull distributions provide better fit. Note
that, for an AIC test, the best candidate may not necessarily have
an AIC weight of 1 and that the best fit simply corresponds to the
largest AIC weight since the AIC test provides relative fitness.
This implies that, for the unloaded RC, the field in an under-
moded RC (at lower frequencies) is more likely to be Weibull or
Bessel K distributed and that the field in an overmoded RC (at
higher frequencies) is more probable to be Rayleigh distributed.

Rayleigh
1
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0 e i 3
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It FAIINNT i P LTINS N PPN A N W oo S e S
500 1000 1500 2000
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05[ ) . ]
. ;. u‘;. .‘:‘\‘. ~ ".'.‘ L ‘a . R
500 1000 1500 2000
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Qb et e vaa B e N B R
500 1000 1500 2000
Weibull
1
0.5p % """ oL ceen ]
R P N e e A s R N e A S L
ol " . |
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Fig. 6. Comparison of AIC weights for Rayleigh, Rician, Nakagami, Bessel

K, and Weibull distributions based on the load0 data.
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Fig. 7. Comparison of AIC weights for Rayleigh, Rician, Nakagami, Bessel

K, and Weibull distributions based on the load! data.

It is shown that by loading the RC it is possible to create
Rician distributed field. (According to [15], the unstirred multi-
path component (UMC) has the same effect as the line-of-sight
(LOS) component [15]. By locating the loads in the corners of
the RC, they reduce only the scattered power not the LOS or
UMC power. Hence, the K-factor can be increased by loading.)
In order to study, the feasibility of the Rician distribution in the
RC, the AIC test is applied to the loadl and load?2 data. The
corresponding AIC weights are shown in Figs. 7 and 8, respec-
tively. It is seen that even with increasing loading, the Rician
distribution is not feasible for the RC field. The reasons why
the Rician distribution is inferior to the Rayleigh distribution
are that both transmit and receive antennas are nondirective and
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Fig. 8. Comparison of AIC weights for Rayleigh, Rician, Nakagami, Bessel

K, and Weibull distributions based on the load2 data.

that the platform stirring effectively reduces the potential un-
stirred components even with increasing loading [31]. On the
other hand, the Weibull distribution shows better fit to measure-
ments in the loaded RC.

In order to be able to observe the Rician distributed field,
one has to restrict the platform position to one and with one
wall antenna, because the LOS components are different with
different platform position and wall antennas [31]. Instead of
doing another set of measurements with one platform position,
a subset of the measured data corresponding to one platform
position is selected. By doing so, the number of samples reduces
to N =50 (i.e., 50 plate stirrer positions). The corresponding
reduced data are referred hereafter as a platform subset of the
data (and different platform subsets have very similar statistics).

Note that since N /p < 40 for this case, the AICC (4) has to
be used. Figs. 9 and 10 show the corresponding AICC weights
of a platform subset of loadl and load2 data, respectively. It
can be seen that the AICC weights of the Rician distribution
increases with increasing loading and that it almost becomes
comparable to that of the Rayleigh distribution for a platform
subset of the load2 data. Note that Bessel K’s AICC weight
reduces by restricting the platform position number to one even
in the lower frequencies. This is probably due to the fact that
the ML estimator for the Bessel K distribution is more sensitive
to sample number than the other ones and that by limiting N =
50 its parameter estimation degrades, which in turn degrades its
AICC performance [32].

From Figs. 6-10, it can be seen that the feasibility frequency
of the Weibull distribution (i.e., the frequency above which the
Weibull distribution reasonably fits the measured data) increases
with increasing loading. This implies that the RC’s actual LUF
is affected by the loading (and the effectiveness of the mode
stirrers). This observation agrees with the result in [24]. The
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Fig.9. Comparison of AICC weights for Rayleigh, Rician, Nakagami, Bessel
K, and Weibull distributions based on a platform subset of the loadl data.
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Fig. 10. Comparison of AICC weights for Rayleigh, Rician, Nakagami, Bessel

K, and Weibull distributions based on a platform subset of the load?2 data.

Nakagami distribution, however, gives the worst overall perfor-
mance in almost all cases.

V. CONCLUSION

In this paper, the AIC approach is introduced to select the
best approximating distribution for the field in an RC. Unlike
the GOF tests, the AIC approach provides fair comparisons
between different distribution candidates (with possibly dif-
ferent scalar parameter numbers). With the Rayleigh, Rician,
Nakagami, Bessel K, and Weibull distributions as the candidate
set, the AIC approach is applied to the measured data in an RC.
It is found that the field in an undermoded RC is most fitted
by the Weibull distribution and that the Rayleigh distribution
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approximated the field in an overmoded RC the best. By re-
stricting the platform position to one, it is shown that the Rician
distribution provides better approximation with increasing load-

ing.

It is also found that the Weibull distribution provides better

fits to the measured data with larger loading. The intuitive expla-
nation for this is that with increasing loading the RC becomes
less stirred (or equivalently undermoded).
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