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In offshore wind turbines, the blades are among the most critical and expensive components that suffer from different types of
damage due to the harsh maritime environment and high load. The blade damages can be categorized into two types: the minor
damage, which only causes a loss in wind capture without resulting in any turbine stoppage, and the major (catastrophic) damage,
which stops the wind turbine and can only be corrected by replacement. In this paper, we propose an optimal number-dependent
preventive maintenance (NDPM) strategy, in which a maintenance team is transported with an ordinary or expedited lead time to
the offshore platform at the occurrence of the Nth minor damage or the first major damage, whichever comes first. The long-run
expected cost of the maintenance strategy is derived, and the necessary conditions for an optimal solution are obtained. Finally, the
proposed model is tested on real data collected from an offshore wind farm database. Also, a sensitivity analysis is conducted in
order to evaluate the effect of changes in the model parameters on the optimal solution.

1. Introduction

Wind energy has become an attractive source of renewable
energy in the European energy market because it is free,
abundant, and perceived as having a low impact on the
environment. Over the past five years (2008–2012), the wind
energy industry has been the fastest growing renewable
energy source with an annual average growth rate of 28% [1].
For instance, in Sweden, 763MW of wind power (onshore
and offshore) was installed in 2011 which increased the wind
power capacity to 2906MW—about 2% of the total electricity
consumption [2]. Certain forecasts indicate that the share of
wind power in Sweden’s electricity generation will reach up
to 20% by 2020.

Nowadays more and more wind turbines are being
installed offshore due to the high potential of wind energy,
less visual disturbance, and larger potential areas for instal-
lation. Presently, there are five offshore wind farms in the
sea waters of Sweden (Lillgrund, Vanem, Utgrunden, Yttre

Stengrund, and Bockstigen) with a total operating capacity
of 163.7MW [3]. However, a wind power system located at
sea comes with higher installation costs and more difficult
maintenance conditions compared to an onshore system.
Furthermore, an offshore wind turbine has undesirable fea-
tures like a higher failure rate, lower reliability, and higher
operation and maintenance (O&M) costs. The O&M costs
of onshore wind turbines account for around 20–25% of the
wind energy generation cost, whereas in offshore wind farms,
they represent a larger portion of the costs—up to 30% [4].
Therefore, there is a critical need to optimize themaintenance
management of offshore wind turbines in order to reduce the
O&M costs.

The literature on the optimization of maintenance strate-
gies (opportunistic maintenance, reliability centered mainte-
nance, and condition-basedmaintenance) in the wind energy
industry is significant. Byon et al. [5] develop an optimization
model to derive an optimal preventive maintenance strategy
such that the expected average cost of a wind turbine
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Figure 1: A wind turbine blademade of fibreglass reinforced plastic.

under stochastic weather conditions is minimized. Byon and
Ding [6] propose a season-dependent optimal maintenance
strategy for amultistate deterioratingwind turbine in order to
reduce the operation costs and enhance the marketability of
wind power. Tian et al. [7] apply an artificial neural network
approach to optimize the condition monitoring strategy for a
wind farm assuming the same lead times for all maintenance
activities. Nielsen and Sørensen [8] propose an optimal risk-
basedmaintenance strategy for an offshore wind turbine with
a single critical component. Ding and Tian [9, 10] develop
three opportunistic optimization strategies based on perfect,
imperfect, and two-level actions forwind turbines and apply a
simulation optimizationmethod to evaluate themaintenance
cost of the proposed strategies.

Among the wind turbine components, the blade is one of
the most critical and expensive components, whose function
is to convert the kinetic energy into mechanical energy.
According to the 2003 Netherlands wind energy report, 34%
of the total number of failures in offshore wind farms was due
to blades failure [11]. Also, a recently conducted study onwind
farms in India indicates that the blades system is the most
critical cause of turbine failure during the first five years of
operation [12].

The blades are usually made from composite materials
such as fibreglass reinforced plastic (see Figure 1) with an
expected useful lifetime of twenty years. However, in offshore
wind farms, the useful lifetime of a blade is significantly
shorter than its expected lifetime.The reason is that the blades
are “stressed” in a harsh maritime environment and extreme
weather conditions and suffer fromdifferent types of damages
(such as wear, fatigue, deterioration, crack, corrosion, and
erosion) [13].

Basically, the damages of wind turbine blades can be
categorized into two types. One is a minor damage (such
as microscopic cracks arising from fatigue) which is usually
detected by online condition monitoring techniques (for
more details see [14]). This type of damage weakens the
system and causes a loss in wind capture without resulting in
any turbine stoppage. The other one is a major (catastrophic)
damage (such as a metre long fracture) which leads to a
turbine system failure and stops the whole wind turbine.

In this paper, we assume that a maintenance team is
transported to the offshore platform at the occurrence of the
𝑁th minor damage (to perform preventive maintenance) or

the first major damage (to perform corrective replacement),
whichever comes first. In practice,N is the damage threshold
for performing (PM) action which is considered to be a
decision variable under the control of the wind farmmanager
and should be optimized. This strategy, namely, number-
dependent preventive maintenance (NDPM), was first con-
sidered by Makabe andMorimura [15–17] and later extended
by Morimura [18] and Park [19]. Since then, it has been
considered from many different aspects such as when the
system is subject to two types ofminor andmajor failures (see
Nakagawa [20], Sheu and Griffith [21]); with age-dependent
repair costs (see Sheu [22], Sheu et al. [23]); under a repair-
cost limit (see Park [24], Chang et al. [25], and Sheu et al.
[26]); andwith spare parts consideration (see Sheu andChien
[27], Chien [28, 29]).

In addition, most maintenance optimization models in
the literature are based on the assumption that the main-
tenance team is immediately transported to the offshore
platform. However, this assumption is unrealistic, as it is
often the case that the maintenance team is sent only when
the transportation means (ships, helicopters), specialized
equipment (lifting cranes), and spare parts become available.
Also, in some cases, the maintenance team has to wait for
a number of days due to bad weather and sea conditions
and then travel to the offshore platform. Since the offshore
wind turbines are less accessible and/or are subject to very
high costs for transport, an NDPM strategy possesses a huge
potential for reducing the maintenance costs and enhancing
the reliability of wind turbines, if applied properly.

In this paper, we propose an optimization model to
determine the optimal number of minor damages allowed to
occur in a blades system before sending a maintenance team
to perform preventive maintenance actions. Our objective
function is to minimize the long-run expected cost which
includes all costs due to corrective replacement, preventive
maintenance, logistics, and production loss. To our knowl-
edge, this paper is the first attempt to optimize the NPDM
strategy for offshore wind turbine blades subject to damages.

The rest of this paper is organized as follows. In Section 2,
we present the problem definition. In Section 3, we describe
the model components and use these in Section 4 to for-
mulate our optimization model. In Section 5, the proposed
model is tested using real data from an offshore wind farm
database. Finally, in Section 6, we conclude this study with a
brief discussion on topics for future research.

2. Problem Definition

Suppose that the lifetime T of a wind turbine blade has the
density function 𝑓 : 𝑅

+
󳨃→ [0, 1], cumulative distribution

function 𝐹 : 𝑅
+
󳨃→ [0, 1], defined by 𝐹(𝑡) = ∫

𝑡

0
𝑓(𝑥)𝑑𝑥, and

survival function 𝐹 : 𝑅
+
󳨃→ [0, 1], defined by 𝐹(𝑡) = 1 − 𝐹(𝑡)

with 𝐹(0) = 1.
We consider a preventive maintenance model of a blades

system, in which the system consists of 𝑛
𝑏
i.i.d. blade lifetimes

in series and is subject to damages. Suppose that the number
of damages arriving in the interval [0, 𝑡) in each blade is a
nonhomogenous Poisson process (NHPP) with an intensity
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Figure 2: Three cases of an NDPM cycle.

function ℎ(𝑡), defined by ℎ(𝑡) = 𝑓(𝑡)/𝐹(𝑡), and a mean value
function H(t), defined by 𝐻(𝑡) = ∫

𝑡

0
ℎ(𝑥)𝑑𝑥 with 𝐻(0) = 0.

The assumption of NHPP has been considered extensively in
shock and damage modelling in various domains (see, e.g.,
[30]) as well as wind energy industry (see [31]).

Further, it is assumed that the probability that a certain
damage is a minor (major) damage is q [𝑝 = 1−𝑞], where 0 ≤

𝑝, 𝑞 ≤ 1. The case 𝑝 = 0 (𝑝 = 1) indicates that the damages
are always minor (major). In this paper, the probability p is
considered as a constant value. However, this is unrealistic in
some situations, especially in offshore environments. Then, a
possibly more flexible model could be suggested by assuming
𝑝 as a weather-dependent function, which will be considered
in our future work.

In the model to be developed in this article, the mainte-
nance team is transported with an ordinary or expedited lead
time to the offshore platform at the occurrence of the Nth
minor damage or the first major damage, whichever comes
first. More precisely, the decision to repair or replace the
blades system is made according to the following scheme (see
Figure 2).

(a) No Major Damage Occurs before the 𝑁th Minor Damage
or during the Ordinary Logistics Lead Time following the𝑁𝑡ℎ

Minor Damage (Figure 2(a)). In this case, the maintenance
expeditions are initiated immediately after the 𝑁th minor
damage, and the maintenance team is transported as soon as
weather and sea conditions permit. Let 𝐿

𝑜
> 0 [𝑐
𝑜
> 0] denote

the ordinary logistics lead time (cost), where 𝐿
𝑜
is the length

of the interval between the time at which the maintenance
decision is made and the time when the maintenance is
performed and 𝑐

𝑜
is the total cost of hiring the service vessels,

ordering spare parts, and transporting themaintenance team.
Here, the maintenance strategy is to perform a perfect or
complete preventive maintenance action on each blade at a
cost 𝑐
𝑝
, which returns the blades system to an “as-good-as-

new” state.

(b) A Major Damage Occurs before the 𝑁th Minor Damage
(Figure 2(b)). In this case, the blades systemwill be nonopera-
tional and the wind turbine is shut down. Since such an event
is costly, an expedited logistics plan is initiated at a shorter-
than-ordinary lead time, but higher-than-ordinary cost [32].
We define the expedited logistics lead time, 𝐿

𝑒
, as follows:

𝐿
𝑒
= 𝐿
𝑜
− 𝜉
𝐿
, (1)

where 𝜉
𝐿
(≥0) is the “expedited lead time term”, and the

expedited logistics cost, 𝑐
𝑒
is

𝑐
𝑒
= 𝑐
𝑜
+ 𝜉
𝑐
, (2)

where 𝜉
𝑐
(≥0) is the “expedited cost term”. Here, the mainte-

nance strategy is to perform a corrective replacement on the
failed blade at a cost 𝑐

𝑟
(> 𝑐
𝑝
) and a perfect PM action on each

un-failed blade.

(c) No Major Damage Occurs before the 𝑁𝑡ℎ Minor Damage,
but a Major Damage Occurs during the Ordinary Logistics
Lead Time following the 𝑁𝑡ℎ Minor Damage (Figure 2(c)).
In this case, the wind turbine is shut down until the ordi-
nary lead time has elapsed during which the maintenance
teamperformsmaintenance activities. Here, themaintenance
strategy is the same as for case (b).

Let the random variable 𝑇
𝑖
, 𝑖 = 1, 2, . . ., represent the

waiting time until the 𝑖th minor damage occurs in the blades
system. Since the minor damages in the blades system occur
according to an NHPP with a mean value function 𝑞𝑛

𝑏
𝐻(𝑡),

the survival function of 𝑇
𝑖
is given by

𝐹
𝑇𝑖
(𝑡) = Pr (𝑇

𝑖
> 𝑡) =

𝑖−1

∑

𝑘=0

𝑃
𝑘
(𝑡)

= [𝐹 (𝑡)]
𝑞𝑛𝑏

×

𝑖−1

∑

𝑘=0

[𝑞𝑛
𝑏
𝐻(𝑡)]

𝑘

𝑘!
, 𝑡 ≥ 0,

(3)

where 𝐹(⋅) and𝐻(⋅) denote, respectively, the survival and the
cumulative distribution function of each blade. 𝑃

𝑘
(𝑡) is the

conditional probability of kminor damages occurring during
the time interval [0, t) on knowing that no major damage has
occurred within [0, t) and can be expressed as

𝑃
𝑘
(𝑡) = 𝐹

𝑇𝑘+1
(𝑡) − 𝐹

𝑇𝑘
(𝑡) ,

𝑘 = 0, 1, 2, . . . , with 𝐹
𝑇0
(𝑡) = 0.

(4)

Further, let Y denote the time to the first major damage
in the blades system. Since the minor damages in the blades
system occur at an NHPP with a mean value function
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𝑝𝑛
𝑏
𝐻(𝑡), the survival and the distribution function of Y,

respectively, are given by

𝐹
𝑌
(𝑦) = Pr (𝑌 > 𝑦) = e−𝑝𝑛𝑏𝐻(𝑦) = [𝐹 (𝑦)]

𝑝𝑛𝑏

, 𝑦 ≥ 0, (5)

𝑓
𝑌
(𝑦) = −

𝑑

𝑑𝑦
𝐹
𝑌
(𝑦) = 𝑝𝑛

𝑏
ℎ (𝑦) 𝐹

𝑌
(𝑦) , 𝑦 ≥ 0. (6)

The following fact will be utilized in the forthcoming
section, for the random variables 𝑇

𝑁
and Y, we have

∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

= −∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

= − [𝐹
𝑌
(𝑡) 𝐹
𝑇𝑁

(𝑡)
󵄨󵄨󵄨󵄨󵄨

∞

0

− ∫

∞

0

𝐹
𝑇𝑁

(𝑡) 𝑑𝐹
𝑌
(𝑡) ,

(7)

and then by using (6) we have

∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡) = 𝑝𝑛

𝑏
∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡. (8)

3. Components of the Model

3.1. Expected Length of an NDPM Cycle. As shown in
Figure 2, the length of an NDPM cycle with N allowable
minor damages in a blades system, CL(𝑁), can be expressed
as

CL (𝑁) = {
𝑌 + 𝐿

𝑒
if 𝑌 < 𝑇

𝑁

𝑇
𝑁
+ 𝐿
𝑜

if 𝑌 ≥ 𝑇
𝑁
.

(9)

Then the expected length of the cycle, 𝐸[CL(𝑁)], is given by

𝐸 [CL (𝑁)] = ∫

∞

0

∫

𝑡

0

(𝑦 + 𝐿
𝑒
) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡)

+ ∫

∞

0

∫

∞

𝑡

(𝑡 + 𝐿
𝑜
) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡) .

(10)

By using (1) and (8), we have that

𝐸 [CL (𝑁)]

= [𝐿
𝑒
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡) + 𝐿

𝑜
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)]

+ [∫

∞

0

∫

𝑡

0

𝑦 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡) + ∫

∞

0

𝑡𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)]

= 𝐿
𝑜
− 𝜉
𝐿
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡) + ∫

∞

0

∫

𝑡

0

𝐹
𝑌
(𝑦) 𝑑𝑦 𝑑𝐹

𝑇𝑁
(𝑡)

= 𝐿
𝑜
− 𝑝𝑛
𝑏
𝜉
𝐿
∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ ∫

∞

0

𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡.

(11)

3.2. Expected Logistics Costs. Because the expedited logistics
cost only occurs in case (b), the expected logistics cost per
cycle, 𝐸[𝑐

𝐿
(𝑁)], is given by

𝐸 [𝑐
𝐿
(𝑁)] = 𝑐

𝑒
∫

∞

0

∫

𝑡

0

𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡)

+ 𝑐
𝑜
∫

∞

0

∫

∞

𝑡

𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡) .

(12)

By using (2) and (8), we have that

𝐸 [𝑐
𝐿
(𝑁)]

= 𝑐
𝑒
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡) + 𝑐

𝑜
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

= 𝑐
𝑜
+ 𝜉
𝑐
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

= 𝑐
𝑜
+ 𝑝𝑛
𝑏
𝜉
𝑐
∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡.

(13)

3.3. Expected Cost of Production Loss. Let 𝐸[𝑐
𝑃
(𝑁)] be the

expected cost of production loss per cycle with 𝑁 allowable
minor damages in a blades system. We assume the following
cost structure (see Figure 3):

𝐸 [𝑐
𝑃
(𝑁)] = 𝑐

𝑚
𝐸 [𝑁
𝑚
(𝑁)] + 𝑐

𝑀
𝐸 [DL (𝑁)] , (14)

where 𝑐
𝑚

is the fixed cost of production loss due to a
minor damage, 𝑐

𝑀
is the fixed cost of production loss per

unit downtime, 𝐸[𝑁
𝑚
(𝑁)] is the expected number of minor

damages per cycle, and 𝐸[DL(𝑁)] is the expected downtime
within the cycle. In practice, 𝑐

𝑚
can be considered as a fixed

penalty cost resulting from a small reduction in efficiency of
wind capture and 𝑐

𝑀
is obtained as follows [33]:

𝑐
𝑀

= 𝑊𝑐
𝐸
𝑓, (15)

where W is the wind power rating, 𝑐
𝐸
is the cost of energy,

and f is the capacity factor of the wind turbine.
As illustrated in Figure 2, the expected number of minor

damages per cycle, 𝐸[𝑁
𝑚
(𝑁)], can be expressed as

𝐸 [𝑁
𝑚
(𝑁)]

=

case (a)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

0

𝐹
𝑌
(𝑡 + 𝐿

𝑜
) × (𝑁 + ∫

𝑡+𝐿𝑜

𝑡

𝑞𝑛
𝑏
ℎ (𝑢) 𝑑𝑢)𝑑𝐹

𝑇𝑁
(𝑡)

+

case (b)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

0

∫

𝑡

0

∫

𝑦

0

𝑞𝑛
𝑏
ℎ (𝑢) 𝑑𝑢 𝑑𝐹

𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡)

+

case (c)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

0

∫

𝑡+𝐿𝑜

𝑡

(𝑁 + ∫

𝑦

𝑡

𝑞𝑛
𝑏
ℎ(𝑢)𝑑𝑢)𝑑𝐹

𝑌
(𝑦)𝑑𝐹

𝑇𝑁
(𝑡) .

(16)
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Figure 3: The cost structure for production loss.

By using (6) and (8), we have

𝐸 [𝑁
𝑚
(𝑁)]

= 𝑁∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

+ 𝑞𝑛
𝑏
(∫

∞

0

∫

𝑡+𝐿𝑜

0

𝐻(𝑦) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡)

+ ∫

∞

0

𝐹
𝑌
(𝑡 + 𝐿

𝑜
)𝐻 (𝑡 + 𝐿

𝑜
) 𝑑𝐹
𝑇𝑁

(𝑡)

− ∫

∞

0

𝐹
𝑌
(𝑡)𝐻 (𝑡) 𝑑𝐹

𝑇𝑁
(𝑡))

= 𝑁 − 𝑁𝑝𝑛
𝑏
∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ 𝑞𝑛
𝑏
(

∫
∞

0
𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝐹
𝑇𝑁

(𝑡)

𝑝𝑛
𝑏

− ∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ 𝑝𝑛
𝑏
∫

∞

0

ℎ (𝑡)𝐻 (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡)

= 𝑁 +
𝑞

𝑝
𝐹
𝑌
(𝐿
𝑜
) − 𝑛
𝑏
(𝑁𝑝 + 𝑞)∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ 𝑞𝑛
𝑏
(∫

∞

0

ℎ (𝑡 + 𝐿
𝑜
) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝑡

+ 𝑝𝑛
𝑏
∫

∞

0

ℎ (𝑡)𝐻 (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡) .

(17)

Because a wind turbine shutdown occurs only in cases
(b) and (c), the expected turbine downtime within the cycle,
𝐸[DL(𝑁)], can be expressed as

𝐸 [DL (𝑁)] =

case (b)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐿
𝑒
∫

∞

0

∫

𝑡

0

𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑇𝑁
(𝑡)

+

case (c)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

0

∫

𝑡+𝐿𝑜

𝑡

(𝑡 + 𝐿
𝑜
− 𝑦)𝑑𝐹

𝑌
(𝑦)𝑑𝐹

𝑇𝑁
(𝑡),

(18)

and then by using (1), we have

𝐸 [DL (𝑁)]

= 𝐿
𝑒
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡) − 𝐿

𝑜
∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

− ∫

∞

0

∫

𝑡+𝐿𝑜

𝑡

𝐹
𝑌
(𝑦) 𝑑𝑦 𝑑𝐹

𝑇𝑁
(𝑡)

= −𝑝𝑛
𝑏
𝜉
𝐿
∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ ∫

𝐿𝑜

0

𝐹
𝑌
(𝑦) 𝑑𝑦 + ∫

∞

0

𝐹
𝑇𝑁

(𝑡) [𝐹
𝑌
(𝑡) − 𝐹

𝑌
(𝑡 + 𝐿

𝑜
)] 𝑑𝑡.

(19)

By substituting (17) and (19) into (14), we have

𝐸 [𝑐
𝑃
(𝑁)]

= 𝑐
𝑚
[𝑁 +

𝑞

𝑝
𝐹
𝑌
(𝐿
𝑜
) − 𝑛
𝑏
(𝑁𝑝 + 𝑞)∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁
𝐹
𝑌
(𝑡) 𝑑𝑡

+ 𝑞𝑛
𝑏
(∫

∞

0

ℎ (𝑡 + 𝐿
𝑜
) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝑡

+ 𝑝𝑛
𝑏
∫

∞

0

ℎ (𝑡)𝐻 (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡)]

+ 𝑐
𝑀
{−𝑝𝑛

𝑏
𝜉
𝐿
∫

∞

0

ℎ (𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ ∫

𝐿𝑜

0

𝐹
𝑌
(𝑦) 𝑑𝑦

+ ∫

∞

0

𝐹
𝑇𝑁

(𝑡) [𝐹
𝑌
(𝑡) − 𝐹

𝑌
(𝑡 + 𝐿

𝑜
)] 𝑑𝑡} .

(20)

3.4. Expected Maintenance Costs. Since a corrective replace-
ment strategy is applied only in cases (b) and (c) and the per-
fect preventive maintenance strategy is utilized for unfailed
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blade(s) in all three cases, the total expectedmaintenance cost
per cycle, 𝐸[𝑐

𝑀
(𝑁)], is

𝐸 [𝑐
𝑀
(𝑁)]

=

case (a)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑛
𝑏
𝑐
𝑝
∫

∞

0

𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝐹
𝑇𝑁

(𝑡)

+

case (b)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[𝑐
𝑟
+ (𝑛
𝑏
− 1) 𝑐
𝑝
] ∫

∞

0

𝐹
𝑌
(𝑡) 𝑑𝐹

𝑇𝑁
(𝑡)

+

case (c)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[𝑐
𝑟
+ (𝑛
𝑏
− 1)𝑐
𝑝
] ∫

∞

0

[𝐹
𝑌
(𝑡 + 𝐿

𝑜
) − 𝐹
𝑌
(𝑡)] 𝑑𝐹

𝑇𝑁
(𝑡) .

(21)

By using (8), we have

𝐸 [𝑐
𝑀
(𝑁)]

= 𝑛
𝑏
𝑐
𝑝
∫

∞

0

𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝐹
𝑇𝑁

(𝑡)

+ [𝑐
𝑟
+ (𝑛
𝑏
− 1) 𝑐
𝑝
] ∫

∞

0

𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝐹
𝑇𝑁

(𝑡)

= 𝑛
𝑏
𝑐
𝑝
+ (𝑐
𝑟
− 𝑐
𝑝
) ∫

∞

0

𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝐹
𝑇𝑁

(𝑡)

= 𝑛
𝑏
𝑐
𝑝
+ (𝑐
𝑟
− 𝑐
𝑝
)

× [𝐹
𝑌
(𝐿
𝑜
)+ 𝑝𝑛

𝑏
∫

∞

0

𝐹
𝑇𝑁

(𝑡) ℎ (𝑡 + 𝐿
𝑜
) 𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝑡] .

(22)

4. The Model Formulation and Analysis

From the renewal reward theorem (see [34, page 52]), the
expected cost rate for an infinite time span is the expected
operational cost incurred in a cycle divided by the expected
cycle length, that is,

Expected operational cost incurred in a cycle
Expected length of a cycle

. (23)

The expected operational cost over a cycle is the sum of
the expected logistics costs, the expected cost of production
loss, and the expected maintenance costs. Thus, the expected
cost rate for anNDPMcycle withN allowableminor damages
in a blades system, CR(𝑁), can be expressed as

CR (𝑁) =
𝐸 [𝑐
𝐿
(𝑁)] + 𝐸 [𝑐

𝑃
(𝑁)] + 𝐸 [𝑐

𝑀
(𝑁)]

𝐸 [CL (𝑁)]
, (24)

where 𝐸[CL(𝑁)] is given by (11), 𝐸[𝑐
𝐿
(𝑁)] is given by (13),

𝐸[𝑐
𝑃
(𝑁)] is given by (20), and 𝐸[𝑐

𝑀
(𝑁)] is given by (21).

For an infinite-horizon case, under the criterion of the
expected long-term cost per unit time, the optimal policy
is to determine the value of 𝑁 = 𝑁

∗ which minimizes

CR(𝑁).Therefore, the optimizationmodel can be formulated
as follows:

minimize(𝛿
11
(𝑁) + ∫

∞

0

𝛿
12
(𝑡,𝑁) 𝐹

𝑇𝑁
(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+∫

∞

0

𝛿
13
(𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡 + 𝐿

𝑜
) 𝑑𝑡)

× (𝐿
𝑜
+ ∫

∞

0

𝛿
21
(𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡)

−1

,

(25)

where

𝛿
11
(𝑁) = 𝑐

𝑜
+ 𝑐
𝑚
𝑁 + (𝑐

𝑚

1 − 𝑝

𝑝
+ 𝑐
𝑟
− 𝑐
𝑝
)𝐹
𝑌
(𝐿
𝑜
)

+ 𝑐
𝑀
∫

𝐿𝑜

0

𝐹
𝑌
(𝑦) 𝑑𝑦 + 𝑛

𝑏
𝑐
𝑝
,

𝛿
12
(𝑡,𝑁) = 𝑛

𝑏
[(1 − 𝑐

𝑀
) 𝑝𝜉
𝑐

+ 𝑐
𝑚
{(𝑝 [(1 − 𝑝) 𝑛

𝑏
𝐻(𝑡) + 1 − 𝑁] − 1)} ]

× ℎ (𝑡) + 𝑐
𝑀
,

𝛿
13
(𝑡) = 𝑛

𝑏
[𝑐
𝑚
+ 𝑝 (𝑐

𝑟
− 𝑐
𝑝
− 𝑐
𝑚
)] ℎ (𝑡 + 𝐿

𝑜
) − 𝑐
𝑀
,

𝛿
21
(𝑡) = 1 − 𝑝𝑛

𝑏
𝜉
𝐿
ℎ (𝑡) ,

𝑝 ∈ [0, 1] , 𝑁 ∈ {1, 2, . . .} .

(26)

If a finite integer value of 𝑁∗ satisfies the inequalities
CR(𝑁∗ + 1) ≥ CR(𝑁∗) and CR(𝑁∗) < CR(𝑁∗ − 1), then
𝑁 = 𝑁

∗ is the optimal solution. From (25), we can show that
CR(𝑁 + 1) ≥ CR(𝑁) whenever 𝑄(𝑁) ≥ 0, where

𝑄 (𝑁) = 𝐴 (𝑁)

× ((𝐿
𝑜
+ ∫

∞

0

𝛿
21
(𝑡) 𝐹
𝑇𝑁+1

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡)

×(𝐿
𝑜
+ ∫

∞

0

𝛿
21
(𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡))

−1

,

(27)
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Input: 𝑛
𝑏
, 𝑓(⋅), 𝑝, 𝐿

𝑜
, 𝐿
𝑒
, 𝑐
𝑜
, 𝑐
𝑒
, 𝑐
𝑟
, 𝑐
𝑝
, 𝑐
𝑚
,𝑊, 𝐸, 𝑓.

Step 1. Set𝑁 := 1,CR (0) := ∞.
Step 2. Compute 𝐹

𝑌
(⋅), 𝛿
11
(1), 𝛿
12
(⋅, 1), 𝛿

13
(⋅) and 𝛿

21
(⋅).

Step 3. Compute 𝐹
𝑇𝑁
(⋅), 𝛿
11
(𝑁 + 1) and 𝛿

12
(⋅, 𝑁 + 1).

Step 4. Compute 𝑄 (𝑁).
Step 5. If the condition 𝑄(𝑁) ≥ 0 in (27) is satisfied, then𝑁

∗

:= 𝑁, CR(𝑁∗) := CR(𝑁) and go to the
output, otherwise, let𝑁 = 𝑁 + 1, and go to Step 3.
Output:𝑁∗,CR(𝑁∗)
Stop. End.

Algorithm 1: Find the optimal allowable number of minor damages in a blades system.

and

𝐴 (𝑁)

= 𝐿
𝑜
𝑐
𝑚

+ (∫

∞

0

[𝛿
11
(𝑁 + 1) 𝛿

21
(𝑡) − 𝐿

𝑜
𝛿
12
(𝑡,𝑁)]

× 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

− ∫

∞

0

[𝛿
11
(𝑁) 𝛿
21
(𝑡) − 𝐿

𝑜
𝛿
12
(𝑡,𝑁 + 1)]

× 𝐹
𝑇𝑁+1

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

+ [∫

∞

0

𝐹
𝑇𝑁+1

(𝑡) [{𝛿
12
(𝑡,𝑁 + 1) 𝐹

𝑌
(𝑡)

+𝛿
13
(𝑡) 𝐹
𝑌
(𝑡 + 𝐿

𝑜
)}] 𝑑𝑡]

× ∫

∞

0

𝛿
21
(𝑡) 𝐹
𝑇𝑁

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡

− [∫

∞

0

𝐹
𝑇𝑁

(𝑡) {𝛿
12
(𝑡,𝑁) 𝐹

𝑌
(𝑡)

+𝛿
13
(𝑡) 𝐹
𝑌
(𝑡 + 𝐿

𝑜
)} 𝑑𝑡]

×∫

∞

0

𝛿
21
(𝑡) 𝐹
𝑇𝑁+1

(𝑡) 𝐹
𝑌
(𝑡) 𝑑𝑡) .

(28)

It should be noted that if 𝛿
21
(𝑡) ≥ 0 or ℎ(𝑡) ≤ (𝑝𝑛𝜉

𝐿
)
−1 for all

𝑡 ≥ 0, then the condition 𝑄(𝑁) ≥ 0 will become 𝐴(𝑁) ≥ 0.
As the proposed optimizationmodel is fairly complicated

(the variable of interest is included in the integrands),
obtaining a general analytical solution is probably impossible.
We have chosen to use Algorithm 1 to find the optimal
solution through a numerical procedure.

In addition, a flow sheet representing the computing
procedure is presented in Figure 4.

Start

Input

nb , f(·), p, Lo, Le,
co , ce , cr, cp, cm , W, E, f

Set

Compute

Compute

𝛿12(·, N), 𝛿12(·, N + 1)

Compute

No

Yes

N = N+ 1

Output
N∗ = N,

End

FY(·), 𝛿13(·), 𝛿21(·)

FT𝑁
(·), 𝛿11(N), 𝛿11(N + 1),

Q(N) > 0

Q(N)

CR(N∗) = CR(N)

N = 1, CR(0) = ∞

Figure 4: The flow sheet for computation of the optimal solution.

5. An Illustrative Case

In order to illustrate the proposed model, we present a case
study composed by real data gathered from an offshore wind
database. The field failure parameters have been used as in
[35], and some real logistic parameters have been gathered
from the Opti-Owecs offshore wind farm project, which has
also been studied in [36]. Consider a deteriorating wind
turbine blades system with 𝑛

𝑏
∈ {1, 2, 3} blades (Figure 5), in
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Table 1: Summary of the parameter values.

Wind turbine parameters W = 1.2MW, 𝑓 = 0.4

Blades system 𝜆 = 0.03/day, 𝛽 = 2 (meantime to damage is 29.54 days)
Cost parameters 𝑐

𝑟
= 600000 (C), 𝑐

𝑝
= 200000 (C), 𝑐

𝑚
= 5000 (C), 𝑐

𝑜
= 25000 (C), 𝑐

𝑒
= 30000 (C), 𝑐

𝐸
= 36 C/MW

Lead time 𝐿
𝑜
= 2 days, 𝐿

𝑒
= 1 day

(a) (b) (c)

Figure 5: A blades system with (a) one blade, (b) two blades, and (c) three blades.

Table 2: 𝑁∗ and CR(𝑁∗) for 𝑝 ∈ {0.1 , 0.2 , . . . , 0.9} and 𝑛
𝑏

∈

{1, 2, 3}.

𝑝
𝑛
𝑏
= 1 𝑛

𝑏
= 2 𝑛

𝑏
= 3

𝑁
∗ CR(𝑁∗) 𝑁

∗ CR(𝑁∗) 𝑁
∗ CR(𝑁∗)

0.1 6 6377.2 11 12674.4 19 19426.3
0.2 3 8857.0 6 17463.1 10 26720.4
0.3 2 10843.2 4 21188.0 7 32327.9
0.4 2 12566.4 3 24342.9 6 37036.3
0.5 2 14188.3 3 27111.1 5 41160.9
0.6 1 15559.6 2 29639.0 4 44865.0
0.7 1 16858.0 2 31918.7 4 48253.1
0.8 1 18135.4 2 34060.1 3 51381.3
0.9 1 19392.2 2 36061.4 3 54302.4

which the time to damage follows a two-parameter Weibull
distribution function; that is,

𝐹 (𝑡) = 1 − exp {−(𝜆𝑡)𝛽} ,

ℎ (𝑡) = 𝜆𝛽(𝜆𝑡)
𝛽−1 with 𝜆 > 0, 𝛽 > 1,

(29)

where 𝜆 is the scale parameter and 𝛽 is the shape parameter.
Table 1 summarizes the values of the model parameters.

A MATLAB program for the minimization of the long-
run average cost per unit time in (25) has been written.
Algorithm 1 is iterated until the optimal value, 𝑁∗, is found.
However, when p tends to zero (i.e., when the damages tend to
target only minor failures), the value of 𝑁∗ tends to infinity,
which decreases the performance of Algorithm 1 .

Table 2 presents the optimal number 𝑁
∗ of allowable

minor damages in a blades system and the corresponding
long-run expected cost, CR(𝑁∗), for a range of values of 𝑝 ∈

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

23

p

×104

CR
(N

∗
)/
n
b

Figure 6: CR(𝑁∗)/𝑛
𝑏
for 𝑝 ∈ {0.1 , 0.2 , . . . , 0.9} and 𝑛

𝑏
∈ {1, 2, 3}.

{0.1, 0.2, . . . , 0.9} and 𝑛
𝑏
∈ {1, 2, 3}. Table 2 shows that as the

probability, 𝑝, of a major damage increases, the optimal value
of 𝑁∗ decreases; however, the optimal long-run expected
cost, CR(𝑁∗), increases. Moreover, as shown in Figure 6, the
long-run expected costs per blade in two- and three-bladed
systems are very close to each other, but they have a noticeable
difference compared with the long-run expected cost in a
single-blade system.

The long-run expected cost, CR(𝑁) for a range of values
of 𝑁 ∈ {1, 2, . . . , 10}, 𝑝 = 0.5, and 𝑛

𝑏
∈ {1, 2, 3} is shown in

Figure 7.
Since most wind turbines have three blades, we conduct

a sensitivity analysis to evaluate the effect of changes in the
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1 2 3 4 5 6 7 8 9 10
1.4

1.41

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.5
×104

nb = 1

N

CR
(N

)

(a)

1 2 3 4 5 6 7 8 9 10

2.68
2.7

2.72
2.74
2.76
2.78

2.8
2.82
2.84
2.86
2.88

2.9

nb = 2

×104

N

CR
(N

)

(b)

1 2 3 4 5 6 7 8 9 10

4

4.1

4.2

4.3

4.4

4.5

4.6

×104

N

nb = 3

CR
(N

)

(c)

Figure 7: CR(𝑁) for𝑁 ∈ {1, 2, . . . , 10}, 𝑝 = 0.5 and 𝑛
𝑏
∈ {1, 2, 3}.

values of the model parameters on the optimal solution for
three-bladed wind turbine systems.

(i) Sensitivity Analysis for 𝜆.The optimal number of allowable
minor damages in a three-bladed system and the correspond-
ing long-run expected cost for 𝑝 ∈ {0.1, 0.3, . . . , 0.9} and
𝜆 ∈ {0.01, 0.03, 0.05} are given in Table 3.

Table 3 shows that as the scale parameter of Weibull
distribution 𝜆 grows (i.e., the mean time to arrive a damage
decreases), the optimal value of𝑁∗ and the optimal long-run
expected cost, CR(𝑁∗), increase.

(ii) Sensitivity Analysis for 𝑐
𝑚
. The optimal number of allow-

able minor damages in a three-bladed system and the corre-
sponding long-run expected cost for 𝑝 ∈ {0.1, 0.3, . . . , 0.9}

and 𝑐
𝑚
∈ {2000, 5000, 8000} are given in Table 4.

Table 4 shows that as the fixed cost of production loss due
to a minor damage 𝑐

𝑚
becomes larger, the optimal value of

𝑁
∗ decreases; however, the optimal long-run expected cost,

CR(𝑁∗), increases.

(iii) Sensitivity Analysis for 𝑐
𝑒
. The optimal number of allow-

ableminor damages in a blades system and the corresponding
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Table 3: Sensitivity analysis for 𝜆.

𝑝

𝜆 = 0.01 (meantime to damage:
88.62 days)

𝜆 = 0.03 (meantime to damage:
29.54 days)

𝜆 = 0.05 (meantime to damage:
17.72 days)

𝑁
∗ CR(𝑁∗) 𝑁

∗ CR(𝑁∗) 𝑁
∗ CR(𝑁∗)

0.1 19 6547.9 19 19426.3 19 32021.0
0.3 7 10999.3 7 32327.9 8 52826.0
0.5 5 14087.0 5 41160.9 5 66855.0
0.7 3 16597.0 4 48253.1 4 78000.0
0.9 3 18759.0 3 54302.4 4 87434.0

Table 4: Sensitivity analysis for 𝑐
𝑚
.

𝑝
𝑐
𝑚
= 2000 C 𝑐

𝑚
= 5000 C 𝑐

𝑚
= 8000 C

𝑁
∗ CR(𝑁∗) 𝑁

∗ CR(𝑁∗) 𝑁
∗ CR(𝑁∗)

0.1 20 18960.0 19 19426.3 18 19888.0
0.3 7 32104.0 7 32327.9 7 32552.0
0.5 5 41034.0 5 41160.9 5 41288.0
0.7 4 48190.0 4 48253.1 4 48316.0
0.9 3 54284.0 3 54302.4 3 54320.0

Table 5: Sensitivity analysis for 𝑐
𝑒
.

𝑝
𝑐
𝑒
= 25000 𝑐

𝑒
= 30000 𝑐

𝑒
= 35000

𝑁
∗ CR(𝑁∗) 𝑁

∗ CR(𝑁∗) 𝑁
∗ CR(𝑁∗)

0.1 19 19344.0 19 19426.3 18 19508.0
0.3 7 32182.0 7 32327.9 7 32474.0
0.5 5 40966.0 5 41160.9 5 41355.0
0.7 4 48021.0 4 48253.1 3 38486.0
0.9 3 54039.0 3 54302.4 3 54566.0

Table 6: Sensitivity analysis for 𝐿
𝑒
.

𝑝
𝐿
𝑒
= 0.5 𝐿

𝑒
= 1.0 𝐿

𝑒
= 1.5

𝑁
∗ CR(𝑁∗) 𝑁

∗ CR(𝑁∗) 𝑁
∗ CR(𝑁∗)

0.1 18 19586.0 19 19426.3 20 19268.0
0.3 7 32808.0 7 32327.9 8 31856.0
0.5 4 41968.0 5 41160.9 5 40376.0
0.7 3 49388.0 4 48253.1 4 47158.0
0.9 3 55770.0 3 54302.4 4 52910.0

long-run expected cost for 𝑝 ∈ {0.1, 0.3, . . . , 0.9} and 𝑐
𝑚

∈

{25000, 30000, 35000} are given in Table 5.
Table 5 shows that the expedited logistics cost does not

have any significant effect on the optimal value of 𝑁
∗;

however, as the expedited logistics cost reduces to the ordi-
nary logistics cost (i.e., the expedited cost term 𝜉

𝑐
becomes

zero), the optimal long-run expected cost, CR(𝑁∗), also
decreases.
(iv) Sensitivity Analysis for 𝐿

𝑒
.The optimal number of allow-

able minor damages in a three-bladed system and the corre-
sponding long-run expected cost for 𝑝 ∈ {0.1, 0.3, . . . , 0.9}

and 𝐿
𝑒
∈ {0.5, 1.0, 1.5} are given in Table 6.

Table 6 shows that as the expedited logistics lead time gets
closer to the ordinary logistics lead time (or, the expedited
lead time term, 𝜉

𝐿
, becomes smaller), the optimal value 𝑁∗

and the optimal long-run expected cost, CR(𝑁∗) increase.

6. Conclusions and Topics for Future Research

In this paper, a cost-rate optimization model is developed in
order to determine the optimal number of minor damages
allowed to occur in a blades system before sending a main-
tenance team to the offshore platform in order to perform
preventive maintenance actions. There is a wide scope for
future research in the area of maintenance optimization for
offshore wind turbine blades. Some of the possible extensions
are (a) investigating the optimal solution for a case that
the probability p is a random variable that depends on
the weather conditions; (b) formulating and analyzing the
model when the blade damages form a non-Poisson arrival
stream; (c) developing an age-based preventive maintenance
strategy for offshore blades systems with 𝑛 ≥ 2 blades,
in which in the event of a blade failure a PM action will
be performed on the un-failed blade if its operational age
exceeds a certain threshold𝑎 > 0; and finally (d) providing
a cost comparison of our proposed maintenance strategy
with other common strategies (such as age-based PM and
opportunistic maintenance).

We have worked on some of these extensions and our
findings will be reported in the near future.

Notations

𝑛
𝑏
: The number of blades in a wind turbine

system; 𝑛
𝑏
∈ {1, 2, . . .}

𝑇: The lifetime of a blade (day)
𝑓(⋅)[𝐹(⋅)]: The probability density [cumulative

distribution] function of 𝑇
ℎ(⋅)[𝐻(⋅)]: The failure rate [cumulative failure rate]

function of 𝑇
𝑝: Pr{a certain damage is a major damage};

𝑝 ∈ [0, 1]

𝑞: Pr{ a certain damage is a minor damage};
𝑞 = 1 − 𝑝

𝑖: The index number of minor damages in
the blades system; 𝑖 ∈ {1, 2, . . .}
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𝑁: The allowable number of minor damages
before transporting a maintenance team to
offshore platform [decision variable]

𝑇
𝑖
: The waiting time until the 𝑖th minor

damage occurs (day)
𝑌 : The time to the first major damage (day)
𝐹
𝑇𝑖
(⋅)[𝐹
𝑇𝑖
(⋅)]: The cumulative distribution [survival]

function of 𝑇
𝑖

𝐹
𝑌
(⋅)[𝐹
𝑌
(⋅)]: The cumulative distribution [survival]

function of 𝑌
𝐿
𝑜
[𝐿
𝑒
]: The ordinary [expedited] logistics lead

time (day)
𝑐
𝑜
[𝑐
𝑒
]: The ordinary [expedited] logistics cost (C)

𝜉
𝐿
[𝜉
𝑐
]: The expedited lead time (day) [cost (C)]

term
𝑐
𝑟
: The expected replacement cost of a blade

(C)
𝑐
𝑝
: The cost of performing a perfect PM on an

un-failed blade (C)
𝑐
𝑚
: The fixed cost of production loss due to a

minor damage (C)
𝑐
𝑀
: The fixed cost of production loss per unit

downtime (C/day)
𝑊: The wind turbine power rating (MW)
𝑐
𝐸
: The cost of energy (C/MW)

𝑓: The capacity factor of each wind turbine
𝐸[𝐶𝐿(𝑁)] : The expected length of an NDPM cycle

(day)
𝐸[𝐷𝐿(𝑁)] : The expected downtime within the cycle

(day)
𝐸[𝑐
𝐿
(𝑁)]: The expected logistics cost per cycle (C)

𝐸[𝑐
𝑃
(𝑁)]: The expected cost of production loss per

cycle (C)
𝐸[𝑁
𝑚
(𝑁)]: The total expected number of minor

damages within the cycle (C)
𝐸[𝑐
𝑀
(𝑁)]: The total expected maintenance cost per

cycle (C)
𝐶𝑅(𝑁) : The long-run expected cost per unit time

(C/day).
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