ISSN 0348-1069

Dynamic Analysis of a

Moored Wave Energy Buoy
by

Nils Mértensson

Report

Series B:50 Gdteborg 1988




Institutionen for vattenbyggnad
Chalmers tekniska hogskola

Depértment of Hydraulics :
Chalmers University of Technology

Dynamic Analysis of a
Moored Wave Energy Buoy
Nils Martensson
Report
Series B:50 ' Géteborg 1988
Adress: Institutionen for vattenbyggnad
Chalmers tekniska hégskola

412 96 GOTEBORG

- Telefon: 03172 10 00



SUMMARY

Time Domain Equations of Motions for a wave energy buoy
is presented. The equations are derived for a small body

that is moored via mooring buoys.

The equations are derived in a body fixed coordinate
system, which was most convenient. The motions are then

integrated in an Earth Fixed Frame.

Hydrodynamic forces are derived assuming the body to be
small compared to the wave length. Wind and current

forces are included, but potential wave drift forces are
excluded. Dynamic mooring forces are assumed on the mooring
buoys. Wave energy is converted by damping an extra motion

degree of freedom in heave.

The main scope of the text is in topics such as hydro-
dynamic properties and loading. Kinematics of rigid
bodies are also discussed, especially coordinate trans-

formations.
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PREFACE

The work is the first part of two, about the dynamics of
a wave energy convertor. It is dealing with basic hydro-
dynamics and mechanics, and is to be followed by a text

on the numerical simulation.

I wish to thank my tutor, Dr. Lars Bergdahl, and others
at the Department of Hydraulics for help throughout the

work.



Al INTRODUCTION

Converting wave energy into electricity using a buoy is a
delicate matter. Apart from choosing a properly tuned floater,
i.e. with a response that fits the wave climate, a mooring
system has to be used to keep it in position. This mooring
have to be designed so that it does not introduce any nega-
tive effects on the buoy motion. To be able to design such a
system, there has to be a tool that is able to consider

effects of dynamic mooring forces exerted on the buoy.

The normal procedure when calculating the motions of a
floating body, is to assume that the mooring forces act as
static forces. In doing this assumption mass and damping
forces are neglected. If these are of importance, as they
could be for a small buoy, the only way to evaluate this is

to use the dynamic forces from the moorings.

The main equations of motions are first to be established
from fundamental hydrodynamics, and then to be specified on
an object. In doing this different forces can be distinguished

and their significance can be estimated.

Al.1l Coordinate system

A proper choice of the coordinate system is of interest when
deriving the equations of motions. Especially when dealing
with the algebraic expressions for physical phenomena, e.gq.

torque.

There are two types of orthogonal coordinate systems, left-
handed systems (LHS) and right-handed systems (RHS). In this
report the RHS is used. Properties of both are stated below,
to ease the understanding of the difference between the sys-

tems.

The space coordinate system consists of one zero point
(origin) in space, and one base vector (&, ¢, 2) which is



assumed to be orthonormed. Then the base vectors in the
following order &, ¢, 2 makes a right-handed system if the
smallest rotation that makes & parallell to ¢ is viewed anti-
clockwise from the tip of the Z-axis. If on the contrary the
smallest rotation is viewed clock-wise then the system is
left-handed.

=<

» N
T

v

x>

~3

N> €

Right-handed system Left-handed system

Fig. Al:1l Base vectors in RHS and LHS respectively. The %-
and Z-axis are in the plane of the paper, and the
¥-axis is directed into the paper.

It is most important to notice the sequence of the vectors;
If &, §, 2 is a RHS, then ¢, 2, & and 2, &, § are also RHS.
In the following two sections the definitions of the systems

are presented using perhaps more illustrative definitions.

Al.1l.1 Defined by vector product

The vector product is defined so that positive rotations -
between successive axes will give a RHS system and negative

rotations will give a LHS.



The vector products of the base vectors are:

RHS & =9 x 2
v =2 x %
2 =% x 9
LHS & = =(9 2)
g =-(2 x %)
Z2 = -(R g)
2= (%x) (xy) 1 y
1 |
Pa “'93
y B X
04 /91
_.92
97\3 .
B X
v
RHS 5 LHS
Fig. Al:2 Vector products.
Al.2 The independent coordinates of a rigid body

Before discussing the motion of a rigid body we must first
establish how many independent coordinates that are necessary
to specify its configuration. The position in space of a rigid
body is specified, if the positions of three non-colinear
points in the body (or rigidly connected with it) are known

in a given frame. Every point requires three coordinates, but
the constraint that the distances between all parts of the
body are constant gives three relations. This reduces the
number of independent coordinates that are needed to specify
the position of the body to (3x3 -3 =)6.



Of course, there may be additional constraints on the body
besides the constraints of rigidity. For example, the body
may be constrained to move non-rotationally. In such a case

the independent coordinates will reduce to three.

P N

Py

X

Fig. Al.3 Unprimed axes represent an external reference set
of axes, and the primed axes represent the body

fixed axes.

There are various ways of assigning these six coordinates.

One way is to locate a Cartesian set of coordinates fixed in
the rigid body (the primed axes in Fig. Al.3) relative to

the coordinate axes of the external space. Clearly three of
the coordinates are needed to specify the coordinates of the
origin of the body fixed axes. The remaining three coordinates
must then specify the orientation of the primed axes in the

translated frame.



A2 MOTION RELATIVE TO A MOVING REFERENCE FRAME

In this chapter the relations between two moving systems are

discussed.

A2.1 Orthogonal transformation

Fig. A2.1 Three sets of coordinate axes.
X is space fixed, then translationed to x,

and finally rotated to x7

Different sets of coordinate axes (or frames) are related in
some way. The relation is most easily understood if the vec-
tor properties are related. Knowing that a vector is defined
by its magnitude and direction, and that the direction only
is defined in a set of coordinate axes, it is easy to derive

the relation.



A2.1.1 Transformation matrix

If one system is regarded as fixed, the other one is
displaced, i.e. rotated and translated, relative to the fixed
system. With notations from Fig. A2.1 this can be

successively written as follows

it

Relation X f(x)
Xx =X =R ... (A2.1)

Here Bo is the position vector of the origin of the displaced

coordinate system. x and X are as defined in Fig. A2.1.
Relation x = f(x')

x'" =T (8 ) . x «os (A2.2)
Here Go is Euler angles, which are the angles between the two

systems. T is the so called transformation matrix, which is a

3 x 3 matrix containing the nine direction cosines.

X3 $)
X3 Eé
—
f;
(5]
£ X

Fig. A2.2 Consequtive rotations about
(p) x
(B) Ez—ax1s, angle 92

1—ax1s, angle 91

s
(C) €3 axis, angle 93
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There are twelve different conventions possible when choosing
the rotation angles (see Goldstein (1980) App.B.}. In this
text the xyz-convention will be used which implies that each
rotation is about different labelled axis. Furthermore the
1-2-3 sequence of rotation is used. This means that the first
rotation is the roll angle Gl about the x-axis (xl—axis), the
second is the pitch angle 92 about the intermediary y=-axis
(gz—axis), and the third is the yaw angle 93 about the final
z=axis (xéuaxis or géwaxis), see Fig. A2.2.

& %2

Fig. A2.3 Frame relations of first rotation 91 (roll)

From Fig. A2.3 we conclude that the relation between the sys-

tems of coordinates x and g is as follows:

£1 = ¥
£y = X%, cosel + x3sin6l (A2.3)
g3 = —x251n91 + x30059l

which can be written in matrix form as

= 1 = P =3 =
B 1 0 0 Xq (a2.4)
52 0 cosel 81n91 x2
gi’ f —51nel cosel‘ f3d




or more compact as

1) X% (r2.5)

In a similar fashion as above we can write the relations due

to the rotations 62 and 93

-

v . . _
g o= cosé, 0 -siné, £ =B(8,) ¢
0 1 0
51n92 : 0 00592 (A2.6)
and _ -
| - : LI '
X cos(-)3 51n93 0 14 2(93) £
m51n93 cosG3 0
0 0 1 (A2.7)

Combining Egs. (A2.5) to (A2.7) we can transform the coordinate
x to x' as follows

XI

I
0
©

w\-’

I
!
o
@
wv
e
)
N\-/
b
I

B(6,) A(0)) x (A2.8)

The transformation matrix is

-3

(8) = g(e3) 2(92) é(el) (A2.9)
which when multiplying gives

2(9) = 092c83 celse + selsezce selse -c8 592c9 (A2.10)

3 3 3 1 3

—c62893 c81c93w59159236 s6.co., + c9159256

3 1773 3

i 592 —sel c92 celce2 ]
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with the abbreviations ¢ = cos and s = sin. Now it is quite
easy to establish the inverted transformations. That is, from

x' to x.
(A2.11)

At this stage it should be quite proper to use the ortho-
gonal properties of the transformation, without missing any-
thing in the analysis. The property to be used is that the
inverted matrix 2—1 is equal to the transposed matrix gt.
(This is shown in the next Chapter A2.1.2).

1o gt (A2.12)

3
=3
]
=3
i3
i
=
]
v
=3

Which of course also can be derived similarly as in egs. (A2.5)
to (A2.9)

=3
il
|ID"
[
@
fuy

liw

i

I
(=
{Lioe
i@}

I
H;:
[L]vs]
o

I
i3

(A2.13)

The transposed (or inverted) transformation matrix becomes,

t__ _ L

I = c92c93 cezse3 562
c81593+selsezce3 c@lc93~selsazse3 ~sslc92
581593—091562093 selc93+091592563 celce2 (A2.14)

With the same abbreviations as in eq. (A2.10).

This gives the inverted transformation using eq. (A2.11) and
eq. (A2.13) '

%! (A2.15)
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A2,1.2 Formal properties of the transformation matrix

The transformation matrix is a very useful mathematical tool
in rigid body mechanics. It is therefore of great interest to

know a little about its properties, such as its inverse etc.

Inverse

e L

Of great importance is the transformation inverse to T, called

gml. The first property is obvious as

-1

I =1 (A2.16)

i3

which indicates why it is called the inverse matrix.
The transformation matrix and its inverse are commutative
T I =T T (A2.17)

In general the inverse matrix is the Wronskij determinant,

W(T), divided by the determinant of the matrix.

gt

=3

Il = w(D . (A2.18)
Further, knowing that for a righthanded orthogonal matrix the
determinant is +1 and the Wronskijan determinant is the trans-

pose matrix,

3
i
s

W(T) = (A2.19)

3

and as this is whaf,we are dealing with. Combining eq. (A2.18)

and (A2.19) gives the useful relation

"o gt (A2.20)

=3

which is used in the previous chapter A2.1.1.

The product of the transformation matrix and a vector matrix

is also commutative.

Ta=a"rt (a2.21)
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A square matrix that .is the same as its transpose

B,.. = B..
ij ji
is said to by symmetric. When the transpose is the negative

of the matrix

The matrix is antisymmetric or skew symmetric. It is obvious
that in an antisymmetric matrix, the diagonal elements are
always zero. For any square matrix B, the matrix QS defined
as

B.=1/2 (B + BY) (22.22)

is symmetric, and a corresponding antisymmetric one can be
defined as

=1/2 (8 - B9 (A2.23)

It obviously follows that

B=B,+B (A2.24)
and
B-=B.-B (A2.25)

With the transformation matrix and its inverse derived in eq.
(A2.10) and (A2.14) the symmetric transformation matrix is
2cé,ch (c61~092)593 + sé

2773
+sels€2c93

c93)se2

i3
i
Nof

563+(1-c9

1 1

sel(c93~c92) +

+celsezse3

2(091093—591592593)

SYM. 2 cel c92

L! L=
(A2.26)

and the antisymmetric transformation matrix is



He3
]
N
o

(cel+c92)se3+

+s56.s86

150,605

ANTISYM.

12

591583—(1+celc93)592

(A2.27)
s8. (cO. ,+ch. )+
3 2
+cé1592593
0

od

which both are very complex, but if assuming small rotations

(cé= 1, s6=6 and 66=0) they will become much simpler.

A
T = 1 0
=g
1
S.
A
2a - 0 93
0

ol =1
0 (A2.28)
1
_92
Bl (A2.29)
0

which can be combined to form their corresponding transforma-

tion matrix and its inverse, using eq.

(A2.24) and (A2.25).

The two interpretations of an operator as transforming the

vector, or alternatively the coordinate system, are both in-

volved if we seek to find the transformation of an operator.

Under a change of coordinates let

acting upon a vector F to produce

G=2aF

The components of the vector G in

by

3
o)
I
3
[k
L]

A be considered an operator

a vector G.
(A2.30)

the new system will be given

(r2.31)
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If the vector F is to be in the new system, it is convenient
to rewrite eq. (A2.31) as

( ™) (T F) (A2.32)

=3

G) = |

3
>

The expressions enclosed in the brackets are the correspond-
ing elements from eq. (A2.30) in the new coordinate system.
If the new system is denoted with a prime eq. (A2.32) becomes

G =A F (A2.33)

1>

where the operator A is

X} -1

e
H
i3
1l
i3

(a2.34)

in the new set of axes. Any transformation of this kind is

One important property of the operator transformation, and of
course of all coordinate transformations, is that the trans-
formed vector or matrix must have the same "magnitude" as the

vector or matrix operated upon.
|2l = |3 (A2.35)

This is always the case when using the transformation described

in chapter A2.1.1.

A2.2 Rate of change of a vector

We will now discuss the rate of change of some arbitrary vec-
tor G (as done by Goldstein (1980)). The vector can represent
a position vector in a body or the total angular momentum.
Clearly the position vector appears constant in the body frame.

However, to an observer fixed in space the vector will move.
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The vector G is defined by its magnitude G = ]G| and direc-
tion. Clearly the rate of change in time of the vector should

be expressed in these two quantities as

dG 3G 3G

Ic = (EE) maqn.+ ( EE) (A2.36)

dir
the sum of the time rate of change in magnitude and direction.
The rate of change in time of the direction can be expressed

using the instantaneous angular velocity, g, as

3G

i) =4y X G (A2.37)
at’ dir

(

which leads to the well known expression for the rate of change
in time

G

-—_—t—— +_(QX§’ (A2.38)

QR@
i
Qe

But as stated in the beginning of this chapter, the rate of
change is dependent on its reference frame. Obviously, there

are three frames that are of special interest. They are:

- Inertial (space fixed) frame
- Rotated (space fixed but changing) frame
- Rotating (body fixed) frame

The first and second frames of reference are fixed, and as
such the rate of change in time of a vector G, in them, will
be expressed as in eq. (A2.38). In the third frame the rot-
ations are solidly connected with the body. The only change
will then be due to change in magnitude.

To clarify all these changing rates, the following subchapters
will be spent on how to derive eq. (A2.38) in the different

frames.

A2.2.1 The infinitesimal rotation transform

The existence of a rotation vector, i.e. a vector that is

uniquely represented by three axis of rotation, is only
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possible if the rotations are infinitely small. Otherwise the
order of the rotations are important. This is due to the fact
that the order of rotations are material. The rotation will

then not satisfy vector properties such as, for instance, the

addition rule of vectors

A+B=B+A4

namely the addition being a cumutative process.

Fortunately, the rate of change of a vector can be satisfied
by infinitesimal rotations without putting any restrictions
on the motion. This can easily be obtained by using small

enough time steps.

Before starting discussing the rate of change of vectors, we
shall recall the orthogonal transformations from chapter A2.1.
In that chapter a vector was transformed from one frame to

another.

The transformation can also be thought of as an operator that
rotates the vector and expresses the resulting vector in the

same frame. Then the rotation of the vector will be opposite

to the equivalent rotation of a frame. This is shown in Fig.

A2.4 below.

X2

X1

Fig. A2.4 The effect of transforming the 2-D vector r;
firstly relative the same frame, secondly from

one frame to another.
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In fig. A2.4 the transformation matrix C is the one derived

in eqg. (A2.7) in chapter A2.1.

Using the rotational effect of the transformation it is quite
easy to derive the rate of change of the vector in direction.
Furthermore infinitesimal rotations will make the rates of
change in direction and magnitude orthogonal, which simplifies
a lot.,

52 X2

X1
Fig. A2.5 Rate of change of a vector, r.

With the use of the rotations in fig. A2.4, the rate of change

Ar can be expressed as

Ar = r' - x =4

r, + Arg (A2.39)
This difference Ar is of course independent of the frame, but
it is only quantified in a certain frame. If the rotated frame
(£) is choosen and the vectors are fixed in direction in their
respective frames that is r in x-frame and r' in g-frame.

Then it is convenient to express r in the rotated frame,

Eg =T1r (A2.40)
as done previously in eq. (A2.8), where T is the 3-D transform-
ation matrix. The rate of change due to change of magnitude

is the easiest to express. Because if the vector's
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direction is fixed in its frame (as stated above), then the
change is just the difference between them in their respective

frames.

(A;_m)g = (ar ), = gg -ty (A2.41)

which expresses the independency of the rotation.
The rate of change due to rotation is only experienced if

seen from one of the frames. Using Egs. (A2.40) and (A2.41)

the rate of change due to the rotation is (in g-frame)

(Agd)g = (' - ar - £)g (A2.42)
Now, knowing that
Iy = (&7 - sz, (A2.43)

and eq. (A2.40) gives

(Ard)g = I, —(ggx)g (A2.44)

This rate can of course also be expressed in the x-frame as

t

(parg), =@ (' - A£m)g)x - I, (A2.45)
and using eq. (A2.43)
(arg), = (T° ), - r (A2. 46)

It is easy to prove that rates satisfy the wanted change in

the vector by deriving vector r' in the following way

L] —
r' =r+ pr + Ay (n2.47)
which in the g-frame is
[] — ¥ - - = ¢
= @)yt -t - Tr), =x

g
(AZ2.48)
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This far the properties of the infinitesimal transformation
matrix ZA has not been clarified. But in chapter A2.1.2 there

are expressions with which it is possible to derive both ZA

and its transpose gt The infinitesimal transformation matrix

AO
is dervied by inserting egs. (A2.28) and (A2.29) into eq.

(A2.24) which gives,

T, = 1 G -48, (A2.49)
-8, 1 ICH
I 59, 08, 1

and its transpose by inserting egs. (A2.28) and (A2.29) into
eq. (A2.25)

t—' =
T, = 1 O 60, (A2.50)
ICH 1 08,
18 16 1
L 2 1 el

In both egs. (A2.49) and (A2.50) second and higher order terms

are neglected.

With the use of T, as in eg. (A2.49), it is possible rewrite

A
the expression for the rate of change in rotation, eq. (A2.44),
as
(Ard)g = I, - (;'gx - A8 X Ex)g = (A8 x EX)g (A2.51)

the vector product of the infinite rotation vector and the
position vector. In the x-frame the expression is derived
similarily, but using eq. (A2.50) for the transpose transform-
ation.

(Ard)x = (1 . L, + A8 x EX) ~L, = (A0 x Ex)x (A2.52)
Not surprisingly the results are identical, regardless of

frame.
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But, as earlier stated in chapter A2.1.1 a transformed vector
only changes in direction and not in magnitude. This will
give a second order error in the magnitude, while the

magnitude of the transform is

| T A| = 1 AB 4 -46, =
-0, 1 28,
A8, 18, 1
=1+ (007 + (10,7 + (p0)3 (A2.53)

However, previously made approximations are of the same order,

why it is proper also to neglect these terms.

A2.2.2 Rate of change in time

The rates of change in time will be experienced (and
expressed) differently in a fixed frame than in a rotating
frame. In the following text two types of frames will be
used, those fixed (but of course they can be displaced) in
space and those rotating with the vector ("body"). To
distinguish them, the vector will be denoted with a prime, ',

when related to the rotating frame.

Vector notation

r is in a fixed frame, and

r' is in a rotating frame

For comparison, we will derive the first and second time de-
rivatives for both a vector that is constant in the rotating
frame and a vector varying in the rotating frame. But first

of all we will derive the general expression for the time

derivative.
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To obtain the time derivative we first recall from the previ-
ous chapter A2.2.1, that the incremental change of the vector
r can be separated into two perpendicular components. One of
the components is in the direction of r and is called AE

and the other is perpendicular to r and is called ALq- Ob-
viously AX L is the change in magnitude and AL g is the change

in direction. The sum of these changes is the infinitesimal
change of the vector. Recalling eq. (A2.47) it can be expressed

as

AY = AL+ ALy (A2.54)
This can be rewritten using eqg. (A2.51), and using that r and

r' represent the same vector (see also fig. A2.5)

Ar = Ar' + AB X r = Ar' + A8 x L' (A2.55)
Dividing the increment in space, Ar, with its associated in-
crement in time, At, and letting them approach zero will give
the time derivative of r.

dr AT AL A8

i = — = lim — = lim (— + — x r) = i' + wx I
at=>0 A% at-s0 At At

Clearly the time derivative is the sum of a radial component
i', (which is the only time derivative experienced in the
rotating frame, i.e. the only "motion" relative the rotating
frame) , and a tangential component y x r. But, as a consequence
of the approximations used when deriving the incremental change
in space, eqg. (A2.56) only is a first order approximation of
the time derivative. If the time derivatives has a high abso-

lute value another expreséion should be used.

The time derivative equations (A2.56) can be expressed in a

more general way as an operator equation acting upon any vector.

(S )
dt ' fixed

+ w x (A2.57)

()
dt ‘rotating -
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The subscripts indicates that the time derivatives are to be
observed in the fixed (inertial) and rotating (body fixed)
systems of axes, respectively. But, it must be emphasized
that the time rate of change is only given relative to the
specified coordinate system, and components of the rate may
be taken along another set of axes only after the differenti-

ation has been carried out.

g

Fig. A2.6 A fixed frame (x) and a frame rotating (x')

with the velocity y.

This far an operator equation for time derivatives has been
derived. Using this eqg. (A2.57) it is easy to derive the ex-
pressions for; at first a vector constant in the rotating

frame and secondly for a vector changing in the rotating frame.

Refer to Fig. A2.6 and denote vector OP with r expressed in
frame x, and r' expressed in frame x', see eq. (A2.55). They

represent the same vector why

= r' = .K.. r! (A2.58)
- = _g

r
—X
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This means that expressing them in the same frame gives ident-
ical vectors but in different frames they only will have the
same absolute value. Note also that matrix K is dependent on

frame, see also chapter A2.2.4.

Expressing the motion in the rotating system, and differenti-
ating in time gives the changing vector's (eqg. (A2.56)) first

time derivative.

I=1+pxr (A2.59a)
or using eq. (A2.58),

I=r'"+gwxr (A2.59D)
and the constant (in magnitude) vector

I =gy XX=gXEcr' (A2.60)

The second time derivative of r is for the changing vector

=4 4a el _

E_dt(E) +dt (_‘*.)) X£+.U.3.th (E) -

=r' +uxr +eoxr+ (wxyw xr+

+w X I+ X (g XK (A2.61)
Using that

wXw=0 (A2.62)

gives the obvious result that
WEwtw X = (A2.63)

Inserting these two relations in eq. (A2.61) gives the second

derivative as

(A2.64)
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The vector that is constant in the rotating frame will have

the expression

=@ XX+ px (pxr)=gwxrxr +px (wxr) (A2.65)

As is seen in eq. (A2.65) in a position,p, fixed in the rotating
frame one will only experience normal (radial) and tangential
accelerations. When using these equations one should be aware

of what ® is and how it is derived, see next chapter A2.2.3.
In terms of accelerations,

o is the acceleration of p in relation to the

fixed space

- is the acceleration of p in relation the rotating
frame

2 Qxé' is the Coriolis acceleration

éxg' is the tangential acceleration

wX (wxxr'") is the centripetal or normal acceleration

This far the origins of the system has been thought of as
coinciding , if this is not the case there will be some more
terms to regard. If the origin, O, of the frame translates
with velocity Vo and acceleration agr relative the inertial

space, the absolute motion of point P are

v_ + r (A2.66)
u—o P

and

a=a_ + %t (A2.67)
s —-O pe—

respectively, with ¥ from eq. (A2.59) or (A2.60) and ¥ from
eq. (A2.64) or (A2.65).
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A2.2.3 Vector transformation of the time rates of rotation

If the rotations and their time rates are to be expressed in
terms of the Euler angles and their time rates, then one must
be aware that the Euler angles are not perpendicular. But,
instead they are directed along successively changing axes.

We will now see how this affects the angular velocity.
This far we have expressed the angular velocity along its

instantaneous axis of rotation, that is along the rotated

(body fixed) frame. It has the components
w = (wyr wyr wy) (A2.68)
as in eq. (A2.56)

Along the inertial (space fixed) frame it will have the compo-

nents

(A2.69)

e
I

-3

e

and here gt is the transposed transformation matrix from eq.
(A2.14). '

From now on it is necessary to distinguish the Euler angle

derivatives. Its components will here be denoted by

"B B ‘B B
e = (e}, 6, ) (A2.70)
Where e? is along the space x-axis,
eg is along the instantaneous n-axis,
“E , .
93 is along the g'=-axis,

with axis notation as in fig. A2.7. Their associated Euler

angles are denoted by

8 = (o4, 92, 0,) (A2.71)
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E’ : &w,g

Fig. A2.7 Euler angle derivatives and angle velocities

in their respective frames

The angular velocities along the body axes can be expressed

using the Euler angle derivatives and the transformation ma-
trices A, B and C. Since él is parallell to the space x-axis,
and also the &-axis, its components are transformed using the

transform (compare eq. (A2.9)).

Where the index x1 means the first column vector of CBA or
CB.

The second rotation velocity 6, is parallell to the n and n'-

2
axis, and consequently transformed by

+3
|
o

B),, = (C)

<o )y (A2.73)

-2 =

where the index x2 means the second column vector of CB or C.



26

Finally the third component 63 is parallell to the ¢' and z'-

axis and transformed by

|

_ t
23 = (g)X3 = (0, O, 1) (A2.74)
where the index x3 means the third column vector of c.
Adding those separate components will give the angular veloc-

ities along the body set of axes as

_ o E_ [ 16 1.
(C B A)21 (C B)22 (C)23 9n
(C B A)31 (C B)32 (C)33J ecL
= (c B)ll (C)12 0 eE
(C B)21 (C)22 0 en.
:c B)3l (C)32 1_ -ezl (A2.75)

or written out using the abbreviations c& = cos © and

s6 = sin 6.

_ ~E
Wyt = cezce3 se3 0 <] (A2.76)
-cezse3 ce3 (0]
392 0 1‘

The angular velocities expressed in the inertial frame in
terms of Euler angle derivatives, eE, is, inserting eq. (A2.76)

into eq. (A2.69), with abbreviations as above
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592 3
1 —s@lcgz
c8.,C8
1 1 2|
(A2.77)

These derived transformations, R and R' are not orthogonal.

Therefore the inverse transformation matrix is not equal to

the transpose transformation matrix, and the inverse relation

is

B h=1. 1 i _ ]

= (B") "= co, 8y 564 0 Zx
c92593 c62093 0
L§92093 —592593 cez-

Obviously this inverse matrix does not exist if

cos6. =0 => o, = 90°

o o =
5 2 + n°180"w n=1, 2.....

This restriction is a property of the choosen set
angles. Although this will not affect anything in

(A2.78)
of Euler
the kin-

ematics of a floatingkbody, which hopefully will have mod-

erate values of both el and 92. This can, however,

be of

importance in other problems, and shall therefore be noticed.



28

In terms of inertial frame rotation, the Euler angle time de-

rivative is

E _ -1 = |"'1 -
e = (R) W (R") T W
=cé c82 361592 ~c81562 W
2 (A2.79)
0 celce2 selc@2
_O sel cel ‘
Of course, the inverse transformation (R) - has the same
1 =

restriction as (R') ~.

The above derived transformations are the same for the

rotation and acceleration vectors.

A2.2.4 General expressions of rate of change in time

Bodies that rotates with high speeds will make violence on
the first order approximation of the angular velocity, and
therefore also on the kinematic relations derived in chapter
A2.2.2. The general expression of the time derivatives is,
using previously used notations (the primed-values related to

the rotating frame).
The position relation is

r ; r + gt r' : (A2.80)
The velocity relation is

' ]
t t (A2.81)

Irie
il
al
+
fi-de
]
+
li=3
at

=0

The acceleration relation is

w . R . . .
= £o + gt r + 22t r' +4 gt r' (A2.82)

Lt
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The inverse relations are
Position relation

g‘ = E(E - £o) (A2.83)

v - ° - ®
' =T(x-r) + I(r - r)) (A2.84)
Acceleration relation

‘ _ _ L —0 ll-.ln :
r' = T(x £o) + 2T (r r)) + Iz ) (A2.85)

The time derivatives of the transformation matrix are quite
complex, but still possible to derive.

As the previous mentioned results are the first order rela-
tions, it can be of interests to identify the first order
appproximation. This is done by comparing Egs. (A2.55), (A2.59)
and (A2.64) with Egs. (A2.80) to (A2.82).

The first order approximations are on operator form

7t (1 pox (A2.86)
oty (A2.87)
it(l)= wx + wx (wx) (A2,88)
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A3. DYNAMICS OF A MOORED FLOATING RIGID BODY

A3.1 Equation of motion

The equation of motion, Newton”s second law, is derived in a
lot of literature on fundamental mechanics, such as Goldstein
(1980) and Meirovitch (1970). These equations will therefore

be assumed to be known.

The force equation of motion is as follows

F==" (i) (A3.1)
where

m ic is 1linear momentum of the body,

m is total mass,

. is velocity of centre of mass of body and

F is excitation force on body

Similarly, the torque equation of motion about the centre of

mass G, is

d

M. = a (Lew (A3.2)

where

;cg' is angular momentum of body,

;c is inertia matrix, with moments and products
of inertia with respect to a body set of axes
with the origin at the mass center,

) is angular velocity of the body set of axes

relative to an inertia space and

is excitation moment on body
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J

Figure A3.0 Force components acting in the centre of
gravity. FX = surge force, Fy = gway force,
F
z
M
Y

I

heave force, MX = roll moment

i

pitch moment and MZ = yaw moment.

In some cases it may be desirable to refer the motion
of a rigid body to a system of body axes x', y', z', see FPig.
3.0. Moreover, it is convenient to place the origin of the

body axes in the center of mass G.
Recalling from chapter A2.2.2, the time derivative of a vector
expressed in terms of components along a moving system, Eq.

(A3.1) then will assume the form

E:

=}

o+ wx (mr) (a3.3)

C

where, except notations from eqg. (A3.1)

¥ is acceleration of center of mass of body

w is the angular velocity of the body (axes).
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Egq. (A3.2) will assume the form
=1 p+wx (I, w (A3.4)

where

é is angular acceleration of body axes.
The moment equation (A3.4) is independent of eqg. (A3.3) unless
the forces and moments are coupled. Egq. (A3.3) though depends
on (A3.4) through w.
Now we know the equation of motion, but we have not specified
the exciting forces and moments. For a moored floating body

these can be divided in three parts;

forces caused by the surrounding fluid

(wind, wave and current),
forces caused by the moorings and

gravity forces.

A3.2 Fluid loading

The fluid forces are of two major types, namely those that
vary in time and those that are constant or slowly varying in

time. Forces of the first type are first order wave forces.

The slowly varying (or constant) forces are second order wave
forces, wind forces and current forces. This is no strict

definition but a common approach.

These fluid forces can be divided in three parts. Firstly
fluid forces that are due to the disturbances in the fluid
generated in the far, Fe‘ There are also fluid forces on a
moving structure in a fluid that initially is at rest, FS.
Finally forces due to nonlinear coupling effects between the
motion of the undisturbed flow and the motion of the struc-
ture, Fn' The total force on the structure can be written as

a sum of the above mentioned forces, as
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F=F +F +F (A3.5)

The force caused by the structure in the fluid is considered
as a property of the structure, and consequently is called
the hydrodynamic properties of the body.

A3.2.1 Hydrodynamic properties

For the evaluation of hydrodynamic properties one usually
limits the characteristics of the motion of the structure to

three quantities only

F = Es (Ec’ Lo Ec) (A3.6)
where

I, is position of the structure

ic is velocity of the structure

;C is acceleration of the structure

In a linearized form equation (A3.5) is often described by

Fglr) = -ak, - br, - cr, - (a3.7)
where

a is added mass

b is damping coefficient

¢ 1is spring constant

A structure of arbitrary shape will possess hydrodynamic

properties a b and Cn in each direction m due to any

v
motion in thzndirzgtion n. As a consequence one finds that

the six components of motion are described by six coupled
equations of motion. But usually only a few properties will
couple the equations. As for instance couplings between surge-

pitch and sway-roll.

The main interest within this scope of work is in structures
with constant hydrodynamic properties. Bodies that penetrates

the surface always has time varying hydrodynamic properties.
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These properties varies with the wave frequency, and must be
averaged in some way. This and other things will be discussed

in the following subchapters on the hydrodynamic properties.

A3.2.la Buoyancy

The buoyant force is the static reaction force that brings
the floating body into static equilibrium after an excursion.
These buoyant forces are due to the structures under-water

shape and effected by the mass distribution.

For submerged bodies the only stiffness is for roll and pitch,
as long as the fluid is uniform. When the body is floating it

also has heave stiffness.

The forces in the static equilibrium equation is gravity
forces and buoyant forces. Gravity forces act in the centre

of gravity, G. Buoyant forces act in the centre of buoyancy.

— e —

Fig. A3.1 Schematic indication of resultant forces and
their reduction point for a submerged and a

floating body.
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The gravity force_ is a body force. Its force components are

o= o o gom Who con G e oo em = o

Fo=9g [ dmn=g é pdV=mg (A3.7)

and its moment components are

%G=£G X EG = f (r x dEG) = é (r x g p)av (A3.8)
where

g is acceleration of gravity,

m is mass,

0 is density of structure,

v is volume,

r is position vector of 4V and

I is position vector of center of gravity.

To determine the location of the center of gravity of any
body, we apply the principle of moments to the parallell sys-
tem to determine its resultant. The moment of the resultant
gravitational force Fo about any axis equals the sum of the
moments about the same axis of gravitational forces dFG acting
on all particles considered as infinitesimal elements of the
body.

[ r dm é r pdv
_ m

= (A3.9)
& 6 pdV

on the wetted surface is caused by the surrounding pressure.
This force is the pressure, p, in the normal direction of the

surface, fi, times the surface area, A.

Fp = - ;L fip dA (23.10)

where i is directed outwards from the surface.



36

The surrounding pressure is assumed to be constant and equal
to the atmospheric pressure above the sea surface. Below the
sea surface the pressure is the sum of air and hydrostatic

pressure. Using the coordinate system at the sea surface with

z-direction upwards, the pressure is

Piot = Patm z > 0 (A3.11)

ptot = patm pgz

or with the atmospheric pressure as reference level.

I

P
P

o) z >0 (A3.12)
-pgz z <0

The resultant buoyancy force is directed upwards as long as

hydrostatic pressure is assumed.

Fig. A3.2 Buoyancy force on the body.

Inserting eq. (A3.12) in eq. (A3.10) it is now possible to
calculate the resultant buoyancy force using the principle of

buoyancy, the discovery of which is credited Archimedes.
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Using the notations from fig. A3.2 the force is

Fo, = 09 £ z dA = pg £ (z, - z,) dA,
z (A3.13)

= pgVg (=FG Equilibrium)

where
Vs is the submerged volume.
A is the overall wetted surface.
AZ is the horizontal (z) projecting of A.

The buoyancy force is equal to the force on the water dis-
placed by the body. This force is vertical and acts through
the center of buoyancy. Given the same assumptions as eq.
(A3.9), but assuming a constant density of the water, the

is

buoyancy center g

S (A3.14)

with notations as earlier. If the body is in equilibrium then

B and G is on the same vertical line (XB = Xgo Yp T yG).

Knowing that the gravity force, FG' is constant, it is obvious
that the restoring force on the body must be caused by a change
in the buoyancy force.
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Fig. A3.3 Schematic indication of the heave restoring force
AFH on a floating structure caused by a heave z

from the equilibrium position.

Translations will not cause any change in F except for the

BI
heave of a floating body. Which will cause a change in both

F and r does not influence the

B =B’ B
restoring force in heave for a floating body.

although the change in r.

- ] - - - =
AFH = F B' FG pg(VOS vs)
z
= -pghv_ = - pg [ A_(z)dz (A3.15)
o
where
VOS is displaced volume in equilibrium,
Vg o is displaced volume and
Aw(z) is water line area, as a function of z.

If the water line area is constant the restoring force is

AFH = -pg A, 2 (A3.16)

which gives the linear heave stiffness, C as

HP

D : S
Cy = = -pg B (A3.17)
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Rotations will, on the contrary to the translations, cause
restoring forces for all motions except the yaw motion. There
is a fundamental difference between submerged bodies and those

floating. Therefore, we will first discuss submerged bodies

o/

and then floating bodies.

B
 4¢)

L

Equilibrium position Inclined position
Fig A3.4 Schematic indication of the pitch or roll restoring
moment on a submerged body, caused by an

inclination from the equilibrium position

The restoring moment on a submerged body will be

AM = GB x Fp = (ry = rs) x Fp (A3718)
where GB is the vector from G to B,
ry and . are the location vectors of B and G.

Eqg. (A3.18) is for a pure pitch or roll motion

AM = GB  mg sin® (A3.19)
where GB is the magnitude of GB and
e is inclination angle.

This gives the vertical rotation stiffnesses as

c = GB ng _%22

R (A3.20)
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which for small rotations” gives the linear stiffness

(A3.21)

Fig. A3.5 Schematic indication of the pitch and roll
restoring moment on a floating body, caused by an

inclination 6 around the center of gravity.

The restoring moments on a floating body is more complicated
to derive. Egq. (A3.18) gives the moment, but the problem is

that both GB and EB

Using egs. (A3.13) and (A3.14) the problem is solved.

are dependent on the inclination angle 8.

Before starting the derivation of the restoring moment we

have to define the metacentre M (see fig. A3.5). As noted in
fig. A3.5 the centre of buoyancy will shift. The intersection
of the vertical through B' with the inclined axis AA is called
the metacentre M. Consequently the distance between the grav-
ity centre G and metacentre is called the metacentric height,
GM. This metacentric height is a measure of how stable a body

is floating. The consequences of GM are

GM > O stable equilibrium

GM = 0O indifferent ="

GM < O unstable W
% Note

1 - 202 <1 => o 5 14°

This means that the linear assumption has a fault less than
1% for an inclination angle of less than 14°,
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—
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B

A3.6 Schematic presentation of the determination of the
restoring moment on a floating body with vertical

sides

As an example of the determination of the roll restoring mo-
ment using eqgs. (A3.13) and (A3.14), consider a floating body
with vertical sides as in fig. A3.6, as done in Hooft (1982).
The restoring moment is determined as the sum of the moment
due to equilibrium buoyancy force acting through B and the
moment due to change in immersion (lined area in fig. A3.6).
For the condition presented in fig. A3.6 the restoring moment

is, assuming a homogenous fluid,

-M_ = (GB' x E'

X )x = (GB x EB)x T oaM

(A3.22)

Bf I

where AMI is the moment due to change in immersions.

This moment, AMI, is given by the difference between the up-
ending moment of the submerged part S-II-II' and the over-
turning moment of the part raised from the water S-I-I'.
After some calculations
2
1

_ . 2 2 — 2 .
MM = pg sine (Iw(l + 3tan e) + 5 0G  tan”e sin®@ Aw) (A3.23)
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assuming that the water line has a constant transsection over

the inclination. Here

Iw is the area moment of inertia of the water
plane
L Y112
I = j f vy~ dxdy (A3.24)
"
o =Y
I
Aw is the water plane area
L
Aw = f B(x) dx (A3.25)
o)
while
B (%) is the width of the water line at the

cross section x

B(x) = I II(x) = YII + YI (A3.26)

L is the water line length

YI and YII are the y coordinates of the sides at the

water line (fig A3.6).

For a circular water line cross section the area moment of
inertia is
I . =1 r (A3.27)
circ 4

where r is the radius of the circle.

The additional moment AMI in equation (A3.22) is often

written

AM. = pgV MB sin® (A3.28)

Substituting this result and eq. (A3.18), also using eq.
(A3.19), into eq. (A3.22) leads to the total roll restoring

moment
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M, = -pgV GM sin® (A3.29)
in which
GM = GB + BM (A3.30)
I
B - W 2 pan2
BM = v (1 + 3 tan“e) +
. A 6—G-2 X (A3.31)
-+1§ 7 tan™® sin6é

where V is displaced volume

vV = VO+AV = Vo + Aw 0G (seco - 1) (A3.32)
VO is displaced volume in equilibrium and AV is the change in
immersion due to the inclination.

For small rotations the restoring moment is

M, = -pgV_ GM 6 (A3.33)
where
I
GM = GB + — (A3.34)
This gives the linear rotational stiffness as
Cpep = = 09 Vg (GB + E% ) (A3.35)

In doing this linearization we, besides neglecting higher
order terms in roll and pitch, also neglect a roll (pitch)
induced translation. This induced translation is due to the
change in immersion caused by the inclination. This force is

using eqg. (A3.32)

F(8) = pg A, OG (see © - 1) (A3.36)
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By this we conclude the discussion on the hydrostatic stiff-
ness of (partly or fully) submerged bodies. There are of
course many more subjects in this topic, but they will not be

discussed.

A3.2.1b Hydrodynamic damping

When a body is moved in water there will be a loss of kinetic
energy. This will make the equations of motions non conserva-
tive. Moreover it can be noticed that this energy loss usual-
ly is written as an equivalent force times body velocity.

This force is called the hydrodynamic damping force, and can

be divided into two parts; viscid and inviscid damping.

- o G > Gz wes oo Wm o

Inviscid damping only exists for a body which affects the

free surface, i.e. a body that generates waves when it moves.
This wave making is of two kinds. The first kind is due to

the oscillation of the body and the second is the waves caused
by a body moving at a constant speed at or near the surface.
The second kind of damping is called wave resistance and will
not be further discussed, as it is a second order effect. The
first is the radiation damping, which causes a resistance
force that is a linear function of the body velocity,

=Db 1 (A3.37)

F
-X =C

where b is the radiation damping which is a function of the

frequency u of the oscillation.

To determine radiation damping (and added mass), the problem
is described with potential theory and solved with diffrac-
tion theory approach. This will be discussed somewhat in chap-

ter A3.2.1c, in connection with the added mass problem.
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which all are functions of T = rm2/g.
(From Kim (1965)).
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In order to clarify radiation damping, we will first discuss
a floating body that is given a unit velocity impulse. The
body will after this experience a decreasing and oscillating
retardation force, as shown in Figure A3.8, due to the waves
made by the body.

R(t)
¥ \
///f——~\\\\\§___”y 3t
Fig. A3.8 Retardation force on a floating body.

When the damping is known as a function of frequency ¢, then
the retardation force of the structure is known. This force
will then be a linear function of the relative velocity be-
tween-the fluid and the structure, as supposed in Eq. (A3.37).
From this it follows, that the fluid reaction force on the
body can be deduced from that force, which is due to a unit

velocity impulse, as shown in Figure A3.8.

R(t)

RN

[ blw) cos (wt) dw (A3.38)

Why it is as simple as this, can be explained knowing that a

unit velocity impulse is the fourier transform of unity,

5(t) = ()  %x(w) =1,
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which means, that a unit velocity impulse contains all fre-
quencies. Hence, it will excite the whole frequency band of

damping coefficients.

The physical meaning of a unit velocity impulse is not easily
understood. If instead the displacement is dicussed. The
displacement being the integral of the velocity. So, the dis-
placement will be a step function, with a unit step at time

zero.

0 t<0
1 t>0

x(t) = f x(t) dt = / g (t) dt = g (t)
All of which is a boundary condition on which Eq. (A3.38) is
based.

This requires that the damping is known. We will therefore

continue with the derivation of it.

The radiation damping coefficient b(w) is calculated assuming
that the loss of kinetic energy of the structures motion that
corresponds to the energy of the outgoing waves, which has
led to the idea that the damping due to the outgoing waves
should be related to the excitation force on the structure
due to the incoming waves, as discussed in Newman (1980) and
Hooft (1982). According to these it is found that

2 2
nn ‘% 167 g P (y) ¢ £ 2 La ¢
where
bmn(w) is the damping coefficient in direction
m due to a velocity in direction n.
P(yw) is the wave energy flux in the outgoing
wave, which is
1 2
P(y) = F cg =3 p9r, cg (A3.40)
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is the exciting force amplitude in
direction m due to waves in the ¢-
direction relative to the x-axis,
is the wave amplitude

is the wave direction,

is the incoming normalized wave energy flux

coefficient, which is

_ k

Cf -—W (A3.41)
g

is the wave number, which is

_2m
k = 5 (A3.42)
is the wave length,
is the group velocity of the wave,
which is

_ 1 2kd
cg =35 cC (1 + <Thh (de)) (A3.43)

is the phase velocity of the wave, which is

w

c =g (A3.44)

is the angular frequency of the wave,

which is

P

w = (A3.45)
is the wave period,

is related to k through the wave dispersion

relation, which is

w? = gk tanh (kd) (A3.46)

is the water depth.
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Egs. (A3.43) and (A3.46) are asymptotic for both shallow water
(kd -> 0) and deep water (kd -> ) which simplifies these

equations, see Martensson (1983}).

Y Spheroid I Spheroid
2.0 /7/1/.2— X ~ 1.0 "az:o& =
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Fig. A3.9 Damping coefficients of spheroids for;

(A) Surge (or sway) 51 = bl/pmrB?

(B) Heave 53 = b3/pwr3 and
(C) roll (or pitch) 54 = b4/pmr4

which all are functions of r = rw2/g.

(From Kim (1965)).
(r = radius of spheroid)
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Special results of equation (A3.39) are obtained for struc-
tures that are rotary symmetric around a vertical axis such
as floating spheroids, see fig. A3.9. For such structures

the integrated equations are

Fo, (0=0,0) °
b (w) = bzz(w)=ﬂcfl . [ (A3.47)
a
Foy (6=0, w) °
byylw) = 271 cf | = (A3.48)
M_, (9=0,0) °
byglw) = bgglu) = meg |25 | (A3.49)
a
b66(w) = ( (A3.50)

Similarly, in two dimensions, for a body symmetric about the

plane x=0, it can be shown that

(w) |2 . F_ (o)

1 ‘Fan ‘ an ‘ (A3.51)

bpplw) =7 P (w) = 2pg c

g

for the 2-D motions, surge, heave and pitch. This is
visualized for the heave motion in fig. A3.10 and A.3.11.



51

= 1.00

-1 0.20
- 0.10
0.05

Fig. A3.10 Damping coefficient for a family of two-
dimensional rectangular parallelepipeds (boxes)
heaving in deep water. Included is the thin-ship
approximation labeled B/T=0. Also shown here by
the scale on the right is the heave exciting
force coefficient, obtained in accordance with
eq. (A3.51). (From Newman (1980)).

The major difference between 2-D and 3-D bodies are in the
limiting values as p+ 0. It is seen in both fig. A3.10 and
A3.11 that for 2-D bodies the heave damping does not approach
zero as fast as it does for 3-D bodies. The box has a damping
that approaches zero just as fast as wn does, therefore the

non-dimensional damping equals unity as w- 0.
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Iﬁ\%sb Cylinder \ Cylinder
) N -
) Y : \ ., - half-length
! S
" H=1/1

o

0.5 Ordina::\:?\&
2/\1\

~T1 —

4/1

0.15 ,
"\\ Cylinder

3 \\

H=4/1

0.05 \
0
0
Fig. A3.11 Damping coefficients of horizontal
cylinders (2D);
— _ 20
(A) surge Bl = bl/pwr :
(B) heave §3 = b3/pwr2 and
. = 3
(c) pitch by = b5/pwr
= rwz/p°

which all are functions of r

(From Kim (1965)).

The radiation damping problem is coupled to the added mass
(see chapter A3.2.1c) in the way that if either of them are
known the other is also known. Usually the radiation damping

is computed using some type of wave diffraction program,
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which are of some finite element method or boundary element

method type, using sink-sources.

Viscid damping

Far below the surface the body will not make any waves. Then
the radiation damping will be constant and equal to zero.
Nevertheless energy will be dissipated when oscillating the
body. This energy loss is caused by the viscosity of the

water.

Viscid damping is the only damping that exists for a body
which does not affect the free water surface. But, of course,
it exists for a body anywhere in a viscous fluid. This viscid

damping is often called drag.

When the velocity of the body is large enough, the influence
of viscosity will start to affect the motions of the body.
This while the viscous reaction force will become of the same

order of magnitude as the inviscid forces on the body.

In the absence of wave resistance the total drag is the pro-
file drag, which in turn is due to pressure and viscous shear.
The drag may be due to pressure or viscous shear only, or a

combination of both.

The drag is expressed as the product of the dynamic pressure
of the free stream, some characteristic area, and a drag coef-
ficient. The drag as coefficient is a function of a number

of parameters which influence the boundary layer and its sep-
aration. These influencing parameters include the body shape,
Reynolds number, Mach number, Froude number, surface roughness,

and free stream turbulence.
All these influencies can be found in some books on basic
fluid mechanics, such as Olson (1980). In any instance, the

drag force is expressed as

F. = L uac (A3.52)
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where

1 2 . .

5 Pug is dynamic pressure of the free stream,

A is area being for pure skin friction drag,
the chord area for litting varies, or the
projected frontal area for other shapes

CD is the drag coefficient

Ce is skin friction drag coefficient

Cp is pressure drag coefficient.

The vector formulation of the drag force on a axisymmetric
slender body may be found in Lindahl and Sjdberg (1983). Using
this approach it is assumed that the drag force may be divided
in two components, one normal and one tangential component.

The force per unit length is

£ = fpp * Epy = %0d, (Cpplgpligy + CpyUsndsy! (A3.53)
Where

do is the drag diameter,

u is the velocity in the tangential direction or

=ST
the body, that is

Ugp = U £t = u,tt
where
t is the tangential direction

U.., is the normal velocity, that is

=SSN
Ysn T 85 T Hgr
Laminar 1 Turbulent
<«— Transition —s
“\ .
‘§F°‘f turbulent Us
~
S
. . \ -
1o if laminar ““~\,%7«‘
us Ug s —
M‘“’ E’E = N i Al
- = f sublayer
be a =

Fig. A3.12 Flow of viscous fluid along a flat plate.

(TO is the shear stress). (From Olson (1980).)
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Purely, viscous shear drag for parallel flow past a smooth
flat plate depends on the rate of change of the velocity in

the boundary layer. The drag coefficient C_. depends on whether

the boundary layer is laminar or turbulentf If the boundary
layer is laminar, Cf depends on the Reynolds number, Re, of
the flow based on the free stream velocity ug and the length
of the plate x. If the boundary layer is turbulent, Cf de~
pends on the Reynolds number, the roughness of the plate, and
on the location of the transition from a laminar to a turbu-

lent boundary layer.

It is noted that the skin-friction, Cf is dependent on the
boundary layer. Integrating the shear stresses in the bound-
ary layer will give the viscous shear force on the plate.
Resulting curves of drag coefficient as a function of Reynolds
number for smooth flat surfaces are given in fig. A3.13 below,
including a typical ship hull with a rough surface. As can be
seen in the figure the transition is at higher Rex for smoother

surfaces or lower free-stream turbulence.

0.007

N\

0.006
\Turbulent (smooth)
0.005 \\

0.004 ,,:ij:::\\

0.003 \'/ﬁ‘ansition N\éw(typical)

VAR . N e
0'002 4 /' \\_
N/ Laminar T
0.001
10° 10° 107 108 10° 100
Ug X
Rey ="y~

Fig. A3.13 Drag coefficients for plane surfaces parallel to
flow. (Source: H.E.Saunders, Hydrodynamics
in Ship Design, Vol.2 (1957), p.100).
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The Reynolds number is the product of the free stream velocity,
U, and the exposed length, x, divided by the dynamic viscos-
ity, v, of the fluid.

It is common to divide the Reynolds number range into three
regions (see fig. A3.13 for the boundary layer). They are

laminar boundary layer region Re < 1.1 105,

transition boundary layer region 1.1 105 < Re < 2. 107

turbulent boundary layer region 2. 107 < Re

In these three regions the velocity profile over the surface
will be fundamentally different.

The skin-friction drag is derived assuming a certain rate of
change of velocity in the boundary layer. This may not be the
actual velocity distribution, but nevertheless the values of

fig. A3.13 are good approximations.

_P~Ps
Cp pui /2

(a) (b)

Fig. A3.14 Two-dimensional flow past a flat plate normal
to the free stream (a) Flow pattern, with shear
forces normal to the free stream, (b) Pressure
distribution (From Olson (1980)).



Pressure drag is caused by the drop in pressure due to the
separation of the boundary layer from the body surface. Pure
pressure drag exists only for flow past a flat plate normal

to the stream. As seen in fig. A3.14 the shear will act normal
to the approaching stream and thus do not contribute to the
drag force directly. The shear affects the growth of the bound-
ary layer and therefore has a minor effect on the pressure

distribution.

The drag coefficient for pure pressure drag depends on the
shape of the surface and the Reynolds number of the flow based

on some characteristric length D.

In Lighthill (1979) the pressure drag is derived on basis

that the energy of the vortex wake is, rather roughly, propor-
tional to 1/2 pAu2, where  is the rate of lengthening of the
vortex wake and A is the frontal area. This is because the
mass of a unit length of wake should vary as pA, while the
motions generated by the vorticing, which has just been shed
should vary primarily with the body's instantaneous speed U.
Then the rate of increase of kinetic energy per unit wake

length is

1 3
5 pAUC_ = F U A3.54
5 0 p b ( )

which is equal to the rate of work, FpU. The corresponding
vortex-flow component of drag (pressure drag) is
2

pAUT C} (A3.55)

i
]
ol

20
1.8

16
P14 \
12 \

1.0

0 0.2 0.4 0.6 0.8 1.0
D/L

Fig. A3.15 Effect of aspect ratio on drag coefficient for
rectangular plate normal to the flow (from
measurements by C.Wieselsberger and
O.Flachsbart). (From Olson (1980)).
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The drag coefficient for a finite plate depends on the ratio
D/L (see Fig. A3.15) as well as Re, because of the end effects.
For a plate of infinite length Cp = 1.9 if Re > 103.

is

the most common situation of viscous drag on a body. This is

the type of drag for which the drag coefficient is C

Combined skin=-friction and pressure drag, profile drag,

D’ which
in each limit can equal either Cf or Cp. Although most often
it is the sum of them both.

e,
Laminar
\ boundary layer
separation Turbulent
boundary layer
separation
Velocity profiles for boundary layers
Laminar Turbulent — =~
Fig. A3.16 Schematic presentation of a profile drag
situation.

The drag coefficient depends on background turbulence, type
of boundary layer (Reynolds number Re), body shape, surface
roughness (k/D), ahd, if the flow is oscillating, on the
Keulegan=Carpenter number (XC).

The classical CD values are based on measurements in station-
ary flow on smooth bodies.
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199 o7 102 103 104 105 106
Re

Fig. A3.17 Drag coefficient versus Re, for a family of 2-D

transections and a spere.

The nature of the curves for both the typical profile drag
bodies; the sphere, and the cylinder, can be explained in
terms of boundary layer type. Below Re;lO5 the boundary layer
is laminar and the change in CD is due to the change of the

5

separation point. Above Rez5.10~ the boundary layer is turbu-

lent and then the drag will decrease.

Furthermore it is of interest to know that all sharp-edged
profiles are independent of scale (Re effects) due to the
fact that they only experience nearly pure pressure drag.
Semi-aerodynamic shapes have drag coefficients varying with

wind speed.

In table A3.1, CD values of various smooth 2-D body shapes

are listed. If a body is infinitely long, there is the same
pattern of flow around it at every cross section. More com-
monly, the body has one or two ends, and £fluid then escapes
around these ends and reduces the average drag per unit length.
This reduction is a function of length/diameter or aspect

ratio ¢ which is therefore defined

e = L/D (A3.56)
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where one end of the member is sitting on a flat surface, in
a uniform fluid stream, the surface has a mirror effect, so

that the aspect ratio is defined as

¢ = 2L/D (A3.57)

Correction factors are common to most body shapes, and are
given in table A3.2. Correction factors multiply the appropri-
ate 2-D shape factor CD(2—D). For instance as C.=2.0 for an

D
2-D body, CD(BmD) = 0.6°2.0 = 1.2 for .= 3.
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Table A3.1 Viscous drag coefficients for various 2-D
bodies.
2=D Body shape Boundary Dimension Drag
layer ratio Coefficient
L=laminar CD
Description Sketch T=turbulent
Circle \' L 1.2
or - O
half-circle T 0.7
1
i v L 1. *
Ellipse (:)I?b L (b/a)<2 2(b/ax
b2 T 0.7(b/a)?
1
v L 1.2(a/p)*
- €5 [2a 4<(b/a)<2 »
2b T 0.7((a/v)
Rectangle
with or v ‘;‘\ (57;3<2 :25}6};}&5: SQYE/a) :}
rYlwRprEF~"s""—""|mr- T = - | e e
without “*\/*% L,T_ _ _ _| (/w00 2.0 120k, _,1.0 _
L,T 0.1<(¥/2)<0.15| k] 17K, p 2k 1
corner radius a [~ q====--=—=|-=-- = === = T
L 0.25<(r/b) 1.2 11,2 k2 0.6
T 0.7 10.7 k5 '0.35 !
_____ JE U R . T S e S T
L,T k, = (8-(b/a))/6
L I3 = (7.6-16(r/b))/3
T ky = (8.6-26(r/b))/3
v As above but
s a
[?I: b/a + a/b
r/b > r/a
i
Plate ' L,T 2.0
or
triangle - @
Plate on l L,T 1.2
R o
flat surface
Parallellogram| @Za L,T 0.5<(a/b)<1.0
or triangle
with edge to 1.5(b/a)%
wind with
radius e q i{i 05(r/b)<0.25
Circle with L - 1.2(n/a)
- E h
fins T 0.7(h/a)
Circular . B L,T 1.12
flat plate

Values are from Sachs
(1978) .

(1972), Vedeld (1983) and Hullam et al
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Table A3.2 Correction factor for aspect ratio
Aspect ratio g Correction factor
0 - 4
4 - 8 0.7
8 - 40
Above 40 1.0

(From Sachs (1978)).

As we are interested in oscillating fluid around bodies both
the Keulegan-Carpenter number (KC = umaXT/D), and the surface
roughness (k/D) are of interest. In Sarpkaya (1976) model
tests are carried out for various KC, Re, k/D on a vertical
cylinder. The model test are based on undisturbed rectilinear
flow, and are suggested by Sarpkaya to be considered as an

upper limit for the wave motion.

__Re=3-10%
/_ Stationary flow

‘"‘“-.____// (turb. b -layer)

- Chakrabarti

— — Sarpkaya v

i { —t } i } t um T/D
0 10 20 30 40 50 60 70 80

0 !

Fig. A3.18 Comparison of Sarpkaya”s 2-D flow test results
with Chakrabarti”s wave tank test result.
(From Chakrabarti (1980)).

In Chakrabarti (1980) test results from a wave tank are referred.

The used cylinder and the range of Reynolds number was be-

tween 2 x 104 and 3 x 104. The comparison between the two
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tests are shown in fig. A3.18. It is seen that the correla-
tion is good except for higher values. Chakrabarti”s tests
are sparse in this region, why it does not necessarily

indicate fundamental differencies.

The values of the tests show a decreasing tendency, but they
are significantly different from the value of CD in stationary
flow.

The increase in CD due to roughness is perhaps more signifi-
cant than the decrease with KC number. Values of twice them
for smooth cylinders in stationary flow are frequent. It is,
therefore hard to choose a good value, knowing that marine

growth can increase roughness significantly over a year only.

A rough engineering approximation, for tubular sections, seems
to be to use the CD values for laminar boundary layers, (see

table A3.1), where the turbulent values should have been used.

A3.2.1lc Added mass

A floating body that is dropped into the water will start to
oscillate with an eigenperiod that is much longer than that
corresponding to the body mass solely. This is the case because
the body will start to push around the water, see figure A3.19.
Therefore the water will cause pressure changes on the body
surface. Which in turn will cause this unexpectedly long eigen-

period.

Fig. A3.19 Flow net around a dropped body.
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In the far distance the water will remain unaffected. Inte-
grating over the affected water volume will then give the
total affected mass, or as it is usually called the added

mass.

The added mass is usually thought of as the added mass in an
inviscid fluid, with or without the presence of a free
boundary. Potential theory is then used to solve the problem.
For the structure affecting the free boundary, the special

branch of potential theory called diffraction theory is used.

Diffraction theory:

Deriving the expressions for the added mass, is really a
matter of solving the hydrodynamic reaction force caused by
the body. Therefore the force will be solved for a floating
body using diffraction theory. The problem is solved in all
fundamental literature on hydrodynamics, such as Newman
(1980) . Using Newman, but also Hooft (1982) and Olsson

(1982), the added mass will be derived in a classical way.

The diffraction theory states that the waves around a float-
ing body can be described by the sum of three wave velocity

potentials.
b = op * o5 * 0p (A3.58)
These are the potentials:

by of the incoming wave,
bgr of wave scattered by the body and
dpe of wave radiated by the body.

The incoming wave is coming from the far distance unaffected
by the structure. The scattered wave is the one which is re-
flected on the body surface. The radiated wave is caused by
the motions of the body. Both the scattered and the radiated
wave must satisfy the Sommerfeldt condition, i.e. vanish in

the far distance.
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Moreover the incoming wave is independent of the structure,
while the others both depend on the body shape, although the
scattered wave also depends on the incoming wave. The
velocity potentials can be divided into two groups. The first
is potentials that exist around a fixed structure. These are
of course o1 and dg » On the contrary we have a floating body
oscillating in an otherwise calm water. Then ¢I=¢S=0, and oR
is the only to exist. We will now continue by deriving the
hydrodynamic forces on the body, in this last case when only

the body is moving.

Moving body in calm water

The motion of the body is based on Newtons equation of mo-
tion. This equation can be written in the following way,
dividing the restoring forces into a hydrostatic and a hydro-

dynamic part.

=

X = - c X = p g == n ds (A3.59)

Here

m is the mass,

i

¢ is the hydrostatic "spring",

i

is the local normal of the wet body surface,

=]

S _ is the wet body surface,
x 1is the excursion from the equilibrium position.

We will continue with the hydrodynamic part of eg. (A3.59).

do
F=-p [3ends (A3.60)

or really with the velocity potential which here is the
radiated potential only
(A3.61)

o = op
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in
k
one of its motion degrees of freedom, k, and the fluid is at

If a floating body is forced to perform harmonic motion x

rest initially, then the velocity potential Py of the fluid
can be written as
Jwt

e (A3.62)

%k T %k Fax
Here
iak is the velocity amplitude for motion k

¢kiak is the velocity potential amplitude for motion k.

This harmonic behaviour is due to the structure being linear.

Its motion is then described by
- Jwt
xk(t) = X x € (A3.63)

Its velocity is

Ne

o Jwt _ o jut
" (t) = Jjuw X © =Xy © (A3.64)

Its acceleration is
. - _ 2 Jut _ L . Jwt _ jot
%, (t) = W' Xy e = Jp X e =%, € (A3.65)

The wet surface boundary condition says, that the fluid motion

at a surface is perpendicular to that surface.

et
~

B _ oy 3k _ g Jdwt 3k
Tl Xy o Xk © 5 (A3.66)

From the combination of egs. (A3.62) and (A3.66) one finds

8¢k
- 0
5 "~ 3n (A3.67)

o
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The time derivative of the velocity potential (eq. (A3.62))

is in direction 1

e = ¢ljw Xal e (A3.68)

Inserting egs. (A3.66) and (A3.67) in eq. (A3.60) gives the
reaction force in the k degree of freedom, caused by a motion

in direction 1, as follows

. . jwt

Fie = =p Juw % eI%° [ ¢, —= ds (A3.69)
So

To get beyond this we have to apply more boundary conditions.

This will not be done, instead the reader is advised to study

the references mentioned earlier.

The reaction force, Fk’ is split up into two parts, one
including the acceleration and the other including the veloc-
ity.

X (A3.70)

. + Db

k k1l 7k

Then one finds from the identification of the terms in eq.
(A3.70) with the use of egs. (A3.64) and (A3.65), and a
further combination of the result with eg. (A3.69) that

_ 99k a 71
akl = Re (psf cbl 5—;— S) (A3. )
e}
_ 99x
bkl = Im (pwsj (bl 'B—H— dS) (A3.72)
o
where
a is the added mass, which causes a force in direction

k1l
k due to an acceleration in direction 1.

bkl is the radiation damping, which causes a force in
direction k due to velocity in direction 1. It was

discussed further in the foregoing chapter A3.2.1b.
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We have now derived general expressions for both added mass
and radiation damping in an inviscid fluid. Some applications

of the added mass will be shown.

We will in the following primarily discuss bodies in inviscid
fluid, both floating and submerged. Thus we will discuss the
radiation problem for the floating body. But, it is of course

also of interest that the viscous effects are discussed.

Surface effects

We will start by discussing a floating body. If the radiation
damping is derived, as done in the previous chapter, then it

can be shown that the complete hydrodynamic properties of the
body are known. This will be discussed in the following assuming
that the requirements of the Kramers-Kronig relations are
fulfilled. (These relations are discussed in Van Wijngaard
(1963) .)

When the retardation function R(t) is known, eq. (A3.38), and
derived from a known radiation damping, b(w), then it is poss-
ible to derive the added mass a(w), based on the hydrodynamic
equation, eqg. (A3.8). For the added mass one deduces from

R(t) that

o

[ R(t) sin(wt) dt (A3.73)
0

€ |~

alw) = a_ -

where a_ is the added mass at infinite frequency.

The radiation damping will in a similar way be expressed as

b(w) = [ R(t) cos(wt) dt (A3.74)
0

which is the Fourier inversion of eq. (A3.38).



We now have the hydrodynamic coefficients in terms of veloc-

ity potentials, egs. (A3.71) and (A3.72), and in terms of the

retardation function, egs. (A3.73) and (A3.74). Out of these
two sets of equations, the latter could be used to establish
the coefficients. For calculations of the added mass and

radiation damping the first set is used, however.

Hooft (1982) has in chapter 3.5 done a very thorough examina-

tion of the influence of the free surface, which is recom-

mended to read if a more complete understanding is wanted.
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(A) (B)
0.06
—f HE=® Ellipsoid
= ‘vﬁirn 09 Beam /length = 1/4
~
. 0.04 "“’6;32 - H- half- length
Iy """———--.-é:q\~§--K © draft
0.02 21 T
/ﬁ\
0
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r
(Cc)
Fig. A3.20 Added mass of ellipsoids for;
iy 3

(A) surge }or sway) MX=MX/pr
(B) heave MZ=MZ/pr3 and

(C) roll (or pitch) Ix=1x/pf4 ,
which all are functions of r=ryu“/g.
(From Kim (1965))
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It is now possible to derive the added mass for floating struc-
tures. This can be done for 3-D structures with the use of

Eq. (A3.38) inserted in Eq. (A3.73) and some knowledge of the
asymptotic behaviour of a(y,), see Figure A3.20. If the 3-D
body is rotary symmetric about the horisontal axes, then it

is possible to derive a(y). This is done with the use of Egs.
(A3.47) to (A3.50) inserted in Eg. (A3.73) and knowing the

asymptotic values.

4.0 T
H=1/2 25
\\
3.0 z’of\ \HEe
. \ CUEANS
M €
X \ Mz \\ N
2.0 15 | aCCa —]
1/1\ e\ Lo
%
2‘,1\ 1/;"’755) 171 ——
SR
0 i ——
= ] 0.5
0 1 2 3 4 0 1 2 3
T T
(A) (B)
0.3 ad T
- .\\~J1=m
/- \\l&mq.(7963} Spheroid
= H - half - length
0.2 4/1
n N draft
5 N \\
0.1 -7:#2‘ -
Ordinate =10 e—
0
0 1 2 3 4
T
(C)
Fig. A3.21 Added mass of spheroids for;

(A) surge (or sway) M =Mx/pr3

(B) heave M =M /pr and

(C) roll (or pltch) E =1 /pr

which all are functlons of r=r /g.
(From Kim (1965))
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1.0
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0 | |
0 0.5 1.0 1.5
i
g
Fig. A3.22 Added mass coefficient for a family of 2-=D
boxes, heaving in deep water. (From Newman
(1980))

Another family of bodies that were mentioned in chapter A3.2.1b
are the 2-D bodies which are symmetric about x=0. Here are
shown 2 types of shapes, namely boxes, in figure A3.22, and
horizontal cylinders, in figure A3.23. These curves can be
derived using eq. (A3.51) in eqg. (A3.73) and knowing the

asymptotic values.
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2.5
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l
3.0 2.0 i = MacCamy (1961)
ﬂ(z) Porter (1960)
z Porter (196Q)
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Fig. A3.23 : Added mass of horizontal cylinders (2D);
(A) surge M (2)_ (2)/ r2

(B) heave M (2)—M (2)/ r2 and
(C) pitch y(2)~1y(2)/ 3
which all are functions of r=rw2/g.

(From Kim (1965))

Immersed structures

The bodies that will be discussed here, are positioned so far
from any boundary that they will not be affected by them.
Being far away from the free surface means that the added
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mass will be constant. Furthermore, being far away from any
other boundary (such as the bottom) means that the fluid moved
by the body will not affect the fluid in the far distance

boundaries.

We will not derive any other expressions for the added mass
than that of eq. (A3.71). If wanted, this expression can be

further developed using the Laplace equation on the surround-

ing fluid.
2 2 2
Ap = ( jLz + iLz + JLZ ) =0 (A3.75)
* Y *

The added mass has been derived for various bodies. Values

are presented by for instance Korvin-Kroukovsky (1961).

It is common to normalize the added mass by the body mass

(mass of the displaced volume), and calling it the added mass

coefficient

Cm = aT/(pV) : (A3.76)
or

C =a./(V r.? (A3.77)

m R P m °
where aT is added mass (translation)

ap is added inertia (rotation)

p is density of surrounding fluid
V is volume of the body

r is radius of inertia.

Note that in the literature CM sometimes denotes the added

mass plus the mass of the displaced fluid, thus

CM = 1 + Cm - (A3.78)
Values of Cm are presented in table A3.3, which is from Korvin-
Kroukovsky (1961). But, occurring approximations are proposed
by the author.



74

Table A3.3 Added mass coefficients for various 2-D
bodies. Translation s Rotation ap-
Body shape Dimension ratio Added mass coefficient 2
Description Sketch Cm = aT/pV; Cm = ar/er
Circle 1
Ellipse @ afb
LD
@ (a?-vH)2/(ab(aZ4b?))
o
Square 0sr/as1 1.2 - 0.12(1’/3)-C).OB(:'/a)2
with or v
without 1: or approximation
corner
radius iz‘aﬂ 1.2-0.2(r/a)
0.26
"""""" s Tk Tl Sk
Rectangle 1/10Sb/h=10 b/h{0.1 ,0 2 |O 541 '2 15 110
A B --:-—- oo demp =
¢ lo.1810.31%.67!1.19,2. 1144 7518.95
] I Gl R M ot atd ML
or
k—p—d
approximately
0.82
1.02 (b/n) + 0.19(b/h)
] [ T [ T T
_)a/h'()l 10,2 10.5_ Lo 2 s o
== L
C .3 4{!1 701 0.57, 0 26.0 57:1 70'3 43
I:h approximately
b 0.1£b/h<0.5 0.353((b/n)> (1+(h/p)H)™t
2.5b/hS10. 0.353((h/b)>(1+b/m) %)) 7t
2
Plate 1 ap = (pm/4)b
CEETEER
D
¥y
e a, = (p1T/64)b4
N

Source: Korvin-Kroukovsky (1961) and the author's approximations.
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Effects of oscillation

As we are interested in fluid oscillating around the bodies
both the Keulegan-Carpenter number (KC), and the surface rough-
ness (k/D) are of interest. In Sarpkaya (1976) model tests

are carried out for various KC, Re, k/D, on a vertical cylinder.
The model tests are based on undisturbed rectilinear flow,

and are suggested by Sarpkaya to be considered as an upper

limit for the wave motion. These tests are referred earlier,

in chapter A3.2.l1b, where they also are explained.

It is seen in Figure A3.24 that the value of table A3.3 is an

underestimate of the added mass in an oscillating viscid fluid.

Cm
30
- (Chakrabarti
— = Sarpkaya
20 4+
T WA e == = = = pr® e Non oscillating
1.0 N ad bl e s inviscid fluid
N’ /
il Re=2.10% Re/=3-101‘ N\
0 } : } } +um T/D

]
i i ] 1]

0 10 20 30 40 50 60 70 80

Fig. A3.24 Comparison of Chakrabarti's wave tank tests
and Sarpkaya's 2-D flow test. (From Chakra-
barti (1980))

A3.2.2 Wave force

A body that is fixed will experience hydrodynamic forces from
the surrounding fluid, when that fluid is moving. These forces

are of two kinds, namely shear forces and pressure forces.

Pure shear force are excerted on the body by flow parallel to
the body surface. This is commonly called skin friction, and

it only exists in a viscid fluid.
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Pressure forces are excerted on the body perpendicular to the
body surface. These forces exist both in viscid and inviscid
fluid.

In the following the forces are presented divided into linear
forces and higher order forces. Linear wave forces are caused
by fluid pressure. Higher order forces can be caused by both

shear force, pressure forces, and the combination of them.

A3.2.2a Linear wave forces

The only first order wave forces that are excerted on the
body are those caused by the linear wave pressure. The

linearised wave pressure is usually expressed as follows

P = -p = z<0; z<g

(A3.79)
+0GE 0<z<; <z<0

o’
I

where ¢ is the wave velocity potential
£ is the wave surface and

z is the vertical coordinate,
positive upwards and zero at mean sea surface.

When discussing wave forces, the structure is supposed to be
fixed (as mentioned earlier). The linear potential around the
structure is then the sum of that from the incoming wave, @I’
and that from the scattered wave

o = o + ¢ (A3.80)
On the surface of the body the velocity of the incoming wave

and the scattered wave are equal in values but opposite in

direction.
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B®I 8@5

(x==) = = (57) (A3.81)
on ‘g on g

where n is the local normal vector of the surface of the body,
directed outwards. In this way we also satisfy the boundary
condition, that the velocity normal to the body surface is

zero at the body surface.

(%3 =0 (A3.82)
o g

The linear wave force on a fixed structure is obtained by
integrating the linear wave pressure (Eg. A3.79) over the

mean wet surface, SO

99

F =[] pgtn_ds + [[ p sy n as =
5 5
(@) (o]
= R(0,0,090V.) + [[ o Zn ds (A3.83a)
10,0987V, 3t2 o :

S
o]

Here the first term is the hydrostatic restoring force (chapter
A3.2.1.a), acting only on that part of the body that is between
the wave surface and the mean sea level. This means that AV

g
is

AVE = V(z=g) - V(z=0) - ¢<A(z=0) (A.83b)

where A is the horizontal projection of the body. Then clear-
ly the body will only experience a force if the water plane

area changes,

'As noted earlier the problem is to solve the scattered wave
potential problem. This can be done by the Green's function
method (see Hooft (1982) and Chakrabarti (1980)). The Green's
function, G, is then chosen as a singular potential which
satisfies the Laplace equation (A3.75) in the flud. On the
boundaries the same boundary conditions as the scattered wave
potential, @S, are satisfied. If Green's theorem is applied

to @S and the spatial part of Green's function, G and if

XI
the body surface boundary condition is satisfied, then the
two-dimensional Fredholm integral equation, solving the

scattered wave problem, is obtained.
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1 3Gy 0¢q
o, = 5= [[ oy EE + Gy 55;) das (A3.84)

The equation is solved numerically for @S on the surface of
the object.

The potential of the incoming wave 1is

_ gt cosh (k(d+z))

®1 = 37 “Cosh (kd) cos (wt - kx) (A3.85)
Here w is the angular frequency of the wave
k is the wave number,
k = 2L (A3.86)

A

A is the length of the wave and
d is the water depth.

The first order wave exciting force can be written in terms
of the two wave potentials as follows

¢ 8¢s

E= J[ pge no s+ [ ogp n, s (A3.87)
o}

o
The first term is called the Froude-Krylov force and the
second term is the diffraction force. In general, this force

can only be derived in a numerical way, as mentioned earlier.

Eq. (A3.87) can be approximated assuming small body theory.
This assumption is valid if the wave potential is constant
over the body. If this is the case then the Froude-Krylov

force is

30,
Fep = éj p =g D, ds (A3.88a)

o
which in all directions, except in the vertical direction of

a floating body, can be linearized as

Fo = pVu (A3.88Db)

where u is the wave acceleration.
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In the vertical direction the force is expressed differently
due to that the force only acts on the wetted surface. In

deep waterwaves the force is

0 g
(F = pggné e dAZ(z)

£k 2
where r 1is the wave elévation
AZ is the horizontal projection of the body surface, S,

z is the vertical coordinate of the body surface, S.

The diffraction force, on the other hand, can be approximated

in all degrees of freedom as

4+ bu (A3.89)

i
o

Fy = (fsf p 5T B, 48 =
O

where a and b are the added mass and the radiation damping

respectively.

The linear wave force on small bodies is inserting Egs. (A3.88)
and (A3.89) in Eg. (A3.83), as follows

F = R(O,O,pgAVC) + pVl +a i +bu (A3.90)

The hydrodynamic coefficients to be used are derived in chap-
ters A3.2.1b and c.

This concludes the chapter on linear wave forces, and leads
us further to the higher order wave exciting forces. These
higher order forces will in most cases give a significant
contribution to the wave exciting force, but more about this

in the next chapter.

A3.2.2.b Second and higher order wave forces

Wave forces of second and higher order can be divided into

two families.

®m Those caused by the fluid viscosity,
the damping force

® Those caused by the fluid pressure.
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These are of varying magnitude depending on both the fluid

motion and the body.

The damping force due to the fluid viscosity is of major
interest only when the fluid velocity is large enough. This
force acts in the same direction as the fluid velocity and

can be expressed as follows
1
Fp=35puu AC (A3.91)

where u is the fluid velocity,
A is the projected area in the fluid direction and

C. is the drag coefficient.

All of this viscous damping problem is already analysed in
chapter A3.2.1b. The second order viscous force is therefore
not further discussed.

Pressure_ force_
The second and higher order pressure forces can be divided in
one fluid pressure part, p, and one body surface location

part n.

The fluid pressure is to the second order

= - - o0 -1 2
P = pgz s (0,+ @) 5 p (Vo)
B@l
- p(§_1' v E—t—-) + 0(3) (A3.92)

or divided into zeroth order pressure

P, = -—P9z (A3.93)

first order pressure, Eq. A.79,

p. = - ____aq)l (A3.94)
1 P 3t ’

and second order pressure

Py = =3 o707 o gEd - p(s V) (A3.35)
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The velocity potential is also divided in first and second

order terms as
¢ = o, + o (A3.95)

where ¢1 is found in Eq. (A3.85), and ¢2 is the second order
wave potential, as defined by Stokes.

2 cosh(2k (z+4d))

k ct 7
sinh (kd)

cos (2 (kx-wt) (A3.96)

£l
]
oofw

as presented in Wiegel (1964).

Inserting the abbreviations from the zeroth to the second

order pressure terms, the pressure can be written as follows
p=p, +t P +p,+ 003) (r3.97)

When the body is rotating then the local normal vector, n, of
the surface changes. From chapter A2.1 we know that the app-
lication of the transformation matrix on the normal vector
will give the change due to the rotation. In the same way as
the pressure, this can be written as different orders of ro-

tation.

+ 0(3) (A3.98)

n = + n, +n
o TR T B

The pressure force can be deduced by integrating the press-
ure, directed normal into the body, over the total wet sur-

face

F=-[[pnds (A3.99)
5

Inserting Egs. (A3.97) and (A3.98) into Egq. (A3.99) gives

F =~ [[(p_+ py* Pyt 0(3)) (n + ny+ n,+ 0(3))ds
5
(A3.100)

out of which we can get the second order pressure force by
integrating all products of the pressure, p, and normal vector,

n, which give second order contributions over the mean wet
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surface, So' Then the first order wave pressure is integrated

over the oscillating surface, Sl‘

Fp = 7 [JPo 2y * Py2y* Py 8,08
(o]

- éf(Plﬂo) as (A3.101)
1

After some algebra (Hooft (1982)), and assuming small enough
rotations to neglect Py Dy then it is possible to rewrite
Eg. (A3.101) with the use of Egs. (A3.94) and (A3.95) as follows.

- 1 5 .
Ey = { 3p901y By A1 + AT m sy
wl
1 2 00
+ éf 5 pgv¢l] EOdS + fé 0T D, ds +
o o
94
o+ é] p(s1 v ng) ng das (A3.102)
o
where Tyy is the relative wave height

Cir- L17%1wL

z is the z-coordinate of the static equilibrium

water line,

Ty is the first order wave elevation,

1wl A is the length of the water line

AT is the first order transformation matrix
(see chap. A2.1.2)

| is the mass matrix of the structure

él is the first order acceleration of the

structure

and the rest of the terms are explained earlier in this chap-
ter. Usually the first term in Eg. (A3.102) is the dominant
term for surface piercing bodies, but if the body rotates a

lot then second term also will be significant in magnitude.
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A3.2.3 Current force

The current forces are the forces caused by a stationary flow
around the body. These are equivalent to the viscous damping
force and the wave making resistance, which are presented in
chapter A3.2.1. Normally the current speed is not of that
magnitude that it will give a significant wave making resis-
tance. The wave making resistance will therefore not be

further discussed.

The current force is expressed in the same way as in Eq. (A3.91).

= L
F.o=35puuhdclCy (A3.103)
where 0 is the surrounding fluids density
u is the free stream velocity,

A is the area projected normal to the free
stream velocity and

C is the drag coefficient

A3.2.4 Wind force

The wind, being a fluid in motion, is of course gouverned by
the same equations as the water. It is even assumed to be
incompressible in the subsonic region. The only difference is
the free surface boundary conditions, and therefore we will
not have any diffraction forces caused by the wind. But, it
will exist a fluid inertia force and a viscous damping force.
Due to the very low density of air the inertia force will be

very small, and is neglected here
The wind force is considered to be caused only by the viscous .
drag force on the structure, and is expressed in the same way

as the current force.

F o=2puuAdC (A3.104)



84

where p is the air density,
u is the free stream velocity,
A is the area projected normal to the free stream
velocity and
CD is the drag coefficient.
As long as the air can be regarded as incompressible, then

the drag coefficients are the same as the ones valid in water.

A3.3 Mooring forces

A3.3.1 General aspects

The main problem dealing with catenary moorings and mooring
forces, is whether they should be thought of as quasi-static
or not. This of course depends on what is demanded from the
analysis. It is therefore relevant to start with a little bit
of when, where and how the analysis shall be performed.

f‘ResponSe Dynamic Static

L e e
Period
T1
Fig. A3.25 Typical motion amplitude response curve for

a mooring line

It is appropriate to use dynamic analysis on a mooring cable,
when the excitation period is short enough to approach the
highest eigenperiod of the cable,Tl, see Fig. A3.25. Still
slower excitations will be more gouverned by the stiffness

and then the deformations will follow the excitation. Note
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that an oscillation that appears to be slow, can be composed
of several faster oscillations and should therefore be dynami-

cally analysed.

Dyn.
Global ; cable u (t)
quasi ‘; =
static /
Fstat. <

SRR (U Y e SISV /a
ﬁhoon CE;S
<< Global
N SN N .
IS h dynamic Fayn.
Fig. A3.26 Schematic interpretations of where to use

dynamic mooring analysis

Normally it is assumed that dynamics of the cable does not
influence the moored body. The mooring force is then considered
as static. This is true if the structure is large enough, but
for smaller structures the cable dynamics may influence the
motion of the moored body.

There are two ways of analysing the cable:

B (Quasi-) Static analysis

® Dynamic analysis

Which one to use is decided by the oscillation period. If the
excitation is in the region where the cable acts dynamic,

then the dynamic analysis should be used.

The dynamic analysis will be described in the following chapter.
Some static solutions of the equation of motion of the cable

will also be shown .
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A3.3.2 Cable equation of motion

Mooring cables are considered to be so long and slender that
any bending resistance can be neglected. They will therefore
respond to external loads, in the normal direction, by a sig-
nificant change of shape. This property may give rise to major
geometrical non-linearities. There are also other non-linear-
ities to be considered, such as the dragforce and the sea bed

contact.

The fluid loading on the cable is based on the slender (small)
body approximation of the fluid loading equations derived in

chapter A3.2, i.e. the Morison equation.

Lindahl (1981l) presents a very comprehensive way of deriving

the equations of motion, which largely will be shown here.

=

r\xy

1
(]
4_> <
(Y4
(]
1
=7
Zx
+ \\O}
Q.
(4

A9

,0-7 1>

]

S - ‘
l'og dsg

-
-

~ X
Fig. A3.27 An axially elastic cable

Consider an elastic cable moving in the x-y plane. A position
P on the cable has the position x = (x(so,t); y(so,t)) (see
Fig. A3.27), where Sq is the unstretched cable length from

5, = 0 to P, and t is time. These two variables, Sq and t,
are the two independent variables in which we want to have

our expressions.
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In a cable element ds the mass is assumed to be constant
m ds = mo dso (A3.105)

where m is cable mass per stretched wunit length

m is cable mass per unstretched unit length

As mentioned earlier, the bending resistance is neglected.
The stress will therefore be constant over the cable cross

section and the cable tension T(s,t) is expressed as

T = K¢ (A3.106)
where K is the cable stiffness
K = EA (A3.107)

E is the modulus of elasticity
A is the cross sectional area

¢ is the tangential elongation.

The stretch is defined as

ds - ds
o

. = 5= (A3.108)

Egs. (A3.106) and (A3.108) implies that the cable force T is
proportional to the elongation of the cable, which is Hooke”s
law. Using Hooke”s law puts practical limitations on the de-
formations, because the equations will be strongly non-linear.
It is therefore useful to derive another expression for the

elongation.

Egq. (A3.108) can be rewritten as

ds
ds
o

Square both sides and neglect higher order terms of g(gz << ¢

Cor 1= (A3.109)

if ¢ << 1), then another expression of the elongation is ob-
tained

- % @5 - 1) (A3.110)
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This Eq. (A3.110) is Green”s equation of elongation.

Approximating ds to a straight line and using Pythagora”s
proposition on the arch element in Fig. A3.27, the following
relation is obtained

ds? = ax . dx (A3.111)
Using this and denoting

dx
= = x' (A3.112)
e}

then the stretch expressions of Egs. (A3.108) and (A3.110)
can be rewritten as

e = (xX'.x") -1 (A3.113)
and

v
€

{
NI

(x'.x' = 1) (A3.114)

The work dW that is made by the force T on the element ds is
equal to the elongation energy of the element ds. Integrating

dW over the entire cable length, 1, then gives the total elon-
gation energy.

1 1 1

- = (L - 2
Vt —.é aw = é(z Kg)g dSO = K é € dSO (A3.115)

N} =

This is for a uniform cable, assuming constant stiffness K
over 1. If the stretch is small then ¢=zg and Eq. (A3.115) can
be used in combination with both Egs. (A3.113) and (A3.114).

The kinetic energy of the cable is, using Eg. (A3.105)

l+€1 1

L] @ - =]:- L] ®
U = é 5 m ds X « X = 5 M é X « X dso (A3.116)

Other forces f per unit length will give the potential energy

vy = [ f.xds, (A3.117)
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where the other forces are body forces, gravity, surface forces,

and hydrodynamic forces.

The total potential energy is the sum of stretch work and the

potential energy from other forces.
v =YV, + Vl (A3.118)

Knowing the kinetic and potential energy of the cable, it is
possible to derive the dynamic equilibrium equations (Euler
Lagrange equations). This is done using Hamilton”s principe
(see Lindahl (1981)), which results in the Euler Lagrange

equation.

e ) + & QL) - (A3.119)
O P—

where the Lagrange density is

L =%m % .%X+£.x-%ke (A3.120)

Making the derivatives in Eq. (A3.119) on the Lagrangian of
Eg. (A3.120) give two types of equations of motions.

-

. X
-9 —) - f =
m, X )5, (Ke TTe ) £ 0 (A3.121)
with ¢ from Eg. (A3.113)
c oy L ~
m, X 75, (Kex ) £f=0 (A3.122)

with g from Eg. (A3.114).

In Egs. (A3.121) and (A3.122) the partial differential equa-
tions of an axially elastic cable are presented. The differ-
ence between them is the direction in which the tensional
force, kg or k;, acts. In Egq. (A3.121) the force acts in the
tangential direction of the stretched cable

]
30X 0 X

t =5 (T+e)as = T+e (A.123)

while in Eg. (A3.122) the force acts in the tangential direc-
tion of the unstretched cable.

90X !

tO = -é“é"; = X (A3.124)
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If the tensional force is to act in the accurate stretched
direction (Eg. (A2.123)), then the tensional force in Eq.
(A3.122) must be

T = Kg (1+¢) (A3.125)

If the tensional force follows this relation, then the force
is exactly independent of the elongation size. If the elonga-
tions are small enough, then the force is independent of

stretch type.
T = Kg(l+eg) =z Kg = Kg (A3.126)

Assuming that the tensional force follows the relation of Eqg.
(A3.125), it is possible to use Eq. (A3.122) as the cable
equation of motion. Usually the interest is in studying oscil-
lations of a cable about some known configufation, for example
the static equilibrium. A reference configuration is then

x (s ), and the strain g_(s_ ). If u is the displacement and

A€ is the incremental strain between the actual configuration

and the reference configuration.
X=X + u (A3.127)
Bo= B+ AR (A3.128)
Using these relations in Eq. (A3.122) it is possible to rewrite

the equation of motion of a cable in a fluid of stationary
motion (see Lindahl (1983)).

€4
m U + C4(1+€)E " TTe (i - x ) x -

o
-2 (kex ) - £ =0 (A3.129)
95, = =r
wdoz
where C4 = CmN i Py (A3.130)

Cm is the added mass coefficient
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and

fr is the resultant force acting on the cable

£, = Eg + fop * Iox (A.131)
f is the gravity force
_nag
T
£g = !0'0' - mrgl

m. is the efficient mass

m, 6= —— (A3.132)

Py is the cable density,

p.. is the water density.
\

fyp is the tangential drag.

fpr = 6 \Y.‘EE' | (Y.°§.')2{_'/(l+s)2 (A3.133)

C, =5 C d (A3.134)

2 pT %o Pv

CDT is the tangential drag coefficient and

do is the line diameter.

fhy 18 the normal drag

fox v v - ———) (¥ - ———)}(1+e) (A3.135)

(A3.136)

Con is the normal drag coefficient.
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Furthermore
[} 9 ]
X =X +u (A3.137)
v = - u (A3.138)
e ——C PR
where Ve is the current velocity.
€ = €4 + Ag (A3.139)
~ l 1] 1]
€5 = 3 (ﬁo'zo - 1) (A3.,140)
~ 1 1] L § ]
be = 5w sy + X eu (A3.141)

The force that acts on the moored body is obtained by integrating
Eq. (A3.129) over the entire length of the cable, and this

gives the tensional force at the attachment point on the

body.

1 . . Cc .
= = Yu =3 (uex )x -
T(s =1,t) —Of{mog + Cy(l+e)u -q37 (uex )x - £ }ds_ +
+ T(s,=0,t) (A3.142)

with T from Eq.'(A3.125) directed in the stretched tangential
direction, Eg. (A3.123).

Static solution

s wmes e ames e

The static solution with the gravity as the only acting force,
is obtained from Eq. (A3.142). The horizontal and vertical

components are

o o —-'-i-'_:g—b” - mrga (A3.143)

o o T_TE; - mrg SO (A3.144)
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The line force is

2 2.y 2 2. %
: : (A3.145)

= mog(a + so)
Furthermore, the line force is obtained from Hooke”s law.

To = Kgo (A3.146)
The geometry of the curve is obtained by integrating Egs. (A3.143)
and (A3.144) and using the relations in Egs. (A3-145) and
(A3.146) in the following way

_ 2, 2y-%  M9° _
X, = f(a(a +so) + % )dsO =
Sq m_ga
= a arCSth(—E) + R Aso (A3.147)
_ 2, 2, =% My 9 Sq _
Yo = f(so(a +so) + % ) ds =
m_g 52
= @%shHT e L0 -0 (A3.148)

The integration parameter a is most easily obtained from Eqg.
(A3.143), if the force H is known. ’

a = o (A3.149)

In the case of an axially stiff cable, K -> =, then the

expressions of the geometry become

s
a arc sin h (~§) (A3.150)

X
o

i

2 2.k
Yo (a +so) - a (A3.151)

The unstretched line force is obtained from Egs. (A3.145) and
(A3.151).

To = m. g(yo+a) = m_gy, + HO (A3.152)
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These are the static equilibrium equations, stretched and

unstretched, for a uniform cable in a fluid at rest.

A3.4 Gravity force

The earth will affect a moving body with two forces, namely;
the gravity force and the Coriolis' force. The Coriolis'
force from the rotation of the earth (see chapter A2.2.2)
will be neglected.

The gravity forces acting on the floating body, and how it
affects it, is already discussed. Hence, the discussion will
concentrate on how the gravity force acts in the different

sets of frame that exists.

In the earth fixed frame from chapter Al, the gravity force

is
t
EG = m(0,0,-g) (A3.153)

In the body fixed frame, the gravity force is

L ]
EG =1 EG = mg £G (A3.154)
where
]
£G = = 2x3 = 591593 - celsezce3
selc93 + celsezse3

celce2
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A3.5 Hydrodynamic equation of motion

VAT A ASYIENEASNNYE

Fig. A3.28 Sets of rotating and fixed frames.

The equations of motion of the floating system are to be
expressed in terms of one frame. As can be seen in Figure
A3.28 there are various frames to choose. These frames are of
two types, one type rotating (body fixed) and the other one

fixed.

There are four convenient types of earth fixed systems. Among
these the Earth System X is the main reference frame and the
others are merely subframes, but the main frame can of course
be chosen to coincide with one of the subframes. This is to
be preferred if special knowledge is wanted about that sub-
structure. Apart from the main (Earth) frame, there are two

frames representing the body and one for each mooring line.

The mooring line frame XA is located at the lower attachment
point of the line, see Figure A3.28. It is directed with its
x—-axis towards the floating object, the y=-axis upwards and

the z=-axis in the resulting direction.
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The fixed body equilibrium frames are located at the centre

of the equilibrium water surface x., and at the equilibrium

S

centre of gravity x They are directed in the way that is

G*
presented in Chapter Al. These frames coincide with the
rotating, body fixed, frames, x'S and x'G,
in the reference equilibrium position.

when the system is

The reason for having two frames in the body is that differ-
ent properties are expressed in terms of different frames. So
" is the frequency dependent hydrodynamic properties mostly given
in terms of rotations about the surface, while the body moment
of inertia is given about the centre of gravity. The buoyancy
rotation stiffness is here derived about the center of gravity
frames, though it is perhaps more common to express it in the

surface frame.

The above mentioned properties, and their corresponding trans-
lational properties, are dependent on the body orientation.
This is valid without any restrictions for the body properties
of inertia, the buoyancy and the surface independent hydro-
dynamic properties. On the other hand, the surface (frequency)
dependent hydrodynamic properties are derived assuming the
rotations about the surface to be linear, and the body shape
to be constant at the surface. Then, strictly speaking, only
the yaw can be assumed to be large, but if the pitch and roll
rotations are small enough (<10°) it is possible to assume

all hydrodynamic properties to be body fixed.

For matters of comprehensiveness the equations of motion of
the system will be expressed in the following chapters. First
they will be expreséed in terms of the main frame. Secondly
they will be expressed in terms of their substructure frames.
In doing this it will be easy to decide which frame is most

easy to use.

A3.5.1 In a fixed frame

The force and torque equations of motion for a moored floating
body, based in Egs. (A3.1) and (A3.2), can be written using
results from Chapters A3.2 to A3.4. These equations will be

expressed in a general form.
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The force equation can be written as follows

where

The body

where

¥ =F (A3.154)
a-ac B

=

m is total mass,

is acceleration of center of mass and

at]

=c
F is body boundary force.

boundary force is

F=F_ +Fq+F +E +E +Fy+F, (A3.155)

ES is the linear force caused by body motion (Eqg.
(A3.6))

Ed is the drag force, 0(2), caused by relative body

motion (Eg. (A3.51))

is the wave induced forces on the body (Eqg. (A3.90))

—e

F_ is the current force (Egq. (A3.103))

Ew is the wind force (Eg. (A3.104))

Fu is the mooring force (Eq. (A3.142)) and

Fs is the gravity force (Eg. (A3.154))

Inserting the body boundary forces listed above into Egq. (A3.154)

gives the following force Equation of Motion

(m+a)Z_ = - br + {py (laru_ ) -1) | (ra ) -z 13

- cr
c ==cC

+lpu + (arov)ud |y + {p,(w-r) lw-z|3l +

+{g}\M + Fg (A3.156)

where { }| denotes the integrated value of the term over

either the projected length, L, or sum over the mooring

lines, M.
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Furthermore the notations are

velocity of center of gravity

Q

displacement of center of gravity

Q

added mass

ol o He

radiation damping
buoyancy stiffness
water drag damping

wind drag damping

< o o Ha
N

body volume

water wave acceleration

fee

e

water wave velocity

current velocity

e
Q
o]

wind velocity

mooring force

7 i3 1<

]

gravity force.

All interaction between current and waves are excluded. This
restriction is not necessary, but it simplifies the calcula-

tions.

In a similar way the torque equation of motion, about the

center of gravity, is derived

W=

o = M, (A3.157)
where
gc is body inertia about center of gravity,
W is angular acceleration
Mc is excitation torgue on the body

The body excitation torque is (same notation as for forces)

M=M + M.+ M +M + M + M (A3.158)



where
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Es is the linear moment caused by body motion (from

Eg. (A3.6)),

Mg

is the drag moment, 0(2}),

caused by relative body

motion (from Eqg. (A3.51)),

Ee is the
(A3.90)),

M, is the current
M is the
—w

M, is the mooring

M

wind induced moment (from Eq.

wave induced moments on the body (from Eg.

induced moment (from Eq. (A3.103)),

(A3.104) and

induced moment (from Eq. (A3.142)).

Inserting the body boundary moments, which are derived from

the above listed force equations, gives the torque Equation

of Motion

+ {r x

+{r x(b,(w = ) |w-r[)} ' + {(rxT)}!y,

using the same

notations
é is
w is
QE is
r |is
and index

notations as in Eq.

%+ {rx(py ((wru ) - B | (wru ) - £12,

o

QTB tx X(§T+pv)‘*_1»’ ‘L +

(A3.159)

(A3.156) plus the following

the body angular acceleration
the body angular velocity
the body angular displacement
the force location vector

T denotes translation.

This gives us the expressions for both force and moment, but

a problem is that the body

has significant displacements, and

therefore it is hard to give the body properties in a simple

way. Hence, using the body

frame will simplify the problem.
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A3.5.2 In a moving frame

The use of a body fixed frame and its related quantities
simplifies the problem. Using the body motions and solving
the problem in the body fixed frame gives Equations of

Motions as below.

The force equation is:

m+a)t', = - p'x(mra)i'y - b £} - cr! +
+ {by ((u'+u' ) - i')!(g'+§én) - i'|}|L +
+o(bu' + (@t pVIE'YH|, +
+ (b, ((w'+ul )=L") | (ul+ul ) = B'|}|  +
F{T') |y + EL (A3.160)

with notations from Eg. (A3.156), and where the prime denotes

that they are expressed in terms of body coordinates.
The torque equation is:

(Tra)i' = - w'RIradul - bu' - gp” +

o’
o

+{r'x(py (avu ) - D) | (wha ) - E']} | +

+ {r'x(bpu!) + r'x((a+pV)ul)}| +

4+

{r'x(by(w'-£") [w'-L' [V}, +

+{r' x '}y, (A3.161)

The use of the body frame has the advantage that you do not
need to transform the property matrices. Instead you have to
transform the motion vectors of the fluid and the body. But

this is of course simpler.
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A3.5.3 Solution principles

A set of equations that are expressed in quasi coordinates,
such as the body frame Equations of Motions, Egs. (A3.160)

and (A3.161), may not be integrated. This is due to the fact
that these coordinates are time dependent. It is therefore
necessary to relate these body motions to a fixed frame. Hence,

it will be possible to integrate them.
The integration scheme is as below.

- Solve E o M (Eq. of Motion): i’
(Eg. (A3.160))

- Transform p=r® (214, %2 (A3.162)

(Eq. (A2.15) and Eq. (A2.67))

- Integrate: = [%dt
r= | fadt (A3.163)
Rotations:
- Solve E o M: '
(Eq. (A3.160))
gE [ "1 e g §
- Transform: 87=(R') " (gp'tuxy') (A3.164)
(Eg. (A2.79) and Eqg. (A2.67))
- Integrate: éE = éE dt
6" = | 8% at (A3.165)

This entire integration scheme is solved using some numerical

method, such as a central difference scheme for instance.



A4 DYNAMICS OF A WAVE ENERGY BUOY

A4.1 Description of buoy

Wave energy devices can be divided into
three groups, attenuators, terminators

and point absorbers, where the denomi-

nations hint at the extension and direc-

tion of the convertors. Attenuator ex-
tend in the wave direction, and termi-
nators are perpendicular to the wave

direction.

This work deals with a special point
absorber, see Figure A4.1l. A point
absorber will act as a wave energy sink
which will affect the wave situation
around the buoy, an effect that is out

of scope of this work.

The model chosen will only take into
account the effects that are caused by
the damped motion of the buoy, i.e.
that the dissipated and radiated energy
will be changed due to the energy con-

version.
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/\

Rack —F Gearwheel
==t connected to
' generator via
a gear

Piston rod

[_';ﬂ—~ Piston

20m

i .

Fig. A4.1 Point

absorber.

Choosing a point absorber such as the one in Figure A4.1,

will give seven degrees of freedom of the buoy. That is the

ordinary six rigid body motions, plus one heave motion for

the rod piston.

Energy is extracted from the relative motion between the two

heave degrees of freedom.
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Ad.2 Externally damped buoy

BUOY AND PISTON

Ll

) 57

—

SCHEMATIC .
—_— Piston
B
Buoy
Fig., A4.2 Buoy and piston, and a schematic presentation

of the system.

In the wave energy buoy, which is used here, the power take
off is from the linear damper between the heave motions of
the bodies, see Figure A4.,2. All other degrees of freedom are

the same for the buoy and the rod.

The power extracted from the linear damper is

= - 2
P=F u = blurel (Ad.1)
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—
o

Buoy mass (kg)
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where
b1 is the linear (or linearized) damping constant
of the conversion equipment and
o is the relative heave velocity between piston
and buoy.
= o - ot
Ul z rp z'y (A4.2)
where
i'b is buoy velocity and
é'rp is rod piston velocity

10°/0 12

] | l 5 0 | | L »
0 10 20 30 0 10 20 30
External damping (Ns/m) External damping (Ns/m)

Fig. A4.3 a Contours of total b Contours of total

capture width ratio capture width ratio

as a function of mass as a function of mass

and damping. Wave and damping. Wave

Spectrum GO. (harder) Spectrum G4. (milder)

(From Bergdahl and Martensson, 1984)

A proper choice of mass/damping ratio is of vital interest.
As seen in Figures A4.3a and b, there is an optimal ratio.
This ratio is as expected to depend on the waves, the bigger

the waves are, the heavier the buoy must be.
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Damping forces, from energy conversion, are as shown in Eq.
(A4.1) linear functions of relative velocity. The force on
the buoy is

(F)puoy = P1 (Zyp = 2p) (A4.3)

and the force on the rod piston is

(FC)rp = bl(ég - zép) (prd. 4)

A4.3 Equations of motions

Wave energy

buoy Mooring buoy

Surface wire,
25 m

Chain, 50 m
Concrete

anchor

Fig. A4.4 Moored wave energy buoy. Top view and side
view.

The moored wave energy buoy consists of one main buoy, a number
of achoring buoys, lines connecting the main buoy to the
anchoring buoys and finally mooring lines connecting the

anchoring buoys with the anchors.
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This system has
7 + n<3

degrees of freedom, where n is the number of anchoring buoys,
assuming that the anchoring buoys only translate, and that
the lines between the main and the mooring buoys are weight

less.

Schematically the system of equations of motions is for the

main buoy

g-

=F 4+ F +F +F + F (A4.5)
B ) —e

¥y

and for the mooring buoy

Yup Zup = Eg* Lo + Ep + B + Ey (a4.6)
Here

Eg force from moving structure in environment

Fo force from environment

F coupled force from structure motion and
environment

F. force from energy conversion

EL ‘ force from line connecting main and mooring
buoy

EM force from mooring line

33 7-dimensional acceleration vector consist-
ing of 4 translational and 3 rotational
accelerations

v 3-dimensional translational acceleration
vector,

These equations are solved in the way that is described in
Chapter 3.5.
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The line force is preferably calculated assuming some kind of
damping, external or internal. This can be done in the same
way as for the mooring force, see Chapter 3.5. Choosing a too
small damping will cause numerical instabilities in the equa-
tions. It is also possible to assume the connecting line to
be rigid. The mooring buoy will then only be adjusted in

direction in the system.



108

BIBLIOGRAPHY

Brebbia and Walker (1979): Dynamic Analysis of Offshore Struc-

tures. Newnes-Butterworths, London, Great Britain.

Bergdahl and Martensson (1984): Wave-Power Buoys. Model Ex-
periments; Efficiency and Hydrodynamic Coefficients.
Group for Wave Energy Research, Rep. no. GR:55, Chal-
mers Univ. of Technology, G&teborg, Sweden.

Bergdahl and Rylander (1981): Mooring Force Measurements on a
Wave Energy Converter at Sea in 1980 (Swedish).
Group for Wave Energy Research, Rep. no. GR:38, Chal-

mers Univ. of Technology, Gbteborg, Sweden.

Bergdahl et al (1978): Linear Theory for Energy Absorption by
an Oscillating Wave Energy Converter of Buoy Type
(Swedish) . Group for Wave Energy Research, Rep. no.

GR:10, Chalmers Univ. of Technology, Gbteborg, Sweden.

Cederwall and Larsen (1976): Hydraulics for Civil Engineers
(Swedish) . Liber Ldromedel, Lund, Sweden.

Chakrabarti (1980): Impact of Analytical, Model and Field
Studies on the Design of Offshore Structures. Int.
Symp. Ocean Eng. and Ship Handl., SSPA, G&teborg,

Sweden.

Chakrabarti (1984): Steady Drift Force on Vertical Cylinder -
Viscous vs. Potential. Appl. Ocean Research, Vol
6:2, pp 73-82.

Choo and Casarella (1973): A Survey of Analytical Methods for
Dynamic Simulation of Cable-Body Systems. J. Hydro-
nautics, Vol 7:4, pp 137-144.

Claeson (Ed.) (1980): Wave Energy in Sweden (Swedish). Group
for Wave Energy Research, Rep. no. GR:16, Chalmers

Univ. of Technology, G&teborg, Sweden.



109

Claeson (Ed.) (1980): Introductory Test with the Inter Project
Buoy (Swedish). Group for Wave Energy Research, Rep.
no. GR:34, Chalmers Univ. of Technology, Goteborg,

Sweden.

Claeson (Ed.) (1982): Wave Energy Research in Sweden. Final
report Phase 5. Group for Wave Energy Research, Rep.
no. GR:50, Chalmers Univ. of Technology, Goteborg,

Sweden.

Clough and Penzien (1975): Dynamics of Structures. McGraw-
Hill Kogakusha, Tokyo, Japan.

Craig (1981): Structural Dynamics. An Introduction to Computer
Methods. John Wiley & Sons, New York, USA.

van Dao and Penzien (1982): Comparison of Treatments of Non-
linear Drag Forces Acting on Fixed Offshore Plat-

forms. Appl. Ocean Research, Vol. 4:2, pp 66-72.

Davis and Snider (): Introduction to Vector Analysis. (4:th
ed.)

Goldstein (1980): Classical Mechanics (2:nd ed.). Addison-
Wesley Publ. Comp., Reading, Mass., USA.

Greenwood (1977): Classical Dynamics. Prentice-Hall, Englewood
Clifts, N.J., USA.

Handa (1984): Compendium in Building Aerodynamics, (rev.)
(Swedish) . Dep. of Structural Design, No. 1982:21,
Chalmers Univ. of Technology, G&teborg, Sweden.

Honkanen (1976): On the Wave Induced Motions of Ships. The
Swedish Academy of Engineering Sciences in Finland,

Rep. no. 30, Helsinki, Finland.

Hooft, J.P. (1982): Advanced Dynamics of Marine Structures.
John Wiley & Sons, New York, USA.



110

Kim, W. (1965): On the Harmonic Oscillations of a Rigid Body
on a Free Surface. J. Fluid Mech., Vol. 21:3, pp
427-451.

Korvin-Kroukovsky, B.V. (1961): Theory of Seakeeping. Soc. of
Nav. Arc. and Mar. Eng., New York, N.Y., USA.

Lamb (1932): Hydrodynamics (6:th ed.). University Press, Cam-

bridge, Great Britain.

Larsen, I. (1984): The Concept of Acceleration Net for Defining
Added Mass. Prog. Rep. 66, pp 15-22, Inst. Hydrodyn.
and Hydraulic Eng., Techn. Univ. Denmark, Lyngby,

Denmark.

Lighthill, J. (1979): Waves and Hydrodynamic Loading. Behaviour
of Offshore Structures 1979 (2:nd Int. Conf.) Opening
Address-1, London, England.

Lindahl (1981): Equation of motion of a cable. (Swedish) Dep.
of Hydraulics, Chalmers Univ. of Technology, Rep.
Ser. B:24, Gbteborg, Sweden.

Lindahl and Sj&berg (1983): Dynamic Analysis of Mooring Cables.
Dep. of Hydraulics, Chalmers Univ. of Technology,
Rep. Ser. A:9, Gdteborg, Sweden.

Lindsey (1940): Simple Shapes. NACA Tech. Rep 619.

Meirovitch, L. (1970): Methods of Analytical Dynamics. McGraw-
Hill, New York, USA.

Meriam (1980): Statics and Dynamics. John Wiley & Sons, New
York, USA.

Martensson (1983): Wind Generated Waves (2:nd ed.). Group for
Wave Energy Research, Rep. no. GR:52, Chalmers Univ.

of Technology, G&teborg, Sweden.



111

Nayfeh et al (1973): Nonlinear Coupling of Pitch and Roll
Modes in Ship Motions. J. Hydronautics, Vol. 7:4, pp
145-152.

Nayfeh et al (1974): Perturbation-Energy Approach for the
Development of the Nonlinear Equations of Ship Motion.
J. Hydronautics, Vol. 8:4, pp 130-136.

Newman, J. (1978): The Theory of Ship Motions. Adv. Applied
Mechanics, Vol. 18, pp 221-283.

Newman, J. (1980): Marine Hydrodynamics. The MIT Press, Cam-
bridge, Mass., USA.

Olson, R. (1980): Essentials of Engineering Fluid Mechanics
{4:th ed.). Harper & Row, New York, USA.

Olsson, G., (1982): Hydrodynamics of a Floating Cylinder
(Swedish). Educational Litt. Nr. 1982:3, Dep. of
Hydraulics, Chalmers Univ. of Technology, Gb&teborg,

Sweden.

Pio, R. (1964): Symbolic Representation of Coordinate Trans-
formations. IEEE Trans. on Aerospace and Navigational
Electronics, Vol. ANE-11, pp 128-134.

Pio, R. (1966): Euler Angle Transformations. IEE Trans. on
Automatic Control, Vol. AC-11, No. 4, pp 707-715.

Rodenbusch and K&llstrdm (1986): Forces on a Large Cylinder
in Random Two-Dimensional Flows. Offshore Technology

Conference, Paper no. OTC-5096, Houston, Texas, USA.

Sachs (1972): Wind Forces in Engineering. Pergamon Press,

Oxford, Great Britain.

Sarpkaya (1979): Impact of Analytical, Model and Field Studies
on the Design of Offshore Structures. Int. Symp.
Ocean Eng. and Ship Handl., SSPA, G&teborg, Sweden.



112

Sjbberg and Bergdahl (1981): Moorings and Mooring Forces
. {Swedish). Dep. of Hydraulics, Rep. Ser. B:30, Chal-

mers Univ. of Technology, G&teborg, Sweden.

Smith and Dominguez (1972): Oscillations of Buoy=Cable Mooring
Systems., Symp. on Flow-Induced Structural Vibrations,

Aug. 14-16, Karlsruhe, Germany.

Standing (1979): Use of Wave Diffraction Theory with Morison's
Equation to Compute Wave Loads and Motions of Offshore
Structures. National Maritime Institute, Rep. no.

NMI R74, Feltham, Great Britain.

Stiansen and Chen (1981): Computational Methods for Predicting
Motion and Dynamic Loads of Tension-Leg Platforms.
Integrity of Offshore Structures, 2:nd Int. Symp.,
1-3 July, Glasgow, Great Britain.

Vedeld (1983): WAMLOS:NV1461: Wave Motions and Loads for Off-
shore Structures. User's Manual. Technical Report

no. 83-6101, Computas A/S, Oslo, Norway.

Wiegel (1964): Oceanographical Engineering. Prentice-Hall

Inc, New Jersey, USA.

van Wijngaarden, L. (1963): On the Kramers-Kronig Relations
with Special Reference to Gravity Waves. Proc.
Kroninklijke Nederlandse Akad. Wet. Ser. B 66 (5).

Yeung, R. (1981): Added Mass and Damping of a Vertical Cylinder
in Finite-Depth Waters. Appl. Ocean Res., Vol. 3,
No. 3. '

Zarnick and Casarella (1972): The Dynamics of a Ship Moored
by a Multi-Legged Cable System in Waves. 8th Annual
Conference and Exposition, Marine Technology Society
Sep 11-13, Washington DC.



CHALMERS TEKNISKA HOGSKOLA

Institutionen for vattenbyggnad

Report Series A

A:1  Bergdahl, L.: Physics of ice and snow as affects thermal pressure. 1977.

A:2  Bergdahl, L.: Thermal ice pressure in lake ice covers. 1978.

A:3  Hiaggstrom, S.: Surface Discharge of Cooling Water. Effects of Distortion in
Model Investigations. 1978.

A:4  Sellgren, A.: Slurry Transportation of Ores and Industrial Minerals in a Vertical
Pipe by Centrifugal Pumps. 1978.

A:5 Amell, V.: Description and Validation of the CTH—Urban Runoff Model. 1980.

A:6  Sjoéberg, A.: Calculation of Unsteady Flows in Regulated Rivers and Storm
Sewer Systems. 1976.

A:7  Svensson, T.. Water Exchange and Mixing in Fjords. Mathematical Models and
Field Studies in the Byfjord. 1980.

A:8  Amell, V.: Rainfall Data for the Design of Sewer Pipe Systems. 1982.

A:9 Lindahl, J., Sjoberg, A.: Dynamic Analysis of Mooring Cables. 1983.

A:10 Nilsdal, J-A.: Optimeringsmodellen ILSD. Berikning av topografins inverkan pd
ett dagvattensystems kapacitet och anldggningskostnad. 1983.

A:11 Lindahl, J.: Implicit numerisk 16sning av rorelseekvationerna for en forankrings-
kabel. 1984.

A:12 Lindahl, J.: Modellfoérsok med en forankringskabel. 1985.

A:13  Lyngfelt, S.: On Urban Runoff Modelling. The Application of Numerical Models
Based on the Kinematic Wave Theory. 1985.

A:14 Johansson, M.: Transient Motions of Large Floating Structures. 1986.

A:15 Martensson, N., Bergdahl, L.: On the Wave Climate of the Southem Baltic.
1987.

A:16 Moberg, G.: Wave Forces on a Vertical Slender Cylinder. 1988.

A:17 Perrusquia Gonzéles, G.S.: Part—Full Flow in Pipes with a Sediment Bed. Part

one: Bedform dimensions. Part two: Flow resistance. 1988.



CHALMERS TEKNISKA HOGSKOLA
Institutionen for vattenbyggnad

Report Series B

B:1  Bergdahl, L.: Beriikning av vigkrafter. (Ersatts med 1979:07) 1977.

B:2  Amell, V.: Studier av amerikansk dagvattenteknik. 1977.

B:3  Sellgren, A.: Hydraulic Hoisting of Crushed Ores. A feasibility study and
pilot—plant investigation on coarse iron ore transportation by centrifugal pumps.
1977.

B:4 Ringesten, B.: Energi ur havsstrommar. 1977.

B:5 Sjoberg, A., Asp, T.: Brukar—anvisning for ROUTE—-S. En matematisk modell
for berdkning av icke—stationdra fléden i floder och kanaler vid strémmande
tillstdnd. 1977.

B:6  Annual Report 1976/77. 1977.

B:7  Bergdahl, L., Werersson, L.: Calculated and Expected Thermal Ice Pressures in
Five Swedish Lakes. 1977. '

B:8  Géransson, C-G., Svensson, T.: Drogue Tracking — Measuring Principles and
Data Handling. 1977.

B:9  Goransson, C—G.: Mathematical Model of Sewage Discharge into confined,
stratified Basins — Especially Fjords. 1977.

B:10 Amell, V., Lyngfelt, S.: Berékning av dagvattenavrinning frin urbana omriden.
1978.

B:11 Amell, V.: Analysis of Rainfall Data for Use in Design of Storm Sewer Systems.
1978.

B:12 Sjoberg, A.: On Models to be used in Sweden for Detailed Design and Analysis
of Storm Drainage Systems. 1978.

B:13 Lyngfelt, S.: An Analysis of Parameters in a Kinematic Wave Model of
Overland Flow in Urban Areas. 1978.

B:14 Sjoberg, A., Lundgren, J., Asp, T., Melin, H.: Manual fér ILLUDAS (Version
S2). Ett datorprogram fér dimensionering och analys av dagvattensystem. 1979.

B:15 Annual Report 1978/79. 1979, \

B:16 Nilsdal, J-A., Sjoberg, A.: Dimensionerande regn ;/id hoga vattenstdnd i Gota
dlv. 1979.

B:17 Stollman, L-E.: Nirkes Svartd. Hydrologisk inventering. 1979.

B:18 Svensson, T.. Tracer Measurements of Mixing in the Deep Water of a Small,
Stratified Sill Fjord. 1979.

B:19 Svensson, T., Degerman, E., Jansson, B.,Westerlund, S.: Energiutvinning ur sjo—
och havssediment. En forstudie. R76:1980. 1979.

B:20 Annual Report 1979. 1980.

B:21 Stéllman, L-E.. Nirkes Svartd. Inventering av vattentillging och

vattenanvindning. 1980.



Report Series B

B:22
B:23

B:24
B:25

B:26
B:27

B:28
-B:29

B:30
B:31

B:32
B:33
B:34

B:35
B:36
B:37
B:38
B:39
B:40
B:41
B:42

B:43

Higgstrom, S., Sjoberg, A.: Effects of Distortion in Physical Models of Cooling
Water Discharge. 1979.

Sellgren, A.: A Model for Calculating the Pumping Cost of Industrial Slurries.
1981.

Lindahl, J.: Rorelseekvationen for en kabel. 1981.

Bergdahl, L., Olsson, G.. Konstruktioner i havet. Vigkrafter—rérelser. En
inventering av datorprogram. 1981.

Annual Report 1980. 1981.

Nilsdal, J—A.: Teknisk—ekonomisk dimensionering av avloppsledningar. En
litteraturstudie om datormodeller. 1981.

Sjoberg, A.: The Sewer Network Models DAGVL—-A and DAGVL-DIFF. 1981.

Moberg, G.: Anldggningar for oljeutvinning till havs. Konstruktionstyper,
dimensioneringskriterier och positioneringssystem. 1981.

Sjoberg, A., Bergdahl, L.: Férankringar och forankringskrafter. 1981.

Higgstrom, S., Melin, H.: Anvindning av simuleringsmodellen MITSIM vid
vattenresursplanering for Svartidn. 1982.

Bydén, S., Nielsen, B.: Nirkes Svartd. Vattenoversikt for Laxd kommun. 1982.
Sjoberg, A.: On the stability of gradually varied flow in sewers. 1982.

Bydén, S., Nyberg, E.: Nirkes Svartd. Undersdkning av grundvattenkvalitet i
Laxd kommun. 1982.

Sjoberg, A., Mirtensson, N.: Regnenveloppmetoden. En analys av metodens
tilldimplighet for dimensionering av ett 2—irs perkolationsmagasin. 1982.

Svensson, T., S6mman, L—O.: Virmeupptagning med bottenforlagda kylslangar i
stillastidende vatten. Laboratorieforsok. 1982.

Mattsson, A.: Koltransporter och kolhantering. Lagring i terminaler och hos
storforbrukare. (Delrapport). 1983.

Strandner, H.: Ett datorprogram for sammankoppling av ILLUDAS och
DAGVL-DIFF. 1983.

Svensson, T., Sorman, L—O.: Virmeupptagning med bottenforlagda slangar i
rinnande vatten. Laboratorieférsok. 1983.

Mattsson, A.: Koltransporter och kolhantering. Lagring i terminaler och hos
storforbrukare. Kostnader. Delrapport 2. 1983.

Higgstrtom, S., Melin, H.: Nirkes Svartd. Simuleringsmodellen MITSIM for
kvantitativ analys i vattenresursplanering. 1983.

Hérd, S.. Seminarium om miljéeffekter vid naturvirmesystem. Dokumentation
sammanstilld av S. Hird, VIAK AB. BFR—R60:1984. 1983.

Lindahl, J.: Manual for MODEX-MODIM. Ett datorprogram for simulering av
dynamiska forlopp i forankringskablar. 1983.



Report Series B
B:44 Activity Report. 1984.

B:45 Sjoberg, A.: DAGVL-DIFF. Berikning av icke—stationdra flodesforlopp i helt
eller delvis fyllda avloppssystem, tunnlar och kanaler. 1984.

B:46 Bergdahl, L., Melin, H.: WAVE FIELD. Manual till ett program for berikning
av ytvattenvigor. 1985.

B:47 Lyngfelt, S.: Manual for dagvattenmodellen CURE. 1985.

B:48 Perrﬁsquia, G., Lyngfelt, S., Sjoberg, A.: Flodeskapacitet hos avloppsledningar
delvis fyllda med sediment. En inledande experimentell och teoretisk studie.
1986.

B:49 Lindahl, J., Bergdahl, L.: MODEX-MODIM. User's Manual. 1987.

B:50 Martensson, N.: Dynamic Analysis of a Moored Wave Energy Buoy. 1988.






