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Abstract. We demonstrate theoretically and experimentally the generation
of rectified mean vortex displacement resulting from a controlled difference
between the surface barriers at the opposite borders of a superconducting strip.
Our investigation focuses on Al superconducting strips where, in one of the two
sample borders, a saw tooth-like array of micro-indentations has been imprinted.
The origin of the vortex ratchet effect is based on the fact that (i) the onset
of vortex motion is mainly governed by the entrance/nucleation of vortices
and (ii) the current lines bunching produced by the indentations facilitates the
entrance/nucleation of vortices. Only for one current direction the indentations
are positioned at the side of vortex entry and the onset of the resistive regime is
lowered compared to the opposite current direction. This investigation points to
the relevance of ubiquitous border effects typically neglected when interpreting
vortex ratchet measurements on samples with arrays of local asymmetric pinning
sites.
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1. Introduction

Mobile physical entities such as particles, bacteria or water droplets, subjected to a zero mean
periodic excitation, can acquire a finite mean momentum if the energy potential landscape is
asymmetric [1–4]. A particularly attractive system for testing these non-equilibrium phenomena
can be made on the basis of type-II superconductors where the quantum bundles of magnetic
flux can be regarded as repulsively interacting particles in an energy potential landscape fully
determined by the inhomogeneities of the superconducting condensate [5, 6]. The possibility of
changing the number of particles by simply changing the magnetic field intensity or of tuning
the size of the particles by properly adjusting the temperature makes this superconducting
system an ideal toy model. In general, for isolated particles, rectification is obtained when
the typical distance traveled by the particles during the period of the excitation is larger than
the length scale at which the symmetry of the potential is broken. However, the response
of the system becomes more complex at high densities, when the separation between the
particles is smaller than the length scale of the potential and their mutual interaction becomes
important. For instance, multiple reversals of the easy-axis rectification direction can be
observed as the number of particles is increased or when the characteristic length scale of the
potential asymmetry changes [7–9].

The vast majority of the theoretical approaches for describing the physical mechanisms of
these ratchet systems assume an infinite medium with no borders or with periodic boundary
conditions. Neglecting sample borders in superconducting systems seems to be unjustified from
an experimental point of view [10, 11] unless special care is taken to move the particles in
circles such as in the Corbino disc configuration [12]. Indeed, it has been recognized in the past
that unwanted differences between the two sample borders can lead to spurious rectification
signals [13–17]. However, it still remains unclear whether there is also an influence from the
asymmetric entering–exit process.

More than 50 years ago the work of Bean and Livingstone (BL) addressed the influence of
the sample edge on the magnetic properties of a type-II superconductor [18]. In their seminal
paper, they describe the presence of a surface barrier at a vacuum/superconducting interface
arising from the competition between the repulsion of a vortex from the surface due to Meissner
currents, and the attractive image force arising from the boundary condition of zero current
normal to the sample edge.
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This surface barrier, inherently present in finite superconducting samples, is not symmetric,
i.e. the energy needed to introduce a vortex into the sample is different from that needed to
remove the vortex from the sample. This difference between vortex nucleation and vortex exit
leads to metastabilities that manifest themselves as hysteretic magnetization curves [19, 20].
Although in electrical transport experiments the BL barrier can be an important factor that
determines the critical current (particularly in the weak pinning regime), the fact that vortex
trajectories involve entering, traveling across the sample and exiting the sample implies that the
most resistive mechanism (i.e. vortex entering) dominates. This asymmetry of the BL barrier
could not yet be detected with ac transport measurements since, once again, both the entering
and exiting processes take place at the same time for the vortex lattice independent of the current
direction.

We will show that even though the asymmetry of the BL barrier does not constitute a
sufficient condition to induce vortex rectification by electrical transport measurements, it is a
necessary ingredient to achieve rectification. It is possible to create a vortex rectifier by lowering
the barrier for vortex entry only on one side of the superconducting bridge while leaving the
other side unchanged. Depending on the sign of the applied current, vortex entry can occur
either at one or the other side of the bridge. As a result, only for one particular current direction
the barrier for vortex entry is drastically reduced, which is manifested in a clear difference
between the measured dissipation for both current directions.

In this paper, we study the impact of a micro fabricated roughness at the border of a
superconducting thin film on the rectification of vortices. We investigate the difference in dc
voltage (Vdc) response under an ac current drive, between a superconducting Al bridge with two
equally straight edges and a bridge with an array of indentations only on one side of the bridge.
The size of these saw tooth indentations has been chosen to be comparable with the size of
the superconducting vortices. The experimental findings are in agreement with time-dependent
Ginzburg–Landau (TDGL) simulations.

2. Sample details

We investigate superconducting Al thin films in strip geometry of 50µm width, 200µm length
and 50 nm thickness. The fabrication was done by patterning a resist mask, on top of a SiO2

substrate, with the help of electron beam lithography and then by deposition of an Al thin
film by molecular beam epitaxy on top of the patterned resist mask and subsequent lift-off.
Only at one side of the bridge a series of equally spaced triangular-shaped indentations were
made. The dimensions of the fabricated samples are presented in figure 1. In order to check
reproducibility and robustness of this type of vortex rectifier, we fabricated several samples
with varying density of indentations. We focus here on the two extreme cases: the reference
bridge with no indentations and the bridge with one indented side with maximum density of
indents allowed by their size, having zero pitch between the indents.

According to the Drude model [21] the product ρlel is a constant that depends on
the material, where ρ and lel are resistivity and electron mean free path, respectively.
In [22] it has been shown that for thin aluminum films we have ρ4 Klel = 4 × 10−16�m2.
In our case the measured resistivity at 4 K is ρ4 K = 1.425 × 10−8�m, which gives lel =

28 nm. The dirty limit expressions [23] ξ(T )= 0.855
√
ξ(0)lel/(1 − T/Tc0) and λ(T )=

0.64λL(0)
√
ξ(0)/lel(1 − T/Tc0), where λL(0) is the London penetration depth, result in a

coherence length ξ(0)= 181 nm and a penetration depth λ(0)= 77 nm for the samples under
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Figure 1. Superconducting aluminum thin film in bridge geometry. The side
contacts are used for voltage probing and the current is injected through
the contact pads at each end of the bridge. The geometrical parameters are
a = 2.5µm, b = 50µm, c = 200µm and Al film thickness t = 50 nm. H , J
and FL are the applied magnetic field, the driving current density and the
Lorentz force acting upon Abrikosov vortices, respectively. The directions of
the magnetic field and driving current, as illustrated here, give the definitions for
the positive applied values. At the right side of the figure, we have an atomic
force microscopy image of the flat side of the Al bridge. The nominally flat
border has imperfections such as protrusions sticking out by 0.25µm. The red
dashed lines illustrate for comparison the shape and size of the indents at the
opposite side of the bridge.

investigation. The effective penetration depth 3(0)= λ2(0)/t for the t = 50 nm thin film is
3(0)= 119 nm. The critical temperature, determining the onset of superconductivity, is Tc0 =

1.285 K.

3. Experimental results

The electrical measurements were carried out using a four-probe Kelvin configuration, with
ac currents fed by a Keithley 6221 source whereas a Keithley 1228a digital nanovoltmeter
was used for voltage probing. The Edc( jac) characteristics for the studied samples are shown
in figure 2. Here the applied magnetic field is 0.55 mT and the frequency of the ac current
is f = 33.711 kHz. Taking into consideration that typically the vortex velocities are at least
hundreds of meters per second [24], for micrometer-wide bridges the low applied driving
frequency ensures that during half of the ac cycle the vortices travel across the entire bridge. The
measurement was taken at temperature T = 1.12 K (0.87 T/Tc0). The inset of figure 2 shows a
zoom-in at lower current densities where the generated electrical field Edc corresponds to a
vortex ratchet and the easy direction of vortex ratchet motion is from left to right (see figure 1)
in the indented bridge. The reference sample shows no vortex ratchet effect. In figure 2, we can
clearly distinguish an Edc peak at a current density roughly 30 kA cm−2 for the indented sample
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Figure 2. Comparison of the electric field–current Edc( jac) characteristics for
the reference and the indented samples. The inset shows a zoom of Edc( jac) for
low current density values at the onset of the resistive regime. Measurements
were done in a magnetic field perpendicular to the film surface H = 0.55 mT
and for a driving frequency f = 33.711 kHz. The cryostat temperature during
measurements was kept at T = 1.12 K.

Figure 3. Contour plot, for the reference and indented samples, of the net dc
electric field Edc( jac, H) as a function of the magnetic field and amplitude of
the sinusoidal ac current density at a frequency 33 kHz and T/Tc0 = 0.87. The
dashed lines at H = 0.55 mT indicate the conditions under which the data of
figure 2 were obtained.

(open squares) and a much smaller peak at roughly 32 kA cm−2 for the reference sample (filled
circles). The steep increase of Edc has been attributed to the onset of phase slip lines (PSLs)
once the vortex velocity reaches a critical value [25].

In figure 3 we have for both samples the obtained electric field versus current density
Edc( jac) measurements taken at T = 1.12 K for different magnetic fields ranging from −0.8
to 0.8 mT. These contour plots clearly demonstrate that the presence of indents induces the
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rectification of vortex motion over a wide range of magnetic fields. In contrast to that,
the reference sample exhibits a very weak rectification signal probably originating from
unavoidable imperfections of the nominally flat sample borders, in agreement with previous
reports [13, 14, 26] or from the fact that placing both voltage contacts at one side of the bridge
leads also to breaking the inversion symmetry [27, 28].

The antisymmetric dependence on the magnetic field is explained by the inversion of the
Lorentz force (and therefore also the vortex motion direction) when changing the polarity of
the magnetic field-induced vortices. The rectification sign for all indented samples is identical,
which indicates that the easy direction of vortex motion in these samples is the same. This shows
that the indentations break the symmetry of vortex motion in a robust and systematic way.

4. Theoretical model

We describe vortex dynamics using the generalized TDGL equation for dirty superconduc-
tors [29]:

1√
1 + γ 2|ψ |2

(
∂

∂t
+ iϕ +

1

2
γ 2 ∂|ψ |

2

∂t

)
ψ

= (∇ − iA)2ψ + 2

(
1 −

T

Tc

)
ψ(1 − |ψ |

2). (1)

Here ψ is the order parameter, and ϕ and A are the scalar and vector potentials, respectively.
The relevant quantities are made dimensionless by expressing lengths in units of

√
2ξ(0), time in

units of π h̄/(4kBTc)≈ 11.6τGL(0), magnetic field in units of80/(4πξ 2(0))= Hc2(0)/2, current
density in units of 80/[2

√
2πµ0λ

2(0)ξ(0)] = 3
√

3/(2
√

2) jc(0) and scalar potential in units of
2kBTc/(πe). Here,80 = π h̄/e is the magnetic flux quantum, µ0 is the vacuum permeability, τGL

is the Ginzburg–Landau time, Hc2 is the second critical field and jc is the critical (depairing)
current density of a thin wire or film [23].

The parameter γ = 8τEkBTc
√

u(1 − T/Tc)/(π h̄) is proportional to τE , the inelastic
collision time for electron–phonon scattering. u is a numerical factor, which approximately
equals 5.79 [29]. At γ � 1 the healing time of the superconducting condensate is ∼γ |ψ |τGL

(see e.g. [30]). Equation (1) is strictly valid for [29] γ 2 < u/(1 − T/Tc), i.e. for γ . 10 at
(1 − T/Tc). 0.1. At the same time, the γ value experimentally obtained for Al is as large
as ∼1000 for those temperatures [31]. Nevertheless, it appears that the approach, based on the
use of equation (1) with γ ∼ 10, is able to capture the main physical mechanisms, related to the
vortex dynamics in thin Al samples [32] as well as to the ratchet effect in Al bridges with arrays
of asymmetric pinning sites [25]. In the present calculations, we take γ = 10.

The distribution of the scalar potential ϕ that enters in equation (1) is determined from the
condition

∇ · j = 0 (2)

which reflects the continuity of currents in the superconductor. The total current density j is
given by the sum of the normal and superconducting components:

j = jn + js, (3)

jn = −
σ

2

(
∇ϕ +

∂A
∂t

)
, (4)
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Figure 4. (a) Calculated distribution of the square modulus of the order
parameter in the absence of an applied current. Panels (b) and (c) show the
distributions of the streaming parameter S for t2 − t1 = 40 000 at positive ( jdc =

43 kA cm−2) and negative ( jdc = −43 kA cm−2) applied dc current, respectively.

js =

(
1 −

T

Tc

) [
Im (ψ∗

∇ψ)− A|ψ |
2
]
, (5)

where σ is the normal-state conductivity, which is taken as σ = 1/12 in our units [33]. The
vector potential A, for which we choose the gauge ∇ · A = 0, can be represented as

A = Ae + As. (6)

Here Ae denotes the vector potential corresponding to the externally applied magnetic field H,
while As describes the vector potential induced by the currents j that flow in the superconductor:

As(r)=
1

2πκ2

∫
d3r ′

j(r′)

|r − r′|
, (7)

where κ = λ/ξ is the Ginzburg–Landau parameter. Integration in equation (7) is performed over
the volume of the superconductor.

In our model, we consider a thin superconducting strip (see figure 4(a)) with
thickness 50 nm, lateral sizes L x × L y = 15µm × 30µm (somewhat smaller than those for
the experimental samples) and indentations similar to those in the experimental samples.
An external homogeneous constant magnetic field H is perpendicular to the strip, while the
external transport current is applied in the y-direction. The TDGL simulations are performed for
ξ(0)= 181 nm, λ(0)= 77 nm, T = 1.12 K, Tc = 1.285 K and H = 0.55 mT. Since the thickness
of the superconductor is significantly smaller than the coherence length ξ(T ), variations of the
order-parameter magnitude across the layer as well as currents in this direction are negligible.
For such a thin superconductor film, equations (1) and (2) can be rewritten in the xy-plane
only, by replacing ∇ with ∇2D ≡ ex∂/∂x + ey∂/∂y and A with 〈A2D〉, where ex and ey are unit
vectors in the x- and y-directions, respectively, while 〈A2D〉 denotes the in-plane vector potential
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averaged along the thickness of the superconductor. The superconductor–insulator boundary
conditions (

∂

∂x
− iAx

)
ψ

∣∣∣∣
x=0,Lx

= 0, jnx |x=0,Lx
= 0 (8)

which ensure zero values for both the superconducting and normal components of the current
across the boundary, are assumed in the x-direction. In the y-direction, we take the normal
metal–superconductor boundary conditions

ψ |y=0,L y
= 0, jny

∣∣
y=0,L y

= je (9)

with a uniform density of the externally applied current je at the boundaries.
When solving numerically the two-dimensional (2D) version of the TDGL equation (1),

the gauge invariance of the discretized equations is preserved by introducing link variables
following the method of [34, 35]. The 2D grid, used in our calculations, has 123 × 243
equally spaced nodes. As described in more detail in [36], the step ht of the time variable t
is automatically adapted in the course of calculation. This adaptation is aimed at minimizing
the number of steps in t and—at the same time—to keep the solving procedure accurate. In the
present simulations the step ht is typically ∼10−5 to ∼10−3 depending on a specific distribution
of the order parameter. For momentary distributions of the order parameter and the (time-
dependent) in-plane vector potential 〈A2D〉, an iteration procedure is used to determine from
equation (2) the corresponding distribution of the scalar potential ϕ with a relative accuracy
not worse than 10−4. The (time-dependent) vector potential 〈A2D〉 and the corresponding link
variables are calculated using equation (7).

5. Calculated results

In figure 5(a), the calculated time-averaged electric field Edc = 〈ϕA −ϕB〉/ (yA − yB) between
points A and B (see figure 5(b)) is shown as a function of the increasing density of the applied
dc | jdc| current for positive (filled circles) and negative (open triangles) current directions. As
seen from the inset of figure 5(a), for positive applied currents (full circles), which cause a
Lorentz force acting on vortices in the positive x-direction, the onset of the resistive regime
occurs at a significantly smaller value of | jdc| than in the case of negative applied currents
(empty triangles), which tend to move vortices in the negative x-direction. This result is
natural, because the indentations, which are present at the left (x = 0) boundary of the strip,
greatly facilitate nucleation of vortices and their entry into the superconductor. Even at current
densities quite above the onset of the resistive regime in the case of flat boundaries, vortex entry
on the micropatterned boundary takes place exclusively through the vertices of indentations.
This is illustrated in figure 4(b), where we plot the distribution of the streaming parameter

S =

[
(t2 − t1)

−1
∫ t2

t1
(∂|ψ |

2/∂t)2 dt
]1/2

, introduced in [37] to visualize the vortex trajectories. In

the case of negative applied dc currents, where vortices enter the strip through the flat right
(x = 15µm) boundary, the entry points for vortices are not well defined. As a result, the
corresponding pattern of S (figure 4(c)) appears somewhat smeared out as compared to that
shown in figure 4(b).

For comparison, in figure 5(a) we also plot the results calculated for a symmetric strip with
flat boundaries at both sides (crosses). As follows from the inset of figure 5(a), in this case
the magnitude of the critical current, which corresponds to the onset of the resistive regime,
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(a) b

c

d

e

Figure 5. (a) Absolute value of the calculated average electric field Edc between
points A and B (see panel (b)) as a function of the increasing density | jdc| of
the applied dc current for positive (filled circles) and negative (open triangles)
current directions. For comparison, the results for a symmetric bridge with
flat boundaries are shown with crosses. Snapshots of the order parameter
distributions, which correspond to points labeled as ‘b’ ( jdc = 59 kA cm−2), ‘c’
( jdc = 94 kA cm−2), ‘d’ ( jdc = −87 kA cm−2) and ‘e’ ( jdc = −122 kA cm−2), are
plotted in panels (b)–(e), respectively. The inset of panel (a) shows the behavior
of Edc( jdc) at relatively low current densities.

is practically the same as that for negative currents in the strip with indentations shown in
figure 4. This clearly demonstrates that the onset of the resistive regime is mainly determined
by a possibility for vortices to enter the superconductor and hence by the properties of the ‘inlet’
boundary of the strip, rather than by the properties of the ‘outlet’ boundary. However, as seen
from a comparison between the results plotted in figure 5(a) with crosses and open triangles, the
effect due to patterning of the ‘outlet’ boundary on the behavior of Edc( jdc) above the critical
current is not negligible. In particular, such a patterning facilitates the formation of PSLs (see
figures 5(b)–(e)), which results in sudden jumps of Edc versus | jdc| (see figure 5(a)). In the case
of a patterned ‘inlet’ boundary, the PSLs appear at even smaller current densities | jdc|.

The difference between the curves Edc( jdc) for positive and negative current directions
(filled circles and open triangles, respectively, in figure 5(a)) implies the appearance of a positive
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Figure 6. Calculated rectified electric field Edc between points A and B (see
figure 5(b)) as a function of the density amplitude jac of the applied low-
frequency ac current. The inset shows the behavior of Edc( jac) at relatively low
current densities.

rectified electric field Edc when applying an ac current to the strip. In the limit of low ac
frequencies, this rectified electric field (see figure 6) is found using the results for an increasing
dc current (figure 5(a)) as well as the curves Edc( jdc) calculated for decreasing current densities
jdc starting from the values that correspond to different numbers of PSLs (not shown here). A
relatively large difference between the current densities, corresponding to the formation of a
given number of PSLs at positive and negative current directions (see figure 5(a)), results in a
broad peak of Edc( jac) in figure 6. The smaller features on the curve Edc( jac) are related to the
change of the number of PSLs formed during the positive/negative half-period of the applied
ac current.

6. Discussion

Upon comparing the calculated results with the measured data, we find good qualitative
agreement between theory and experiment. In both cases the indented sample manifests a
sizable and robust ratchet signal. When comparing figure 6 with figure 2, one can notice that the
steep increase of the calculated Edc( jac), caused by the onset of the PSL regime, occurs at an
appreciably higher amplitude of the ac current density jac than that experimentally observed for
the indented strip. This discrepancy can be attributed to the difference between the used γ = 10
and much larger experimental γ -values for Al (indeed, an increase of γ leads to formation of
PSLs at lower currents—see e.g. [30]). However, the aforementioned difference in γ -values
cannot explain the fact that both the height and the width of the peak in the calculated Edc( jac)

are much larger than those observed in the experiment. Indeed, at low ac frequencies an increase
of γ tends to increase the magnitude of the rectified field in the PSL regime [25]. It must be
mentioned that at high vortex velocities heating effects must not be neglected. Heating could
contribute to lowering the currents corresponding to the formation of PSLs for both polarities
of the current, therefore lowering the height and width of the measured ratchet signal.
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The difference between the calculated and measured shapes of the Edc( jac) peak may also
be related to the presence of imperfections on the nominally flat edges of the experimental
samples (see figure 1). Indeed, edge defects are known to significantly facilitate the vortex
entrance through a rough edge [14, 38]. Due to this effect, the difference between the current
densities that correspond to the formation of PSLs for positive and negative currents can be
significantly smaller as compared to our model, where the right edge of the superconducting
strip is perfectly flat. Correspondingly, the height and width of the measured Edc( jac) peak
should be reduced as compared to the calculations for an idealized sample. This explanation is
supported by the observation of a relatively well pronounced peak of Edc( jac) on the reference
sample with nominally flat boundaries at ac current amplitudes that slightly exceed those for
the indented sample (see figure 2). Remarkably, for both the reference and indented samples
the measured values of the rectified field Edc still remain comparable to or even larger than the
maximum rectified electric fields (few mV cm−1) experimentally obtained for ratchet systems
with intentionally introduced arrays of asymmetric antidots [9, 39]. This clearly indicates that
the properties of the sample edges may play an important role, also when measuring the rectified
voltage on samples with ratchet arrays.

Our TDGL simulations also show that the maximum critical dc current density j1,
corresponding to the onset of vortex propagation across the superconducting bridge shown
in figure 4(a), is achieved at a non-zero magnetic field. This confirms earlier predictions
[13, 14] for the field dependence of the critical current in a superconducting strip with different
vortex-entry conditions at the opposite boundaries. In [13, 14] such different vortex-entry
conditions, attributed to different roughnesses of the sample boundaries, were introduced ad
hoc by postulating an arbitrarily chosen difference between the two critical current densities
for vortex entry at the two opposite sides of the strip. As distinct from the aforementioned
model, in the present model a difference between the surface barriers for vortex entry shows
up as a direct natural consequence of the engineered sample asymmetry. Due to this well-
pronounced asymmetry, in a considerably wide range of magnetic fields around zero the critical
density j1 of a positive dc current appears to be a monotonously decreasing function of H :
we find j1 = 282, 231 and 182 kA cm−2 for H = −0.025, 0 and 0.025 mT, respectively. A
relatively large magnitude of the derivative ∂ j1/∂H |H=0 ≈ −2000 kA (cm−2 mT) implies that
an efficient rectification of vortex motion is possible also in the regime where, instead of a dc
magnetic field and an ac current, a weak ac magnetic field and a dc current (e.g. with density
jdc ≈ 230 kA cm−2) are applied to the structure under consideration.

7. Conclusions

Summarizing, we report a qualitative and quantitative analysis of rectified electric fields in
indented Al bridges. The origin of the ratchet is based on the fact that the onset of vortex motion
is mainly governed by the entrance/nucleation of vortices and the current crowding effect
produced by the indentations that facilitate this vortex nucleation process. Upon comparing
the calculated results with the measured data we find good agreement between theory and
experiment. In both cases the indented sample exhibits a sizable and robust ratchet signal. We
show that the defects at geometrical borders of a superconducting bridge can play a crucial role
in the overall ratchet signal. These effects have been systematically ignored when interpreting
the results of ratchet effect measurements performed in samples with arrays of asymmetric
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pinning centers. Our findings point to the need of revising previous investigations, particularly
when making quantitative estimations.
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