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(Received 28 February 2013; published 1 May 2013)

We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced
by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to
connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear
classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric
resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive
amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier
performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive
qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around
the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity
and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra,
second-order coherence, and two-mode entanglement.

DOI: 10.1103/PhysRevB.87.184501 PACS number(s): 85.25.−j, 84.40.Dc, 42.50.Lc, 42.65.Yj

I. INTRODUCTION

Parametric resonance is a fundamental physical phe-
nomenon that is encountered eventually in every area of
science. In different disciplines, however, different facets of
this rich phenomenon play a major role and are highlighted.
Parametric instability and multistable regimes in nonlinear
dynamics,1 noise driven transitions among stable states in
statistical physics,2,3 wave mixing and frequency conversion
in wave dynamics4 are topics of primary interest. In electrical
and optical engineering, the low-noise properties of parametric
amplifiers as well as the nonclassical statistical properties
of the electromagnetic field generated by parametric devices
attract attention.5–7

In superconducting electronics, the idea of using Josephson
junctions for quantum-limited parametric amplification is
under attention and development since the 1980s.8–11 During
the last years, the field revived by challenges of quantum
information technology. The circuit quantum electrodynamics
(QED) design initially proposed for qubit manipulation and
measurement,12,13 was employed for developing a variety of
parametric devices.14–19

The circuit-QED approach is based on a combination of
extended linear electromagnetic elements (transmission lines
and resonators) with Josephson junctions as the nonlinear
lumped elements. The design is flexible, allowing for diverse
methods of parametric pumping, phase preserving and phase
sensitive amplification schemes, different numbers or input
and output ports, and distributed Josephson nonlinearities.20,21

The most of developed amplifiers are engineered in
such a way that the dominant pump tone is sent through
the same port as the signal, and parametric resonance is
achieved by mixing them in nonlinear Josephson elements.
A different method is available for tunable superconducting
cavities.22,23 The device consists of a resonator terminated
with one (or more) dc SQUID(s) that determines the reflection
condition at the cavity edge and hence the cavity resonance
spectrum. Parametric resonance is achieved by rapid
modulation of a magnetic flux through the superconducting
quantum interference device (SQUID) with an appropriate

frequency. A number of interesting parametric effects
have been observed with such a device: phase sensitive
amplification,14 frequency conversion,24 radiation and
multistability regimes above the parametric threshold,25

quantum entanglement of output photons,26 generation of
photons out of vacuum noise27 (an analog of the dynamical
Casimir effect28,29).

In this paper, we formulate a consistent theory of para-
metric resonance in a tunable superconducting cavity. We
aim at a unified picture of the phenomenon below and
above the parametric threshold. To this end, we include into
consideration the SQUID nonlinearity, and damping due to
connection to a transmission line. The latter provides a stage
for studying the parametric amplification. We develop a full
nonlinear description of the cavity resonance dynamics and
the amplification effect in the classical limit, and study small
quantum fluctuations of amplified and radiative fields. For
certainty, we consider parametric excitation of the main cavity
mode ω0 by pumping with a frequency � close to twice the
cavity resonance, � ≈ 2ω0.

The overall picture of nonlinear parametric resonance in
the tunable cavity is rather rich and complicated. At very
small pump strength the cavity intrinsic dynamics resembles
the one of the Duffing oscillator1 showing a bifurcation of
the cavity response and bistability. However, the scattering
of an external incidental wave is qualitatively different from
the Duffing case: the scattering is inelastic, the reflected wave
undergoes amplification or deamplification depending on the
phase shift between the input tone and the pump (phase
sensitive amplification).

With increasing pump strength, the amplification effect
increases, and at the same time the resonance narrows such
that the bifurcation occurs at ever smaller input amplitudes.
Eventually, while approaching the parametric threshold, the
cavity response becomes nonlinear at any small input ampli-
tude.

Further increase of the pump strength leads to an instability
of the cavity zero-amplitude state and the formation of
finite-amplitude states accompanied by stationary parametric

184501-11098-0121/2013/87(18)/184501(23) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.184501


WALTRAUT WUSTMANN AND VITALY SHUMEIKO PHYSICAL REVIEW B 87, 184501 (2013)

radiation at the half frequency of the pump. The radiative
states are bistable in a certain window of detuning of the pump
frequency from the cavity resonance. Outside of this interval
at red detuning the radiative states coexist with the stable
zero-amplitude state (tristability), and the latter one becomes
dominant at far-red detuning. Remarkably, all these multistable
regimes have been observed in experiment with a high-quality
tunable cavity.25

The multistability regimes are accompanied by random
jumps among the stable states induced by thermal or quantum
noise. These large amplitude fluctuations have small prob-
ability away from the bifurcation points and the parametric
threshold, but become significant in the vicinity of these critical
points (cf. Ref. 2, and references therein). These effects are out
of the scope of this paper, here we restrict to small quantum
fluctuations around well defined classical states outside of
the critical regions, both below and above the parametric
threshold.

The bifurcation of the Duffing oscillator response is
employed in Josephson bifurcation amplifiers (JBA) for
dispersive qubit readout.30,31 This method also applies to the
parametric regime below the threshold (Josephson parametric
bifurcation amplifier, JPBA). The novel feature here is the
possibility to measure amplitude of the amplified probing tone,
which exhibits strong dispersion with respect to the detuning
near the threshold, and can be advantageous for high fidelity
qubit readout. The parametric radiation above the threshold
offers yet another strategy for the qubit readout based on
the significant contrast between the strengths of the output
radiation above the threshold and the amplified noise below
the threshold.

The paper is organized as follows. Sections II–IV are
devoted to the development of the theoretical framework for
describing parametric resonance in a high-quality tunable
cavity. In Sec. V, we consider the nonlinear cavity response to a
classical input signal below and above the parametric threshold
and apply the results for the analysis of parametric amplifi-
cation and methods of dispersive qubit readout in Sec. VI.
Section VII is devoted to the analysis of quantum fluctuations.

II. CIRCUIT LAGRANGIAN

The device we study is sketched in Fig. 1. Its main part
is a tunable superconducting strip line cavity terminated

φ0 φd

2f 2fext

EJ , CJ

FIG. 1. Sketch of a tunable cavity device: the λ/4 cavity is
terminated by a dc SQUID at the right end, and is capacitively coupled
to a transmission line at the left end; the SQUID is flux biased (phase
2f ) via inductive coupling to a flux line imposing a driving phase
2fext; φd = φ(d,t) and φ0 = φ(+0,t) are the phase values at the right
and left ends of the cavity, respectively. An incidental signal fed in
from the transmission line is reflected, separated from the input, and
then analyzed.

with a SQUID.22,23 The cavity is weakly coupled to a
transmission line that feeds an external microwave signal in
and provides means for probing the field inside the cavity.
The cavity is a spatially extended system of length d with
inductance L0 and capacitance C0 per unit length, and the
cavity state is characterized by the superconducting phase field
φ(x,t). We use the Lagrangian formalism8,23,32 to describe the
nonstationary dynamics of φ(x,t).

The Lagrangian of the entire device consists of the sum
of the Lagrangians of the cavity, transmission line, and the
coupling,

L[φ] = Lcav + LTL + Lc. (1)

The Lagrangian of the cavity in its turn consists of the
Lagrangian of the bare cavity L(0)

cav, and the Lagrangian of
the SQUID LS[φd ],

Lcav = L(0)
cav[φ] + LS[φd ]

=
(

h̄

2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

h̄

2e

)2 2CJ

2
φ̇2

d + 2EJ cos f (t) cos φd

]
. (2)

Here, v = 1/
√

L0C0 is the field propagation velocity, φd (t) =
φ(d,t) is the boundary value of the cavity field at the SQUID,
and f (t) is the phase across the SQUID controlled by external
magnetic flux, see Fig. 1. The SQUID is assumed symmetric
for simplicity, with two identical Josephson junctions, each
having a Josephson energy EJ and a capacitance CJ . The
phase f (t) appears in Eq. (2) as an external time-dependent
parameter that is able to excite parametric resonance. In fact,
it is a dynamical variable that describes, together with the
variable φd , the dynamics of two coupled Josephson oscillators
of the SQUID driven by the external electromagnetic field
fext(t). In Appendix A, we show that in the limit of small
φd � 1 the f oscillator decouples from the φd oscillator. The
constraint φd � 1 is essential, otherwise the two Josephson
oscillators become coupled and exhibit complex, even chaotic
behavior under external drive.33 Moreover, for experimentally
relevant circuit parameters, the f oscillator follows the drive
field adiabatically because the resonance frequency of the
f oscillator is large compared to a typical resonance frequency
of the cavity. A detailed derivation of Eq. (2) and the
connection of f (t) to the external field fext(t) is provided
in Appendix A.

We assume here that the controlling field f (t) is composed
of a constant biasing part F and a small harmonic oscillation
with amplitude δf � 1:

f (t) = F + δf cos �t. (3)

Proceeding to the other components of the device, we
suppose the transmission line to have the same characteristic
parameters C0 and L0 as the cavity:

LTL[φTL] =
(

h̄

2e

)2
C0

2

∫ 0

−∞
dx

(
φ̇2

TL − v2φ′2
TL

)
. (4)

The capacitive coupling is described with the Lagrangian

Lc =
(

h̄

2e

)2
Cc

2
(φ̇0 − φ̇TL,0)2, (5)
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where φ0 = φ(+0,t) and φTL,0 = φTL(−0,t) are the field
values at the different sides of the coupling capacitor Cc.

III. PARAMETRIC DYNAMICS OF CLOSED CAVITY

We first consider the cavity decoupled from the input line,
Cc = 0. The goal will be to identify the cavity frequency
spectrum and investigate the parametric resonance.

A. Cavity modes

The Lagrangian Lcav, Eq. (2), explicitly contains two
dynamical variables: the phase field φ(x,t), and its boundary
value φd (t). Variation of the associated action with respect to
φ(x,t) leads to the wave equation

φ̈ − v2φ′′ = 0, (6)

supplemented by the boundary condition φ′
0 = 0 at the open

end of the cavity. Variation with respect to the boundary value
φd (t) yields the boundary condition

h̄2

EC

φ̈d + 2EJ cos f (t) sin φd + EL,cavdφ′
d = 0, (7)

where EC = (2e)2/(2CJ ) and EL,cav = (h̄/2e)2(1/L0d).
Under static biasing, δf = 0, the linearized boundary

condition of Eq. (7) determines the set of cavity eigenmodes:23

φn(x,t) ∝ e±iωnt cos knx, ωn = vkn, (8)

(knd) tan knd = 2EJ cos F

EL,cav
− 2CJ

C0d
(knd)2. (9)

The frequency spectrum ωn is nonequidistant and can be tuned
by varying the bias F .

Although the first term at the right-hand side (rhs) of Eq. (9)
can, in principle, be tuned to zero, at F = π/2, in practice,
it dominates over the second term, at least for the lowest
cavity modes, by virtue of the large parameter ωJ /ωn � 1,
where ωJ = √

2EJ EC/h̄ is the Josephson plasma frequency.
Indeed, given typical experimental values, EJ /h̄ ≈ 4500 GHz
and EC/h̄ ∼ 10 GHz, the plasma frequency is ωJ ≈ 300 GHz,
while the cavity fundamental frequency is ω0 ∼ 40 GHz,
i.e., by one order of magnitude smaller (for typical cavity
parameters22,25 L0 ∼ 4 × 10−7 H/m, C0 ∼ 2 × 10−10 F/m,
and d ≈ λ/4).

Furthermore, the cavity inductive energy is typically small,
EL,cav/h̄ ∼ 400 GHz, compared to the Josephson energy 2EJ .
Taking advantage of this relation and neglecting the capacitive
term in Eq. (9), we get the approximate solutions

k0d ≈ π

2
(1 − γ ) ≈ π

2
, γ = EL,cav

2EJ cos F
� 1, (10)

kn ≈ k0 + πn/d. (11)

The solutions of the spectral equation (9) are graphically
illustrated in Fig. 2(a), while Fig. 2(b) shows the cavity
spectrum as a function of the parameter 1/γ .

B. Cavity Hamiltonian

The Lagrangian formalism is sufficient for analyzing the
classical parametric resonance. To describe the quantum

(γ
k
d
)−

1
−

C
k
d

kd/π
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FIG. 2. (Color online) Cavity spectrum: (a) graphical solution of
Eq. (9) for 1/γ = 25, and CJ = 0 (solid) and C = 2CJ /(C0d) = 0.05
(dashed); (b) cavity spectrum knd vs 1/γ according to Eq. (9), the
vertical line indicates the value 1/γ = 25 used in (a).

dynamics the Hamiltonian approach is more convenient. We
derive the cavity Hamiltonian by expanding the cavity field
over the complete set of cavity eigenmodes,

φ(x,t) = 2e

h̄

√
2

C0d

∑
n

qn(t) cos knx, (12)

where qn(t) are time-dependent coefficients and kn obey
Eq. (9). Using expansion (12) and noticing that the set of
functions cos knx is nonorthogonal, we present the Lagrangian
(2) after some algebra in the following form:

Lcav = 1

2

∑
n

[
Mnq̇

2
n − Mnω

2
nq

2
n

] − V (qn,t). (13)

Here, the “masses” of the mode oscillators are given by the
expressions

Mn = 1 + sin 2knd

2knd
+ 4CJ

dC0
cos2 knd, M0 ≈ 1, (14)

and

V (qn,t) = −2EJ

[
cos f (t) cos φd + cos Fφ2

d/2
]

(15)

is a nonstationary nonlinear potential that mixes the eigen-
modes (see Appendix B for details of the derivation).

It is convenient to absorb the factors Mn and ωn into the
rescaled coordinate √

Mnωn qn → qn, (16)

and redefine the mode expansion in Eq. (12) accordingly. Then
introducing the conjugated momenta, pn = ∂L

/
∂q̇n = q̇n/ωn,

we arrive at the cavity Hamiltonian

Hcav(qn,pn) = 1

2

∑
n

ωn

(
p2

n + q2
n

) + V (qn,t). (17)

C. Resonance approximation

For small pumping amplitudes and weak nonlinearity, the
potential V (qn,t) in Eq. (17) could be considered perturba-
tively. However, the perturbative approach does not apply to
the case of parametric resonance, when the pumping frequency
matches an algebraic sum of the cavity eigenfrequencies,
� ≈ ωn ± ωm. In this case, the corresponding cavity modes
are strongly mixed and undergo complex time evolution. A
particular case is the degenerate parametric resonance for
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m = n. In this paper, we consider for certainty the degenerate
parametric resonance of the fundamental mode, � ≈ 2ω0.
The method outlined below is straightforwardly extended to a
nondegenerate parametric resonance.

First, we perform a canonical transformation corresponding
to a transition to the rotating frame with frequency �/2. This
is conveniently done in terms of a complex variable

an = (qn + ipn)/
√

2h̄ (18)

for which the transformation reads an(t) = e−i�t/2An(t). The
equations of motion for the amplitudes An(t) read

Ȧn = −i(ωn − �/2)An − i√
2h̄

∂V (qn,t)

∂qn

ei�t/2. (19)

At this point, we take advantage of small values of the
pumping amplitude, δf � 1, and the field amplitude, φd � 1,
and expand the potential V (qn,t) in powers of these small
parameters, keeping only the first nonvanishing terms,

V (qn,t) ≈ − (EJ δf sin F cos �t) φ2
d − EJ

12
cos F φ4

d . (20)

Close to the resonance, �/2 − ω0 = δ � ωn, ωn − ωm, the
variable A0 depends slowly on time, while all the other
variables contain rapid time oscillations. After averaging over
these oscillations, we arrive at the shortened equation of
motion for A0 (we skip the mode index 0 below),

Ȧ − iδA − iεA∗ − iα|A|2A = 0, (21)

with the parameters

ε = δf ω0 tan F

2γ

cos2 k0d

M0(k0d)2
, (22)

α = h̄ω2
0

2γ EL,cav

[
cos2 k0d

M0(k0d)2

]2

. (23)

When applying the canonical transformation to coordinate
and momentum, A = (Q + iP )/

√
2h̄, and averaging over fast

oscillations, the cavity Hamiltonian is cast into the following
form:

Hcav(Q,P ) = ε − δ

2
P 2 − ε + δ

2
Q2 − α

8h̄
(Q2 + P 2)2. (24)

This Hamiltonian corresponds to the metapotential of the
parametric lumped element oscillator,3 i.e., the degenerate
parametric resonance in the cavity is mapped on the one
in a lumped element oscillator. The mapping is defined by
Eqs. (22) and (23), where the effective pump strength ε and
the nonlinearity coefficient α are expressed through generic
cavity parameters.

According to the experimental values discussed in
Sec. III A, the parameter γ in Eq. (10) is estimated as
γ ∼ 4 × 10−2. For such a small value of γ , the parameters ε

and α are approximated, using the spectral equation (9), as

ε/ω0 ≈ γ δf tan F/2 � δf, (25)

α/ω0 ≈ γ 3 h̄ω0

2EL,cav
= γ 3 π2Z0

2Rq

� 10−5, (26)

where Z0 = √
L0/C0 is the cavity impedance and Rq = h/2e2

is the quantum resistance.

It follows from these estimates that the effective pump
strength ε is substantially reduced compared to the amplitude
of the phase modulation in the SQUID, and the effective
nonlinearity of the cavity oscillator is significantly smaller
than the underlying bare nonlinearity of the SQUID oscillator
(α = ωJ /6 for the Josephson potential). These remarkable
properties result from the fact that the cavity is almost shortcut
to the ground at the edge x = d by virtue of large Josephson
energy in Eq. (7) (γ � 1), hence the boundary value of the
field amplitude φd is small.

The small values of the effective oscillator parameters
are essential for the validity of the resonance approximation.
The latter requires the evolution of A to take place on a time
scale much larger than the period of the cavity fundamental
mode, 1/ω0, over which the initial Hamiltonian is averaged.

It is instructive to express the constraints earlier imposed
on the phases, φd,δf � 1, in terms of the amplitude A and the
pump strength ε:

|A| �
√

Rq/Z0γ 2, ε � γω0, (27)

or equivalently, α|A|2, ε � γω0 � ω0. In other words, the
constraints (27) are more stringent than the ones required for
the resonance approximation, α|A|2, ε � ω0. On the other
hand, these constraints provide sufficient room for the pumping
strength to be increased above the parametric threshold beyond
the resonance width � [see Eq. (35) in the next section],
α|A|2, ε ∼ � � γω0, for a high-quality cavity.

In most of our calculations, we restrict to the lowest order δf

dependence in Eq. (20), however, in some cases it is useful to
keep higher-order terms. In particular, the second-order term
∝δf 2 will introduce, after averaging over time, a nonlinear
shift of the resonator frequency, proportional to ε2. This shift
is evaluated in Eq. (A11) in Appendix A, and in terms of the
effective pump strength it reads

ω0 (ε) − ω0

ω0
≈ − ε2

γω2
0 tan2 F

. (28)

This shift could be used in practice for evaluating the actual
magnitude of the pump power acting upon the SQUID,
which is usually not known. Also, it causes quenching of the
parametric instability at large pump strength, as will be shown
in Sec. V A.

IV. CAVITY COUPLED TO TRANSMISSION LINE

The parametric effect in the closed cavity is an idealization.
The connection to the external transmission line gives rise
to the qualitatively important new features: firstly, the cavity
field is allowed to leak out of the cavity, giving rise to the
cavity damping, and secondly, an external electromagnetic
signal can be fed into the cavity and amplified. Our aim in
this section will be to include these features into Eq. (21)
and derive the relation between the input and output fields,
thus preparing the framework for the further investigation of
parametric amplification. Our derivation closely follows the
input-output theory8,34 (see also illuminative derivations in
Refs. 5 and 35).

Aiming at the analysis of the quantum dynamics of the open
cavity, we describe the field in the transmission line in terms
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of spatial modes, similar to Eq. (12) for the cavity,

φTL(x,t) = 2e

h̄

√
2

C0π

∫ ∞

0

dk√
ωk

qk(t) cos kx, (29)

with ωk = vk. Opening of the cavity invokes also an additional
set of modes ∝sin kx, however, in the weak coupling limit,
these modes do not contribute in the main approximation and
are neglected here.

Focusing on the effect of cavity damping at weak coupling,
we will only keep the cross term in the coupling Lagrangian
(5),

Lc = −
(

h̄

2e

)2

Ccφ̇0φ̇TL,0, (30)

and neglect the quadratic terms, thus neglecting small cor-
rections to the kinetic energies. With this simplification and
retaining only the fundamental mode field in the cavity
Lagrangian, we write the total Lagrangian in the form

L = 1

2

(
q̇2

ω0
− ω0q

2

)
− V (q,t) + 1

2

∫ ∞

0
dk

(
q̇2

k

ωk

− ωkq
2
k

)

− Cc

C0
√

M0πd

∫ ∞

0

dk√
ω0ωk

q̇q̇k. (31)

The corresponding Hamiltonian reads, to first order of the
weak coupling (Cc � C0d),

H = ω0

2
(p2 + q2)+V (q,t) + 1

2

∫ ∞

0
dk ωk

(
p2

k + q2
k

)
+ Cc

C0
√

M0πd

∫ ∞

0
dk

√
ω0ωk ppk. (32)

Repeating the derivation of the previous section, we derive
the coupled equations of motion for the cavity amplitude a and
the spectral amplitudes of the transmission line, ak = (qk +
ipk)/

√
2h̄,

iȧ = ω0a + ∂V (qn,t)√
2h̄ ∂qn

+ i

√
2�0

πh̄k0

∫ ∞

0
dk

√
ωk pk (33)

iȧk = ωkak + i

√
2�0

πh̄k0

√
ωk p. (34)

Here, we introduced the cavity damping rate

�0 = ω0

(
Cc

C0d

)2
k0d

M0
. (35)

Near the parametric resonance the equations of motion for
the slow variables, A(t) = ei�t/2a(t) and Ak(t) = ei�t/2ak(t),
take the form, after averaging over rapid time oscillations,

iȦ + (δ + α|A|2)A + εA∗ =
√

�0

πk0

∫ ∞

0
dk

√
ωkAk, (36)

iȦk − δkAk =
√

�0ωk

πk0
A, (37)

with δk = ωk − �/2.

We eliminate the transmission line modes from Eq. (36),
invoking the solutions of Eq. (37),

Ak(t) = Ak(t0)e−iδk(t−t0)

− i

√
�0ωk

πk0

∫ t

t0

dt ′e−iδk (t−t ′)A(t ′), t0 < t, (38)

with initial conditions Ak(t0) at time t0 < t and substituting it
into Eq. (36). Within the resonance approximation, the factor√

ωk in the integrand is to be replaced with
√

ω0, and the
integration over the wave vector k to be extended to the entire
axis. After making these approximations, we arrive at the
Langevin equation for the cavity amplitude,

iȦ + δA + εA∗ + α|A|2A + i�0A =
√

2�0B(t), (39)

with the input flux amplitude

B(t) = 1√
2πv

∫ ∞

−∞
dδk Ak(t0)e−iδk(t−t0). (40)

The amplitude B(t) is associated, as shown in Appendix C,
with the incident (right-going) wave in the transmission line,
B(t − x/v), taken at the boundary x = 0.

The solution of Eq. (37) can be equivalently expressed
in terms of the amplitude at a future time, Ak(t1), t1 > t ,
which defines the output flux amplitude C(t) via a relation
similar to Eq. (40) with t1 substituting for t0. This output
amplitude is associated with the reflected (left-going) wave
in the transmission line, C(t + x/v), taken at x = 0 (see
Appendix C). The relation between the output and input
amplitudes reads

C(t) = B(t) − i
√

2�0A(t). (41)

The parametric pumping couples the cavity field amplitude
A and its complex conjugate, and it is convenient to rewrite
Eq. (39) in the matrix form:

d

dt

(
iA

−iA∗

)
+ A

(
A

A∗

)
=

√
2�0

(
B

B∗

)
, (42)

where

A =
(

ζ + i� ε

ε ζ − i�

)
, ζ = δ + α|A|2. (43)

The conservative part of the dynamics in Eqs. (39) and (42)
is determined by the effective Hamiltonian

H (Q,P ) = Hcav + 2
√

�0|B|(cos θBQ + sin θBP ), (44)

with Hcav(Q,P ) from Eq. (24), and θB being the phase shift
between the input amplitude B = |B|eiθB and the pump.

Besides the damping �0 associated with the opening of the
cavity, there might also be internal losses in the cavity, e.g.,
caused by the cavity resistance. A way to account for these
losses is a model with a fictitious transmission line coupled
to the cavity, that acts as a scattering channel with a noisy
input amplitude BR(t) and an associated damping rate �R .
This would lead to an enhanced damping rate, � = �0 + �R ,
at the left-hand side (lhs) of Eq. (39), and also introduce an
additional input term,

√
2�RBR(t), at the rhs of this equation.

The damping effect results in the broadening of the reso-
nance, and if the resonance becomes sufficiently broad, higher
cavity modes might also be excited, despite the nonequidistant

184501-5



WALTRAUT WUSTMANN AND VITALY SHUMEIKO PHYSICAL REVIEW B 87, 184501 (2013)

property of the cavity spectrum. In this case, the isolated mode
dynamics of Eq. (39) would be replaced by a more complex
dynamics of parametrically excited coupled modes. To ensure
the validity of the single-mode approximation, the condition
|ω0 ± �/2 + � − ω1| > �1/2 must be met, where �1 is the
resonance width of the first cavity mode. For � = 2ω0, and
the cavity spectrum given by Eq. (9) and parameters of
Sec. III A, the anharmonicity is of the order, ω0 + �/2 − ω1 =
3ω0 − ω1 ≈ 10−3ω0. This implies that the cavity quality factor
Q = ω0/� should not be less than Q � 103. This corresponds
to a small coupling capacitance in Eq. (35), Cc/C0d ∼ 10−2,
assuming that the internal losses are not dominant, �R < �0.

V. CLASSICAL CAVITY RESPONSE AND RADIATION

In this section, we analyze the cavity response to a noiseless
classical input signal. We consider harmonic inputs, which
have the form B(t) = Be−i�t , where � = ω − �/2 is the
detuning of the input signal from the half frequency of the
pump. For the input frequency � = 0 the cavity response is
stationary, and it can be fully analyzed in the nonlinear regime.
For detuned inputs, we restrict to small input amplitudes; at
large amplitudes, the nonlinear response becomes complex
and exhibits a transition to a chaotic regime.

A. Parametric resonance in absence of input signal

We start with the analysis of the intrinsic parametric
resonance in the cavity in the absence of input signals,
B(t) = 0. Due to the damping, any initial cavity state evolves
towards one of the steady states that define the picture of the
parametric resonance. These steady states depend crucially on
the pump strength ε, and also on the detuning of the pump
frequency from the cavity resonance, δ = �/2 − ω0.

If ε < �, only the trivial steady state, A = 0, exists for
all values of the detuning δ. If ε > �, the trivial state turns
unstable within the interval |δ| �

√
ε2 − �2, and instead two

nontrivial stable steady states, A = |A|eiθA , emerge at the
threshold δ = √

ε2 − �2, and persist for all δ <
√

ε2 − �2,
see Fig. 3(a). These states have identical amplitudes

|A|2 = 1

α
(−δ +

√
ε2 − �2), (45)

and are π shifted in phase with sin(2θA) = �/ε.
In the further red detuned region, δ < −√

ε2 − �2, the
trivial steady-state solution, A = 0, becomes stable again,
such that the three stable states coexist there. Simultaneously,
two new unstable states emerge having the same amplitude,
|A|2 = (−δ − √

ε2 − �2)/α. In the limit of ε = 0, � = 0
(the undamped Duffing oscillator), the nontrivial stable and
unstable states merge, forming a manifold of marginally stable
states with indefinite phase θA and amplitude |A|2 = −δ/α.

The steady states of the damped cavity at ε > � originate
from the fixed points of the cavity Hamiltonian Hcav, Eq. (24),
which are illustrated in the insets of Fig. 3(a) for the mono-, bi-,
and tristable regions. The damping � introduces the threshold
for the emerging nontrivial states, and shifts the positions of
the steady states in phase space away from the fixed points.

The pump parameters where new steady states occur are
determined by the stability properties of the underlying linear

ln( Γ)

δ/Γ

0

1

2

−3 −2 −1 0 1 2 3

|A|2

0

100

200

300

400

Q/
√

P
/
√

(a)

(b)

FIG. 3. (Color online) (a) Amplitudes of cavity steady states
vs detuning δ for ε = √

2�, stable (solid) and unstable (dashed);
dashed vertical lines separate mono-, bi- and tristable regions; insets
show phase portraits of corresponding regions. (b) Boundary of
parametric instability without (solid) and with (dotted) account of
nonlinear frequency shift (28), for β = 1/10, cf. Eq. (47); yellow
region corresponds to bistable high-amplitude state, blue region
indicates coexistence of stable high-amplitude and zero-amplitude
states (α = �/100).

system, characterized by the matrix A(α = 0). Its determi-
nant, D = δ2 + �2 − ε2, causes divergence at the parametric
instability threshold, |δ| = √

ε2 − �2, where the fixed point
A = 0 turns unstable. In a linear system, this would lead
to exponentially growing solutions in the parameter regime
ε > � and |δ| <

√
ε2 − �2, with a rate λ = −� + √

ε2 − δ2.
In the nonlinear system, this global instability is lifted by the
bifurcation of the fixed point A = 0 into the two new stable
steady states.

The cavity field, as it leaks into the transmission line,
generates an outgoing field with the amplitude C according
to Eq. (41). For the steady state (45), the flux radiated into the
transmission line amounts to

|C|2 = 2�0

α
(−δ +

√
ε2 − �2). (46)

The nonlinear effect of the cavity resonance shift induced
by the pump, mentioned in Sec. III C, Eq. (28), leads to the
quenching of the parametric instability at strong pumping
as observed in experiment.36 By taking into account this
shift, the actual pump detuning becomes �/2 − ω0(ε) =
δ − [ω0 (ε) − ω0], and the parametric instability condition
modifies accordingly,

δ <
√

ε2 − �2 − βε2

�
, (47)

where β = �/(ω0γ tan2 F ) � 1. The modified boundary of
parametric instability in the (δ,ε) plane is depicted in Fig. 3(b):
the instability region is bounded by the maximum blue
detuning, δmax = �/4β, and it is also bounded by a maximum
pump strength at given detuning, e.g., εmax = �/β at δ = 0.
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FIG. 4. (Color online) Relative areas of attractor basins of
coexisting high-amplitude (lower curve) and zero-amplitude (upper
curve) stable states vs detuning δ. Insets show the basins of attraction
of high-amplitude (red and green) and zero-amplitude (blue) states,
for δ/� = −30 (left) and δ/� = −4 (right) (ε = √

2�, α = �/100).

In the experiment,25 all the described states of the paramet-
rically pumped cavity have been observed: the subthreshold
monostable regime at blue detuning as well as the above-
threshold bistable and tristable regimes at red detuning. The
visibility of particular stable states in the multistable regime
is defined by the probabilities of their occupation, which are
determined by the relative areas of the respective basins of
attraction, i.e., the phase space regions from which trajectories
asymptotically approach the respective state. Examples of the
attractor basins in the red-detuned region, δ < −√

ε2 − �2,
are shown in the insets of Fig. 4 where the blue basin belongs
to the zero-amplitude state, and the red and green attractor
basins are those of the high-amplitude states. The relative
areas of the latter rapidly decrease and become very small
in the far red-detuned region, as shown on the main panel
in Fig. 4, implying that these states are much less populated.
A similar conclusion is drawn from the calculation of the
probability to escape from the high-amplitude states,3 which
is much larger than the one for the trivial state, A = 0, at far-red
detuning. These arguments explain why in the experiment25

the boundary of parametric resonance is washed out at red
detuning, in contrast to the sharp boundary at blue detuning,
which is determined by the threshold for the nontrivial steady
states.

B. Driven Duffing cavity (ε = 0)

Now we turn to the discussion of the cavity response
to a weak signal with zero detuning, � = 0, and complex
amplitude B = |B|eiθB . It is instructive to first review the
response of the driven Duffing oscillator,1 which corresponds
to the limit ε = 0 in Eq. (42). In this case, the detuning δ

refers to the deviation of the input frequency from the cavity
resonance. The cavity response is given by the equation

A =
√

2�0

ζ + i�
B. (48)

The maximum response is achieved at ζ = 0, along the tilted
line |A|2(δ) = −δ/α, and amounts to |Amax|2 = |A|2(ζ =
0) = 2�0|B|2/�2, independent of α. As a consequence of
the tilted resonance line, the cavity response can display
bistability, with two coexisting stable states, as shown in
Fig. 5(a). The bistability emerges above the critical value
of the driving amplitude, |Bc|2 = 4�3/(3

√
3α�0), and at the

detunings, δ < δc = −√
3�. The bistability region is confined

by the bifurcation lines,

|B±| = δ3

27α�0

[
− 1 − 9�2

δ2
±

(
1 − 3�2

δ2

)3/2 ]
, (49)

forming a wedge in the (δ, |B|2) plane, as illustrated in Fig. 6
with black lines.

An ideal Duffing cavity fully reflects the input signal, so the
amplitude of the output, C = |C|eiθC , carries no information
about the resonance, |C| = |B|. Such information is only
available for a lossy cavity, where

|C|2
|B|2 = 1 − 4�0�R

�2 + ζ 2
. (50)

On the other hand, the phase θC of the output signal is sensitive
to the position of the resonance. This is the working principle
of the Josephson bifurcation amplifiers,31 where the variation
of θC under sweeping the input power through the bistability
region is exploited for the qubit readout.

C. Driven parametric cavity (ε > 0)

Switching on the parametric pumping, ε > 0, qualitatively
changes the cavity response. Now the amplitude of the cavity
field is determined by the equation

|A|2
|B|2 = 2�0

D2
[ζ 2 + �2 + ε2 − 2ε(ζ cos 2θB + � sin 2θB)],

D = det(A) = ζ 2 + �2 − ε2. (51)

In the subthreshold regime ε < �, the cavity response remains
qualitatively similar to the Duffing oscillator, see Figs. 5(a)
and 5(b). The role of the parametric pumping in this regime
is to effectively reduce the damping term, �2 → �2 − ε2.
This makes the resonance more narrow and, at the same
time, strongly increases the cavity amplitude along the tilted
resonance line ζ = 0. Another important feature is an explicit
dependence of the cavity field on the phase shift θB of the input
with respect to the parametric pump.

The maximum value of the cavity field is

|A|2(θB,ζ = 0) = 2�0
�2 + ε2 − 2ε� sin(2θB)

(�2 − ε2)2
|B|2. (52)

Similar to the Duffing limit, this value is independent of the
nonlinearity coefficient α. The maximum response diverges at
ε = �, which can be compared to the resonance catastrophe
of a linear parametric oscillator. While in the linear case the
divergence occurs at δ = ±√

ε2 + �2, the nonlinearity here
shifts the divergence towards an infinite red detuning.

As a consequence of the resonance narrowing, the critical
bifurcation point moves towards the origin, |Bc|2 = δc = 0
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FIG. 5. (Color online) Steady-state cavity response |A|2 accord-
ing to Eq. (51) vs pump detuning δ for different values of the pump
strength ε, below threshold, ε/� = 0.9,0.93 (a) and (b), and above
threshold, ε = 1.1,1.5 (c) and (d). Solid and dashed lines mark stable
and instable states, respectively. (|B|2 = 2�, θB = π/2, α = �/100,
�R = 0).

when ε → �, as illustrated in Fig. 6. Above the threshold, ε >

�, the resonance splits into two branches, as shown in Figs. 5(c)
and 5(d), each branch consisting of two nondegenerate steady
states, one pair being stable and the other unstable. These states
originate from the degenerate nontrivial states in the absence
of an input signal, cf. Fig. 3, the degeneracy being now lifted
by the input. The distance between the branches increases
with ε.

The scattering by the parametrically pumped cavity is
always inelastic, in contrast to the Duffing cavity, and the
output signal in general differs significantly from the input
signal, not only in phase but also in the absolute value,
|C| �= |B|. Using the input-output relation in Eq. (41), and
the steady-state solution |A|2 in Eq. (42), the output amplitude

|B
±
|2 /

Γ

δ/Γ

1

0.7

0.4

0

0

25

50

75

100

−2.0 −1.5 −1.0 −0.5

FIG. 6. (Color online) Bistability regions of the cavity response,
bounded by bifurcation lines |B±(δ)|2, for different subthreshold
values of the pump strength, ε/� = 0,0.4,0.7,1.0 (θB = π/2, α =
�/100, �R = 0).

can be expressed as a function of the input amplitude:(
C

C∗

)
= V

(
B

B∗

)
,

(53)

V =
(√

1 + q2 − qReiη iq

−iq
√

1 + q2 − qRe−iη

)
,

with the parameters

q = 2ε�0

D
, qR = 4�0�R

D
, (54)

η = arctan

( −2�0ζ

ζ 2 − �2
0 + �2

R − ε2

)
. (55)

The relation in Eq. (53) maps the points of the unit circle B =
eiθB onto the phase-dependent curve C(θB) and determines the
phase-dependent gain

G(θB) = |C(θB)|2
|B|2 = 1 + 2q2 − qR

+ 2q
√

1 + q2 − qR sin (2θB + η) . (56)

The θB dependence of the gain |C|2/|B|2 and the quadratures
of C = (X + iY )/2 are illustrated in Fig. 7. In the monostable
(subthreshold) regime the output amplitude C is amplified
(G > 1) or deamplified (G < 1) depending on the input phase.
For ε � �, the points C(θB) form a strongly elongated curve
in phase space, centered at (0,0). In the quasilinear regime,
where the parameters q and qR in Eq. (56) are approximately
independent of θB , this curve approaches an ellipse with the
half axes √

Gmax,min =
√

1 + q2 − qR ± q, (57)

giving the maximum/minimum gain factor along those
quadratures. For negligible internal losses, qR/q2 � 1, the am-
plified and deamplified quadratures are then related according
to Gmin = 1/Gmax.

In the limit ε → 0, the gain factors become equal and
reduce to the reflection coefficient of the Duffing oscillator,
see Eq. (50).

X/|B|
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|B|
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FIG. 7. (Color online) Anisotropy of the cavity output field in the
complex C plane, in the subthreshold regime [ε/� = 0.2,0.7 (blue,
red)] and above the threshold [ε/� = 1.4 (yellow)]; insets show the
dispersion of the gain with the input phase θB below threshold (left)
and above (right). (δ = 0, |B|2 = 2�, α = �/100, �R = 0).
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FIG. 8. Phase-space representation of cavity amplitude A =
(Q + iP )/

√
2h̄ driven by detuned input amplitude B(t) = Be−i�t .

The trajectories (Q(t),P (t)) are evaluated in the conservative limit,
neglecting the damping term on the lhs of Eq. (39) for (a) � = 0,
(b) �/10, and (c) �. In (b) and (c), trajectories are represented
stroboscopically at times t = 2πn/� (n = 0,1,2, . . .). (ε = √

2�,
δ = 0, |B|2 = �, θB = π/2, α = �/100, �R = 0).

In the bistable regime above the threshold, the correspond-
ing output amplitudes C(θB) are mapped on two distinct closed
curves in phase space, with a π -phase shift between them,
as shown in Fig. 7. The offset from the origin is due to the
parametric radiation generated by the cavity.

D. Response to detuned signal

The cavity response has a simple stationary form only
when the frequency ω of the input signal strictly matches
the half-frequency of the pump, �/2. If the input is time-
dependent in the rotating frame, e.g., B(t) = Be−i�t with
� = ω − �/2, the combination of the time-periodic force
with the nonlinearity leads to the formation of a region in phase
space where the cavity amplitude A evolves chaotically, as
illustrated in Fig. 8 for the bistable regime above the parametric
threshold. With increasing input amplitude and detuning, a
chaotic layer forms around the instable fixed points of the
Hamiltonian (44), and its area grows with |B| and |�|, see
Fig. 8. However, as long as the stable fixed points persist in
the presence of the time-dependent drive, the amplitude of
the damped cavity evolves into a time-periodic limit cycle
around them, and then the time-average of A(t) gives only
small corrections to the stationary result.

In this section, we evaluate the response of an ideal cavity
(�R = 0) to a detuned signal in the monostable regime, ε <√

δ2 + �2. We restrict to a linear response assuming α|A|2 �√
�2 + δ2 − ε2.
Suppose the input signal in Eq. (39) consists of two con-

jugated harmonics, B(t) = B(�)e−i�t + B(−�)ei�t (signal
and idler in the terminology of nondegenerate parametric
amplification). Then the output field, as well as the field in
the cavity, will also consist of the combination of the same
harmonics. The output amplitudes are related to the input via
the equation generalizing Eqs. (53) and (54):(

C(�)
C∗(−�)

)
= V(�)

(
B(�)
B∗(−�)

)
, (58)

where

V(�) = 1

D(�)

(
v11(�) v12

v∗
12 v∗

11(�)

)
, (59)

v11(�) = (δ − i�)2 − �2 − ε2, v12 = 2i�ε,
(60)

D(�) = (� − i�)2 + δ2 − ε2.

The coupling between the conjugated harmonics is a finger-
print of parametric amplification: an input at frequency �

generates outputs at frequencies � and −� and, conversely,
an output at frequency � consists of the contributions of
inputs at frequencies � and −�. In particular, for B(−�) = 0,
Eq. (58) yields

C(�) =
√

1 + |q(�)|2eiη(�)B(�),
(61)

C(−�) = iq∗(�)B∗(�),

q(�) = 2ε�0/D(�). (62)

Amplification of the detuned signal is characterized
by two gain factors: direct gain G1(�) = |C(�)|2/|B(�)|2 =
1 + |q(�)|2 and intermodulation gain, G2(�) = |C(−�)|2/
|B(�)|2 = |q(�)|2. These two gains are fundamentally re-
lated, G2 = G1 − 1, which is the consequence of the fun-
damental property of the matrix elements in Eq. (59), |v11|2 −
|v12|2 = |D(�)|2. For the quantum fields, this property guaran-
tees the unitary relation between the input and output quantum
states (see later in Sec. VII).

The amplification of detuned signals possesses another
interesting property—the appearance of resonance features,
as illustrated in Fig. 9(a). The resonance structure of the gain
is determined by the determinant |D(�)|2, Eq. (62). It has
a single minimum at � = 0 within the interval of relatively
small detuning, �2 − ε2 < δ2 < ε2 + �2, and the gain factor
G(�) is accordingly single peaked at � = 0. However, at
larger detunings,

δ2 > ε2 + �2, (63)

two resonance peaks emerge, situated symmetrically with
respect to � = 0 at

� = ±
√

δ2 − ε2 − �2. (64)

The origin of these resonances can be understood from the
behavior of the response function of a conventional damped
linear oscillator, χ (ω) = (ω2

0 − ω2 − iω�)−1. At small damp-
ing, � � ω0, the resonance is close to the eigenfrequency
ω0, ω = √

ω2
0 − �2/2. With increasing damping the resonance

is pulled towards the zero frequency, and stays at the zero
frequency as soon as � >

√
2ω0. Similarly, the resonances

in the response of the linearized parametric oscillator, see

(a)
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FIG. 9. (Color online) Linear gain of detuned input signal.
(a) G(�) for small detuning δ = 1.85� (single resonance) and large
detuning δ = 7� (split resonance), at fixed pump strength ε/� = 2;
(b) G(�) for fixed detuning δ = 5� and increasing pump strengths,
ε/� = 3 . . .

√
1 + δ2/�2 (from bottom to top). (�R = 0).
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Eq. (39) with α = 0, are at small � close to the oscillator
eigenfrequencies, ±√

δ2 − ε2, as in Eq. (64), but are pulled
towards � = 0 with increasing �, and eventually merge when
� >

√
δ2 − ε2, see Eq. (63).

VI. AMPLIFICATION AND QUBIT READOUT

In this section, we discuss the application of the parametri-
cally pumped cavity for signal amplification, and for dispersive
qubit readout. In what follows, we shall neglect internal losses
in the cavity and assume �0 = �.

A. Amplification

The amplification characteristics of the nonlinear para-
metric cavity depend on many parameters: pump and input
strengths and detunings from the cavity resonance, relative
phase shift, nonlinearity, and damping, which makes the
overall picture pretty intricate.

The output power |C|2 as a function of the input power
|B|2 for on-resonance input, � = 0, is depicted in Fig. 10
for various values of pump strengths and pump detunings.
The major phenomenon here is the appearance of multistable
regimes. The bistable regime establishes already below the
threshold, ε < �, in the red detuning region, δ < 0, as shown
on Fig. 10(b). Above the threshold, the mono-, bi-, and tristable
regimes exist at different detunings, as shown on Fig. 10(c).
Moreover, in the latter regime, the output power does not

|C|2
Γ

0

50

100

|C|2
Γ

0

100

200

|C|2
Γ

|B|2
Γ

0

200

400
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(a)
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(c)

FIG. 10. (Color online) Output power |C|2 vs input power |B|2,
below threshold, ε < � (a) and (b), and above threshold, ε = 1.2�

(c). (a) δ/� = 0.5 and ε/� = 0,0.3,0.7,0.9,1.0 (from bottom to top);
(b) δ/� = −0.72 and ε/� = 0,0.63,0.7,0.8,1.0 (from bottom to
top); the dotted line refers to the Duffing limit, ε = 0. (c) ε/� = 1.2
and δ/� = −1.4, −0.5,1.0 (from top to bottom). For each of the
parameters instable branches are indicated by dashed lines. (θB =
π/2, α = �/100).

approach zero value at |B|2 = 0 due to the effect of parametric
radiation.

For the amplification purpose the monostable regime in
Fig. 10(a) is the most suitable. The output power in this
regime depends monotonically on the input power, but exhibits
pronounced nonlinearity with increasing pump strength at
input power levels |B|2 ∼ �.

The maximum differential gain is achieved at small input
power, and for phase shift θB ≈ −π/4. The gain is controlled
by the quantity q in Eq. (57), and at large q � 1, qR ,

Gmax ≈ (2q)2 =
(

4ε�

D

)2

� 1. (65)

The gain increases while approaching the threshold [cf.
Fig. 5(b)], Gmax ≈ (4ε�)2/(δ2 + �2 − ε2)2, in the quasilinear
approximation, and then it is limited by the nonlinearity. Let us
evaluate this upper bound for the gain at ε = � and δ = 0. In
this case, Gmax = (2�/α|A|2)4. Extracting the amplitude |A|2
from Eq. (51), with θB = −π/4,

α|A|2 ≈ �(8α|B|2/�2)1/5, (66)

we get

Gmax = (4�/α)4/5(|B|2/�)−4/5. (67)

In a similar way, we can evaluate the absolute minimum of
deamplification. This is achieved at θB ≈ π/4, where Gmin ≈
1/(2q)2, and

α|A|2 ≈ �(2α|B|2/�2)1/3, (68)

leading to the equation for minimum gain

Gmin = (α/4�)4/3(|B|2/�)4/3. (69)

We note that the nonlinear deamplification is more efficient
than the amplification: the product of the maximum and
minimum nonlinear gains significantly deviates from unity,
in contrast to the linear case,

GmaxGmin ≈
√

α|B|2/4�2 < 1. (70)

With these results we conclude that the maximum amplifica-
tion (deamplification) efficiency is controlled by the parameter
�/α, and therefore a relatively small nonlinearity coefficient
is required to achieve a large parametric effect. As we will
see later, the same conclusion is also valid for the nonclassical
properties of the fluctuations.

At this point, it is appropriate to estimate the output
signal-to-noise ratio for parametric amplification, referring to
the results of the noise analysis in Sec. VII D. According to
Eqs. (101) and (105), the amplified noise increases in the
vicinity of the threshold, however, the noise amplification is
less efficient than the signal amplification, giving the ratio (for
the quasilinear limit),

|C|2
nvac

c

≈ 8

� − ε
|B|2. (71)

This ratio is large as soon as |B|2 > (� − ε)/8.
Amplification of a detuned signal, � �= 0, has qualitatively

similar properties in the vicinity of the parametric thresh-
old, ε2 − δ2 � �2. Here the gain factor G(�) has a quasi-
Lorentzian shape, peaked at � = 0; as shown in Fig. 9(b), the
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maximum gain increases while approaching the parametric
threshold, while the bandwidth shrinks to zero.

However, the bandwidth can be considerably increased,
maintaining rather high gain, by working away from the
parametric threshold in the region where the gain peak
splits, δ2 ∼ ε2 + �2, Eq. (63). Here, a wide frequency plateau
emerges around � = 0, see Fig. 9(b), where the gain factor is
nearly constant over a frequency interval given by the distance
between the resonances, � = ±√

δ2 − ε2 − �2.

B. Bifurcation readout below threshold

The bifurcation regime of the cavity nonlinear response in
the absence of parametric pumping is employed for dispersive
qubit readout using JBA,30 for a review see Ref. 31, and
references therein. With this method, the phase shift of a
reflected (or transmitted) probing signal is measured while
ramping the signal amplitude. The result is sensitive to the
detuning of the signal tone from the cavity resonance, which
is pulled by the qubit by ±δq , depending on the qubit state.

One may take advantage of the high parametric gain for
probing a qubit state by measuring the amplitude of the
output signal instead of the phase shift. The amplified signal
exhibits significant dispersion over the cavity-pump detuning
thus providing high contrast for the qubit readout.

The basis of the method can be understood from Fig. 11;
here, the average output power is plotted against the input
power for different detunings below the threshold, ε = 0.7 �.
The bistability wedge for this pump strength is illustrated
in the inset, compare also Fig. 6. The lowest three curves
in Fig. 11 correspond to values of the detuning within the
monostable regions, either to the right or to the left of the
critical bifurcation point, as indicated by white cuts in the inset
(in the latter case, δ = −1.7 �, the ramped input signal should
not cross the bifurcation line). The other two curves correspond

|C|2
Γ
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Γ
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FIG. 11. (Color online) Average output power 〈|C|2〉 vs input
power |B|2 for ε/� = 0.7 and δ/� = −1.7,−0.7,−0.5,0.5,5.0.
Inset: maximum gain factor G vs |B|2 and detuning δ; black lines
indicate the boundaries of the bistable region (wedge) cf. Fig. 6;
white vertical lines indicate the parameter traces used in the main
figure. The average output power 〈|C|2〉 is obtained from Eq. (39)
in the presence of white Gaussian noise in the input. (θB = π/2,
α = �/100).

to crossing through the bistability wedge or very close to the
critical bifurcation point (here the average output power in the
presence of classical noise is plotted, which then exhibits a
gradual transition from the low- to the high-amplitude branch
of the bifurcation curve).

The output contrast is extremely sensitive to the detuning:
it is up to factor of 10 for detunings differing by a linewidth �

already at rather small input power, |B|2 ∼ 10 �. In practice,
a cavity frequency pull exerted by the qubit may be of the
order37 δq ∼ 10 MHz, i.e., comparable to the linewidth, � ≈
10−4ω0 � 10 MHz.

The output contrast can be further enhanced by increasing
the pump strength towards the threshold. It is also possible
to ramp the pump strength rather than input power. The
possibility to operate with several parameters gives room for
further optimization.

C. Radiation readout above threshold

An alternative strategy for the dispersive qubit readout
is provided by parametric radiation above threshold. This
method, illustrated in Fig. 12, is based on the fact that in
the absence of an input signal, |B|2 = 0, the output signal
is zero in the monostable region below the threshold (at
blue detunings), δ + δq >

√
ε2 − �2, while it is finite above

the threshold, |δ − δq | <
√

ε2 − �2, where it equals, |C|2 =
(2�/α)(−(δ − δq) + √

ε2 − �2), according to Eq. (46).
The maximum contrast is achieved by choosing the pump

strength, ε �
√

δ2
q + �2, and the optimum biasing detuning,

δ ≈ √
ε2 − �2 − δq , as illustrated in Fig. 12. Such a choice

guarantees that the blue shifted point, δ + δq , lies in the
monostable region close to the threshold, while the red shifted
point, δ − δq , lies in the bistable region and not in the tristable
region where the trivial cavity state, |A| = 0, dominates. Then
the output radiation power does not depend on ε,

|C|2 = 4�δq

α
. (72)

δ/Γ
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Γ
2δq
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FIG. 12. (Color online) Output power |C|2/� vs detuning δ

and pump strength ε for B = 0. The black line separates bistable
and tristable regimes, cf. Fig. 3; the white line spans between two
qubit-state dependent, effective detunings δ0 ± δq (δq = 0.7�, ε >√

�2 + δ2
q , δ0 �

√
ε2 − �2 − δq , α = �/100). (Inset) Noise photon

number nvac
c /�, see Eq. (101), vs δ, ε as in main figure.
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This value is to be compared to the noise value in the
monostable region below the threshold. The amplified vacuum
noise is given by Eq. (101) in Sec. VII and illustrated in the
inset of Fig. 12,

nvac
c = �ε2

�2 + δ2 − ε2
, B = 0. (73)

Since the noise diverges at the threshold, the point δ + δq is to
be chosen not too close to the threshold. It is sufficient to depart
from the threshold by ∼� to have the noise level, nvac

c ∼ �.
Then for δq ∼ �, the radiation to noise contrast becomes,

|C|2
nvac

c

∼ 4�

α
� 100. (74)

VII. QUANTUM FLUCTUATIONS OF CAVITY FIELD AND
EMITTED FIELD

So far, we discussed the classical regime of parametric
resonance in the tunable cavity. In this section, we extend the
formalism to the quantum regime, and investigate the quantum
properties of the field inside the cavity, and of the output field.

A. Quantum Langevin equation

The Hamiltonian description of the cavity parametric
dynamics is a convenient starting point for the extension to the
quantum regime. To this end, we revisit Eq. (17) of Sec. III B
and impose canonical commutation relations, [qn,pn] = ih̄,
on the conjugated variables of the eigen modes of the closed
cavity. These commutation relations obviously translate to the
commutation relations for the resonant variables, [Qn,Pn] =
ih̄, because of the canonical nature of the transformations made
in Sec. III C. The unitary operator, which explicitly defines the
corresponding quantum canonical transformation is

U (t) = exp

[
−i

∑
n

(
q2

n + p2
n

)
�t/4h̄

]
. (75)

Averaging over rapid oscillations leads to the quantum Hamil-
tonian coinciding with the one in Eq. (24) with quantum oper-
ators replacing respective classical variables. The quantization
of the fundamental mode oscillator implies the quantization of
the variable A(t) in terms of the conventional commutation
relation for the annihilation operator, [A(t),A†(t)] = 1.

Due to the linear coupling of the cavity to the transmission
line, Eqs. (30)–(32), the input-output formalism outlined in
Sec. IV straightforwardly extends to the quantum regime.
To this end, the classical amplitudes of the transmission line
modes are to be replaced with the bosonic annihilation and
creation operators, with [Ak(t0),A†

k′(t0)] = δ(k − k′). From
these commutation relations follows the commutation relation
for the incoming field operator, [B(t),B†(t ′)] = δ(t − t ′), and
similarly for the outgoing field operator C(t).

The scattering relation (41) has the same form in the
quantum regime,

C(t) = B(t) − i
√

2�A(t), (76)

while the quantum Langevin equation for the cavity operator
A(t) becomes

iȦ + δA + εA† + α(A†A + 1)A + i�A =
√

2�B(t). (77)

This quantum Langevin equation, together with Eq. (76)
preserves the commutation relation [A(t),A†(t)] = 1 for the
cavity mode, as shown in Appendix D. The conservative
part of Eq. (77) is a dynamical equation associated with the
Hamiltonian

H = −h̄δ

(
A†A + 1

2

)
− h̄ε

2
(A†2 + A2)

− h̄α

2

(
A†A + 1

2

)2

+ h̄
√

2�(BA† + B†A). (78)

B. Small quantum fluctuations

The full analytical solution to the nonlinear quantum
equation (77) is unknown. In what follows, we restrict to
the limit of small quantum fluctuations around the classical
stationary states. Such a restriction is valid far from the
bifurcation points and the parametric threshold. Some exact
results for the critical fluctuations at such points can be found
in literature,38–40 also quantum jumps in multistable regimes
have been investigated.2,3

To study quantum fluctuations within the framework of a
linearized quantum Langevin equation, we assume the cavity
field operators to be of the form, A(t) = A0 + Â(t), where A0

is a steady state solution of the classical nonlinear equation
(39), and Â describes small quantum fluctuations,

|A0|2 � 〈Â†(t)Â(t)〉. (79)

Similarly, we separate the classical amplitude and quantum
fluctuations of the input field in the transmission line, B(t) =
B0(t) + B̂(t), 〈B̂(t)〉 = 0. Then we expand Eq. (77) around A0

up to linear order in the quantum fluctuation Â to obtain

i ˙̂A + ζ̃ Â + ε̃Â† + i�Â =
√

2�B̂,
(80)

ζ̃ = ζ + α|A0|2, ε̃ = ε + αA2
0.

Herein we introduced the effective detuning ζ̃ and the
(complex) pump strength ε̃ by adding the terms proportional
to the classical amplitude A0. We note that A0 itself depends
on the bare parameters δ and ε. Quantitatively, the parameter
regions where this approximation is valid are identified in
Appendix E.

The analysis of Eq. (80) goes along the lines of Sec. V D,
where the response to a classical detuned signal was evaluated.
By introducing Fourier harmonics of the quantum fluctuations
in the transmission line,

B̂(δk) =
∫ ∞

−∞

dt√
2π

B̂(t)eiδk t , (81)

and similarly in the cavity, the solution of the linear Eq. (80)
is cast into the form(

Â(δk)
Â†(−δk)

)
=

√
2� Ã−1

(
B̂(δk)

B̂†(−δk)

)
, (82)
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where

Ã−1 = 1

D̃(δk)

(
ζ̃ − δk − i� −ε̃

−ε̃∗ ζ̃ + δk + i�

)
, (83)

D̃(δk) = (� − iδk)2 + ζ̃ 2 − |ε̃|2,
(84)

|D̃(δk)|2 = (
�2 + ζ̃ 2 − |ε̃|2 − δ2

k

)2 + 4�2δ2
k ,

cf. Eq. (60). It follows from this equation, that modes
with frequencies δk and −δk are coupled pairwise by virtue
of the parametric pumping. This property underlines the
generation of correlated pairs of photons with frequencies
ω1 + ω2 = �, which is analogous to the photon generation
under nondegenerate parametric resonance.

The denominator in Eq. (82) turns to zero at δk = 0, if the
relation �2 + ζ̃ 2 − |ε̃|2 = 0 holds, leading to the divergence
of fluctuations at the corresponding parameter values. This
happens at the parametric threshold and at the bifurcation
points and indicates the enhancement of critical fluctuations.

C. Fluctuations in the cavity

The full power spectrum of the field in the cavity consists of
the sharp line of the amplified (or generated) classical signal,
2π |A0|2δ(δk), together with the noise power spectrum, na(δk),

na(δk) =
∫ ∞

−∞
dδ′

k〈Â†(δk)Â(δ′
k)〉. (85)

Solving Eq. (82) and assuming thermal noise in the in-
put field, 〈B̂†(δk)B̂(δ′

k)〉 = N (δk)δ(δk − δ′
k), where N (δk) =

[eh̄(�/2+δk )/kBT − 1]−1, we calculate for the noise power spec-
trum

na(δk) = 2�

|D̃(δk)|2 {|ε̃|2 [N (−δk) + 1]

+ [�2 + (ζ̃ − δk)2]N (δk)}. (86)

At zero temperature, the noise power spectrum reduces to

nvac
a (δk) = 2�|ε̃|2

|D̃(δk)|2 , (87)

which can be interpreted as the amplified vacuum noise of the
input, manifesting itself as real photons in the cavity.

The noise power spectrum in Eq. (87) has a resonance struc-
ture equivalent to the resonances in the classical response to a
detuned signal discussed in Sec. V D. The only difference is
that now the effective pump parameters enter Eqs. (83) and (84)
instead of the bare pump parameters, since we allow here for a
finite classical amplitude A0. Accordingly, a single resonance
at δk = 0 is observed under the condition

ζ̃ 2 < �2 + |ε̃|2, (88)

and otherwise two resonances are found at

δk = ±
√

ζ̃ 2 − |ε̃|2 − �2, (89)

cf. Eqs. (63) and (64).
In Fig. 13, the noise power spectrum nvac

a (δk) is presented
as a function of the pump detuning δ for ε = 2� and B0 = 0.
In the monostable regime, δ >

√
ε2 − �2, where A0 = 0, the

effective pump parameters in Eq. (80) are identical to the

δ/Γ

δk/Γ

√
2 − Γ2
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FIG. 13. (Color online) Noise power spectrum nvac
a (δk) � of the

cavity field, see Eq. (87), vs pump detuning δ. For δ >
√

ε2 − �2,
the classical cavity amplitude is A0 = 0, while |A0|2 > 0 for δ <√

ε2 − �2 according to Eq. (45). The resonances, see Eq. (89), are
indicated by the grey lines. (ε = 2�, B0 = 0, α = �/100).

bare parameters, while in the bistable regime, δ <
√

ε2 − �2,
with A0 given by Eq. (45), they are ζ̃ = 2

√
ε2 − �2 − δ and

|ε̃|2 = δ2 + �2. The condition (88) identifies the interval (ε2 −
3�2/2)/

√
ε2 − �2 < δ <

√
ε2 + �2 around the parametric

threshold, where the resonance lies at δk = 0. Outside that
interval, once the resonance is split, the separation grows
with the parameter distance from the threshold, both below
and above the threshold. At the parametric threshold itself,
δ = √

ε2 − �2, the noise power diverges.
The total number of photons in the cavity at zero tempera-

ture is 〈A†(t)A(t)〉 = |A0|2 + nvac
a , with the noise power

nvac
a =

∫ ∞

−∞

dδk

2π
nvac

a (δk) = |ε̃|2/2

�2 + ζ̃ 2 − |ε̃|2 . (90)

This quantity enters the validity criterium for the linearized
Langevin equation (79), which is analyzed in Appendix E.

D. Fluctuations of the output field

Similar to the in-cavity field, the full power spectrum of
the output field consists of the sharp line of the amplified
(generated) classical signal, 2π |C0|2δ(δk), and the noise power
spectrum nc(δk),

nc(δk) =
∫ ∞

−∞
dδ′

k〈Ĉ†(δk)Ĉ(δ′
k)〉. (91)

The relation between the input and output field operators is
similar to the one for a detuned classical signal in Sec. V D,
Eqs. (58) and (59),(

Ĉ(δk)
Ĉ†(−δk)

)
= Ṽ(δk)

(
B̂(δk)

B̂†(−δk)

)
, (92)

with matrix elements now dependent on the effective pump
parameters,

ṽ11(δk) = (ζ̃ − i�)2 − δ2
k − |ε̃|2, ṽ12 = 2i�ε̃, (93)

and D̃(δk) is given by Eq. (84). The matrix elements obey the
fundamental relation

|ṽ11(δk)|2 − |ṽ12(δk)|2 = |D̃(δk)|2, (94)
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which provides the correct commutation relation for the output
operators, [Ĉ(δk),Ĉ†(δ′

k)] = δ(δk − δ′
k).

Equation (92) describes an input-output relation for a linear
nondegenerate amplifier6 with signal and idler modes having
frequencies δk and −δk , respectively, while the input classical
tone at δk = 0 plays the role of an additional pump. Indeed, the
renormalization of the generic pump parameters in Eq. (80)
is an effect of this additional pump that increases the overall
pump strength by ∝α|A0|2, and also affects the detuning δ

similar to Eq. (28). We note that Eq. (92) is valid both below
and above the threshold, and in the latter case, it includes the
classical parametric radiation acting as an additional pump
signal even in the absence of the classical input.

With the corresponding renormalization of the quantity
q̃(δk) = 2ε̃�/D̃(δk) that characterizes the amplifier gain (62),
we cast the input-output relation (92) into the form

Ĉ(δk) =
√

1 + |q̃(δk)|2eiη̃(δk )B̂(δk) + iq̃(δk)B̂†(−δk)

= eiη̃(δk )[cosh rB̂(δk) − sinh r eiχ B̂†(−δk)], (95)

where we introduced the standard notation for a nondegenerate
parametric amplifier,

sinh r(δk) = |q̃(δk)|, χ (δk) = arg q̃(δk) − η̃(δk) − π

2
. (96)

The mapping in Eq. (95) is provided by a unitary two-mode
squeezing operator,41,42

Ĉ(δk) = eiη̃(δk )S[ξ ]B̂(δk)S†[ξ ],
(97)

S[ξ ] = exp

{∫ ∞

0
dδk[ξ (δk)B̂†(δk)B̂†(−δk) − H.c.]

}
,

where ξ = reiχ . This implies that the stationary state of the
output field is a pure state provided the input is a pure state. This
is true in spite of the evolution of the total system, including
the cavity variable, is formally nonunitary due to the presence
of the dissipative term in the Langevin equation (80).

The noise power spectrum of the output field can be
computed from Eq. (95), and for thermal noise input it reads

nc(δk) = N (δk) + |q̃(δk)|2 [N (δk) + N (−δk) + 1] . (98)

At zero temperature, this equation reduces to

nvac
c (δk) = |q̃(δk)|2 = 2�nvac

a (δk), (99)

and describes the generation of real photons from the vacuum
under parametric resonance. This phenomenon is closely
related to the dynamical Casimir effect—the creation of
real photons from vacuum fluctuations by an accelerated
mirror.28,29 Here, the role of the moving mirror is played by the
time-dependent boundary condition, driven by the modulated
magnetic flux through the SQUID.

The output noise, being proportional to na(δk), inherits the
resonant behavior of the noise power spectrum in the cavity,
as discussed in Sec. VII C and shown on Fig. 13. In the deep
subthreshold regime, for very weak pump strength, ε � �,
and in absence of an input signal, B0 = 0, Eq. (99) takes the
form

nvac
c (δk) = 4ε2�2

[�2 + (δk + δ)2][�2 + (δk − δ)2]
. (100)
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FIG. 14. (Color online) Noise photon flux nvac
c /�, see Eq. (101),

vs δ and ε, assuming (a) bare pump detuning, and (b) taking into
account the pump-induced frequency shift, see Eq. (28). (B0 = 0,
α = �/100).

In this limit, the resonances move towards δk = ±δ, and the
resonant structure of nvac

c (δk) approaches the one computed in
Ref. 43 and observed in Ref. 27.

The total photon flux in the output field is 〈C†(t)C(t)〉 =
|C0|2 + nvac

c , with the noise photon flux

nvac
c = �|ε̃|2

�2 + ζ̃ 2 − |ε̃|2 (101)

at zero temperature. Below the parametric threshold, ε <√
δ2 + �2, the effective parameters in Eq. (80) are identical

to the bare ones, and Eq. (101) reduces to nvac
c = �ε2/(�2 +

δ2 − ε2). Above the threshold, ε >
√

δ2 + �2, with |A0| > 0
given by Eq. (45), Eq. (101) becomes

nvac
c = �(δ2 + �2)

4
√

ε2 − �2(−δ + √
ε2 − �2)

. (102)

The output noise level is illustrated in Fig. 14 as a function of
ε and δ for B0 = 0. The right panel demonstrates the effect of
back-bending of the threshold line due to the pump-induced
frequency shift, see Eq. (28) [cf. Fig. 3(b) in Sec. V A]. The
noise is enhanced at the parametric threshold and decreases
while moving away from the threshold, there it is estimated as
nvac

c ∼ � for ε, δ ∼ �.
Since the noise near the parametric threshold becomes

strong, it is useful to evaluate the conditions for the output
coherent signal dominating over the noise, |C0|2 � 〈Ĉ†Ĉ〉.

Above the parametric threshold, the signal-to-noise ratios
are identical for the output field and the field inside the cavity
(for B0 = 0),

|C0|2
nvac

c

= |A0|2
nvac

a

. (103)

Therefore the limitation established by Eq. (E3) for the field
in the cavity applies as well to the output field,

ε − � � �

8

(
α

�

)2/3

. (104)

Below the threshold, the maximum amplified signal is,
according to Eq. (56),

|C0|2 ≈ (
√

1 + q2 + q)2|B0|2 = (� + ε)2

(� − ε)2
|B0|2, (105)
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for δ = 0 and α|A0|2 � √
�2 − ε2. Comparing this with

Eq. (101), we arrive at the constraint on the input signal,

|B0|2 � ε2

�

1 − ε/�

(1 + ε/�)3
. (106)

This bound is of order � for ε ∼ �, and decreases both at weak
pumping and close to the threshold. This is explained, at small
ε � �, by the fact that the amplification of vacuum noise is
small, while the classical signal remains finite, and, close to
the threshold, by the fact that amplification of the signal is
more efficient than amplification of the noise. The constraint
in Eq. (106) is qualitatively similar to the one for the field
inside the cavity given by Eq. (E6).

E. Squeezing

A homodyne detection scheme allows for measurement of
the quadratures of the output signal, and characterization of
quadrature fluctuations.35,39,44 With this method, the output
field is mixed with a strong classical field of a local oscillator,
BLO cos(�t/2 − θ ), and the intensity of the mixed signal is
measured. This intensity is proportional to the output field
quadrature, ID(t) = BLOXθ (t),

Xθ (t) = C(t)e−iθ + C†(t)eiθ . (107)

The phase θ refers to the phase shift of the local oscillator with
respect to the parametric pump; variation of θ allows accessing
all the quadratures individually.

The mean quadrature is determined by the classical output
signal

〈Xθ 〉 = Xθ
0 = C0e

−iθ + C∗
0eiθ = 2|C0| cos(θC − θ ). (108)

Separating the classical and quantum components, Xθ (t) =
Xθ

0 + X̂θ (t), X̂θ (t) = Ĉ(t)e−iθ + Ĉ†(t)eiθ , and using the
spectral representation of the noise quadratures, X̂θ (δk) =
Ĉ(δk)e−iθ + Ĉ†(−δk)eiθ , we present the corresponding power
spectrum in the form 2π (Xθ

0 )2δ(δk) + Sθ (δk), where

Sθ (δk) =
∫ ∞

−∞
dδ′

k〈X̂θ (δk)X̂θ (δ′
k)〉 (109)

is the squeezing power spectrum.39,44 Note that by virtue of
the stationary state of the cavity, 〈X̂θ (δk)X̂θ (δ′

k)〉 ∝ δ(δk + δ′
k),

hence only symmetric correlations between the sidebands con-
tribute to the integral, i.e., the squeezing power characterizes
the two-mode squeezing.

We calculate the squeezing power assuming vacuum fluctu-
ations of the input, using Eq. (95) for the output field operators.
The result reads

Sθ (δk) = 1 + 2|q̃|2 − 2
√

1 + |q̃|2 Im[q̃∗(−δk)ei(η̃−2θ)]

= 1 + 4�

|D̃(δk)|2
[
2�|ε̃|2 + 2�ζ̃Re(ε̃e−2iθ )

+ Im(ε̃e−2iθ )
(
�2 − ζ̃ 2 + |ε̃|2 + δ2

k

) ]
. (110)

Equation Sθ (δk) = 1 corresponds to pure vacuum fluctuations.
The noise squeezing power varies with the phase θ , the
maximum and minimum values reached at θ0 and θ0 + π/2,
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FIG. 15. (Color online) Squeezing power of output noise Sθ (δk),
see Eq. (110), (a) and (b), and in-cavity noise |Sθ

a (δk)| �, see Eq. (113),
(c) and (d) for ε = 1.1� (left column) and ε = 3� (right column). The
quadrature phases for maximum and minimum squeezing power, Eq.
(111), are indicated by the black lines. (δ = 0, B0 = 0, α = �/100).

respectively, with

tan(2θ0)= 2ζ̃ �Im(ε̃) − (
�2 − ζ̃ 2 + |ε̃|2 + δ2

k

)
Re(ε̃)

2ζ̃ �Re(ε̃) + (
�2 − ζ̃ 2 + |ε̃|2 + δ2

k

)
Im(ε̃)

. (111)

The corresponding extreme values are determined by the
quantity |q̃(δk)|, and have the form

Sθ0,θ0+π/2(δk) = [
√

1 + |q̃(δk)|2 ± |q̃(δk)|]2, (112)

which is similar to the classical gain of the ideal amplifier,
see Eq. (57), including the relation Sθ0 (δk) Sθ0+π/2(δk) = 1.
However, the maximum squeezing and maximum quadrature
gain do not generally correspond to the same value of
mixing phase θ . Moreover, the amplified classical signal, see
Eq. (108), contains an additional phase, θC , which is controlled
by the input signal phase θB . By varying the latter, one may
control the signal-to-noise ratio for the quadratures.

In Figs. 15(a) and 15(b), the squeezing power Sθ (δk) is
shown for B0 = 0, δ = 0, and two different values of ε > �.
The θ values of maximum and minimum squeezing power are
indicated by black lines.

It is useful to also quantify the in-cavity squeezing, by
calculating the squeezing power for the quadrature operator
X̂θ

A(δk) = Â(δk)e−iθ + Â†(−δk)eiθ in analogy to Eq. (109).
Although the phase θ in this case is not related to any externally
tunable phase, it might be relevant for a quadrature-dependent
coupling to a qubit placed in the cavity, or to another
transmission line.

Assuming vacuum fluctuations in the input field, we
calculate the internal squeezing power using Eq. (82),

Sθ
a (δk) = 2�

|D̃(δk)|2 [�2 + (ζ̃ − δk)2 + |ε̃|2 − 2ζ̃Re(ε̃e−2iθ )

− 2(� − iδk)Im(ε̃e−2iθ )]. (113)

Further evaluation of the minimum uncertainty of the cavity
quadrature, 〈(�Xθ

a )2〉 = (1/2π )
∫

dδkS
θ
a (δk), results in the

value 1/2, as in the case of linear parametric amplifiers,45

i.e., a factor 1/2 below the vacuum limit.
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In Figs. 15(c) and 15(d), |Sθ
a (δk)| is illustrated for B0 = 0,

δ = 0 and ε > �, in comparison to the external squeezing
Sθ (δk) of Figs. 15(a) and 15(b). As a consequence of the
effective detuning ζ̃ in Eq. (113), Sθ

a (δk) is not symmetric
around δk = 0, as is the case for Sθ (δk).

F. Second-order coherence

The two-mode squeezing is a nonclassical property of the
amplified noise that originates from the production of noise
photons in entangled pairs. Further information about the non-
classical properties of the correlated output photons is provided
by a two-photon correlation function, and characteristics of
two-photon entanglement.

We start with evaluating the second-order correlation
function39

G(2)(τ ) = 〈C†(t)C†(t + τ )C(t + τ )C(t)〉. (114)

In the presence of the classical output component, this equation
takes the form

G(2)(τ ) = |C0|4 + 2|C0|2{〈Ĉ†(t)Ĉ(t + τ )〉 + 〈Ĉ†(t)Ĉ(t)〉
+ Re[e−2iθC 〈Ĉ(t)Ĉ(t + τ )〉]}
+ 〈Ĉ†(t)Ĉ†(t + τ )Ĉ(t + τ )Ĉ(t)〉. (115)

Explicitly, using Eq. (95), we obtain for τ = 0 and input
vacuum noise

G(2)(0) = (|C0|2 + nvac
c

)2

+ �

�2 + ζ̃ 2 − |ε̃|2
(
nvac

c (�2 + ζ̃ 2 + |ε̃|2)

+ 2|C0|2{|ε̃|2 + Re[ε̃(ζ̃ − i�)e−2iθC ]}). (116)

g(2)(0)
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FIG. 16. (Color online) (a) Normalized second order correlation
g(2)(0), see Eq. (116), vs ε for fixed θB = −π/4 and for δ/� = 0,1,2
[from bottom to top, the corresponding parameter values are marked
with crosses on (b)]. (b) g(2)(0) and (c) gain |C0|2/|B0|2 vs δ and θB , for
fixed ε/� = 0.2 [indicated by the vertical line in (a)]. (|B0|2 = �/10,
α = �/100).

In Fig. 16(a), the normalized correlation function, g(2)(0) =
G(2)(τ )/〈C†(t)C(t)〉2 = G(2)(τ )/(|C0|2 + nvac

c )2, is presented
as a function of the pump strength ε for several values of
the pump detuning δ. In the Duffing limit, ε̃ = 0, all the
terms in Eq. (116) vanish except of the first one, yielding the
coherent state limit, g(2)(0) = 1. The same is also true for large
pump strength above the threshold, ε >

√
�2 + δ2. This is

explained by the rapid growth of the classical radiation power
that dominates over the fluctuations, |C0|2 � nvac

c (kinks on
the curves at ε/� > 1).

At the intermediate pump strengths both bunching
[g(2)(0) > 1] and antibunching [g(2)(0) < 1] are possible. For
pure output noise in the absence of classical output, C0 = 0
(i.e., for B0 = 0 below the threshold), only bunching occurs,
g(2)(0) = 2 + (�2 + ζ̃ 2)/|ε̃|2, where the degree of bunching
exceeds that of classical chaotic radiation, g(2)(0) > 2. This
can be interpreted as a consequence of the pair production of
noise photons.

When B0 > 0, also antibunching is possible46 due to the
interplay between the classical and the quantum contribution
to the correlation, last line in Eq. (116). It occurs within
a relatively narrow window of parameters, ε < �, δ � �,
|B0|2 ≈ �, for which the phase dependence in the last term
in Eq. (116) can introduce a sign change.

The dependence of g(2)(0) as a function of the input phase
θB and the pump detuning δ is illustrated in Fig. 16(b).
Pronounced antibunching (blue regions) is observed for
|B0|2/� � 1, and for those values of θB where the gain
approaches unity, |C0|2/|B0|2 � 1, compare Fig. 16(c).

G. Two-mode entanglement

The degree of entanglement between the two modes with
frequencies δk and −δk can be quantified with the entanglement
entropy47

E(δk) = −Tr[ρ(δk) ln ρ(δk)], (117)

where ρ(δk) is the reduced density matrix of one of the involved
modes. If these modes are entangled, the entropy takes a
positive value, E > 0.

We compute the entanglement entropy for the amplified
vacuum noise, using the two-photon wave function of the
squeezed state,

|δk,−δk〉 = (cosh r)−1
∞∑

n=0

(tanh r)neinχ |n,n〉, (118)

which is obtained by applying the squeezing operator, see
Eq. (97), to the vacuum input, |δk,−δk〉 = S[ξ ] |0〉, and using
the decomposition equation.48 The reduced density matrix has
the form

ρ(δk) = (cosh r)−2
∞∑

n=0

(tanh r)2n|n〉〈n|, (119)

giving the entanglement entropy49

E = cosh2 r ln(cosh2 r) − sinh2 r ln(sinh2 r). (120)

The entropy is nonzero for all ε > 0, and follows closely
the squeezing parameter r(δk), asymptotically approaching the
linear dependence, E ≈ 2r , for r > 1.
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FIG. 17. (Color online) Entanglement entropy E (solid) and
logarithmic negativity EN (dashed) vs pump strength ε for δk/� =
0.02,0.2,1.0,2.0 (from top to bottom). The vertical lines mark the
values of ε at which the resonance, see Eq. (89), is encountered at the
chosen value of δk . (δ = 0, B0 = 0, α = �/100).

The entanglement entropy E is shown as a function of
ε in Fig. 17 (solid lines), for several values of the detuning
δk , and for B0 = 0 and δ = 0. For small detuning, δk < �,
the entropy reaches the maximum at the threshold, ε = �, at
which r(δk = 0) [q̃(δk = 0)] diverges. With increasing value
of the detuning δk , this maximum shifts towards the value of
ε(δk), at which q̃(δk) exhibits the resonance, see Eq. (89). The
entropy rapidly decreases above the threshold, analogous to
the behavior of g(2)(0), due to the emergence of the classical
radiative state, A0 �= 0, that suppresses q̃(δk).

A convenient measure of entanglement for Gaussian states
is provided by the logarithmic negativity50 related to the
covariance matrix for the two entangled modes. The covariance
matrix Vαβ is defined through a 4-vector composed of the
quadratures, RT = (X(−δk),Y (−δk),X(δk),Y (δk)),

Vαβ = 1
2 〈RαRβ + RβRα〉 − 〈Rα〉〈Rβ〉. (121)

Then splitting the covariance matrix into 2 × 2 submatrices,
V = (V1,V3; V T

3 ,V2), the logarithmic negativity is defined as

EN = max(0,−ln(ν−)), (122)

where ν− =
√

(σ − √
σ 2 − 4 det V )/2 and σ = det V1 +

det V2 − 2 det V3. For entangled states, the logarithmic neg-
ativity takes positive values.

For amplified vacuum noise we obtain a simple result, using
Eq. (95),

EN = 2 ln[
√

1 + |q̃(δk)|2 + |q̃(δk)|] = 2r, (123)

i.e., the logarithmic negativity is equal to twice the squeezing
parameter r(δk).

The logarithmic negativity EN is shown in Fig. 17 with
dashed lines. Its functional behavior is basically equivalent to
that of the entropy E.

Our calculation shows that the degree of the two-mode
entanglement is significantly enhanced in the presence of the
parametric resonance. To evaluate the exact maximum entan-
glement value one needs to go beyond the quasilinear approxi-
mation and include the nonlinear effect. We make a qualitative
estimate by taking the function |q̃(δk)| at the threshold, ε = �,
δ = 0, and at δk = 0, and for the cavity field given by Eqs. (66)
and (68) assuming input power, |B0|2 ∼ �, corresponding to

one photon per bandwidth. This yields an estimate

Emax ≈ ENmax ∝ ln
�

α
, (124)

with a proportionality factor of the order one. This crude
estimate seems to agree with a more accurate evaluation of
the critical fluctuations.38 For values �/α ∼ 100 achievable
in tunable cavities, the entanglement entropy can accordingly
reach the values 4.5–5. This is significantly larger than the
values calculated51 for a nonresonant open transmission
line with modulated boundary and also exceeds the values
reported for experimental parametric Josephson devices.17,19

VIII. SUMMARY

We have developed a consistent theory of parametric
resonance in a high quality tunable superconducting cavity.
We considered the nonlinear classical dynamics of the cavity
both below and above the parametric threshold, and analyzed
amplification of external signals, and parametric radiation.
We also studied quantum properties of the amplified and
radiative fields.

The nonequidistance of the cavity frequency spectrum
enabled us to formulate the theory of the degenerate parametric
resonance in terms of the one encountered in a nonlinear para-
metric oscillator. We identified the parameters of this effective
oscillator as functions of the cavity generic characteristics,
and investigated the multistable cavity dynamics in a relevant
range of the effective parameters.

The operation of the device in the monostable regime
as a nonlinear parametric amplifier is characterized with a
phase-dependent differential gain, which increases at small
input power and reaches the maximum value at the parametric
threshold. We found that this maximum value scales with the
ratio of the damping coefficient and the nonlinearity coeffi-
cient, �/α. We also found that the relation between the maxi-
mum and minimum gain for an ideal linear amplifier is violated
in the nonlinear regime, Gmin � 1/Gmax. Extremely small
values of α available in tunable cavities allows for very large
gain and strong amplification versus deamplification contrast.

Amplification of detuned signals was found to exhibit
sideband resonances within a specific region of the cavity
parameters. This effect can be used for enhancing the amplifi-
cation bandwidth while maintaining high gain.

The application of the device as a parametric bifurcation
amplifier was discussed in regard to dispersive qubit readout.
The advantage of the parametric regime compared to the
conventional JBA is a high sensitivity of the strength of the
output signal to the variation of the cavity frequency. This,
together with a high amplification gain, provides a potential
for improving the fidelity of qubit single shot readout. Yet
another suggested method for qubit readout is based on a high
contrast between the strengths of parametric radiation above
the threshold and amplified noise below the threshold.

Small-amplitude quantum fluctuations around the classical
signal were investigated for the in-cavity field and the output
field. The limit of small fluctuations is appropriate in a wide
range of the device parameters except of small regions of
critically enhanced fluctuations close to the bifurcation points
and the parametric threshold. The theory is analogous to
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the one for a quantum linear amplifier. The strength of the
amplified noise increases in the vicinity of the threshold in
accord with the classical gain. The same is also true for the
two-mode squeezing and the entanglement quantified with the
entanglement entropy and the logarithmic negativity. At
the threshold, the estimated magnitude of the squeezing
parameter may reach the values of a few units, exceeding
that achievable, e.g., in nonresonant Josephson mixers.

The second-order coherence is dominated by strong bunch-
ing for small classical inputs, resulting from the production
of noise photons in pairs. However, for classical inputs
with strength comparable to the vacuum noise, significant
antibunching is predicted resulting from the interference of
the classical and quantum field components.

To conclude, we note that the developed theory straightfor-
wardly extends to the regime of nondegenerate parametric
resonance, when the pumping frequency is commensurate
with a combination of cavity resonances. Similarly, in this
case, strongly enhanced amplification gain is to occur near the
parametric threshold, as well as strongly enhanced two-mode
squeezing and entanglement of the cavity modes selected by
the resonance.

Yet another extension of the theory is readily done for a two-
sided cavity parametrically pumped by two SQUIDs, attached
to both sides of the cavity.36 The dynamics of this device
is equivalent to the single-sided parametric cavity, provided
the SQUIDs are operated at the same pump frequency. The
parametric resonance is then controlled by an effective pump
strength, which depends on the phase shift between the actual
pumps. For equal pump amplitudes, the parametric effect is
maximum for the out-of-phase pumping (“breathing” mode),
while for the in-phase pumping (“translational” mode) the
parametric instability is completely suppressed.
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APPENDIX A: LAGRANGIAN AND BOUNDARY
CONDITION OF THE FLUX-TUNABLE CAVITY

In this Appendix, we derive the Lagrangian of the flux-
tunable cavity (2), and give arguments for its validity. We start
with a description of the SQUID establishing the connection
between the cavity and the pump line. The generalized
coordinates of the SQUID are the superconducting phase φd =
φ(x = d) at the cavity edge x = d, the phase 2f dropping
over the inductance L of the SQUID loop, and the phase 2fext

dropping over the coupling inductance Lext of the pump line,
see Fig. 1.

The SQUID is modelled as symmetric, with two identical
Josephson junctions, each having a Josephson energy EJ and
a capacitance CJ . To simplify notation, we assume that the
SQUID is grounded in such a way that its geometric inductance
L is divided into two equal parts L/2, with a phase drop of
f over each part. Thus the phase difference on one of the
Josephson junctions is φd − f and φd + f on the other. The
coupling to the flux line is inductive, with a mutual inductance

M � L,Lext. The full SQUID Lagrangian is

LS =
(

h̄

2e

)2 [
CJ

2
(φ̇d − ḟ )2 + CJ

2
(φ̇d + ḟ )2

]
+EJ cos (φd − f ) + EJ cos (φd + f )

−
(

h̄

2e

)2 1

2L

(
4f 2 + 8

M

Lext
ffext

)
, (A1)

or, written with the capacitive energy of a Josephson junction
EC = (2e)2/(2CJ ) and the inductive energy of the SQUID
loop EL = (h̄/2e)2/(2L),

LS = h̄2

2EC

φ̇2
d + 2EJ cos φd cos f

+ h̄2

2EC

ḟ 2 − EL

(
4f 2 + 8

M

Lext
ffext

)
. (A2)

Separating the φd -dependent terms (first line) from the purely
f -dependent ones (second line),LS = LS[φd,f ] + LS[f ], the
former can be combined with the bare cavity Lagrangian

L(0)
cav = dEL,cav

2v2

∫ d

0
dx(φ̇2 − v2φ′2), (A3)

with the inductive energy of the cavity EL,cav = h̄2/

[L0d(2e)2]. Together, these form the Lagrangian Lcav of the
flux-tunable cavity (2).

For typical cavity and junction dimensions the orders of the
three inductive energies in the Lagrangian, see Eqs. (A2) and
(A3), are distinctly different. The dominant energy, EL/h̄ ∼
105 GHz, determined by the small geometric inductance of
the SQUID loop (L ≈ 10−12 H), is larger than the Josephson
energy of the SQUID, 2EJ /h̄ ∼ 104 GHz, and that dominates
over the inductive energy of the cavity, EL,cav/h̄ ∼ 400 GHz
(for dL0 ≈ 2 × 10−9 H). Furthermore, the Josephson plasma
frequency ωJ = √

2EJ EC/h̄ ∼ 300 GHz is high compared to
the fundamental cavity resonance, ω0 ∼ 40 GHz (compare
Sec. III A).

The equations of motion for φd and f , according to the full
Lagrangian Lcav + LS[f ],

h̄2

EC

φ̈d + 2EJ cosf sin φd + EL,cavdφ′
d = 0, (A4)

h̄2

2EC

f̈ +EJ cos φd sinf + 4EL

(
f + Mfext

Lext

)
= 0, (A5)

describe two coupled nonlinear oscillators. For fext = 0, the
equilibrium is (f = 0,φd = 0).

In general, the coupled dynamics of nonlinear, driven
oscillators features chaotic behavior. We restrict our analysis
to the case φd � 1 and assume that this is fulfilled even in the
presence of a resonant excitation by the external field fext(t).
Under this condition, the equation of motion for f , Eq. (A5),
decouples from the other oscillator,

h̄2

2EC

f̈ + EJ sin f + 4EL

(
f + M

Lext
fext

)
= 0, (A6)

and the dynamical equation for φd , Eq. (A4), then depends
only parametrically on f (t), cf. Eq. (7).

We suppose the external force of the form fext(t) =
Fext + δfext(t), δfext � 1, and separate the SQUID phase
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response f (t) = F + δf (t) into a constant equilibrium shift
F , governed by the equation,

EJ sin F + 4EL [F + (M/Lext)Fext] = 0, (A7)

and a small harmonic oscillation, δf (t) � 1, driven by δfext(t),

h̄2

2EC

δf̈ + (EJ cos F + 4EL)δf = −4ELM

Lext
δfext(t). (A8)

Assuming δfext(t) = δfext cos �t , we write the stationary solu-
tion in the form, δf (t) = δf cos �t ,

δf = −8ELMEC/h̄2Lext

ω2
f − �2

δfext, (A9)

where ωf = ωJ

√
cos F + 4EL/EJ is the frequency of the

f oscillator, which is much larger than the frequency of the
pump, � ≈ 2ω0.

Linearized around the equilibrium shift F , Eq. (A4)
becomes

h̄2

EC

φ̈d + 2EJ [cos F − sin Fδf cos(�t)] sin φd

+ EL,cavdφ′
d = 0. (A10)

For δf = 0, this boundary condition determines the cavity
mode spectrum, see Eqs. (8) and (9).

Further expanding Eq. (A4) to the second order with
respect to δf leads to the pump induced shift of the cavity
frequencies. Indeed, averaging over time, we get a correction
to the Josephson energy, 2EJ cos F (1 − δf 2/4), which will
modify Eq. (9) accordingly. In particular, for the fundamental
mode we get from Eq. (10),

ω0 (δf )

ω0 (0)
≈ 1 − γ δf 2

4
. (A11)

One could also expand Eq. (A5) to the second order with
respect to δf , which would lead, after the time averaging, to
a shift of the static bias F , and eventually to an additional
shift of the cavity frequencies. However, this effect is small,
by virtue of the parameter EJ /EL � 1, compared to the shift
(A11).

APPENDIX B: MODE REPRESENTATION OF
CAVITY LAGRANGIAN

In this Appendix, we express the Lagrangian of the flux-
tunable cavity (2), in the mode representation, see Eq. (13),
based on the expansion (12) of the cavity field. Firstly, making
use of Eq. (9), the overlap integrals of the nonorthogonal modes
are ∫ d

0
dx cos knx cos kmx

= dMn

2
δnm − 2CJ

C0
cos knd cos kmd, (B1)∫ d

0
dxknkm sin knx sin kmx

= dk2
nMn

2
δnm − 2CJ k2

m

C0
cos knd cos kmd

− km cos knd sin kmd, (B2)

where we have defined the coefficients Mn, see Eq. (14). With
these, the bulk contribution to the cavity Lagrangian becomes(

h̄

2e

)2
C0

2

∫ d

0
dx[φ̇2 − v2(φ′)2]

= 1

2

∑
n

(
Mnq̇

2
n − Mnv

2k2
nq

2
n

)

+ 1

2

∑
n,m

[
−2CJ

C0
cos knd cos kmdq̇nq̇m

+ v2 cos knd

(
2CJ

C0
k2
m cos kmd + km sin kmd

)
qnqm

]
.

(B3)

In the remaining boundary contribution of Eq. (2), we firstly
separate a time dependent, nonlinear potential term,

V (φd,t) = −2EJ

(
cos f (t) cos φd + cos F

φ2
d

2

)
, (B4)

from the harmonic contribution,(
h̄

2e

)2 2CJ

2
φ̇2

d + 2EJ cos f (t) cos φd

=
(

h̄

2e

)2 2CJ

2
φ̇2

d − 2EJ cos F
φ2

d

2
− V (φd,t). (B5)

The mode representation (12) of the harmonic part becomes,
using (2e)2/(h̄2C0) = v2/(dEL,cav),(

h̄

2e

)2 2CJ

2
φ̇2

d − 2EJ cos F
φ2

d

2

= 2CJ

2C0

∑
n,m

cos knd cos kmd q̇nq̇m

−2EJ v2 cos F

2EL,cavd

∑
n,m

cos knd cos kmd qnqm. (B6)

The first term of this cancels directly with a term in the bulk
contribution, see Eq. (B3). Further, using the definition of the
modes in Eq. (9), we note that

km

(
2CJ

C0
cos kmd + sin kmd

)
= 2EJ cos F

EL,cavd
cos kmd, (B7)

leading to further cancellation of terms between the bulk and
the boundary contribution. The remaining terms are

Lcav = 1

2

∑
n

(
Mnq̇

2
n − Mnv

2k2
nq

2
n

) − V (qn,t), (B8)

with V (qn,t) = V (φd (qn),t). This is the mode representation
of the cavity Lagrangian in Eq. (13).

APPENDIX C: TRANSMISSION LINE AMPLITUDES AND
SCATTERING RELATION

In this Appendix, we show the relation of the flux amplitude
B introduced in Eq. (40) to the incoming field, and similarly
for the flux amplitude C of the outgoing field as well as their
mutual relation given in Eq. (41). The incoming and outgoing
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fields in the transmission line are defined, respectively, as

φin(t) = e

h̄

√
h̄

πC0

∫ ∞

0

dk√
ωk

[ak(t0)e−iωk(t−t0) + H.c.], (C1)

φout(t) = e

h̄

√
h̄

πC0

∫ ∞

0

dk√
ωk

[ak(t1)e−iωk(t−t1) + H.c.]. (C2)

These are based on the solutions of Eq. (34), which are
expressed in terms of initial amplitudes ak(t0) at a time t0 < t

in the past, or in terms of final amplitudes ak(t1) at a time t1 > t

in the future,

ak(t) = ak(t0)e−iωk(t−t0)

+ Cc

C0d

√
2dω0ωk

M0πh̄

∫ t

t0

dt ′p(t ′)e−iωk(t−t ′), (C3)

ak(t) = ak(t1)e−iωk(t−t1)

− Cc

C0d

√
2dω0ωk

M0πh̄

∫ t1

t

dt ′p(t ′)e−iωk(t−t ′). (C4)

Such a definition is justified, as will be shown below, by
attributing different propagation directions along the trans-
mission line for the incoming and outgoing field components,
which can be separated by circulators and hence have physical
meaning.

We firstly use the solution (C3) to evaluate the field in the
transmission line, see Eq. (29) with qk = √

h̄/2(ak + a
†
k),

φTL(x,t)=2e

∫ ∞

0

dk cos kx√
πh̄C0ωk

[ak(t0)e−iωk(t−t0)+H.c.]

+ 4eCc

πh̄C0d

√
2dω0

C0M0

∫ t

t0

dt ′p(t ′)

×
∫ ∞

0
dk cos[ωk(t − t ′)] cos kx. (C5)

The contribution from the first line can be straightforwardly
identified with φin from Eq. (C1) and equals φin(t − x/v) +
φin(t + x/v). The integral in the third line is evaluated (for
x < 0):∫ ∞

0
2dk cos[ωk(t − t ′)] cos(kx)

=
∫ ∞

0
dk{cos[kv(t − t ′) − kx] + cos[kv(t − t ′) + kx]}

= d

dt

∫ ∞

0

dk

kv
{sin[kv(t − t ′) − kx] + sin[kv(t − t ′) + kx]}

= π

2v

d

dt
[sgn(t − t ′ − x/v) + sgn(t − t ′ + x/v)]

= π

v
[δ(t − t ′ − x/v) + δ(t − t ′ + x/v)]. (C6)

The second δ function gives a contribution at t ′ = t + x/v,
whereas the first, for x < 0, is not included in the integration
limits, t ′ = t − x/v > t , and therefore∫ ∞

0
dk

∫ t

t0

dt ′p(t ′) cos[ωk(t − t ′)] cos(kx) = π

2v
p(t + x/v).

(C7)

Taken together, the field in the transmission line reads

φTL(x,t) = φin(t − x/v) + φin(t + x/v)

+ 2e

h̄

Cc

C0d

√
2dω0

C0M0

1

v
p(t + x/v). (C8)

Alternatively, the transmission line field, Eq. (29), can be
evaluated from the second solution for the ak(t), see Eq. (C4),
yielding

φTL(x,t) = φout(t − x/v) + φout(t + x/v)

− 2e

h̄

Cc

C0d

√
2dω0

C0M0

1

v
p(t − x/v). (C9)

By subtracting Eqs. (C8) and (C9) at x = 0, we can establish
a relation between the incoming and the outgoing field
components,

φout(t) − φin(t) = 2e

h̄

Cc

C0d

√
2dω0

M0C0

p(t)

v
. (C10)

Note that the last term can also be expressed by the derivative of
the cavity field at x = 0, φ̇0(t) ≈ (2e/h̄)

√
2ω0/(C0dM0)p(t),

using p(t) ≈ ω0q̇(t) in the weak coupling approximation.
We can now evaluate Eq. (C10) at t + x/v and insert in

Eq. (C8), such that the transmission line field is expressed as
a linear combination of φin and φout alone,

φ(x,t) = φin(t − x/v) + φout(t + x/v), (C11)

demonstrating the role of φin and φout as incoming and outgoing
field components.

Finally, we want to relate the general input-output relation,
see Eq. (C10), with the slowly varying amplitudes of the
resonant approximation. To that end, we separate the fast time
oscillation with frequency �/2 in Eqs. (C1) and (C2),

φin(t) = 2e

h̄

√
h̄

2C0ω0v
[B(t)e−i�t/2 + H.c.], (C12)

φout(t) = 2e

h̄

√
h̄

2C0ω0v
[C(t)e−i�t/2 + H.c.], (C13)

where

B(t) =
√

ω0v

2π
ei�t/2

∫ ∞

0

dk√
ωk

ak(t0)e−iωk(t−t0), (C14)

C(t) =
√

ω0v

2π
ei�t/2

∫ ∞

0

dk√
ωk

ak(t1)e−iωk(t−t1). (C15)

Within the resonant approximation,
√

ωk ≈ √
ω0, ake

i�t/2 =
Ak , these quantities coincide with the ones defined in Sec. IV,
cf. Eq. (40). The cavity momentum is expressed in the rotating
frame as well,

p(t) = −i

√
h̄

2
[A(t)e−i�t/2 − A†(t)ei�t/2], (C16)

with the slowly time-dependent cavity amplitude A(t). By
setting these expressions into Eq. (C10), multiplying with
ei�t/2 and averaging over fast oscillation, the corresponding
input-output relation is obtained in the rotating frame, cf.
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Eq. (41):

C(t) − B(t) = −iCc

C0d

√
dω0�√
2M0v

A(t) = −i
√

2�0A(t). (C17)

APPENDIX D: COMMUTATION RELATIONS

In this Appendix, we show that the quantum Langevin
equation, see Eq. (77), preserves the commutation relation
of the cavity amplitude. To this end, we express the solution of
Eq. (77) in terms of the propagator U (t,t0) = exp[−iHcav(t −
t0)/h̄] with the Hamiltonian that governs the dynamics of the
isolated cavity,

Hcav = −h̄δ

(
A†A + 1

2

)
− h̄ε

2
[(A†)2 + A2]

− h̄α

2

(
A†A + 1

2

)2

(D1)

[cf. Eq. (78)]. The operator A refers to the Schrödinger picture
and coincides initially with the Heisenberg operator A(t0) =
A. At time t the solution is

A(t) = e−�(t−t0)U−1(t,t0)A(t0)U (t,t0)

− i
√

2�

∫ t

t0

dt ′e−�(t−t ′)U−1(t,t ′)B(t ′)U (t,t ′) (D2)

= e−�(t−t0)U−1(t,t0)A(t0)U (t,t0)

− i
√

2�

∫ t

t0

dt ′e−�(t−t ′)B(t ′), (D3)

where we have used the fact that Hcav and B(t ′) commute since
A is uncorrelated with the operators ak(t0) of the incoming
transmission line modes of which B(t) is composed. Using this
solution, we are able to evaluate the equal-time commutator

[A(t),A†(t)] = e−2�(t−t0)U−1(t,t0)[A(t0),A†(t0)]U (t,t0) (D4)

+i
√

2�e−�(t−t0)
∫ t

t0

dt ′e−�(t−t ′)U−1(t,t0){[A(t0),B†(t ′)]

− [B(t ′),A†(t0)]}U (t,t0)

+ 2�

∫∫ t

t0

dt ′dt ′′e−�(2t−t ′−t ′′)[B(t ′), B†(t ′′)]. (D5)

The mixed commutators vanish, again with the argument of
initially uncorrelated cavity and transmission line operators,
leaving

[A(t),A†(t)]

= e−2�(t−t0)U−1(t,t0)[A(t0), A†(t0)]U (t,t0)

+ 2�

∫∫ t

t0

dt ′dt ′′e−�(t ′+t ′′)[B(t ′), B†(t ′′)]. (D6)

Finally, using [A(t0), A†(t0)] = 1 and [B(t ′), B†(t ′′)] = δ(t ′ −
t ′′), we arrive at the desired result:

[A(t),A†(t)] = e−2�(t−t0) − [e−2�(t−t0) − 1] = 1. (D7)

The invariance of the commutation relation under the Langevin
evolution, see Eq. (77), follows from the correct combination
of the damping term, �A, and the fluctuations in the amplitude
B. Averaging over fluctuations would violate the exact unitary
evolution and break the commutation relation.

APPENDIX E: VALIDITY OF QUANTUM
LINEARIZED TREATMENT

Having evaluated the magnitude of the quantum fluctu-
ations, we are able to discuss the region of validity of the
linearized equation, see Eq. (80). Two assumptions have been
made for the derivation: the amplified signal at frequency
δk = 0 has been treated as a classical field, |A0|2 � 1, and its
magnitude to exceed the amplified external noise, |A0|2 � na .
Together these conditions are [cf. Eq. (79)],

|A0|2 � max (1, na) . (E1)

We analyze these conditions separately above and below the
threshold, at zero temperature, and at δ = 0 for simplicity.

Above the threshold, ε > �, the parametric radiation
dominates over the input signal. Neglecting the input, B0 = 0,
we have |A0|2 = √

ε2 − �2/α in accord with Eq. (45). Then
|ε̃|2 = �2 and ζ̃ = 2

√
ε2 − �2, and the amplified vacuum

noise is

nvac
a = �2/8

ε2 − �2
. (E2)

The conditions of Eq. (E1),

α

�
�

{(
ε2

�2 − 1
)1/2

, ε
�

> 3
2
√

2
,

8
(

ε2

�2 − 1
)3/2

, 1 < ε
�

< 3
2
√

2
,

(E3)

are fulfilled everywhere except of the close vicinity of the
threshold. Near the threshold the external noise dominates,
while its role diminishes with growing pump strength. In
the limit of very strong pumping, ε � �, Eq. (E3) reduces
to α/ε � 1. This result can be understood from a purely
Hamiltonian argument. The semiclassical limit requires the
quantum uncertainty of a state localized in a quantum well,
∼h̄, to be much smaller than the total phase-space volume of
the well. The latter can be estimated from the separatrix area,
∝ h̄ε/α � h̄, cf. second inset of Fig. 3(a). Since in the semi-
classical limit tunneling between the wells is exponentially
suppressed, it is consistent to treat noise as local fluctuations
in each well separately.

Below the threshold, ε < �, Eq. (E1) imposes constraints
on the input field B0. To be consistent with the linear
description of fluctuations, we consider the quasilinear limit
of the classical response, α|A0|2 � √

�2 − ε2. With this
assumption, the maximum magnitude of the field in the cavity,
Eq. (51) with θB = −π/4, reads

|A0|2 ≈ 2�0

(� − ε)2
|B0|2, (E4)

while the amplified vacuum noise is

nvac
a ≈ ε2/2

�2 − ε2
. (E5)

The number of amplified vacuum photons inside the cavity
is small at weak pumping but grows and passes the one-
photon level at ε = √

2/3 �, and becomes dominant while
approaching the parametric threshold. Using these estimates,
we extract from Eq. (E1) the lower bound on the input
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signal,

|B0|2
�

�
⎧⎨
⎩

(�−ε)2

2�2 , ε
�

<

√
2
3 ,

ε2

4�2
�−ε
�+ε

,

√
2
3 < ε

�
< 1.

(E6)

For very small pump strength, ε � �, the constraint (E6)
reduces to |B0|2 � �, which is qualitatively similar to a high
quality Duffing cavity, in which the resonant field fed by the
input |B0|2 � � achieves a large (classical) value, |A0|2 � 1.
The quasilinear approximation in this case, α � α|A0|2 � �

is valid as soon as α � �, and it imposes an upper bound on
the input, |B0|2 � �2/2α.

Close to the threshold, the amplified signal grows with
ε more rapidly than the noise, and remains dominant at
practically all input signals. This regime persists until the

nonlinear effect breaks the quasilinear approximation at
α|A0|2 ∼ √

�2 − ε2, and the signal amplitude saturates. The
corresponding constraint on the input reads

|B0|2
�

� �√
2α

(
1 − ε

�

)5/2

, � − ε � �. (E7)

In terms of ε, the upper bound for this regime is given by the
condition

1 − ε

�
�

(√
2

8

α

�

)2/3

. (E8)

For experimentally relevant cavity parameters, α/� < 1/10,
our estimates for the relative noise strength are therefore valid
up to ε ∼ 0.95�.
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