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A CPHD Filter for Tracking with Spawning Models
Malin Lundgren, Lennart Svensson,Senior Member, IEEE,Lars Hammarstrand

Abstract—In some applications of multi-target tracking,
appearing targets are suitably modeled as spawning from
existing targets. However, in the original formulation of the
cardinalized probability hypothesis density (CPHD) filter, this
type of model is not supported; instead appearing targets are
modeled by spontaneous birth only. In this paper we derive
the necessary equations for a CPHD filter for the case when
the process model also includes target spawning. For this
generalized filter, the cardinality prediction formula might
become computationally intractable for general spawning
models. However, when the cardinality distribution of the
spawning targets is either Bernoulli or Poisson, we derive
expressions that are practical and computationally efficient.
Simulations show that the proposed filter responds faster to
a change in target number due to spawned targets than the
original CPHD filter. In addition, the performance of the filt er,
considering the optimal subpattern assignment (OSPA), is
improved when having an explicit spawning model.

Index Terms—Bayesian methods, Filtering theory, Recursive
estimation

I. I NTRODUCTION

Multi-target tracking is used to detect and position an
unknown and varying number of objects using sensor obser-
vations affected by noise and clutter. The problem includes
data association and detection uncertainties, originating from
the fact that a target might not be detected and that the
source of each measurement is unknown. Traditionally, as
in [1], [2], tracking algorithms have been designed using
target labeling which means that the algorithm discriminates
between different targets. Examples of such algorithms arethe
Probabilistic Data Association (PDA) filter [3], the Joint PDA
(JPDA) filter [4] and the Multiple Hypothesis Tracking (MHT)
algorithm [5], [6]. During the last decade, however, a family
of alternative methods that, in its original form, disregards
target labels has gained a lot of research attention. The idea
is that the collection of target states can be described by a
random finite set (RFS) [7], a representation that captures
the randomness in the number of targets and their states,
while not discriminating between targets since the set is
unordered. Recent results [8], however, show that target labels
can naturally be incorporated into these methods albeit at the
expense of increased computational complexity. Using RFSsto
model the multi-target state and the received observations, the

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

This work was supported by the Strategic Vehicle Research and Inno-
vation Program (FFI), which is funded by the Swedish Agency for In-
novation Systems (VINNOVA). M. Lundgren, L. Svensson and L.Ham-
marstrand are with the Department of Signals and Systems, Chalmers
University of Technology, SE-412 96, Gothenburg, Sweden (E-mail:
{malin.lundgren,lennart.svensson,lars.hammarstrand}@chalmers.se).

tracking problem can be formulated in a Bayesian framework
in a theoretically solid fashion.

Similar to the traditional case, where the full Bayesian filter
is rarely used, the set-based Bayes filter has, until recently [8],
been considered intractable in practise. To have a more practi-
cal method, the probability hypothesis density (PHD) filter[9]
was developed. This filter finds an approximate solution by,
at each time instance, only considering the first order moment
of the multi-target density, called the intensity function. The
intensity function describes the number of targets and their
distribution on the single target state space, and in the PHD
filter the intensity is approximated in a way implying that the
number of targets is Poisson distributed. As a consequence,
the variance is equal to the expected number of targets, which
may lead to problems in the estimation of the number of targets
[10]. To address this, the cardinalized probability hypothesis
density (CPHD) filter was derived in [11]. In addition to the
intensity function, the CPHD filter also propagates the full
probability mass function for the number of targets, called
the cardinality distribution. In contrast to the PHD filter,the
cardinality distribution in CPHD is arbitrary.

In order to have a practical implementation of the PHD
and the CPHD filters it is necessary to have a tractable
representation of the intensity function. Two alternatives are
the sequential Monte Carlo/particle filter versions [12] and the
Gaussian mixture versions [13], [14] of the filters, where the
latter is the most commonly used. Moreover, a method for
deriving the PHD and CPHD recursions, without using finite
set statistics (FISST), is presented in [15], [16].

Since they were introduced, PHD and CPHD filters have
been applied to a variety of problems and have been modified
to handle different models and modeling assumptions. Exam-
ples of such filter versions are the CPHD filter for unknown
clutter intensity and unknown detection probability [17],the
PHD/CPHD filter for tracking extended targets, i.e., where
more than one measurement can originate from the same
target [18]–[20] and the PHD filter for jump Markov models
[21]. However, to the best of our knowledge, there has thus
far not been a CPHD filter including a model for spawning
targets. Within the area of target tracking, spawning means
that appearing targets can be modeled as generated by existing
targets. Examples of such situations can be when airplanes take
off from a carrier boat or when a sensor resolves new features
on an extended object. Target spawning is incorporated into
the original PHD filter but not into the CPHD filter where new
targets are modeled by spontaneous birth only.

In this paper we generalize the CPHD filter to consider
target spawning, by incorporating an explicit model describing
the appearance of these targets. In contrast to the original
CPHD filter, the derivations are here performed using tradi-
tional Bayesian statistics and therefore no background within
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finite set statistics (FISST) is needed. For a general spawning
model, the resulting prediction equation for the cardinality
distribution turns out to be impractical. However, we show
that it is possible to find tractable expressions when the
number of spawned targets from a single target follows either a
Bernoulli or a Poisson distribution. Evaluation, comparing the
generalized CPHD filter to the original filter, is performed on
a scenario where new targets appear through spawning from
existing targets. The results show that we gain in performance,
considering the optimal subpattern assignment (OSPA) mea-
sure [22], [23], by adding a spawning model compared to the
original CPHD filter.

The paper is organized as follows. Section II describes the
multi-target tracking problem and gives the prerequisitesfor an
RFS based solution. Some RFS theory and an overview of the
PHD and CPHD filters in given in Section III. More precisely,
the section summarizes the assumptions and approximations
that the two filters are based upon and state the filter equations
required for one recursion. Based on this, in Section IV, the
necessary equations for a CPHD filter incorporating an explicit
spawning model is derived. Section V considers specific
spawning and birth models, and how they affect the final filter
equations. Simulation results are presented in Section VI and,
finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

In this paper we consider the problem of tracking an
unknown and varying number of targets using sensor mea-
surements that are affected by noise and clutter. At the discrete
time instancek, we denote the number of targets byNk, and
their individual states byx1

k,x
2
k, . . . ,x

Nk

k , which take values
in the single-target state spaceX ⊆ R

nx . The state vector
of a target can, for example, describe position, velocity and
acceleration of the target. The complete multi-target state at
time k is defined as the unordered set of the single target
states,

Xk = {x1
k,x

2
k, . . . ,x

Nk

k }. (1)

Since the number of targets as well as the target states are
random variables,Xk is a random finite set (RFS) [7].

An RFS is described by a probability mass function of its
cardinality, and a family of joint probability densities ofthe
target states. In the multi-target tracking problem considered
in this paper, the aim is to estimate both the cardinality
and the individual target states, given all measurements up
to the current time instant. To evaluate the performance of
the tracking filter we use the OSPA metric [22], which takes
into account both the cardinality and the state estimation,but
does not consider target labels. Thus, it fits well with the set
representation of the targets.

A. Process model

Going from the discrete time instancek − 1 to k, a target
with state xk−1 can either continue to exist or disappear,
with probabilitiesPs(xk−1) and 1 − Ps(xk−1), respectively.
Conditioned on the existence of a targetxk−1 at timek − 1,
the target evolves independently of all other targets according

to a transition densityp(xk|xk−1). Using the RFS notation,
the evolution of a target can be described by the RFSS(xk−1),
which is {∅} with probability 1 − Ps(xk−1) and a singleton
{ux(xk−1)} with probabilityPs(xk−1), whereux(xk−1) is a
random vector whose distribution isp(xk|xk−1).

In addition to existing targets, at each time instant new
targets might appear at the scene, which can happen either
through spontaneous birth or through spawning from existing
targets. These new targets are described by two independent
RFSs, the birth RFSΓk and the spawn RFSB(x). The
complete multi-target state at timek is written as the union

Xk =





⋃

x∈Xk−1

S(x)



 ∪





⋃

x∈Xk−1

B(x)



 ∪ Γk. (2)

This equation thus describes how the target RFS, i.e both the
number of targets and their states, changes over time and the
aim in this paper is to incorporate this model into the well-
known CPHD filter.

B. Measurement model

At each timek, a set ofmk measurements is received. The
number of received measurements varies with time and can be
collected in the set

Zk = {z1k, z
2
k, . . . , z

mk

k }, (3)

where each measurementzik takes on values in the mea-
surement spaceZ ⊆ R

nz . This set consists of both target
generated measurements and clutter, and it is unknown which
measurements originate from the targets and which are clutter.

Each targetxk is either detected or not, independently of
all other targets, with probabilitiesPd(xk) and 1 − Pd(xk),
respectively. Conditional on the detection of a target withstate
xk, the produced measurement is described by the density
p(zk|xk). Similarly as for the survival process, the detection
of a target can be described by the RFST (xk) which is {∅}
with probability 1 − Pd(xk) and {uz(xk)} with probability
Pd(xk), whereuz(xk) ∼ p(zk|xk).

The received set of measurements can be written as the
union of target-generated measurements and the clutter RFS
Kk,

Zk =

[

⋃

x∈Xk

T (x)

]

∪Kk. (4)

Finally, the collection of all measurements up to timek is
denotedZ1:k, and conditioned on this set we aim to find an
estimate of the target RFS,Xk, at timek.

III. B ACKGROUND OFPHD AND CPHD

In this section we describe how to deal with random finite
sets in a Bayesian filtering framework, a problem that has
gained a lot of research attention during recent years. The dis-
cussion starts with the multi-target Bayes filter and continues
with the two most common finite set statistics (FISST) filters
in practise, namely the probability hypothesis density (PHD)
filter [9] and the cardinalized probability hypothesis density
(CPHD) filter [11].
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When dealing with multi-target tracking, while representing
targets and measurements as sets, we need an alternative
Bayesian filter that is able to handle set densities. In [7], the
multi-target Bayesian filter is given by the equations

p(Xk|Z1:k−1) =

∫

p(Xk|Xk−1)p(Xk−1|Z1:k−1)δXk−1 (5)

p(Xk|Z1:k) =
p(Zk|Xk)p(Xk|Z1:k−1)

∫

p(Zk|Xk)p(Xk|Z1:k−1)δXk

, (6)

where the integrals are set integrals defined as,

∫

p(X)δX = p(∅) +
∞
∑

n=1

1

n!

∫

p({x1, . . . ,xn})dx1 · · · dxn.

(7)

This integral considers both the variability in the number
of elements in the setX , as well as the distribution of the
elements.

Until recently, the full Bayesian filter has been considered
computationally intractable, which has led to the development
of approximate solutions, like the PHD and the CPHD filters.
Instead of propagating the full multi-target density, the PHD
filter propagates its first order moment, called the intensity
function, while the CPHD filter propagates both the intensity
function and the cardinality distribution of the RFS. The
intensity function,v(x), of an RFSX is defined by the
property

∫

S

v(x)dx = E{|X ∩ S|}, (8)

whereS is a region in the single-target state space, and|X | is
the notation for the cardinality of the setX . Hence, the integral
in (8) gives the expected number of targets inX that are in the
regionS, and similarly

∫

v(x)dx gives the expected number
of targets inX . The cardinality distribution of an RFS is the
probability mass functionp(n), which gives the probability
that the set contains exactlyn elements/targets.

The remainder of this section briefly summarizes the PHD
filter and the CPHD filter. We give some background, state
the assumptions on which the filters are based, and present
the equations needed for one filter recursion. This is later on
used as a base for further discussions and the derivations of
the CPHD filter with spawning.

Notation 1: In this paper the notation〈α, β〉 is used for
the inner product betweenα andβ, i.e.

〈α, β〉 =

{

∫

α(x)β(x)dx if α andβ are continuous functions
∑

α(m)β(m) if α andβ are discrete functions.
(9)

Notation 2: For probability densities and intensity func-
tions we often incorporate the time indices according to

pk|k−1(x) = p(xk = x|Z1:k−1) (10)

pk|k−1(x|x
′) = p(xk = x|xk−1 = x′). (11)

A. The probability hypothesis density filter

The PHD filter only propagates the intensity function over
time, and each iteration in the filter consists of a prediction and
a measurement update of the intensity function. The derivation
of the filter equations is based on the following assumptions
and approximations:

• The predicted multi-target RFS is a Poisson process, i.e.
the targets are assumed to be independent and identically
distributed (i.i.d.) with a Poisson cardinality distribution.

• Each target evolves and generates measurements indepen-
dently of all other targets. The evolution of a target is de-
scribed by the single-target Markov densitypk|k−1(x|x

′),
and a target-generated measurement by the likelihood
Lk,z(x) = p(zk = z|xk = x).

• The birth of new targets and the survival of existing
targets are independent of each other.

• New targets can appear through spontaneous birth or
through spawning from existing targets. The intensity
function of the birth process is denotedbk(x) and the
spawning intensity for a single target with statex′ is given
by sk|k−1(x|x

′).
• The clutter RFS is a Poisson process with cardinality

distributionpc(n) = e−λλn/n!, probability densityc(z)
and intensity functionλc(z).

• The clutter measurements are independent of the target-
generated measurements.

Under these assumptions, and using finite set statistics, the
PHD filter prediction and measurement update equations were
derived in [9]. The equations are summarized here:

Prediction: Suppose that the intensity function,
vk−1|k−1(x), is given from timek − 1. Then the predicted
intensity is given by

vk|k−1(x) = bk(x) +

∫

{

Ps(x
′)pk|k−1(x|x

′)vk−1|k−1(x
′)

+sk|k−1(x|x
′)vk−1|k−1(x

′)
}

dx′. (12)

Update: Suppose that the predicted intensity function,
vk|k−1(x), is given at timek, together with the set of mea-
surements,Zk = {z1, . . . , zmk

}. Then, the intensity function
after measurement update is given by

vk|k(x) =

[

∑

z∈Zk

Pd(x)Lk,z(x)

λc(z) + 〈vk|k−1, PdLk,z〉

+
(

1− Pd(x)
)

]

· vk|k−1(x). (13)

B. The cardinalized probability hypothesis density filter

The CPHD filter propagates both the intensity function,
v(x), and the cardinality distribution,p(n), over time. Each
iteration consists of a prediction and a measurement update
of both the intensity and the cardinality. The assumptions on
which the filter is based are similar to that of the PHD filter, but
differs at some points. Two important differences are that the
cardinality distribution of the target RFS is approximatedas
Poisson in PHD, while it is arbitrary in CPHD, and while new
targets might appear through spontaneous birth and spawning
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in PHD, they can only appear through birth in the CPHD filter.
Hence, the derivations are based on the following assumptions:

• The prior and the predicted RFSs are i.i.d. cluster pro-
cesses, i.e. the targets are assumed to be independent
and identically distributed with an arbitrary cardinality
distribution.

• Each target evolves and generates measurements indepen-
dently of all other targets. The evolution of a target is de-
scribed by the single-target Markov densitypk|k−1(x|x

′),
and a target-generated measurement by the likelihood
Lk,z(x) = p(zk = z|xk = x).

• The birth and survival of targets are independent of one
another.

• New targets appear through spontaneous birth described
by the intensitybk(x) and cardinality distributionpb(n).

• The clutter RFS is an i.i.d. cluster process with cardinality
distributionpc(n), probability densityc(z) and intensity
functionκ(z).

• The clutter measurements are independent of the target-
generated measurements.

Under these assumptions, the prediction and the measurement
update equations were derived in [11]. The update equations
presented here are not from the original recursion, but instead
the equivalent ones stated in [24], in order to have expressions
that do not involve probability generating functions.

Prediction: Suppose that the intensity function,
vk−1|k−1(x), and the cardinality distribution,pk−1|k−1(n),
are given from timek − 1. Then the predicted intensity and
the predicted cardinality distribution are given by

vk|k−1(x) = bk(x) +

∫

Ps(x
′)pk|k−1(x|x

′)vk−1|k−1(x
′)dx′

(14)

pk|k−1(n) =
n
∑

j=0

pb(n− j)
∞
∑

m=j

(

m

j

)

〈Ps, vk−1|k−1〉
j

×
〈(1 − Ps), vk−1|k−1〉

m−j

〈1, vk−1|k−1〉m
pk−1|k−1(m). (15)

Update: Suppose that the predicted intensity func-
tion, vk|k−1(x), and the predicted cardinality distribution,
pk|k−1(n), are given at timek. A set of measurement,
Zk = {z1, . . . , zmk

}, is also given. Then, the intensity
function and cardinality distribution after measurement update
are given by

vk|k(x) =

[

∑

z∈Zk

〈Υ1
k[vk|k−1, Zk \ {z}], pk|k−1〉

〈Υ0
k[vk|k−1, Zk], pk|k−1〉

· ψk,z(x)

+
〈Υ1

k[vk|k−1, Zk], pk|k−1〉

〈Υ0
k[vk|k−1, Zk], pk|k−1〉

(1 − Pd(x))

]

vk|k−1(x)

(16)

pk|k(n) =
Υ0

k[vk|k−1, Zk](n) · pk|k−1(n)

〈Υ0
k[vk|k−1, Zk], pk|k−1〉

, (17)

where

Υu
k [v, Z] =

min(|Z|,n)
∑

j=0

(|Z| − j)!pc(|Z| − j)
n!

(n− j)!

×
〈1− Pd, v〉n−(j+u)

〈1, v〉n
σj(Φ(v, Z)) (18)

Φ(v, Z) = {〈v, ψk,z〉 : z ∈ Z} (19)

ψk,z(x) =
〈1, κ〉

κ(z)
Lk,z(x)Pd(x) =

Lk,z(x)Pd(x)

c(z)
, (20)

and where the functionσj(S) is called the elementary sym-
metric function of orderj, which is defined as the sum over
all possible products ofj elements from the setS

σj({y1, y2, . . . , yn}) =
∑

1≤i1<i2<...<ij≤n

yi1 · yi2 · · · yij .

(21)

C. Gaussian mixture implementation

In order to have a practical implementation of the PHD and
the CPHD filters, we need a representation of the intensity
function that is easy to handle. In the Gaussian mixture
versions of PHD and CPHD it is assumed that the intensity
function can be described as a weighted sum of Gaussians

vk|k(x) =

Jk|k
∑

j=0

w
(j)
k|kN (x;m

(j)
k|k,P

(j)
k|k), (22)

wherem(j)
k|k andP(j)

k|k are the mean and covariance of the j:th
component. In Appendix A, we state the Gaussian mixture
filter equations used in our simulations.

IV. CPHD WITH SPAWNING

As we saw in the previous section, the original CPHD filter
is derived assuming a process model where new targets appear
through spontaneous birth only, and not by birth or spawning
as in the PHD filter. However, in some applications, it might
be of interest to include a model for spawning also in the
CPHD filter. In this section we discuss how the addition of a
spawning model affects the CPHD equations (14)-(17), and we
derive new equations for the steps that differ from the original
filter. The derivations are based on the same assumptions and
approximations as the original CPHD, except for the process
model which here includes spawning of targets according to
(2):

• New targets can appear through spontaneous birth or
through spawning from existing targets. The intensity
of targets from the birth process is denotedbk(x) and
the spawning intensity for a single target with statex′

is given bysk|k−1(x|x
′). The corresponding cardinality

distributions are denotedpb(n) andps(n|x), respectively.

That is, the only change compared to the original CPHD
setting is a new process model. The update in (6) is pre-
formed by a multiplication of the predicted multi-target density
p(Xk|Z1:k−1) by a likelihoodp(Zk|Xk). Hence, given the pre-
dicted density, the update step does not take the process model
into consideration, and (16)-(17) will not be affected when
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introducing a spawning model. The prediction formula, (5),
on the other hand, is clearly dependent on the process model
p(Xk|Xk−1) and the original CPHD prediction, described by
(14) and (15), will no longer be valid. In the remainder of
this section we discuss and derive new prediction equations
including target spawning.

A. Prediction of the intensity function

We start by discussing the prediction step for the intensity
function. Since the process model and the assumptions in the
PHD filter and our CPHD filter with spawning are very similar,
a natural starting point is to study the original derivationof
the intensity prediction in PHD [9].

The derivations in [9] are based on the process model (2)
and on the assumptions that the motion of a target is indepen-
dent of all other targets and that survival, birth and spawning of
targets are independent of each other. Since the model and the
assumption are identical to those used in the CPHD filter with
spawning, we can adopt the intensity prediction equation from
PHD (12) for our filter. Consequently, the intensity prediction
for the CPHD filter with spawning is

vk|k−1(x) = bk(x) +

∫

{

Ps(x
′)pk|k−1(x|x

′)

+

∫

sk|k−1(x|x
′)
}

vk−1|k−1(x
′)dx′. (23)

This equation describes the predicted intensity of targetsas
the sum of the birth intensity and the intensities of surviving
and spawning targets given the intensityvk−1|k−1(x). For
details on the derivation of this equation and a summary of
the background theory, we refer to [9].

Note that, in reality, the predicted RFS is not an i.i.d. cluster
process as assumed in the CPHD filter derivation. This is
because the spawned targets are not independent of the targets
from which they originate1, and therefore we, as in the PHD
filter with spawning, approximate the predicted RFS as i.i.d.

B. Prediction of the cardinality function

In this section we derive the cardinality prediction equation
for the CPHD filter with spawning. The derivations follow the
approach in [25], that is, we use traditional statistics instead
of finite set statistics, which is used in the original derivations.
The reason for using traditional statistics is that the derivations
become more straightforward and understandable also for
readers unfamiliar with the concepts of FISST. Moreover, it
provides a formula that allows us to derive explicit expressions
for the spawning models given in Section V. For those more
familiar with FISST, an overview of an alternative derivation
can be found in [26].

The objective is to find an expression for the predicted car-
dinality, pk|k−1(n) = Pr{nk = n|Z1:k−1}, when the process
model includes both birth and target spawning. We start by
marginalizing over the number of targets at timek − 1,

1This is also true for the posterior in the CPHD filter though the prior in
the next recursion is again assumed to be (approximated as) an i.i.d. cluster

Pr{nk|Z1:k−1} =

∞
∑

nk−1=0

Pr{nk, nk−1|Z1:k−1}

=

∞
∑

nk−1=0

Pr{nk|nk−1, Z1:k−1}Pr{nk−1|Z1:k−1} .

(24)

We recognize the factor Pr{nk−1|Z1:k−1} as the known
cardinality distribution from the previous time instance,
pk−1|k−1(n). The first factor is found by introducingik as
the number of targets that survive from timek − 1 to k, and
marginalize over this variable,

Pr{nk|nk−1, Z1:k−1} =

min{nk−1,nk}
∑

ik=0

Pr{nk, ik|nk−1}

=

min{nk−1,nk}
∑

ik=0

Pr{nk|ik, nk−1}Pr{ik|nk−1} .

(25)

The probability Pr{ik|nk−1}, accounting for the surviving
targets, is identical to the corresponding factor in (15), and is
found using the state dependent probability of survival andthe
assumption that existing targets continue to exist or disappear
independently of each other,

Pr{ik|nk−1}

=

(

nk−1

ik

)

〈Ps, vk−1|k−1〉
ik 〈(1− Ps), vk−1|k−1〉

nk−1−ik

〈1, vk−1|k−1〉nk−1

.

(26)

The factor Pr{nk|ik, nk−1} in (25) describes the probability
that nk − ik new targets appear at the scene. In the original
version of the CPHD, appearing targets are modeled by a birth
process only for which Pr{nk|ik, nk−1} = pb(nk − ik). This
given the complete expression for the cardinality prediction as

pk|k−1(n) =

∞
∑

n′=0

pk−1|k−1(n
′)

×

min{n,n′}
∑

i=0

(

n′

ik

)

〈Ps, vk−1|k−1〉
i

×
〈(1 − Ps), vk−1|k−1〉

nk−1−i

〈1, vk−1|k−1〉n
′ pb(n− i),

(27)

which is the same expression as in (15) but with a different
order of summation.

Here, on the other hand, new targets can appear through
either spawning or spontaneous birth, and by introducingsk
as the total number of spawned targets at timek we get

Pr{nk|ik, nk−1} =

nk−ik
∑

sk=0

Pr{nk, sk|ik, nk−1}

=

nk−ik
∑

sk=0

Pr{nk|sk, ik, nk−1}Pr{sk|ik, nk−1}

=

nk−ik
∑

sk=0

pb(nk − ik − sk)Pr{sk|nk−1} .

(28)
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TABLE I: The spawning events in the example.

Target 1 Target 2 Target 3
3 0 0
2 1 0
2 0 1
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3

The complete expression for the cardinality prediction with
spawning becomes

pk|k−1(n) =

∞
∑

n′=0

pk−1|k−1(n
′)

×

min{n,n′}
∑

i=0

(

n′

i

)

〈Ps, vk−1|k−1〉
i

×
〈(1 − Ps), vk−1|k−1〉

n′−i

〈1, vk−1|k−1〉n
′

×
n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s).

(29)

The prediction formula in (29) might seem easy to handle,
but depending on the choice of spawning model, Pr{sk|nk−1}
may or may not be simple to compute. To better understand
this probability, we study an example before presenting the
general expression for Pr{sk|nk−1} .

Example: Suppose that we are interested in finding the
probability that three existing targets together spawn three tar-
gets at timek, i.e., we want to compute Pr{sk = 3|nk−1 = 3}.
To do that we need to consider all possible spawning events
resulting in three new targets, see Table I where these are
shown. Due to the assumption that all targets are identically
distributed, the three targets are equally likely to spawn new
targets and the single target spawning probability can be found
as

Pr{sk|nk−1 = 1} =

∫

ps(sk|xk−1)

· p(xk−1|Z1:k−1, nk−1 = 1)dxk−1.

(30)

As a result, Table I can be summarized as the events:

1) One target spawns 3 targets while the other two do not
spawn any targets. This can happen through

(

3
1

)

= 3
equally likely spawning events.

2) One target spawns 2 targets, another spawns 1, and the
last target does not spawn any targets. This can happen
through

(

3
1

)(

2
1

)

= 6 equally likely events.
3) All three targets spawn 1 target. This can only happen

in
(

3
3

)

= 1 way.

Since the existing targets are i.i.d. and spawn targets indepen-
dently of each other, the total probability accounting for these

events can be found as

Pr{sk = 3|nk−1 = 3} = 3 · Pr{3|1}Pr{0|1}2

+6 · Pr{2|1}Pr{1|1}Pr{0|1}

+Pr{1|1}3 , (31)

where Pr{a|b} is shorthand for the spawning probability
Pr{sk = a|nk−1 = b}.

2 Following the idea from
the example, the general probability Pr{sk = q|nk−1} can be
found by considering in how many waysnk−1 targets can
spawnsk = q new targets. Denoting the number of targets
that spawnsi new targets bymi, we need to consider all
(m0,m1, . . . ,mq) in the setM = {(m0,m1, . . . ,mq) : mi ≥
0, 0 ·m0 + 1 ·m1 + . . . q ·mq = q,

∑q

i=0mi = nk−1}. Then
the sought probability can be written in the general form

Pr{sk = q|nk−1} =
∑

M

(

nk−1

m0

)

(Pr{sk = 0|nk−1 = 1})m0

×

(

nk−1 −m0

m1

)

(Pr{sk = 1|nk−1 = 1})m1

· · ·

(

nk−1 −m1 − . . .−mq−1

mq

)

× (Pr{sk = q|nk−1 = 1})mq .
(32)

Due to the combinatorial nature of the sum in (32), the
spawning probability might be impractical to calculate in
its general form. However, we will show that for specific
spawning models it is possible to derive either exact or
approximate expressions that are computationally tractable to
work with. Furthermore, given such an expression, and if the
probability of survival and the birth and spawning parame-
ters are independent of time and target state, the cardinality
prediction in (29) can be performed as

pk|k−1(n) =

∞
∑

n′=0

M(n, n′)pk−1|k−1(n
′), (33)

where the so called transition matrix M, given by

M(n, n′) = Pr{nk = n|nk−1 = n′}

=

min(n,n′)
∑

i=0

(

n′

i

)

P i
s (1− Ps)

n′−i

×
n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− sk),

(34)

only needs to be computed once.
Examples on how to find Pr{sk|nk−1} for Bernoulli and

Poisson spawning models is discussed in the following sec-
tion, together with expressions for the cardinality prediction
equation for some examples on birth and spawning models.

V. SPECIFIC BIRTH AND SPAWNING MODELS

There are several possible choices when it comes to mod-
eling the birth and the spawning processes. In this section
we consider two common cases, namely when the birth and
the spawning models are either Bernoulli or Poisson, and
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we primarily focus on the spawning probabilities for these
two models. First we discuss and state the expression for the
spawning probability Pr{sk|nk−1} in (32), whenps(n|x) is
a Bernoulli distribution, and then we derive an approximate
expression for the case whenps(n|x) is Poisson. Finally, we
see how the different choices of spawning and birth models
affect the expression for the predicted cardinality in (29).

A. Bernoulli spawning model

Assume that an existing target can spawn either zero or
one target at each time instance. Then the cardinality of the
spawning RFS is a Bernoulli distribution,

ps(n|x) =











1− Pspawn(x) if n = 0

Pspawn(x) if n = 1

0 if n > 1

, (35)

where the parameterPspawn(x) may be both time varying and
state dependent. By studying the sum in (32) and recalling
that an existing target can spawn at most one new target, we
realize thatmi = 0 for i > 1 when using this spawning model.
Consequently, the only possible non-zero term in (32) is ifsk
andnk−1 are such that there existm0 = nk−1 − sk ≥ 0 and
m1 = sk. The spawning probability is then given by

Pr{sk|nk−1} =











(

nk−1

sk

)

(P̄spawn)
sk

×(1− P̄spawn)
nk−1−sk if sk ≤ nk−1

0 if sk > nk−1

,

(36)
where

P̄spawn= Pr{sk = 1|nk−1 = 1}

=

∫

Pspawn(xk−1)p(xk−1|Z1:k−1, nk−1 = 1)dxk−1

(37)

is the probability that a single target spawns one new target.

B. Poisson spawning model

Now, assume that the number of spawned targets from an
existing target is given by a Poisson distribution, i.e., the
spawning cardinality is given asps(n|x) = Poiss(n;λ(x)).
Then the probability of havingsk spawned targets, conditioned
on one existing target at timek − 1, is

Pr{sk|nk−1 = 1}

=

∫

ps(sk|xk−1)p(xk−1|Z1:k−1, nk−1 = 1)dxk−1

=

∫

e−λ(xk−1)λ(xk−1)
sk

sk!
p(xk−1|Z1:k−1, nk−1 = 1)dxk−1

(38)

which can be seen as a weighted sum of Poisson distributions.
In order to avoid evaluating the integral in (38) for all possible
sk and then compute Pr{sk|nk−1} according to (32), we
introduce an approximation that allows us to find a simpler
expression for the spawning probability. We assume that the
weighted sum in (38) can be approximated by a single Poisson
distribution according to

Pr{sk|nk−1 = 1} ≈
e−λ̄λ̄sk

sk!
, (39)

where λ̄ is the expected number of spawned targets from a
target whose state is described by the single target density
p(xk−1|Z1:k−1). That is,λ̄ can be found as

λ̄ =

∫

λ(xk−1)p(xk−1|Z1:k−1, nk−1 = 1)dxk−1. (40)

Simulations has proved this approximation accurate for
λ(x) < 1 but, depending on the application, it can be
satisfactory even for largerλ.

Using this approximation, the expression for the general
probability Pr{sk|nk−1} can easily be found by convolution.
The first step, i.e. going from an expression fornk−1 = 1 to
nk−1 = 2, is:

Pr{sk|nk−1 = 2} = Pr{sk|nk−1 = 1} ∗ Pr{sk|nk−1 = 1}

≈
sk
∑

j=0

e−λ̄λ̄sk−j

(sk − j)!

e−λ̄λ̄j

j!

= e−2λ̄
sk
∑

j=0

sk!

sk!

λ̄sk−j

(sk − j)!

λ̄j

j!

=
e−2λ̄

sk!

sk
∑

j=0

(

sk
j

)

λ̄sk−j λ̄j

=
e−2λ̄(2λ̄)sk

sk!

= Poiss(sk; 2λ̄), (41)

using the binomial formula

(a+ b)n =
n
∑

i=0

(

n
i

)

aibn−i. (42)

Following this procedure we can derive an expression for the
general spawning probability, which can be shown to be

Pr{sk|nk−1} ≈
e−nk−1λ̄(nk−1λ̄)

sk

sk!
= Poiss(sk; λ̄ · nk−1).

(43)

Compared to the general expression in (32), this approximate
formula is much simpler to handle and provides a tractable
computation of the spawning probability.

C. The cardinality prediction equation for different birthand
spawning models

Given a birth and a spawning model, we can find an ex-
pression for the last sum in the cardinality prediction equation
(29),

n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s). (44)

This sum describes the probability thatn − i new targets
appear through spawning and birth, conditional onnk−1 = n′.
Having an expression for (44), we can state the full cardinality
prediction equation for the current choice of models.

Here we consider two types of birth models, Bernoulli and
Poisson, for which the cardinality distributions of the birth
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RFSs are

pb(n) =











1− Pbirth if n = 0

Pbirth if n = 1

0 if n > 1

(45)

and

pb(n) =
e−λbλnb
n!

, (46)

respectively. The parametersPbirth and λb are model param-
eters and can either be constant or time varying. Next, we
present the resulting expressions for the sum in (44), given
four different combinations of birth and spawning models.

Case 1: Poisson spawning and poisson birth:When both
models are Poisson, the birth cardinality distribution is given
by (46) and the spawning probability is found through the
approximation in (43), Pr{sk|nk−1} ≈ Poiss(sk; λ̄ · nk−1).
We can then find the desired sum as

n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s)

≈
n−i
∑

s=0

e−λ̄n′

(λ̄n′)s

s!

e−λbλn−i−s
b

(n− i− s)!

=
e−(λ̄n′+λb)(λ̄n′ + λb)

n−i

(n− i)!
, (47)

by using the same type of simplifications as in (41).

Case 2: Poisson spawning and Bernoulli birth:Consid-
ering this choice of models, the birth cardinality distribution is
given by (45) while the spawning probability is found through
the approximation in (43). Since the Bernoulli birth model
describes the appearance of either zero or one born target,
there will be a maximum of two non-zero terms in (44),

n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s)

=











pb(0)Pr{sk = 0|nk−1 = n′} if n− i = 0

pb(0)Pr{sk = n− i|nk−1 = n′}

+pb(1)Pr{sk = n− i− 1|nk−1 = n′} if n− i ≥ 1

≈



























(1− Pbirth)e
−λ̄n′

if n− i = 0

(1− Pbirth)
e−λ̄n′

(λ̄n′)n−i

(n− i)!

+Pbirth
e−λ̄n′

(λ̄n′)n−i−1

(n− i− 1)!
if n− i ≥ 1

. (48)

Case 3: Bernoulli spawning and Bernoulli birth:When
both the spawning model and the birth model are Bernoulli,
described by (36) and (45), there are upper limits in both the
number of spawned and born targets. There will be a maximum
of one born target andnk−1 = n′ spawned targets, since
each of thenk−1 existing target can spawn at most one target.

Hence,
n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s)

=



















pb(1)Pr{sk = n− i− 1|nk−1 = n′}

+pb(0)Pr{sk = n− i|nk−1 = n′} if n′ ≥ n− i

pb(1)Pr{sk = n− i− 1|nk−1 = n′} if n′ = n− i− 1

0 if n′ < n− i− 1

=







































(1 − Pbirth)
(

n′

n−i

)

(P̄spawn)
n−i

×(1− P̄spawn)
n′−(n−i)

+Pbirth
(

n′

n−i−1

)

(P̄spawn)
n−i−1

×(1− P̄spawn)
n′−(n−i−1) if n′ ≥ n− i

Pbirth(P̄spawn)
n′

if n′ = n− i− 1

0 if n′ < n− i− 1

.

(49)

Case 4: Bernoulli spawning and Poisson birth:In this
case the birth cardinality is given by (46). Since the spawning
is Bernoulli, according to (36), each of thenk−1 existing
targets can spawn zero or one target and consequently there
can not be more thannk−1 = n′ spawned targets. Hence,

n−i
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s)

=

min{n−i,n′}
∑

s=0

Pr{sk = s|nk−1 = n′} pb(n− i− s)

=

min{n−i,n′}
∑

s=0

(

n′

s

)

P̄ s
spawn(1− P̄spawn)

n′−s e
−λbλn−i−s

b

(n− i− s)!
.

(50)

VI. SIMULATION RESULTS

In this section we evaluate the proposed algorithm for the
scenario in Figure 1. To assess the performance of our filter,
we use the average OSPA [22], accounting for accuracy in both
cardinality and state estimates. Additionally, we consider the
cardinality estimates separately by studying the RMSE and
the average estimates including the standard deviation. The
performance measures are computed using 200 Monte Carlo
runs on the same underlying trajectory (but with randomly
generated target and clutter measurements). The tracking result
of the filter is compared to that of the original CPHD filter
where no explicit spawning model is used.

In the simulations, both filters are implemented using a
Gaussian Mixture filter; the original CPHD according to [14],
[27], and the proposed filter using the equations in Appendix
A. Further, merging and pruning is performed using the
algorithm in [28], with a limitation ofJmax = 100 Gaussians.
The pruning threshold is set toTprune= 0.001 and the merging
distance toU = 2. The cardinality distribution is calculated
for n up toNmax = 70 and the number of targets at timek is
found as the maximum a posteriori (MAP) estimate,

N̂k|k = argmax
n

pk|k(n). (51)
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The filters are initialized with the prior cardinality
p0(0) = 0.4, p(1) = 0.6, p0(n) = 0 for n > 1, and an in-
tensity function consisting of one single Gaussian described by
w0 = 0.6, m0 = [2, 80, 0, 0]T andP0 = (diag[10, 10, 5, 5])2.

A. Model assumptions

The single target statexi
k contains information about posi-

tion and velocity in x- and y-direction,

xi
k = [xik, y

i
k, ẋ

i
k, ẏ

i
k]

T , (52)

and the probability that a target survives from one time
instance until the next is independent of time and target state,
such thatPs,k(x) = Ps = 0.97. Each surviving target moves
independently of all other targets according to the linear and
Gaussian single target motion model

xk = Axk−1 + vk−1, (53)

wherevk ∼ N (0,Q) is the process noise. The system matrix
A and the noise covarianceQ are

A =

[

I2×2 TsI2×2

02×2 I2×2

]

, Q = σ2
Q









T 4
s

4
I2×2

T 3
s

2
I2×2

T 3
s

2
I2×2 T 2

s I2×2









(54)

where In×n and 0n×n denote then × n identity and zero
matrices,Ts = 0.2 s is the sampling time andσQ = 0.2.
In addition to the surviving targets at each time instance,
there is also a possibility that new targets enter the observed
scene. In our filter, the appearance of targets is modeled by a
Bernoulli spawning process with constant probabilityPspawn,
and a Poisson birth process with constant parameterλb. In
the original CPHD filter we use a Poisson birth process, also
with a constant parameter. The impact of the birth and the
spawning parameters is further discussed in Section VI-B.

Each target is detected by the sensor with a time and
state independent probabilityPd,k(x) = Pd = 0.98, and
conditioned on detection, the target-generated measurement is
described by the single-target measurement model,

zk = Hxk +wk. (55)

Here, wk ∼ N (0,R) is the measurement noise and the
matricesH andR are given as

H =
[

I2×2 02×2

]

, R = σ2
RI2×2 (56)

with σR = 0.5. The matrixH in (56) implies that the received
measurements are noisy observations of the 2-dimensional tar-
get position. In addition to the target-generated measurements,
the received measurement set also contains clutter. The clutter
RFS is a Poisson process with intensityκ(z) = λcV u(z),
whereu(z) is a uniform distribution over the observed area
V = 100 × 100 m2, and whereλc = 3.5 × 10−3 (giving an
average of 35 clutter measurements per scan).

It is worth remembering that there is no requirement for the
process and the measurement models to be linear. If any of
the two models is nonlinear, the Kalman equations used in the
prediction and the measurement update can be replaced by, for
example, the corresponding Extended Kalman filter (EKF) or
Unscented Kalman filter (UKF) equations as in [24].

B. Results

The scenario, depicted in Figure 1, starts with a single target
and, through spawning, the number of targets grows to 8 before
decreasing. As aforementioned, the spawning model in our

−10 −5 0 5 10 15 20

20

30

40

50

60

70

80

90

k=12

k=90

k=33

k=50

k=75

k=60

k=80

k=25

k=33

k=60

x [m]
y

[m
]

Figure 1: The target trajectories. The spawning events and
the disappearance of targets are marked by the
corresponding discrete time instance. For example,
there is a spawning event atk = 12 and atk = 60
there are two spawned targets. Both spawning and
survival is manually controlled.

filter is Bernoulli, while the birth model is Poisson, both with
constant parameters. Naturally, as illustrated in Figure 2, the
values of these parameters will affect the filter performance.
The figure shows the mean OSPA and the mean standard
deviation in the cardinality estimates for different choices of
Pspawn and λb, given the models and parameters previously
stated. In Figure 2(a), the mean OSPA has its lowest values
for choices of parameters such thatPspawn∈ [0.04, 0.1] while
λb ∈ [0.01, 0.04]. It is important to remember that in the
original CPHD filter the parameter set must be chosen such
that Pspawn= 0, i.e., from the leftmost column in the figure,
while CPHD with spawning can use any combination of the
two parameters. Considering this, we see that it is possible
to achieve better performance, in mean OSPA sense, with our
proposed filter than with the original CPHD filter. This gain
in performance is however at the price of a higher standard
deviation in the cardinality estimates, as shown in Figure 2(b).
Based on these insights, in the subsequent simulations, we use
λb = 0.01 and Pspawn = 0.06 in the filter with a spawning
model andλb = 0.08 in the original CPHD filter.

The illustrations in Figure 2 show the mean OSPA and the
mean standard deviation, but it is also of interest to investigate
how the filters behave over time during the scenario. We start
by discussing the cardinality estimates over time and compare
the behavior of the two filters.

The average cardinality estimates are shown in Figure 3
together with the standard deviation and the true number of tar-
gets. Here we see that the proposed method responds faster to
an increase in target number, when it is due to spawning, than
the original CPHD. Furthermore, our method is able to form
unbiased estimates while the original CPHD algorithm clearly
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(a) The mean OSPA computed usingp = 2 andc = 5.
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(b) The average standard deviation in the cardinality estimates.

Figure 2: The mean OSPA (a) and the mean standard deviation
(b), for different values ofPspawn andλb. A darker
color corresponds to a smaller mean OSPA, as
indicated by the color bars. The values have been
computed using 100 runs on the trajectory in Figure
1, but with randomly generated measurements and
clutter.

underestimates the number of targets. This, however, comesat
the expense of somewhat increased estimation variance. The
reason for the increase is due to the simple spawning model
used in this example where probability mass is simply added
proportional to the number of estimated targets. Studying
Figure 2(b) also shows that this behavior is to be expected.

In Figure 4, we see the variation in the average cardinality
error for the two methods. We see that the error curve for
the original CPHD has clear peaks that coincide with the time
instances where new targets appear by spawning, and that these
peaks are significantly reduced by the addition of a spawning
model. Thus, the CPHD filter with spawning detects a spawned
target faster than the original filter. On the other hand, the
cardinality error between the spawning events is slightly larger
for the CPHD filter with spawning. Again, this is due to the
increased variance in the cardinality estimates discussedabove.

So far we have considered the cardinality estimation, but
since we are also interested in the estimation of the individual
targets states, we compute the average OSPA over time for
the scenario. When computing OSPA we use the Euclidian
distance together with the parametersp = 2 and c = 5,
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(a) CPHD with spawning
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Figure 3: Cardinality estimates
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Figure 4: RMSE for the cardinality estimates

and the result is illustrated in Figure 5. Again we see clear
peaks for the original CPHD at the time instances of the
spawning events, and especially at the discrete time instances
k = 33 and k = 60, where two targets are spawned at
the same time. These peaks are, yet again, reduced when
using the CPHD filter with spawning. To summarize the filter
performance for this scenario, the incorporation of a spawning
model apparently provides unbiased estimates of the number
of targets that quickly detects changes in the cardinality at
the moments of spawning. Although, we pay with a higher
variance in the estimate, when considering both the cardinality
and state estimates by computing the average OSPA, our
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Figure 5: Average OSPA

proposed algorithm performs better during most parts of the
scenario. Worth noting is that the spawning model used for
generating the trajectories in figure 1 is manually controlled,
i.e., deterministic. As such, there is a model mismatch between
the simple spawning model used in the filter (constant spawn-
ing probability) and the simulation model (high spawning
probability at discrete times). We expect that the use of a
spawning model more adapted to the specific scenario would
result in even better performance.

VII. C ONCLUSIONS

In this paper we have presented a generalized version of
the CPHD filter incorporating an explicit spawning model.
Compared to the original CPHD filter, the proposed filter is
computationally more complex, and the increase in complexity
depends on the choice of spawning model. One reason is
that the derived equation for prediction of the cardinality
distribution includes a model dependent probability whichin
its general form is impractical and computationally intractable.
However, we have shown that for a Bernoulli model, the
spawning probability is found through a simple and exact ex-
pression. Moreover, given a Poisson model, we have derived an
approximate expression for the spawning probability resulting
in a computationally efficient formula.

Evaluation on an illustrative scenario, using constant spawn-
ing parameter, shows promising results for the proposed al-
gorithm. The evaluation shows that the filter responds faster
to a change in target number due to spawning and that we
gain performance, in OSPA sense, by adding the spawning
model compared to the original CPHD filter. However, how the
filter performs in real applications, dealing with more complex
scenarios or using a more sophisticated spawning model, is
hard to predict and would be interesting to investigate further.

APPENDIX

In the appendix we summarize the equations used for
implementing the Gaussian mixture version of our proposed
filter.

A. Gaussian mixture CPHD with spawning

The implementation of the Gaussian mixture version of the
CPHD filter with spawning is based on [27] and [13]. The

intensity function from timek − 1 is described as a weighted
sum of Gaussians

vk−1|k−1(x) =

Jk−1|k−1
∑

j=0

w
(j)
k−1|k−1N (x;m

(j)
k−1|k−1,P

(j)
k−1|k−1)

(57)

wherem(j)
k−1|k−1 andP(j)

k−1|k−1 are the mean and covariance
of the j:th component.

Prediction: The prediction of each existing component is
given by

w
(j)
k|k−1 = Psw

(j)
k−1|k−1 (58)

m
(j)
k|k−1 = Am

(j)
k−1|k−1 (59)

P
(j)
k|k−1 = AP

(j)
k−1|k−1A

T +Q. (60)

Additional components are introduced by the Poisson birth
model and Bernoulli spawning model. In our simulations the
birth intensityb(x) and the spawning intensitys(x) are given
as

b(x) =

Jb,k
∑

i=1

w
(i)
b,kN (x;m

(i)
b,k,P

(i)
b,k) = wbN (x;mb,Pb) (61)

s(x) =

Jk−1|k−1
∑

j=1

Js,k
∑

i=1

w
(j)
k−1|k−1w

(i)
s,kN (x;m

(j,i)
s,k ,P

(j,i)
s,k ) (62)

=

Jk−1|k−1
∑

j=1

w
(j)
k−1|k−1wsN (x;m

(j)
s,k ,P

(j)
s,k) (63)

where wb = λb, mb = [0, 50, 0, 0]T ,
Pb = (diag[30, 30, 5, 5])2, ws = Pspawn, m

(j)
s,k =

Am
(j)
k−1|k−1 = m

(j)
k|k−1, P(j)

s,k = AP
(j)
k−1|k−1A

T +Q+Qs =

P
(j)
k|k−1 +Qs andQs = (diag[0.5, 0.5, 0.5, 0.5])2.
The cardinality prediction formula using the Bernoulli

spawning and the Poisson birth models with constant param-
eters is given as

pk|k−1(n) =

∞
∑

n′=0

M(n, n′)pk−1|k−1(n
′), (64)

where the transition matrix is

M(n, n′) =

min{n,n′}
∑

i=0

(

n′

i

)

P i
s (1− Ps)

n′−i

×

min{n−i,n′}
∑

s=0

(

n′

s

)

(Pspawn)
s(1− Pspawn)

n′−s e
−λbλn−i−s

b

(n− i− s)!
.

(65)

Update: The update equations in the CPHD filter with
spawning is identical to those of the original filter, thus, the
used equations are found in [27].
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