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Abstract Understanding how ecosystems evolve and how they respond to external
perturbations is critical if we are to predict the effects of human intervention. A par-
ticular class of ecosystems whose dynamics are poorly understood are those in which
the species are related via cross-feeding. In these ecosystems the metabolic output of
one species is being used as a nutrient or energy source by another species. In this
paper we derive a mathematical description of cross-feeding dynamics based on the
replicator equation. We show that under certain assumptions about the system (e.g.,
high flow of nutrients and time scale separation), the governing equations reduce to
a second-order series expansion of the replicator equation. By analysing the case of
two and three species we derive conditions for co-existence and show under which
parameter conditions one can expect an increase in mean fitness. Finally, we discuss
how the model can be parameterised from experimental data.

Keywords Syntrophy · Cross-feeding · Population dynamics

1 Introduction

Ecosystems contain a large number of species that interact either directly or indi-
rectly, forming a complex web of interdependencies. The modes of interaction are
many; ranging from predation, competition to parasitism and cooperation. In order to
fully understand the properties of an ecosystem, and how it will react when perturbed,
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it is not sufficient to enumerate the constituent species, but one also needs to under-
stand the dynamics that emerge from their mutual interactions. This is of particular
importance if one wants to predict how ecosystems respond to human intervention.

Many functions carried out by microbes, such as degradation of man-made toxic
compounds, require the joint metabolic effort of many bacterial species. In such
bacterial communities the success of each species depends on the presence or ab-
sence of other species and chemical compounds, effectively joining the components
of the community into a microbial ecosystem. A common mode of interaction in
such ecosystems is cross-feeding or syntrophy, whereby the metabolic output of one
species is being used as a nutrient or energy source by another species. This type of
interaction is found in wide variety of systems, ranging from the human gut micro-
biota (Belenguer et al. 2006), where bacteria aid their host in degrading food stuff, to
the oxidation of methane by ocean-living bacteria (Pernthaler et al. 2008), responsible
for reducing the amount of methane, a potent greenhouse gas, in the atmosphere, and
the cooperative degradation of pesticides by soil bacteria (Katsuyama et al. 2009).

Despite the global importance of the above-mentioned processes, still little is
known, both experimentally and theoretically, about the dynamics of cross-feeding
ecosystems. How do these systems evolve? Could they be made to function more
efficiently? And how sensitive are they to external perturbations?

The phenomenon of cross-feeding was first observed by Helling et al. (1987) in a
long-term evolutionary experiment with the bacteria E. coli. A bacterial colony con-
sisting of only one strain and fed on a single source of nutrient, in this case glucose,
repeatedly evolved to a state containing at least two co-existing strains. This obser-
vation contradicted the exclusion principle, stating that a single resource can only
sustain a single species, and only after numerous replicates of the experiment were
they convinced of the result.

Since then cross-feeding has been reported to occur in a variety of other sys-
tems such as methanogenic environments (Stams 1994), bacteria engaged in nitri-
fication (Costa et al. 2006), the degradation of xenobiotic compounds (Katsuyama
et al. 2009), and in the human gut microbiota (Belenguer et al. 2006). The reason
why cross-feeding is so ubiquitous has not been satisfactorily answered yet and might
seem puzzling. Why is the metabolic activity shared among several species and not
performed by a single species? In the case of E. coli grown on glucose, one strain
partially degrades the glucose to acetate, which after being excreted is consumed by
the other strain. In this case the second strain is clearly subject to negative frequency-
dependent selection (as it would starve in the absence of the primary degrader); how-
ever, it has been hypothesised that the first strain is dependent on the second one, as
the secondary metabolite could be toxic at high concentrations (Pelz et al. 1999).

2 Previous Work

The emergence of cross-feeding was investigated by Pfeiffer and Bonhoeffer (2004)
using a differential equation model that describes the dynamics of an evolving bacte-
rial population within a chemostat. Their results showed that cross-feeding naturally
emerges under the assumption that energy production is maximised while the total
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concentrations of enzymes and intermediates are minimised. Further they showed
that the evolution of cross-feeding depends on the dilution rate in the chemostat and
that a stable co-existence between two strains is more likely to emerge at low dilution
rates.

A different approach was taken by Doebeli (2002), who investigated the appear-
ance of cross-feeding in the framework of adaptive dynamics. In this case the con-
dition for evolutionary branching and the appearance of cross-feeding is that there is
a trade-off between uptake efficiency of the primary and secondary metabolites and
that this trade-off function has a positive curvature. The model also makes the correct
prediction that cross-feeding is less likely to occur in serial batch culture, in which
the primary resource is not replenished, a fact that has been experimentally observed
(Rozen and Lenski 2000). This highlights the necessity of the secondary metabolite
being present for an extended period of time for cross-feeding to evolve.

Some instances of cross-feeding can be viewed as a type of cooperative behaviour,
where the species involved reciprocate by producing secondary metabolites useful for
the other species in the ecosystem. Such a system can always be invaded by mutants
who only benefit from the cross-feeding and do not give anything in return. This sce-
nario was investigated by Bull et al. (2009) in a two-species context, and it was shown
that cross-feeding only emerges in a narrow parameter range and that it only occurs at
intermediate population densities. These results have however been disputed, and the
conditions under which cooperative cross-feeding relations can evolve and be stably
maintained remain unclear (Estrela and Gudelj 2010).

All the above theoretical studies have assumed a situation where the nutrients can
only be degraded in a single way, thus creating a linear metabolic pathway spanning
one or several species. A more interesting situation occurs when a metabolite can
be degraded by several species in different ways, a common feature of real metabolic
networks. This situation was tackled by Crombach et al. (2009) in an individual-based
model, which makes use of an analogy between metabolism and binary computa-
tion. Instead of considering concentrations of metabolites and bacteria, they represent
metabolites by binary strings and the bacteria feeding on them by simple computer
algorithms that modify the strings. Using this model, they showed that cross-feeding
evolves more easily when the ecosystem is spatially structured and when there is a
strong selection for resource utilisation.

A similar approach was taken by Gerlee and Lundh (2010), who considered or-
ganisms represented by cellular automata rules, which transform binary strings, and
where the information theoretic entropy of the strings was taken as a proxy for energy.
Organism/rules that were able to increase the entropy of the binary strings present in
the system were allowed to reproduce and spread in the population. Using this model,
they could show that species diversity is higher when the flow of resources into the
system is low and that this coincides with high ecosystem efficiency.

To summarise, the previous attempts at modelling cross-feeding have been con-
strained either to systems assuming linear metabolic chains or individual-based mod-
els with limited analytical insight. Our aim with the current paper is to present a
general framework in which cross-feeding dynamics can be analysed, and we do this
by deriving a population dynamic model from first principles. This general model
can then be customised to fit a particular real-world situation, and we also carry out
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such an analysis for the case where two and three species are present. This results in
criteria on the interactions between the species which indicate when the species can
co-exist and if the productivity of the ecosystem is maximised.

3 Derivation of Model

We will consider a consortium of n bacterial species engaged in cross-feeding rela-
tions through the metabolites they digest and excrete. For simplicity, we assume that
the total number of individual bacteria is constant and therefore only need to consider
the fraction of species xi , i = 1, . . . , n. The time evolution of the species composition
is described by the replicator equation (Schuster and Sigmund 1983)

dxi

dt
= (φi − φ̄)xi, (1)

where φi is the fitness of species i, and

φ̄ =
n∑

i=1

φixi (2)

is the mean fitness in the population. This means that if species i has a fitness above
the average, its fraction in the population will increase, and if below average, de-
crease. In the following we will concern ourselves with a derivation of the fitness
function when the consortium is engaged in cross-feeding.

The fitness is assumed to depend on the ability of the bacteria to harvest energy
from the resources available. This means that we assume that the limiting factor is
not the building blocks necessary for biomass growth, but the energy required to syn-
thesise these molecules into new DNA, proteins or lipids. We further assume that the
resources in the system consist of molecular species and that each bacterial species
metabolises the molecules in a unique way, leaving, so to speak, a unique finger-
print on the transformed molecules. A single unmetabolised molecular type S0 is
added to system at a rate γ , and we will keep track of the metabolised molecules
by labelling them according to which species they have been metabolised by. In this
notation molecule Sijk started its presence in the system as an S0 molecule, was first
metabolised by species i, then j , and finally by species k (see Fig. 1). This induces
a natural hierarchy or (partial) ordering among the molecular types, where level l

contains nl distinct types of molecules. The inflow of S0-molecules is counterbal-
anced by an outflow occurring on all levels, so that the number of molecules within
in the system is kept constant. This means that we do not have to keep track of abso-
lute numbers, but instead of the fraction, or relative concentration, si , each molecular
type, Si , constitutes.

The bacteria are assumed to be in a metabolic steady state, meaning that their up-
take of a metabolite, metabolic conversion and excretion of the transformed metabo-
lite are all equal, but not necessarily constant with respect to time. That is, we assume
that the metabolic dynamics occur on a much shorter time scale than the replicator
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Fig. 1 A schematic of the dynamics of the metabolites. High-energy molecules S0 flow into the system
at rate γ and are transformed by the bacterial species 1, . . . , n. A molecule that has been metabolised first
by species i and then by species j is denoted Sij . The total outflow of metabolites is also γ , ensuring that
the total number of metabolites is constant over time

dynamics. This means that the concentration of the primary metabolite S0 can be
described by the following ODE:

ds0

dt
= −

∑

i

ri(s0)xi + γ (1 − s0), (3)

where ri(·) is a function that describes the uptake of S0 by species i as a function
of the media concentration, s0. Thus the product ri(s0)xi corresponds to the total
uptake of the metabolite of bacteria from species i, and lastly γ is the flow rate of
metabolites into and out of the system. The concentration of a first-order metabolite
Si is given by

dsi

dt
= ri(s0)xi −

∑

j

rij (si)xj − γ si, (4)

where the first term corresponds to production of Si by species i, the second to con-
sumption by all bacterial species, and the last term stands for outflow.

To each metabolic step we associate an energy E that measures the amount of
energy extracted in the metabolic reaction and use subscript to denote the particu-
lar step. Hence Ei denotes the energy extracted by species i when metabolising S0

molecules.
The total fitness of a species is assumed to be proportional to the total harvested

energy, but as an approximation, we will only consider the fitness contribution of
zeroth- and first-order metabolites, valid when the flow rate γ is large. This means
that the fitness of species i can be expressed as

φi = ri(s0)Ei +
∑

j

rji(sj )Eji + Ω(2), (5)

where the first term comes from the energy harvested from primary metabolites S0,
the second contribution comes from energy extracted from molecules produced by
the other bacteria in the consortium, and Ω(2) stands, like an error term, for the
fitness contribution from higher-order metabolic interactions.
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Without any further simplifications we are left with a system of n equations for the
bacteria and 1+n equations for the metabolites giving in total 2n+1 coupled ODEs,
whose analysis will be far from trivial, even when the effect from higher-order inter-
actions, Ω(2), are disregarded. In order to arrive at a simpler system, we will make
two final simplifications. Firstly, we assume that all uptake functions r(s) are equal
and of the form r(s) = κs, which means that the uptake is linear with the medium
concentration and implicitly assumes that metabolites are scarce and no saturation
effects are present. Secondly, we assume that there is a separation in time scale be-
tween the dynamics of the metabolites and the bacterial population dynamics. This
implies that the metabolite concentrations are in a steady state, which corresponds to
setting the time derivatives of s0 in Eq. (3) and si in Eq. (4) equal to zero. These two
simplifications mean that we can solve for the steady-state concentrations to get

ŝ0 = γ

γ + κ
(6)

and

ŝi = κγ

(γ + κ)2
xi, (7)

where in the last expression the frequency of species i, xi influences the steady-
state molecular concentration linearly. Plugging these expressions for the metabolite
concentrations into the fitness function (5), we get the following expression for the
fitness of species i:

φ̂i = κγ

γ + κ
Ei + κ2γ

(γ + κ)2

∑

j

Ejixj + Ω(2). (8)

By introducing the parameter η = κ/(γ + κ), we can rewrite the above expression as

φ̂i = γ ηEi + γ η2
∑

j

Ejixj + Ω(2). (9)

This means that the fitness of a species depends both on how good it is at harvest-
ing energy from the primary metabolite (the first term) and its interactions with
other species (the second term). This interaction is quantified in the constant Eji

that describes how well species i can extract energy from metabolites previously
metabolised by species j . This truncation of the fitness introduces an error, but from
Theorem 1 in Appendix A we have that the sum of terms of degree two and higher,
Ω(2), can be bounded

Ω(2) ≤ c0γ η3c2

1 − ηc
= c0γ κ3c2

(κ + γ )(κ(1 − c) + γ )

assuming that the sequence is so-called Level Limited of degree two (see Definition 1
in Appendix A).
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4 Analysis of the Two Species Case

In order to gain insight into the above-derived system of equations, we will in this sec-
tion analyse the special case of two and three species engaged in cross-feeding. Our
analysis will focus on two important properties of ecosystems: species co-existence
and the time-evolution of ecosystem productivity.

Let us denote the two species α and β , and let x be the fraction of species α, and
consequently 1 − x the fraction of species β . The time dynamics of the system will
be determined by the replicator equation (1):

dx

dt
= (

φα(x) − φ̄(x)
)
x = (

φα(x) − (
xφα(x) + (1 − x)φβ(x)

))
x

= x(1 − x)
(
φα(x) − φβ(x)

)
.

For convenience, we define the right-hand side of the above equation as the replicator
function

ρ(x) = x(1 − x)
(
φα(x) − φβ(x)

)
. (10)

Based on the derivation in the previous section, Eq. (9) provides the following ex-
pressions for the fitness of the two species:

φα(x) = ηγ Eα + η2γ
(

Eβα(1 − x) + Eααx
)

and (11)

φβ(x) = ηγ Eβ + η2γ
(

Eαβx + Eββ(1 − x)
)
. (12)

4.1 Co-existence

We will consider two different notions of co-existence, firstly the concept of perma-
nence, which roughly corresponds to non-extinction, and secondly, the presence of
an internal stable fixed point x
 ∈ (0,1) for the replicator equation.

A replicator system is considered permanent if for all initial conditions, such that
all species are present in non-zero frequencies, no species frequency will ever become
zero. In ecological terms this simply means that no species will ever go extinct, or in
the case of our system: x(t) ∈ (0,1) for all t ≥ 0. We will approach the problem by
analysing the stability of the two boundary fixed points. In our one-dimensional case
we have permanence if the boundary point x = 0,1 are repelling, i.e. if both these
fixed points are unstable. This occurs when

ρ′(x) > 0 for x = 1− and x = 0+.

From (10) we have that

ρ′(x) = (1 − 2x)
(
φα(x) − φβ(x)

) + x(1 − x)
(
φ′

α(x) − φ′
β(x)

)
. (13)

So at the lower boundary point, x = 0, we have that

ρ′(0) = φα(0) − φβ(0) = ηγ
(

Eα − Eβ − η(Eββ − Eβα)
)
,
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that is, the left-hand side limit point is unstable if

Eα − Eβ > η(Eββ − Eβα). (14)

Similarly, for the upper boundary point, x = 1, we have that

ρ′(0) = −(
φα(1) − φβ(1)

) = −ηγ
(

Eα − Eβ − η(Eαβ − Eαα)
)
.

Hence, we have that the boundary point x = 1 is unstable if

Eα − Eβ < η(Eαβ − Eαα). (15)

We conclude that we have permanence if

η(Eββ − Eβα) < Eα − Eβ < η(Eαβ − Eαα). (16)

It turns out that we can say even more then that we have permanence. From (10) we
see that ρ(x) is a third-degree polynomial such that ρ(0) = ρ(1) = 0 and both ρ′(0)

and ρ′(1) are strictly positive, which means that in a small right-hand neighbourhood
of 0, ρ(x) is strictly positive, and similarly ρ(x) is strictly negative on a small left-
hand neighbourhood of 1. Hence, there exists an x∗ ∈ (0,1) such that ρ(x∗) = 0 and
ρ′(x∗) < 0. Or, in other words, there exists a stable internal fixed point, and we have
stable coexistence between the two species. Furthermore, the fixed point x∗ can be
given explicitly by solving Eq. (10). That is,

x∗ = 1/η(Eα − Eβ) + Eβα − Eαα

Eαβ + Eβα − Eαα − Eββ

. (17)

This means that in our simple system the two notions of coexistence coincide, i.e. if
the system is permanent and the boundaries are repelling, then there exists a stable
internal fixed point x∗ given by the above expression (17).

4.2 Five Different Scenarios

By extending the above reasoning we can in fact classify the behaviour of the system
into five distinct cases:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗ is a stable internal fixed point

if η(Eββ − Eβα) < Eα − Eβ < η(Eαβ − Eαα);
0 is a stable fixed point

if η(Eββ − Eβα) > Eα − Eβ < η(Eαβ − Eαα);
1 is a stable fixed point

if η(Eββ − Eβα) < Eα − Eβ > η(Eαβ − Eαα);
0 and 1 are stable fixed points

if η(Eββ − Eβα) > Eα − Eβ > η(Eαβ − Eαα);
the dynamics are neutral, φα = φβ

if η(Eββ − Eβα) = Eα − Eβ = η(Eαβ − Eαα).
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Fig. 2 A graphical illustration
of the five possible scenarios for
a two-species system. Each
scenario corresponds to a
quadrant in the (ξα, ξβ)-plane,
except the neutral case, which
only occurs at the origin, and
implies that the fitnesses of α

and β are equal for all x

Note that in the second scenario where 0 is a stable fixed point, 1 is a unstable fixed
point, and x∗ is outside (0,1). In the third case, 1 is a stable fixed point, 0 unstable,
and again x∗ is outside (0,1). In the fourth case where both 1 and 0 are stable fixed
points, x∗ is an unstable fixed point in (0,1). Finally, the fifth case is valid if and only
if Eαβ + Eβα = Eαα + Eββ and Eα − Eβ = η(Eββ − Eβα) holds.

By defining the quantities

ξα = η(Eαβ − Eαα) − (Eα − Eβ) and (18)

ξβ = η(Eβα − Eββ) − (Eα − Eβ) (19)

we can illustrate the five scenarios graphically shown in Fig. 2. Each case corresponds
to a quadrant, except the neutral case, which only occurs at the origin.

4.3 A Generalized Permanence Analysis

Let us briefly mention that the problem of permanence can be approached from a
different angle. It has been shown, see for example (Jansen 1987), that if one can
find a function P(x) such that P(x) = 0 for all x on the boundary of the system and
P(x) > 0 for all x in the interior, then the system is permanent. The function P(x) is
required to satisfy

dP (x(t))

dt
= P(x)Ψ (x),

where Ψ (x) is an average Lyapunov function, which satisfies Ψ (x∗) > 0 for all rest
points x∗ on the boundary. In the case of n = 2 a good choice is P(x) = xa(1 − x)b ,
where a, b > 0 are constants, and the average Lyapunov function becomes Ψ (x) =
awα(x) + bwβ(x), where wi(x) = φi(x) − φ̄(x). In order to determine the perma-
nence of the system, we thus need to find out if there exists constants a, b > 0 such
that Ψ (0) > 0 and Ψ (1) > 0 since the rest points on the boundary in this case re-
duce to x∗ = 0 and 1. This yields two inequalities, which in fact are independent of
a and b, but instead put constraints on the model parameters and result in precisely
the same inequalities (16) as the above analysis produced. However, this technique to
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show permanence has the advantage that it can easily be extended to higher dimen-
sions, and one can in fact show that a sufficient condition for permanence for three
species that form an intransitive triple (i.e. in isolation, species i outcompetes j , j

outcompetes k and k outcompetes i) is given by

Γ12Γ23Γ31 < 1, (20)

where

Γij = Ej − Ei + η(Ejj − Eji)

Ej − Ei + η(Eji − Eii )

(see Appendix B for details).

4.4 Productivity

We now return to the two-species case to investigate another important concept,
namely that of ecosystem productivity. There are several ways in which this prop-
erty can be defined, but a convenient measure is to consider the total amount of en-
ergy that the species within the ecosystem can assimilate per unit time. Since we
assume that the reproductive rate of a species is proportional to its energy uptake,
the productivity of the ecosystem is proportional the average fitness in the popula-
tion φ̄(x) = xφα + (1 − x)φβ . A natural question to ask about the productivity is if
it increases over time or, in other words, if the dynamics of the system pushes the
ecosystem towards an increase in average fitness. An answer to this question can be
found by applying a theorem by Shashahani, which states that if the condition

∂φi

∂xj

= ∂φj

∂xi

holds for all species i and j , then the average fitness always increases along trajecto-
ries of the system (Shashahani 1979), i.e.

dφ̄(x(t))

dt
> 0.

In the case of cross-feeding with only two species present, this reduces to the sur-
prisingly simple condition Eαβ = Eβα , which means that the two species need to be
equally good at extracting energy from each others left-overs. This reasoning can be
extended to the three species scenario, and in this case the condition for increasing
productivity takes the form

Eαβ + Eβγ + Eγα = Eαγ + Eγβ + Eβα,

which, as one might expect, is a considerably stricter condition, and involves all
second-order energy terms.

If we combine the condition for the two-species case with the previously derived
conditions for co-existence (16), we get the following requirements for a two-species
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system that evolves towards a stable state of coexistence that coincides with a maxi-
mum in the productivity of the ecosystem:

Eαβ = Eβα,

Eαβ > Eαα, and

Eαβ > Eββ.

5 Discussion

In this paper we have considered the problem of cross-feeding, or syntrophy, and
derived a model of this phenomenon based on the replicator equation. In the case
of a high flow of energy into the system and under the assumption of a separation
in time-scale between metabolic and population dynamics, we could show that the
fitness of each species in the ecosystem is given by a constant term plus a linear
combination of the species frequencies, whose coefficients correspond to the ability
of a species to extract energy from previously metabolised resources. In our analysis
of the system we have focused on the case of a two-species ecosystem and were able
to derive conditions for coexistence and increase in productivity. The latter condition
in fact tells us when Fisher’s fundamental theorem of natural selection (Fisher 1930)
applies in this system, where selection is frequency dependent.

Two-species systems are in fact the typical systems considered in laboratory ex-
periments on cross-feeding, and it would be interesting to observe if the conditions
derived in this paper hold for real bacterial ecosystems. In order to make such a
comparison, one would need to characterise the bacterial species according to their
ability to extract energy from the metabolites provided and manufactured by the other
species in the ecosystem.

This can actually be achieved by measuring the growth rate of the bacteria in vari-
ous assays. For example, the Ei can be directly related to the growth rate of species i

in isolation in the limit of high flow γ . The second-order interactions terms Eji could
be estimated by letting media pass from species j to species i under appropriate flow
conditions and by measuring the growth rate of species i. By measuring the lowest
order interactions terms first, higher-order terms could be similarly determined. A po-
tential system in which these ideas can be tested is an experimental microcosms of
E. coli grown on minimal media with glucose (Saxer et al. 2009).

However, as a complement to in vivo experimentation, the possibility exists to
test the model and its predictions on a computational system. An ideal candidate for
this would be the agent-based system Urdar, in which agents represented by cellu-
lar automaton rules that engage in cross-feeding interactions by metabolising binary
strings. This system exhibits complex dynamics, and some of these might be explica-
ble by applying the framework presented in this paper. For example, one could exam-
ine to what extent truncation of higher-order interaction terms in the fitness function
affect the accuracy of the model predictions. In particular, it would be interesting to
investigate how closely the productivity (or average fitness) maxima is attained for
species that only to an approximate degree satisfy the criterion Eαβ = Eβα . In other
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words, if we let ε = |Eαβ − Eβα| and δ = |x
 − xp|, where x
 is the fixed point, and
xp is the point at which productivity is maximised, how does δ depend on ε?

This paper presents a first step towards a more thorough understanding of cross-
feeding dynamics. With the methodology developed in this paper it will be possible
to characterise microbial ecosystems involved in cross-feeding and to asses their po-
tential in achieving optimal ecosystem efficiency. Furthermore, it will provide tools
for manipulating existing microbial ecosystems, by for example introducing foreign
species, so that the ecosystem as a whole can achieve a higher efficiency.

Appendix A: An Estimate of the Higher-Order Terms

In order for the truncated series in Eq. (8) to be valid, we need to control the tail, i.e.
the higher-order terms.

First we need to define the notation of multi-index I . Let I = i1i2 . . . ik where all
ij ∈ {1, . . . , n}, and let xI be the product xi1xi2 . . . xik of fractions of species. We will
also use the notation I i for the concatenation i1 . . . iki. Finally, we denote the length
of the multi-index I by |I |.

Definition 1 We say that the cross-feeding process is Level Limited of degree d if
there are positive constants c0 and c, where c < 1 such that for every multi-index I

with |I | ≥ d − 1 and every index i,

EI i ≤ c0c
|I |.

Note that if the cross-feeding process is monotone in the following way:

EI i

EI

≤ c < 1

for all multi-indices I with |I | ≥ d − 1, then it is Level Limited of degree d .

Theorem 1 The sum of the higher-order terms of degree d , Ω(d), is bounded above
by κd+1/(κ + γ )d . Furthermore, if the process is level limited of degree d , we have
that the sum of the higher-order terms of degree d are bounded in the following way:

Ω(d) ≤ c0γ κd+1cd

(κ + γ )d+1(κ(1 − c) + γ )
. (21)

Before we prove this, we need a lemma as a generalisation of Eqs. (6) and (7),
which is easily proved using induction.

Lemma 1 For any multi-index I ,

ŝI = κ |I |γ xI

(κ + γ )|I |+1
.



Cross-Feeding Dynamics Described by a Series Expansion 721

Let us now prove the proposition starting with Eq. (21).

Proof of Theorem 1 To simplify the notation, let us consider the case where d = 2
and recall that η = κ/(κ + γ ). We start by noting that the sum over every multi-index
I with fixed length p is

∑

|I |=p

xI =
∑

i1

∑

i2

· · ·
∑

i|I |
xi1xi2 . . . xi|I | =

∑

i1

xi1

∑

i2

xi2 · · ·
∑

i|I |
xi|I |

= 1 · 1 · · ·1 = 1.

By then using the lemma and the assumption that the process is Level Limited of
degree d = 2, we have that

Ω(2) = γ η3
∑

k

∑

j

xkxj Ekji + γ η4
∑

l

∑

k

∑

j

xlxkxj Elkj i + · · ·

= γ

∞∑

p=2

ηp+1
∑

|I |=p

xI EI i ≤ γ

∞∑

p=2

ηp+1c0c
p

∑

|I |=p

xI ≤ γ

∞∑

p=2

ηp+1c0c
p

= γ η3c2
∞∑

p=0

(ηc)p = c0γ η3c2

1 − ηc
= c0γ κ3c2

(κ + γ )2(κ(1 − c) + γ )
.

Now, if we cannot assume that the sequence is Level Limited, we always have
the trivial estimate EI ≤ 1 for any multi-index I . Repeating the train of inequalities
above, we end up with the following estimate:

Ω(2) = γ

∞∑

p=2

ηp+1
∑

|I |=p

xI EI i ≤ γ
(
η3 + η4 + · · · ) = γ η3

1 − η
= κ3

(κ + γ )2
.

It is now straightforward to extend the proof to any degree d other than two. �

Appendix B: Intransitivity and Permanence for Three Species

In this section we present a conditions for intransitivity and permanence for three
interacting species.

Definition 2 We say that a set containing N species is intransitive if the constituent
species can be ordered in such a way that the pairwise dynamics between species
i and i + 1 for i = 1, . . . ,N − 1 are such that the fixed point (xi, xi+1) = (1,0) is
unstable and the fixed point at (xi, xi+1) = (0,1) is stable, and where the fixed point
(xN , x1) = (1,0) is unstable and (xN, x1) = (0,1) is stable.

Theorem 2 Consider three species involved in cross-feeding described by (1) and
(9) and assume that Ω(2) = 0. If the inequalities

Ei − Ej > η(Ejj − Eji) (22)
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and

Ei − Ej > η(Eij − Eii ) (23)

hold for all pairs of species i and j , then the three species form an intransitive triple.
Further, if the inequality

Γ12Γ23Γ31 < 1, (24)

where

Γij = Ej − Ei + η(Ejj − Eji)

Ej − Ei + η(Eji − Eii )
,

holds, then the system exhibits permanence.

Proof We begin by noting that inequality (22) is equivalent to condition (14), which
describes the criteria for the fixed point x = 0 being unstable in the two species sys-
tem, and that the second inequality (23) is the reverse of (15), hence a condition for
the fixed point at x = 1 being stable. Since this is assumed to hold between all three
species, we have, according to the definition, an intransitive set.

For the second part of the theorem, we will make use of the technique described
in Sect. 4.3 (Jansen 1987), here extended to the case of three species. First we define
the function P(x, y) = xayb(1−x −y)c , where x is the fraction of species 1, y is the
fraction of species 2, and the fraction of species 3 is given by 1 − x − y. The constant
a, b, c are assumed to be real and positive. Now P satisfies

dP (x(t), y(t))

dt
= P(x, y)Ψ (x, y)

with Ψ (x, y) = aw1(x, y) + bw2(x, y) + cw3(x, y), where wi(x, y) = φi(x, y) −
φ̄(x, y). In order to determine the permanence of the system, we need to determine if
there exists constants a, b, c > 0 such that Ψ (x
, y
) > 0 for all fixed points (x
, y
)

on the boundary of the system. Since we know that the system is intransitive, we
also know that the fixed points on the boundary are located at the corners of the
simplex, i.e. at (x
, y
) = (0,0), (0,1) and (1,0). Evaluating Ψ at these points, we
get, by using (9),

Ψ (0,0) = aw1(0,0) + bw2(0,0) + cw3(0,0)

= a
(
γ ηE1 + γ η2 E31 − γ ηE3 − γ η2 E33

)

+ b
(
γ ηE2 + γ η2 E32 − γ ηE3 − γ η2 E33

)
> 0.

For notational convenience, we now define

λji = γ ηEi + γ η2 Eji .

We can now rewrite the above inequality as

Ψ (0,0) = a(λ31 − λ33) + b(λ32 − λ33) > 0, (25)
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and similarly for the two other fixed points, we get

Ψ (0,1) = a(λ21 − λ22) + c(λ23 − λ22) > 0 (26)

and

Ψ (1,0) = b(λ12 − λ11) + c(λ13 − λ11) > 0. (27)

We will now try to eliminate the constants a, b, c and determine for which values of
the λs these inequalities hold. We proceed by rewriting (25) as

a > b
λ33 − λ32

λ31 − λ33
, (28)

where we have assumed that λ31 > λ33. However this assumption corresponds to
(22). We now rearrange (27) into

a < c
λ23 − λ22

λ22 − λ21
, (29)

under the warranted assumption that λ22 > λ21 i.e. (23). Combining (28) and (29),
we obtain

b
λ33 − λ32

λ31 − λ33
< a < c

λ23 − λ22

λ22 − λ21
.

This eliminates a from the system, and we can instead write

c

b
>

(λ33 − λ32)(λ22 − λ21)

(λ31 − λ33)(λ23 − λ22)
,

where we have assumed that λ22 < λ23, i.e. (22). Lastly (26) gives us, under the
assumption that λ11 > λ13, i.e. (23),

c

b
<

λ12 − λ11

λ11 − λ13
.

We now have lower and upper bounds for c/b, and we can conclude that constants a,
b, c exist that satisfy the original inequalities if

(λ33 − λ32)(λ22 − λ21)

(λ31 − λ33)(λ23 − λ22)
<

λ12 − λ11

λ11 − λ13
,

where in the last step we made use of the fact that λ12 > λ11, i.e. (22). This last
inequality is equivalent to (24), and hence we know that the system is permanent in
this case. �
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