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A CPHD Filter for Tracking with Spawning Models

Malin Lundgren, Lennart SvenssoBenior Member, IEEH, ars Hammarstrand

Abstract—In some applications of multi-target tracking, tracking problem can be formulated in a Bayesian framework
appearing targets are suit_abl;;] mode_ledl f?)?mz?;\ilg)wngf Lr%m in a theoretically solid fashion.
existing targets. However, in the origina i . ; .
cardinglizedg probability hypothesis de%sity (CPHD) filter, this . Similar to the traditional case, Whe_re the full Ba.yeSIarEBIfllt
type of model is not supported; instead appearing targets & is rarely us_ed, thg set—based.Bayes fllter has, until rqc[Bth
modeled by spontaneous birth only. In this paper we derive P€en considered intractable in practise. To have a mordiprac
the necessary equations for a CPHD filter for the case when cal method, the probability hypothesis density (PHD) fi[&§r
the process model also includes target spawning. For this was developed. This filter finds an approximate solution by,
generalized filter, the cardinality prediction formula might = 4 aach time instance, only considering the first order mamen
become computationally intractable for general spawning . . - . .
models. However, when the cardinality distribution of the F’f the.multl-ta!’get dens!ty, called the intensity functidrne .
spawning targets is either Beroulli or Poisson, we derive intensity function describes the number of targets andr thei
expressions that are practical and computationally efficist.  distribution on the single target state space, and in the PHD
Simulations show that the proposed filter responds faster to filter the intensity is approximated in a way implying thaéth
a change in target number due to spawned targets than the mper of targets is Poisson distributed. As a consequence,
original CPHD filter. In addition, the performance of the filt er, . . .
considering the optimal subpattern assignment (OSPA), is the variance is equal t_o the expect(_ad number of targetshwhic
improved when having an explicit spawning model. may lead to problems in the estimation of the number of target

[10]. To address this, the cardinalized probability hygsik

Index Terms—Bayesian methods, Filtering theory, Recursive density (CPHD) filter was derived in [11]. In addition to the
estimation intensity function, the CPHD filter also propagates the full
probability mass function for the number of targets, called
the cardinality distribution. In contrast to the PHD filténe
cardinality distribution in CPHD is arbitrary.

Multi-target tracking is used to detect and position an In order to have a practical implementation of the PHD
unknown and varying number of objects using sensor obsand the CPHD filters it is necessary to have a tractable
vations affected by noise and clutter. The problem includegpresentation of the intensity function. Two alternaiaze
data association and detection uncertainties, origigdtiom the sequential Monte Carlo/particle filter versions [124| dime
the fact that a target might not be detected and that tR@ussian mixture versions [13], [14] of the filters, where th
source of each measurement is unknown. Traditionally, &dter is the most commonly used. Moreover, a method for
in [1], [2], tracking algorithms have been designed usingeriving the PHD and CPHD recursions, without using finite
target labeling which means that the algorithm discrimgsatset statistics (FISST), is presented in [15], [16].
between different targets. Examples of such algorithmsrege  Since they were introduced, PHD and CPHD filters have
Probabilistic Data Association (PDA) filter [3], the JoinDR been applied to a variety of problems and have been modified
(JPDA) filter [4] and the Multiple Hypothesis Tracking (MHT)to handle different models and modeling assumptions. Exam-
algorithm [5], [6]. During the last decade, however, a familples of such filter versions are the CPHD filter for unknown
of alternative methods that, in its original form, disredmr clutter intensity and unknown detection probability [1#je
target labels has gained a lot of research attention. The id@HD/CPHD filter for tracking extended targets, i.e., where
is that the collection of target states can be described bymere than one measurement can originate from the same
random finite set (RFS) [7], a representation that capturegget [18]-[20] and the PHD filter for jump Markov models
the randomness in the number of targets and their statgd]. However, to the best of our knowledge, there has thus
while not discriminating between targets since the set far not been a CPHD filter including a model for spawning
unordered. Recent results [8], however, show that tar@pedda targets. Within the area of target tracking, spawning means
can naturally be incorporated into these methods albeheat that appearing targets can be modeled as generated bygxisti
expense of increased computational complexity. Using R&Sdargets. Examples of such situations can be when airplakes t
model the multi-target state and the received observattbes off from a carrier boat or when a sensor resolves new features

on an extended object. Target spawning is incorporated into

Copyright (c) 2013 IEEE. Personal use of this material isnpged.  the original PHD filter but not into the CPHD filter where new
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I. INTRODUCTION



finite set statistics (FISST) is needed. For a general spaywnto a transition density(xy|xx—1). Using the RFS notation,
model, the resulting prediction equation for the cardiyali the evolution of a target can be described by the BES,_,),
distribution turns out to be impractical. However, we showhich is {(} with probability 1 — Ps(xx_1) and a singleton
that it is possible to find tractable expressions when tHew,(xx—1)} with probability Ps(xx—1), whereu, (xx—1) is a
number of spawned targets from a single target follows edherandom vector whose distribution jgx|xx—1).
Bernoulli or a Poisson distribution. Evaluation, compgrthe In addition to existing targets, at each time instant new
generalized CPHD filter to the original filter, is performen otargets might appear at the scene, which can happen either
a scenario where new targets appear through spawning frdmough spontaneous birth or through spawning from exgstin
existing targets. The results show that we gain in perfomaantargets. These new targets are described by two independent
considering the optimal subpattern assignment (OSPA) mé&¥Ss, the birth RFS, and the spawn RF33(x). The
sure [22], [23], by adding a spawning model compared to tltemplete multi-target state at tinkeis written as the union
original CPHD filter.

The paper is organized as follows. Section Il describes the _
multi-target tracking problem and gives the prerequiditesn X = U S| U U Bx)| Ul (2)
RFS based solution. Some RFS theory and an overview of the
PHD and CPHD filters in given in Section Ill. More precisely] his equation thus describes how the target RFS, i.e both the
the section summarizes the assumptions and approximatiBHgber of targets and their states, changes over time and the
that the two filters are based upon and state the filter equati@m in this paper is to incorporate this model into the well-
required for one recursion. Based on this, in Section 1V, th@own CPHD filter.
necessary equations for a CPHD filter incorporating an eipli
spawning model is derived. Section V considers specifi: Measurement model
spawning and birth models, and how they affect the final filter ot each timek, a set ofm; measurements is received. The

equations. Simulation results are presented in Sectiomd) a,ymper of received measurements varies with time and can be
finally, Section VII concludes the paper. collected in the set

XEXg_1 x€Xk_1

_ 1 2 mp
Il. PROBLEM FORMULATION Zy =2y, 255, 2 ], (3

In this paper we consider the problem of tracking awhere each measuremen} takes on values in the mea-
unknown and varying number of targets using sensor meaxement space&€ C R"=. This set consists of both target
surements that are affected by noise and clutter. At theatisc generated measurements and clutter, and it is unknown which
time instancek, we denote the number of targets by, and measurements originate from the targets and which areeclutt
their individual states by} ,x?,... ,kak, which take values Each targetk;, is either detected or not, independently of
in the single-target state spadé C R"=. The state vector all other targets, with probabilitiey(x;) and 1 — Py(xx),
of a target can, for example, describe position, velocitg amespectively. Conditional on the detection of a target \sitite
acceleration of the target. The complete multi-targetestdt xi, the produced measurement is described by the density
time k is defined as the unordered set of the single targetzi|x;). Similarly as for the survival process, the detection
states, of a target can be described by the RF&;) which is {(}
with probability 1 — Py(xx) and {u,(xx)} with probability

L ful o2 Ny,
X = {xp, X5, .- X, " ) D Pa(xp), Whe_l’euz(xk) ~ (2| x1). -
Since the number of targets as well as the target states aréhe received set of measurements can be written as the
random variablesX, is a random finite set (RFS) [7]. union of target-generated measurements and the clutter RFS

An RFS is described by a probability mass function of it&,
cardinality, and a family of joint probability densities tie
target states. In the multi-target tracking problem cossd Zy = U T(x)
in this paper, the aim is to estimate both the cardinality N

and the individual target states, given all measurements giyaly, the collection of all measurements up to tirhes

to the current time instant. To evaluate the performance G’énotele.k and conditioned on this set we aim to find an
the tracking filter we use the OSPA metric [22], which takegstimate of the target RFS(;, at timek.

into account both the cardinality and the state estimatiom,
does not consider target labels. Thus, it fits well with thie se l1l. BACKGROUND OFEPHD AND CPHD
representation of the targets.

U K. 4)

In this section we describe how to deal with random finite
sets in a Bayesian filtering framework, a problem that has
A. Process model gained a lot of research attention during recent years. e d

Going from the discrete time instanée— 1 to k, a target cussion starts with the multi-target Bayes filter and cargm
with state x;_; can either continue to exist or disappeanyith the two most common finite set statistics (FISST) filters
with probabilities Ps(x;—1) and 1 — Ps(xx—1), respectively. in practise, namely the probability hypothesis density QPH
Conditioned on the existence of a targgt ; at timek — 1, filter [9] and the cardinalized probability hypothesis dgns
the target evolves independently of all other targets atingr (CPHD) filter [11].



When dealing with multi-target tracking, while represagti A. The probability hypothesis density filter
targets and measurements as sets, we need an alternatiig,e pHD filter only propagates the intensity function over
Bayesian filter that is able to handle set densities. In P, time and each iteration in the filter consists of a predictiad
multi-target Bayesian filter is given by the equations a measurement update of the intensity function. The désivat
of the filter equations is based on the following assumptions
P(Xk|Z1:1-1) :/p(Xk|Xk71)p(Xk71|lek71)5kal (5) and approximations:
« The predicted multi-target RFS is a Poisson process, i.e.
the targets are assumed to be independent and identically
(Xl Z1) = P(Z| Xk )p(Xk| Z1:5-1) o ®) distributed (i.i.d.) with a Poisson cardinality distribs.

I p(Zk| X)) p(Xk| Z1:3—1)0 X « Each target evolves and generates measurements indepen-
dently of all other targets. The evolution of a target is de-
scribed by the single-target Markov densify;, —; (x|x’),

> and a target-generated measurement by the likelihood
/p(X)éX =p(0) + Z ] /p({xl, cy Xp })dXg e dXg,. Ly 2(x) = p(z = z|x), = x).

n=1 « The birth of new targets and the survival of existing

(7) targets are independent of each other.

New targets can appear through spontaneous birth or
through spawning from existing targets. The intensity
function of the birth process is denotég(x) and the
spawning intensity for a single target with statds given
by spjr—1(x|x").
The clutter RFS is a Poisson process with cardinality
distributionp(n) = e~*\"/n!, probability densityc(z)
and intensity function\c(z).

where the integrals are set integrals defined as,

This integral considers both the variability in the number *
of elements in the seX, as well as the distribution of the
elements.

Until recently, the full Bayesian filter has been considered
computationally intractable, which has led to the develepm
of approximate solutions, like the PHD and the CPHD filters. °
Instead of propagating the full multi-target density, theOP
filter propagates its first order moment, called the intgnsit .
functign,pwr?ile the CPHD filter propagates both the intgnnsit » The clutter measurements are independent of the target-

function and the cardinality distribution of the RFS. The generated measurements. i . .
intensity function,(x), of an RFSX is defined by the Under_ these assumptions, and using finite set statisties, th
property PHD filter prediction and measurement update equations were

derived in [9]. The equations are summarized here:
. Prediction: Suppose that the intensity function,
/U(X)dx = B{xXnsh, ®) Ur—1]k—1(X), is given from timek — 1. Then the predicted

. o . ~intensity is given by
whereS is a region in the single-target state space, [g@gis

the notation for the cardinality of the s&t. Hence, the integral ko1 (x) = by(x) + / {PS(X/)pk\k—l(X|X/)Uk—1|k—1(xl)
in (8) gives the expected number of targetsXirthat are in the
region S, and similarly [ v(x)dx gives the expected number +Sk|k_1(X|X/)Uk—1|k—1(X/)}dxl' (12)

of targets inX. The cardinality distribution of an RFS is the
probability mass functiorp(n), which gives the probability Update: Suppose that the predicted intensity function,
that the set contains exactly elements/targets. vkk—1(x), is given at timek, together with the set of mea-

The remainder of this section briefly summarizes the PHEMrementszy, = {zi,...,z;, }. Then, the intensity function
filter and the CPHD filter. We give some background, stafter measurement update is given by
the assur_nptions on which the.filters are.based,_ a_nd present B Py(x)Li.(x)
the equations needed for one filter recursion. This is later o vpk(x) = [Z (@) + (v Polr)
used as a base for further discussions and the derivations of 2€ 2k Mk=1 Zd Tk
the CPHD filter with spawning.

Notation 1: In this paper the notatiofx, 3) is used for

the inner product betweem and g3, i.e.

- )| o (19)

B. The cardinalized probability hypothesis density filter

(o, B) = {fa(x)ﬁ(x)dx Il and 3 are continuous functlons_l_he CPHD filter propagates both the intensity function,

2 a(m)f(m) if a andj are discrete functions. ,x) and the cardinality distributiomy(n), over time. Each
(9) iteration consists of a prediction and a measurement update

of both the intensity and the cardinality. The assumptioms o
‘which the filter is based are similar to that of the PHD filtert b
differs at some points. Two important differences are that t
cardinality distribution of the target RFS is approximated

Prk-1(%) = POk =x|Z1:x-1) (10) Poisson i)r/1 PHD, while it is arbitrgry in CPHD,F;%d while new
Prpk—1(x[x") = p(xp = xpxp-1 =x). (11) targets might appear through spontaneous birth and spgwnin

Notation 2: For probability densities and intensity func
tions we often incorporate the time indices according to



in PHD, they can only appear through birth in the CPHD filtewhere

Hence, the derivations are based on the following assumgtio min(|Z|,n) |
“ . . . n!
. The prior and the predicted RFSs are i.id. cluster pro- Lk[V:Z] = Z (12] = 7)'re(|Z] *3>(n Y
cesses, i.e. the targets are assumed to be independent =0 ()
and identically distributed with an arbitrary cardinality o 1= Pgu)nmiore o (B(v, 2)) (18)
distribution. (1,v)" J ’
« Each target evolves and generates measurements indepen®(v, Z) = {{(v,¢r,):2z € Z} (19)
dently of all other targets. The evolution of a target is de- (1, k) Li (%) Py(x)
scribed by the single-target Markov densy;,_ (x|x’), Vra(x) = k(2) Li (%) Pa(x) = o(z) , (20)

and a target-generated measurement by the likelihood . _
Lica(%) = p(zi, = 2x5, = X). and where the functiom;(S) is called the elementary sym-

« The birth and survival of targets are independent of ofB€tric function of orderj, which is defined as the sum over
all possible products of elements from the sef

another.

« New targets appear through spontaneous b?rth describedgj({yhy% o yn)) = Z Yir  Yia o Yis -
by the intensityb;(x) and cardinality distributiomy(n). |y <inm<iy<n

o The clutter RFS is an i.i.d. cluster process with cardigalit B - (21)

distribution pc(n), probability densityc(z) and intensity

function r(z). _ C. Gaussian mixture implementation
« The clutter measurements are independent of the target- L .
generated measurements. In order to have a practical implementation of the PHD and

the CPHD filters, we need a representation of the intensity
Under these assumptions, the prediction and the measurenfenction that is easy to handle. In the Gaussian mixture
update equations were derived in [11]. The update equatioarggsions of PHD and CPHD it is assumed that the intensity
presented here are not from the original recursion, bueambst function can be described as a weighted sum of Gaussians

the equivalent ones stated in [24], in order to have exprassi Tui

that do not

involve probability generating functions.

vrp (%) = 3w N mf), PY)), (22)

Prediction: Suppose that the intensity function, =0
vr—1]k—1(x), and the cardinality distributionp;_yx_1(n), ) )

; ; i i i wherem'”) andP”) are the mean and covariance of the j:th
are given from timek — 1. Then the predicted intensity and K|k klk )
the predicted cardinality distribution are given by

Vkk—1(X) = br(x) + /Ps(X')Pk\kq(X|X')Uk—1|k—1(xl)dxl

(14)

P () =3 pn(n— ) S <T) Py vgrjp)?

Update: Suppose that the predicted intensity fund!

(x), and the predicted cardinality distribution, . ; i )
are given at timek. A set of measurement model which here includes spawning of targets according to

tion, Vk|k—1
pk|k71(”),

=0 m=j

(1= Ps), vp—qj—1)™7
(L, vp—1jp—1)™

pkf1\k—1(m)- (15)

Zry = {z1,...,2m,}, is also given. Then, the intensity
function and cardinality distribution after measuremepdate
are given by
(Yilvrii—1, Zk \ {2}], Prje—1)
v X) = . z(X
klk( ) |:z§Z:k <T%['Uk‘k71,Zk],pk|k,1> wh ( )
(Th[Vk|k—15 Zk)s Prj—1)
+ 1 — Py(x)) | vgp—1(x
<T2[Uk|k—172k],pk\k—1>( a3)) | Vet (x)
(16)
Prge(n) = TR [kik—1, Zk] (1) - Drjr—1(n) (17)

(TR [vk|k—1+ Zk), Prjk—1)

component. In Appendix A, we state the Gaussian mixture
filter equations used in our simulations.

IV. CPHD WITH SPAWNING

As we saw in the previous section, the original CPHD filter
is derived assuming a process model where new targets appear
through spontaneous birth only, and not by birth or spawning
as in the PHD filter. However, in some applications, it might
be of interest to include a model for spawning also in the
CPHD filter. In this section we discuss how the addition of a
spawning model affects the CPHD equations (14)-(17), and we
derive new equations for the steps that differ from the oagi
ilter. The derivations are based on the same assumptions and
approximations as the original CPHD, except for the process

2):

« New targets can appear through spontaneous birth or
through spawning from existing targets. The intensity
of targets from the birth process is denotfgdx) and
the spawning intensity for a single target with state
is given by sy ,_1(x|x’). The corresponding cardinality
distributions are denoteg,(n) andps(n|x), respectively.

That is, the only change compared to the original CPHD

setting is a new process model. The update in (6) is pre-
formed by a multiplication of the predicted multi-targendéy
p(Xk|Z1.x—1) by a likelihoodp(Zy|X}). Hence, given the pre-
dicted density, the update step does not take the processl mod
into consideration, and (16)-(17) will not be affected when



introducing a spawning model. The prediction formula, (5),

on the other hand, is clearly dependent on the process model o0

p(X%|X1_1) and the original CPHD prediction, described by Pr{ni|Zi.x—1} = Z Pri{ng, nk—1|Z1.x-1}

(14) and (15), will no longer be valid. In the remainder of nk—1=0 (24)

this section we discuss and derive new prediction equations 0

including target spawning. = Z Pr{nlng—1, Z1.k—1} Pr{ng—1|Z1.x-1}.
ng_—1=0

We recognize the factor Bry_1|Z1..—1} as the known
_ _ o _ cardinality distribution from the previous time instance,
We start by discussing the prediction step for the mtens%_l‘k_l(n), The first factor is found by introducing, as

function. Since the process model and the assumptions in the number of targets that survive from tirke- 1 to k, and
PHD filter and our CPHD filter with spawning are very similarmarginanze over this variable,

a natural starting point is to study the original derivatioi
the intensity prediction in PHD [9]. ‘
The derivations in [9] are based on the process model (Zfr{nkm’“*l’ Zik} = Z Prime, ixlne—1}

and on the assumptions that the motion of a target is indepen- min{r e} =0 (25)
dent of all other targets and that survival, birth and spagoif '
targets are independent of each other. Since the model and th— Z
assumption are identical to those used in the CPHD filter with *=0
spawning, we can adopt the intensity prediction equatiomfr The probability Pfix|ns1}, accounting for the surviving
PHD (12) for our filter. Consequently, the intensity preidiot targets, is identical to the corresponding factor in (15} &

A. Prediction of the intensity function

min{ng_1,nx}

Pr{nk|z'k, nk,l} Pr{z‘k|nk,1} .

for the CPHD filter with spawning is found using the state dependent probability of survival ttwed
assumption that existing targets continue to exist or ¢isap
Vg1 (x) = bk(x)+/{Ps(xl)pk|k71(x|xl) independently of each other,
, , , Pr{z’k|nk_1}
+ /Sk\k71(X|X)}ka1\k71(X )dx'. (23) = <P57Uk71‘k71>ik<(1 _Ps)7vk71‘k71>"k—l_ik
B < ik > (1, Vp—1|g—1)"™1 '

This equation describes the predicted intensity of targsts

the sum of the birth intensity and the intensities of sungyi (26)

and spawning targets given the intensity_;,_,(x). For The factor P{ny|ix, ni—1} in (25) describes the probability

details on the derivation of this equation and a summary tfat n;, — i, new targets appear at the scene. In the original

the background theory, we refer to [9]. version of the CPHD, appearing targets are modeled by a birth
Note that, in reality, the predicted RFS is not an i.i.d. tdus process only for which Rmny|ig, ng—1} = po(nk — ix). This

process as assumed in the CPHD filter derivation. This gd/en the complete expression for the cardinality predicts

because the spawned targets are not independent of thestarge oo

from which they originatg and therefore we, as in the PHD ;. (n) = > i1 (1)

filter with spawning, approximate the predicted RFS as.i.i.d =0
min{n,n'} n
- I . i (27)
B. Prediction of the cardinality function X Z; <2k) (Ps, vk—1]k—1)
In this section we derive the cardinality prediction eqoati (1= Ps), vp_qpp_q) ™" ‘
for the CPHD filter with spawning. The derivations follow the X oy po(n — i),

approach in [25], that is, we use traditional statisticsend <1’Uk7%|k71> . . .

of finite set statistics, which is used in the original detiwas. Which is the same expression as in (15) but with a different
The reason for using traditional statistics is that thevdgions order of summation.

become more straightforward and understandable also fofi€re, on the other hand, new targets can appear through
readers unfamiliar with the concepts of FISST. Moreover, §ither spawning or spontaneous birth, and by introdusing
provides a formula that allows us to derive explicit expimss &S the total number of spawned targets at timae get

for the spawning models given in Section V. For those more n—ik
familiar with FISST, an overview of an alternative deriwati Pr{n|i, nix—1} = Z Pr{ng, sk|ix, nx—1}
can be found in [26]. sx=0

The objective is to find an expression for the predicted car- ng— i,
dinality, pyj_1(n) = Pr{n; = n|Zi.x_1}, when the process = Z Pr{nk|sk, ix, nx—1} Pr{sgliz, nx—1}
model includes both birth and target spawning. We start by sx=0
marginalizing over the number of targets at tife- 1, "k ik

= Z pb(nk - ik — Sk)Pr{Sk|TLk,1}.
1This is also true for the posterior in the CPHD filter thougk tirior in sk=0

the next recursion is again assumed to be (approximatednas)d cluster (28)



TABLE I: The spawning events in the example. events can be found as

Target 1 | Target 2| Target 3 Pr{sk _ 3|nk_1 _ 3} - 3. Pr{3|1} Pr{0|1}2
+6 - Pr{2|1} Pr{1]1} Pr{o/1}
+Pr{1/1}*, (31)

where PHalb} is shorthand for the spawning probability
PI’{Sk = a|nk,1 = b}

O Following the idea from
the example, the general probability {8y, = ¢g|n;—1} can be
found by considering in how many ways, 1 targets can
spawns; = ¢ hew targets. Denoting the number of targets
The complete expression for the cardinality predictionhwittNat spawnsi new targets bym;, we need to consider all
Spawning becomes (m(), mi,... ,mq) in the setM = {(m(), mi,... ,mq) Tmy; >
0,0-mo+1-mi+...q-mg=q,> ¢ om; =nk_1}. Then
the sought probability can be written in the general form

OCQOOCOFRRFEFENNW
OFRPNWORFRNOLRO
WNPFRPONPFOPRFR OO

Prjk—1(n) = Z Pr-1jk—1(n")

Nj_
=0 Pr{six = qlnk-1} = Z ( F 1) (Pr{sy = 0|ng_1 = 1})™°
min{n,n'} n M mo
x D (i)<PS7 Ue-1jk-1) X (nk_l B mo) (Pr{sk = 1jng_y =1})™
i=0 . (29) my
" (1= Ps), vp—qjpp—1)™ " . (nk—l —my— ... mq—l)
(1, vp—1 =)™ mg
n—i ) ‘ X (Pr{sk = q|nk_1 = 1})mq.
X Z Prisy = slnp_1 =n"} pp(n —i —s). (32)
s=0

Due to the combinatorial nature of the sum in (32), the

The prediction formula in (29) might seem easy to handl&Pa@wning probability might be impractical to calculate in
but depending on the choice of spawning modefRfn;_,} S ger_reral form. I-rovyever, we will show tha_t for specific
may or may not be simple to compute. To better understaf@@wning models it is possible to derive either exact or
this probability, we study an example before presenting tR@Proximate expressions that are computationally tréetab
general expression for Psy|ng_1} . work W.It.h. Furthermore, given sur:h an expression, and if the
Example: Suppose that we are interested in finding th%robablllty of survival and the birth and spawning parame-

probability that three existing targets together spawadhar- ter;s dif[?oéns]e?ze;)df:; gr;tlrr;?foa::qde;a;%et state, the camyinali
gets at timé, i.e., we want to compute Rg, = 3|ni_1 = 3}. P P

To do that we need to consider all possible spawning events s , ,
resulting in three new targets, see Table | where these are Prjk-1(n) = Z M (n, 0" )pr—1j-1 (1), (33)
shown. Due to the assumption that all targets are identicall ”'=O_ _ _ _
distributed, the three targets are equally likely to spaww n where the so called transition matrix M, given by
targets and the single target spawning probability can bado M(n,n') = Pring = nlnp_, = n'}
as min(n,n’) n . o
= > (V)ma-r
Pr{8k|nk71 = 1} = /ps(Sk|Xk71) (30) niii:() v (34)
- p(Xe—1]|Z1:k—1, k-1 = 1)dXp—1. xS Pr{si = slng_1 = n'} po(n — i — s1.),

s=0
only needs to be computed once.

1) One target spawns 3 targets while the other two do notExamples on how to find R |nx—1} for Bernoulli and
spawn any targets. This can happen thror@h = 3 Poisson spawning models is discussed in the following sec-
equally likely spawning events. tion, together with expressions for the cardinality prédit

2) One target spawns 2 targets, another spawns 1, and ¢lj@ation for some examples on birth and spawning models.
last target does not spawn any targets. This can happen
through () (7) = 6 equally likely events. V. SPECIFIC BIRTH AND SPAWNING MODELS

3) All three targets spawn 1 target. This can only happen

in (3) =1 way.

As a result, Table | can be summarized as the events:

There are several possible choices when it comes to mod-
eling the birth and the spawning processes. In this section
Since the existing targets are i.i.d. and spawn targetp#mle we consider two common cases, hamely when the birth and
dently of each other, the total probability accounting teede the spawning models are either Bernoulli or Poisson, and



we primarily focus on the spawning probabilities for thesehere \ is the expected number of spawned targets from a

two models. First we discuss and state the expression for theget whose state is described by the single target density

spawning probability Pfsx|ni_1} in (32), whenps(n|x) is  p(xx_1|Z1.x—1). That is, A can be found as

a Bernoulli distribution, and then we derive an approximate

expression for the case when(n|x) is Poisson. Finally, we = /)\(xk,l)p(xk,l|Z1;k,1,nk,1 = 1)dxx—1. (40)

see how the different choices of spawning and birth models

affect the expression for the predicted cardinality in (29) Simulations has proved this approximation accurate for
A(x) < 1 but, depending on the application, it can be

A. Bernoulli spawning model satisfactory even for largex.

Assume that an existing target can spawn either zero orUsing this approximation, the expression for the general
one target at each time instance. Then the cardinality of tEobability Pr{s;|nx_1} can easily be found by convolution.

spawning RFS is a Bernoulli distribution, The first step, i.e. going from an expression for-; =1 to
ngp—1 = 2, is:
1 - Papaufx) fn=0 o
ps(n|x) = ¢ PspawdX) ifn=1, (35) Prisglng—1=2} = Pf{5k|fbkf1 = 1}7* Prisg|ni—1 =1}
0 if n>1 N i e AN T e AN
- — i 1
where the parametefspandx) may be both time varying and = =t !
state dependent. By studying the sum in (32) and recalling o3 ksl NS N
that an existing target can spawn at most one new target, we = € Z el (55— 7)1 71
realize thatn; = 0 for i > 1 when using this spawning model. =0
Consequently, the only possible non-zero term in (32) is, if e 2N S (s Son—ivi
andn_i are such that there existy = nx_1 — s > 0 and - P j A X
my = si. The spawning probability is then given by . =0
_ e M (2N)%*x
(") Papaun)™ = =T
Prisklnk—1} = ¢ x(1 — Pspawn)™ "% if s <mp_1 , = Pois$sk;25\), (42)
0 if s, >ngp_1
(36) using the binomial formula
where n
D n n 1pn—1
Pspawn= Pr{s, = 1|ny_1 =1} (@+b)" =Y <Z> bt (42)
(37) i=0

= | P _ 1| Zrhs g = 1)dxp _ _ _ .
/ SpaurXk—1)P(Xk—1|Z1k—1, M-t = 1)y Following this procedure we can derive an expression for the
is the probability that a single target spawns one new targedeneral spawning probability, which can be shown to be
—ng—1A Y Sk _
B. Poisson spawning model Prisk|ni—1} =~ ¢ (n"“’lA) = Poisgsi; A - ng—1).
Sk-

Now, assume that the number of spawned targets from an F (43)
existing target is given by a Poisson distribution, i.eg th o . .
spawning cardinality is given ass(n|x) = Poisgn; A(x)). Compared to the general expression in (32), this approeimat
Then the probability of having;, spawned targets, conditionedormula is much simpler to handle and provides a tractable
on one existing target at time— 1, is computation of the spawning probability.

PI’{S}C|TL]€,1 = ].}

C. The cardinality prediction equation for different birtind
= /ps(5k|xk—1)p(xk—1|lek—1ank—l - 1)dxk—1 Spawning mode's
[ e A N (xgq )% p 1 Given a birth and a spawning model, we can find an ex-
= i Pk-1]Z1k—1,m0-1 = D)dXk—1 pracsion for the last sum in the cardinality prediction diqua
(38) (29),
which can be seen as a weighted sum of Poisson distributions. n—i
In order to avoid evaluating the integral in (38) for all pibss Z Pr{isy = s|nk_1 =n'} pp(n —i — s). (44)
s and then compute Rgy|ni—1} according to (32), we s=0

introduc_e an approximatiqn that aIIo_vys us to find a simplefhis sum describes the probability that— i new targets
expression for the spawning probability. We assume that tQEpear through spawning and birth, conditionalqn; = 7'.

weighted sum in (38) can be approximated by a single PoissqRing an expression for (44), we can state the full caritinal
distribution according to prediction equation for the current choice of models.

e ANk Here we consider two types of birth models, Bernoulli and

ol (39)  poisson, for which the cardinality distributions of the thir

Pr{sk|nk,1 = ]_} ~



RFSs are Hence,
1—Byn ifn=0 n—i , )
po(1) = q Pty ifn=1 (45) Z; Pris, = slng—1 =n"}pp(n —i —s)
0 ifn>1 po(L)Pr{sy =n—1i—1jng_1 =n'}
and ) He(0)Pr{sy =n —ilng_1 =n'} if n >n—i
) pe(WPrH{sp =n—i—1lng_1=n'} fn =n—i—1
e"MAR 0 ifn<n—i-1

respectively. The parametef3i, and A\, are model param-
eters and can either be constant or time varying. Next, we
present the resulting expressions for the sum in (44), given
four different combinations of birth and spawning models.

(1 - Pbirth) (nn,/z) (pspawrbn_i
x (1 — Pspaun)™ ~"
+ Phirth (nji,l) (Pspaern_z_1

X (1 — Papawny™ ~ (=1 if n' >n—i

Pbirth(pspawn)n, ifn=n—i—1

Case 1: Poisson spawning and poisson birtthen both 0 o em i1

models are Poisson, the birth cardinality distribution iiseeg
by (46) and the spawning probability is found through the
approximation in (43), Pfsi|nr_1} ~ Poisgsi; A - ng_1).
We can then find the desired sum as

(49)

Case 4: Bernoulli spawning and Poisson birtin this
case the birth cardinality is given by (46). Since the spagni
is Bernoulli, according to (36), each of the, | existing
targets can spawn zero or one target and consequently there
can not be more than,_; = n’ spawned targets. Hence,

n—u

g Pr{sg = s|nk—1 =n"}pp(n —i —s)
s=0
n—1i

Z Pr{si = s|nk_1 =n'} pp(n —i — s)
s=0
min{n—i,n’}
s=0
min{n—i,n’}

s=0

e Oy g

~ ! —i—s)
= s! (n—1i—s)!
6_()‘n/+/\b)(5\nl +)\b)”_i

- (n—i)! ’ @n =

by using the same type of simplifications as in (41).

Case 2: Poisson spawning and Bernoulli birt@onsid-
ering this choice of models, the birth cardinality disttiba is
given by (45) while the spawning probability is found thrbug
the approximation in (43). Since the Bernoulli birth model
describes the appearance of either zero or one born target, VI. SIMULATION RESULTS
there will be a maximum of two non-zero terms in (44), In this section we evaluate the proposed algorithm for the

scenario in Figure 1. To assess the performance of our filter,
we use the average OSPA [22], accounting for accuracy in both

Pr{sg = s|nk—1=n"}po(n —i —s)

e—Ab)\gfifs
(n—i—s)’
(50)

n"\ 55 D n'—s
(S)Psspawr(l_PSDaWFDL l

n—i , _ cardinality and state estimates. Additionally, we consithe
> Pr{si = slng_1 =n'}po(n —i—s) cardinality estimates separately by studying the RMSE and
s=0

the average estimates including the standard deviatior. Th

po(0)Pr{sy = 0ngp_1 =n'} if n—i=0  performance measures are computed using 200 Monte Carlo
= pp(0)Pr{s, =n —ilng_1 =n'} runs on the same underlying trajectory (but with randomly
App(V)Pr{sp =n—i—1|ng_1 =n'} fn—i>1 generated target and clutter measurements). The tracdogt r
-, . of the filter is compared to that of the original CPHD filter
(1- Pbinh)ff*{"/ ) o ifn—i=0 where no explicit spawning model is used.
(1 _Pbinh)e—*” (An/)n—? In the simulations, both filters are implemented using a
~ T (=)l : (48) Gaussian Mixture filter; the original CPHD according to [14]
e (An/)n—i=1 _ ‘ [27], and the proposed filter using the equations in Appendix
Jer"’(hm ifn—ix1 A. Further, merging and pruning is performed using the

algorithm in [28], with a limitation ofJnax = 100 Gaussians.
Case 3: Bernoulli spawning and Bernoulli birthtvhen The pruning threshold is set @une = 0.001 and the merging
both the spawning model and the birth model are Bernoulflistance toU' = 2. The cardinality distribution is calculated
described by (36) and (45), there are upper limits in both th@" 7 UP t0 Nmax = 70 and the number of targets at tinkeis
number of spawned and born targets. There will be a maximdftind as the maximum a posteriori (MAP) estimate,
of one born target ana,,_; = n’ spawned targets, since

o (51)
each of then;,_; existing target can spawn at most one target.

Nk|k = argmax py(n).
n



The filters are initialized with the prior cardinalityB. Results

po(0) = 0.4,p(1) = 0.6,po(n) = Oforn>1,andanin-  The scenario, depicted in Figure 1, starts with a singlestarg
tensity function consisting ;)f one single Gaussian deed;thy and, through spawning, the number of targets grows to 8 befor
wo = 0.6, mo = [2,80,0,0]" and Py = (diag10,10,5,5])°.  decreasing. As aforementioned, the spawning model in our

A. Model assumptions

The single target state! contains information about posi-
tion and velocity in x- and y-direction,

X;c = [x;cay;wj:;cay;c]Ta (52)
and the probability that a target survives from one time
instance until the next is independent of time and targée sta
such thatPs ;(x) = Ps = 0.97. Each surviving target moves
independently of all other targets according to the lineat a
Gaussian single target motion model

y [m]

Xp = AXp_1 + Vi1, (53)
wherevy, ~ N(0, Q) is the process noise. The system matrix 20¢ "™ a0 '
A and the noise covariandg are -10 5 0 3 [m 10 15 20
TS41 TSgI
Lo Tiloyo o, | 4 7F2 g2 Figure 1: The target trajectories. The spawning events and
A= 0252 Ioxo |’ Q=g T3 the disappearance of targets are marked by the
7512“ TeIzxo corresponding discrete time instance. For example,
(54) there is a spawning event at= 12 and atk = 60

there are two spawned targets. Both spawning and

wherel, and 0,,, denote then x n identity and zero N
mxn nxn y survival is manually controlled.

matrices,7s = 0.2 s is the sampling time andg = 0.2.
In addition to the surviving targets at each time instance, . ) ) i ) ) .
there is also a possibility that new targets enter the obsbr\f'lter is Bernoulli, while the birth m0(_jel is P0|ss.on,.bothtIW|
scene. In our filter, the appearance of targets is modeled b qQpstant parameters. Naturally, as |IIustrate.d in Figyrehe
Bernoulli spawning process with constant probabiltysawn alues of these parameters will affect the filter perfornganc
and a Poisson birth process with constant paramiedn The_ f|_gur(_e shows th_e mean _OSPA and _the mean ;tandard
the original CPHD filter we use a Poisson birth process, aldgViation in the cardinality estimates for different chesicof
with a constant parameter. The impact of the birth and tepawn @nd Ao, given the models and parameters previously
spawning parameters is further discussed in Section VI-B. Stated. In Figure 2(a), the mean OSPA has its lowest values
Each target is detected by the sensor with a time afftf choices of parameters such th&awn € [0.04,0.1] while
state independent probabilityy(x) = Py = 0.98, and Ao € [0.01,0.04]. It is important to remember that in the
conditioned on detection, the target-generated measutame original CPHD filter the parameter set must be chosen such

described by the single-target measurement model, that Pspawn = 0, i.e., from the leftmost column in the figure,
while CPHD with spawning can use any combination of the

zp = Hxp + Wy (55) two parameters. Considering this, we see that it is possible
Here, w, ~ AN(0,R) is the measurement noise and th& achieve better performance, in mean OSPA sense, with our
matricesH andR are given as proposed filter than with the original CPHD filter. This gain

5 in performance is however at the price of a higher standard
H= Lo 0xof, R = oglzx2 (56)  deviation in the cardinality estimates, as shown in Fig®.2
with or = 0.5. The matrixH in (56) implies that the received Based on these insights, in the subsequent simulationsseve u
measurements are noisy observations of the 2-dimensiammnal i, = 0.01 and Pspawn = 0.06 in the filter with a spawning
get position. In addition to the target-generated measemnésn model and\, = 0.08 in the original CPHD filter.
the received measurement set also contains clutter. Thierclu The illustrations in Figure 2 show the mean OSPA and the
RFS is a Poisson process with intensityz) = A\:Vu(z), mean standard deviation, but it is also of interest to ingats
wherew(z) is a uniform distribution over the observed arelow the filters behave over time during the scenario. We start
V =100 x 100 m?, and where\. = 3.5 x 1072 (giving an by discussing the cardinality estimates over time and coenpa
average of 35 clutter measurements per scan). the behavior of the two filters.

It is worth remembering that there is no requirement for the The average cardinality estimates are shown in Figure 3
process and the measurement models to be linear. If anytajether with the standard deviation and the true numberof t
the two models is nonlinear, the Kalman equations used in thets. Here we see that the proposed method responds faster to
prediction and the measurement update can be replacedrbydio increase in target number, when it is due to spawning, than
example, the corresponding Extended Kalman filter (EKF) tine original CPHD. Furthermore, our method is able to form
Unscented Kalman filter (UKF) equations as in [24]. unbiased estimates while the original CPHD algorithm ¢jear
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T T T
True number of targets AN
L[ = = = Estimate

— — — Standard deviation

Cardinality

o 0.02 0.04 0.06 0.08 . ] 20 40 60 80 100
Pspawn Time step

(a) The mean OSPA computed usipg= 2 andc = 5. (a) CPHD with spawning

0.1 9

T T
True number of targets|
= = = Estimate
— — — Standard deviation

0.09 8

0.08 — 0.45 T

0.07 — A 6

///////

200 = § st
0.05 o oa 841
0.04 3
0.03 2
0.02 —=J

-
0.01 035 o . . . .
0.02 0.04 0.06 0.08 0.1 0 20 40 60 80 100
Pspawn Time step
(b) The average standard deviation in the cardinality egtm (b) Original CPHD
Figure 2: The mean OSPA (a) and the mean standard deviation Figure 3: Cardinality estimates

(b), for different values ofPspawnand Ap. A darker
color corresponds to a smaller mean OSPA, as
indicated by the color bars. The values have been
computed using 100 runs on the trajectory in Figure
1, but with randomly generated measurements and
clutter.

15

CPHD with spawning 1
= = = Original CPHD :

-
T

RMSE cardinality

underestimates the number of targets. This, however, caines
the expense of somewhat increased estimation variance. The
reason for the increase is due to the simple spawning model
used in this example where probability mass is simply added

o
3
T

proportional to the number of estimated targets. Studying o 2 R % 100
Figure 2(b) also shows that this behavior is to be expected.
In Figure 4, we see the variation in the average cardinality Figure 4. RMSE for the cardinality estimates

error for the two methods. We see that the error curve for
the original CPHD has clear peaks that coincide with the time
instances where new targets appear by spawning, and tiset trend the result is illustrated in Figure 5. Again we see clear
peaks are significantly reduced by the addition of a spawnipgaks for the original CPHD at the time instances of the
model. Thus, the CPHD filter with spawning detects a spawnspawning events, and especially at the discrete time iosgan
target faster than the original filter. On the other hand, the = 33 and & = 60, where two targets are spawned at
cardinality error between the spawning events is sliglatigér the same time. These peaks are, yet again, reduced when
for the CPHD filter with spawning. Again, this is due to thaising the CPHD filter with spawning. To summarize the filter
increased variance in the cardinality estimates discusisede. performance for this scenario, the incorporation of a spagvn

So far we have considered the cardinality estimation, botodel apparently provides unbiased estimates of the number
since we are also interested in the estimation of the indalid of targets that quickly detects changes in the cardinality a
targets states, we compute the average OSPA over time ttee moments of spawning. Although, we pay with a higher
the scenario. When computing OSPA we use the Euclidizariance in the estimate, when considering both the calityina
distance together with the parameters= 2 and ¢ = 5, and state estimates by computing the average OSPA, our
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intensity function from timek — 1 is described as a weighted
sum of Gaussians

T T
= CPHD with spawning
= = = Original CPHD i

Je—1)k—1
_ (4) o () (4)
Vp—1)k—1(X) = Z wk—l\k—lN(X7mk71|k71’Pk71|k71)
=0
(57)
wheremszl‘k_1 and P1(21|k_1 are the mean and covariance

of the j:th component.
Prediction: The prediction of each existing component is
given by

Time step ( ) - ( )
Fi 5: A OSPA Vi = P (o)
igure o5. Average () ()
mk]\kq Amk]71|k71 (59)
(49) (49) T
PkJ|k—1 APkJ—l\k—lA + Q. (60)

proposed algorithm performs better during most parts of the
scenario. Worth noting is that the spawning model used fégditional components are introduced by the Poisson birth
generating the trajectories in figure 1 is manually congayll model and Bernoulli spawning model. In our simulations the
i.e., deterministic. As such, there is a model mismatch betw birth intensityb(x) and the spawning intensity(x) are given
the simple spawning model used in the filter (constant spawd&
ing probability) and the simulation model (high spawning
probability at discrete times). We expect that the use of ab
spawning model more adapted to the specific scenario would
result in even better performance.

Jbk
(x) = Z w,g?,lN(x; méf
i=1

Je—1lk—1 Jsk

)
k

(4)
b,k

’ P ) - wa(X’ my, Pb) (61)

s(x) = Z Zwl(cjzl\k—1w§2-/\[(x3 mé,jl’ci)v Péjkz)) (62)
VII. CONCLUSIONS j=1 i=1
In this paper we have presented a generalized version of Je—tjk—1 _ _

the CPHD filter incorporating an explicit spawning model. = Z w,ijjllk_lwsA/(x;mgf,z,Péf,z) (63)
Compared to the original CPHD filter, the proposed filter is j=1
computationally more_complex, andlthe increase in complexwhere wh _ Ao, mp _ [0,50,0,0],
depends on the choice of spawning model. One reasons (diag30,30,5,5))%, ws — P m@
that the derived equation for prediction of the cardinality ° 0 ooy fj) - s‘;”“”“ sk T
distribution includes a model dependent probability which Ay, = My, Pop = AP (AT +Q+Q, =

its general form is impractical and computationally intedate. P,(jgcil + Qs and Qs = (diag0.5,0.5,0.5,0.5])2.
However, we have shown that for a Bernoulli model, the The cardinality prediction formula using the Bernoulli
spawning probability is found through a simple and exact egpawning and the Poisson birth models with constant param-
pression. Moreover, given a Poisson model, we have derivededers is given as
approximate expression for the spawning probability tasmyl 0o
in a computationally efficient formula. Prjk—1(n) = Z M(mn')pkfukq(n'),

Evaluation on an illustrative scenario, using constanispa =0
ing parameter, shows promising results for the proposed Where the transition matrix is
gorithm. The evaluation shows that the filter responds faste

/
<TZL )Pgu — pyn'i

(64)

min{n,n'}

D

1=0

to a change in target number due to spawning and that we

gain performance, in OSPA sense, by adding the spawnirﬁj[("’”/) =

model compared to the original CPHD filter. However, how the

filter performs in real applications, dealing with more cdexp
scenarios or using a more sophisticated spawning model,
hard to predict and would be interesting to investigatehfent

APPENDIX

min{n—i,n’}

D

s=0

e epARTITS

(n—i—s)!’
(65)

Update: The update equations in the CPHD filter with

8 (T; ) (Papawn)* (1 — Pepawn)™ ~*

In the appendix we summarize the equations used fpawning is identical to those of the original filter, thuse t
implementing the Gaussian mixture version of our propos&g§€d equations are found in [27].

filter.

A. Gaussian mixture CPHD with spawning

The implementation of the Gaussian mixture version of th
CPHD filter with spawning is based on [27] and [13]. The
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