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Abstract The dynamics of individual flexible fibers in a turbulent flow field
have been analyzed, varying their initial position, density and length. A particle-
level fiber model has been integrated into a general-purpose, open source Com-
putational Fluid Dynamics (CFD) code. The fibers are modeled as chains of
cylindrical segments connected by ball and socket joints. The equations of mo-
tion of the fibers contain the inertia of the segments, the contributions from hy-
drodynamic forces and torques, and the connectivity forces at the joints. Direct
Numerical Simulation (DNS) of the incompressible Navier–Stokes equations is
used to describe the fluid flow in a plane channel and a one-way coupling is con-
sidered between the fibers and the fluid phase. We investigate the translational
motion of fibers by considering the mean square displacement of their trajecto-
ries. We find that the fiber motion is primarily governed by velocity correlations
of the flow fluctuations. In addition, we show that there is a clear tendency of
the thread-like fibers to evolve into complex geometrical configurations in a tur-
bulent flow field, in fashion similar to random conformations of polymer strands
subjected to thermal fluctuations in a suspension. Finally, we show that fiber in-
ertia has a significant impact on reorientation time-scales of fibers suspended
in a turbulent flow field.
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1 Introduction

The dynamics of particles suspended in flowing fluid are of high relevance in
a great number of industrial processes. Particularly, suspensions of fibers and
fiber flocs are processed to produce paper products and fiber composites. One
example is the process of making pulp mats for use in hygiene products. When
a fiber suspension is subjected to a flow field, the fibers may translate, rotate
and deform. In the case of the production of fiber mats, these changes in the
microstructures of the suspension affect the macroscopic properties of the pro-
duced material, such as elastic modulus, strength, and thermal and electric
conductivities. In pulp and paper processing, the fiber dynamics of the sheet
forming process are one of the most important factors that influence the sheet
characteristics [23,19].

To model these industrial processes, including wet forming of paper and
dry forming of pulp mats, it is necessary to consider large particle systems in
high Reynolds number flow with finite Reynolds number fiber–flow interactions
[14]. The forming unit process in water-based papermaking has been previously
modeled at a particle-level with direct numerical simulation (DNS) under a
Stokes flow assumption [26] and with a microhydrodynamics approach for fi-
nite Reynolds numbers [16,17]. The characteristics of dry forming, with large
flow geometries and fibers suspended in air, present numerically more challeng-
ing conditions, since air is less dissipative than water and the time-resolution
required to resolve undamped mechanical vibrations becomes a major obstacle.
This work constitutes a first step toward tackling such intrinsically very chal-
lenging flows, and thus considers the motion of isolated fibers in a turbulent
flow. The goal of the paper is thus to propose and describe a method that aims
at investigating numerically the properties of flexible fibers in a directly simu-
lated turbulent flow field.

As for numerical studies, a number of approaches have been developed to
study particle-laden flows. In the Eulerian–Eulerian approach the phases are
treated as interpenetrating continua. The Lagrangian–Eulerian approach, on
the other hand, treats particles as moving objects in a fluid medium. In the
DNS approach, the particle geometries are resolved to a high level of detail, giv-
ing excellent predictive capability for fiber motion in suspension [22,24], but at
a relatively high computational cost. Marchioli et al. [18] studied rigid fibers in
a channel with turbulent flow, specifically investigating near-wall phenomena,
fiber alignment and aggregation. In the microhydrodynamics approach, many
particles are combined into a multi-rigid-body system, as previously discussed
in [4,15,9]. The most suitable fiber suspension flow model for any given prob-
lem must be chosen while considering the problem size, the required resolution
and time-scales of the problem [9]. We investigate the motion of fibers in a flow
geometry much greater than the fiber length with a relatively high Reynolds
number. Consequently, a microhydrodynamics approach is preferred in this in-
stance.

Several microhydrodynamics approaches have been previously developed to
simulate flexible fiber motion in shear and sedimentation flows. Matsuoka and
Yamamoto [19] developed a particle-level simulation technique to capture the
dynamics of rigid and flexible fibers in a prescribed flow field. They represented
a fiber by a number of spheres, lined up and connected to each neighboring



A study of a flexible fiber model and its behavior in DNS of turbulent channel flow 3

sphere. Ross and Klingenberg [23] proposed a similar model, but using a chain
of rigid, prolate spheroids. These numerical studies were in qualitative agree-
ment with experimental results of isolated fiber motion obtained by Forgacs and
Mason [7,8] and also predicted some of the rheological properties of fiber sus-
pensions. Schmid et al. [25] developed a particle-level simulation technique to
study flocculation of fibers in sheared suspensions in three dimensions. They
investigated the influence of the shear rate, fiber shape, fiber flexibility, and
frictional inter-particle forces on flocculation. The fibers were modeled as chains
of massless, rigid, cylindrical segments interacting with an imposed flow field
through viscous drag forces and with other fibers through contact forces. Lind-
ström and Uesaka [15] further developed the model of Schmid et al. [25], by
taking into account the particle inertia and the intermediate to long-range hy-
drodynamic interactions between the fibers. They derived an approximation of
the non-creeping interaction between fiber segments and the surrounding fluid,
for larger segment Reynolds numbers, and took into account the two-way cou-
pling between the particles and the carrying fluid. Their simulations success-
fully reproduced the different regimes of motion for threadlike particles [15],
and were subsequently used to study paper forming [16,17].

In the present paper, we are interested in the dynamics of individual flex-
ible fibers suspended in a turbulent flow field. For that purpose, the flexible
fiber model developed by Lindström and Uesaka [15] has been implemented in
the OpenFOAM open source CFD software [28]. The aim is to have a detailed
resolution of the flow field of the carrier phase in order to study fiber–flow in-
teractions at intermediate to large Reynolds numbers, as motivated by the flow
conditions of industrial forming processes. Particularly, we study the trajecto-
ries and reorientation of isolated, flexible fibers and how this depends on the
initial fiber position, density and length.

2 Fiber model

In this section we describe the fiber geometry and its governing equations. Nu-
merical algorithms to solve these equations are discussed as well. The present
model does not include fiber-fiber interactions, i.e the fibers can cross each other.

2.1 Fiber geometry

Following the work of Schmid et al. [25] and Lindström and Uesaka [15], a fiber
is modeled as a chain of N rigid cylindrical segments (see Fig. 1). The segments
are indexed i ∈ [1,N ] and their locations are specified with respect to a global
Cartesian coordinate system Γ . The axes of this inertial frame are defined by the
base vectors {ê1, ê2, ê3} and the origin is denoted by O . A single fiber segment
has a diameter di, a length li, a start point Pi, and a unit vector ẑi, which is
aligned with the segment. The position of each fiber segment’s center of mass is
thus ri =

−−→
OPi + liẑi/2.
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Fig. 1 Fiber geometry definitions.

2.2 Fiber equations of motion

The equations of motion comprise Euler’s first and second law for each fiber
segment i, as formulated in [25,15], yielding

mir̈i = F hi + F
w
i +Xi+1 −Xi (1a)

∂(Ii · ωi)
∂t

= T hi +
li
2
ẑi ×Xi+1 +

(
−li
2
ẑi

)
× (−Xi). (1b)

In Eq. (1a), mi is the mass of the segment, F hi is the hydrodynamic force acting
on the segment i (see Sect. 2.3 and Appendix A), Fwi is the sum of body forces,
neglected in the present work, and Xi is the connectivity force exerted on seg-
ment i−1 by segment i. For the end segmentsX1 =XN+1 = 0. In Eq. (1b), Ii is
the tensor of inertia of segment iwith respect to Γ , ωi is the angular velocity and
T hi is the hydrodynamic torque (see Sect. 2.3). A fully flexible, thread-like fiber
is considered, without any restoring moments in the ball and socket joints. The
connectivity constraint between the fiber segments requires that the end-points
of adjacent fiber segments coincide, i.e.

ri +
li
2
ẑi = ri+1 −

li+1

2
ẑi+1. (2)

The connectivity equation is then obtained by taking the time derivative of Eq.
(2), yielding

ṙi+1 − ṙi =
li
2
ωi × ẑi +

li+1

2
ωi+1 × ẑi+1. (3)

2.3 Hydrodynamic forces

The hydrodynamic forces and torques, F hi and T hi , develop due to the velocity
difference between the fiber segment and the fluid medium, as shown in detail
in Appendix A. For a given velocity field υ of the fluid, the strain-rate tensor is
given as G = [∇υ + (∇υ)T]/2 , with T denotes the transpose and Ω = ∇× υ/2
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is the angular velocity of the fluid. The operators ∇ and ∇× denote the gradi-
ent and the curl, respectively. The characteristic shear rate of the flow for fiber
segment i is the γ̇i =

√
(1/2)(Gi : Gi), where Gi is the local value of the strain

rate tensor interpolated at position ri, and : is a double inner product. We de-
fine the segment Reynolds number as Res = ρd∆v/η, where ρ is the density of
the fluid, η is its dynamic viscosity, d is the fiber diameter and ∆v is the char-
acteristic velocity difference between the fibers and the fluid. Here, we choose
∆v = lγ̇, where l is the segment length. The fiber diameter in wall units is 0.0068
and typically Res ≈ 0.033. The hydrodynamic forces are dominated by viscous
effects at small segment Reynolds numbers Res � 1, and by inertia effects for
large segment Reynolds numbers Res � 1. Lindström and Uesaka [15] numer-
ically investigated the consequence of expressing viscous and inertia drag as
a sum of two separable components, and found a fair agreement between the
model, theory and experiments for a cylinder in cross-flow in the viscous flow
regime (Res . 10−1) as well as in the regime dominated by dynamic effects
(102 . Res . 3× 105). The maximum error in drag coefficient CD is 42%, found
in the intermediate interval of Reynolds numbers at Res ≈ 5.4. The total force
and torque exerted on fiber segment i by the fluid are then given by

F hi = F h,υi + F h,Ii = (Aυi +A
I
i ) · [υ(ri)− ṙi] (4a)

T hi = T h,υi + T h,Ii = (Cυi +C
I
i ) · [Ω(ri)− ωi] + (Hυ

i +H
I
i ) : G(ri). (4b)

Here, Aυi , Cυi , and Hυ
i are the hydrodynamic resistance tensors of Stokes flow,

AIi , C
I
i and HI

i are the dynamic resistance tensors, see Appendix A.

2.4 Discretized fiber equations of motion

The fiber equations of motion are discretized in time with a time step ∆t. Sub-
scripts n − 1 and n denote the previous and the current time step, respectively.
An implicit numerical scheme is used for calculating the segment velocity and
angular velocity to enhance numerical stability. In all the equations presented
in this section, the connectivity forces Xi and Xi+1 are treated as unknowns.
Using the expression for the hydrodynamic force (see Appendix A), Eq. (1a) can
be discretized as

m

∆t
(ṙi,n − ṙi,n−1) =

(
Aυi,n−1 +A

I
i,n−1

)
· [υ (ri,n−1)− ṙi,n] +Xi+1,n −Xi,n. (5)

In the angular momentum equation (1b), the time differential term can be dis-
cretized as

∂(Ii,n−1 · ωi,n)
∂t

= İi,n−1 · ωi,n + Ii,n−1 · ω̇i,n

≈ İi,n−1 · ωi,n +
1

∆t
Ii,n−1 · (ωi,n − ωi,n−1) . (6)
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Using the expression for the hydrodynamic force (see Appendix A), Eq. (1b)
yields

İi,n−1 · ωi,n +
1

∆t
Ii,n−1 · (ωi,n − ωi,n−1) = (Cυi,n−1 +C

I
i,n−1)·

(Ω (ri,n−1)− ωi,n) + (Hυ
i,n−1 +H

I
i,n−1) : G (ri,n−1)

+
li
2
ẑi,n−1 × (Xi+1,n +Xi,n) . (7)

Finally, Eq. (3) is discretized as

ṙi+1,n − ṙi,n =
li
2
ωi,n × ẑi,n−1 +

li+1

2
ωi+1,n × ẑi+1,n−1. (8)

The momentum equation (5), the angular momentum equation (7) and the con-
nectivity equation (8) form a system of equations, which can be solved for the
unknown connectivity forces, velocities and angular velocities at time n. Since
these variables have different physical units, the coefficients of the linear sys-
tem will differ by many orders of magnitude and make the system ill-conditioned.
Thus, a system of dimensionless equations should be considered.

2.5 Dimensionless connectivity force linear system

The dimensionless system of equations for the unknown connectivity forces,
where (∗) denotes dimensionless quantities, reads

Q∗i,n−1 ·X
∗
i,n + S∗i,n−1 ·X

∗
i+1,n + T ∗i,n−1 ·X

∗
i+2,n = V ∗i,n−1. (9)

The corresponding dimensionless tensors are described in Appendix B. After
applying Tikhonov regularization (see [1]), this system can be solved for the
unknown dimensionless connectivity forces X∗i,n, [2 ≤ i ≤ N ], while X∗1,n =
X∗N+1,n = 0. In the present work, each fiber consists of N = 7 segments so that
the system takes the form

S∗1,n−1 T
∗
1,n−1 0 0 0 0

Q∗2,n−1 S
∗
2,n−1 T

∗
2,n−1 0 0 0

0 Q∗3,n−1 S
∗
3,n−1 T

∗
3,n−1 0 0

0 0 Q∗4,n−1 S
∗
4,n−1 T

∗
4,n−1 0

0 0 0 Q∗5,n−1 S
∗
5,n−1 T

∗
5,n−1

0 0 0 0 Q∗6,n−1 S
∗
6,n−1

 ·

X∗2,n
X∗3,n
X∗4,n
X∗5,n
X∗6,n
X∗7,n

 =


V ∗1,n−1

V ∗2,n−1

V ∗3,n−1

V ∗4,n−1

V ∗5,n−1

V ∗6,n−1

 . (10)

After computing the dimensionless velocities and scaling them back to their
dimensional form, new segment positions and orientations can be computed as

ri,n = ri,n−1 +∆tṙi,n (11)
ẑi,n = ẑi,n−1 +∆t (ωi,n × ẑi,n−1) . (12)

A correction of the segment positions is done at each time step to preclude the
accumulation of errors. As in the algorithm implemented in [15], the middle
fiber segment is fixed in space and all the other segments are translated to
maintain the exact original fiber length.
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Fig. 2 Computational domain and coarse mesh. The fine mesh has three times more cells in
the x1 direction. The flow is in the x1 direction. The boundary conditions in the x1 and x3
directions are cyclic and the boundary conditions in the x2 direction are no-slip.

3 Fluid flow

The fibers are inserted into a fully developed turbulent flow field, computed
using the Direct Numerical Simulation (DNS) technique. We describe the flow
case, the numerical settings for the flow prediction, a validation of the result-
ing flow field, and a comparison between the results from two different mesh
resolutions.

3.1 Flow case description

The turbulent flow in a plane channel is considered, and the results are vali-
dated with those of Davidson et al. [5]. The computational domain, and coarse
mesh ((64 × 64 × 64) cells) are illustrated in Fig. 2, while the fine mesh ((192 ×
64 × 64) cells) has three times more cells in in the x1 direction. Both meshes
are graded to resolve the near-wall gradients and flow structures. The first cell
center is located at x+2 = 0.33. The flow configuration comprises a fully devel-
oped turbulent flow between two parallel smooth walls with no-slip conditions
and unit normals ±ê2. Cyclic boundary conditions are used in both x1 and x3
directions. The Navier–Stokes and continuity equations for incompressible flow
are solved, i.e.

∂υ

∂t
+ υ · ∇υ = −1

ρ
∇p+ η

ρ
∇2υ + Eê1 (13)

∇ · υ = 0, (14)

where υ is the velocity, p is the pressure and E is the driving pressure gradient.
The Reynolds number, Re∗ = ρu∗h/η = 150, is based on the friction velocity u∗,
which relates to E and the channel half-width h.

The simulations are carried out using the OpenFOAM, open source CFD
tool and a collocated finite volume approach. The time derivative is discretized
using the second-order Crank-Nicholson scheme, and the convection term is dis-
cretized using the second-order central differencing scheme.
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3.2 Flow validation

The present flow results are compared to the DNS results by Davidson et al. [5],
which were in turn validated by DNS results by Kasagi and Iida [11]. Initial
flow simulations are run, for each mesh resolution, until the flow is fully devel-
oped. The validation sampling is then done during 310 (coarse) and 203 (fine)
through-flow cycles, using 50 (coarse) and 25 (fine) time realizations (samples).
The velocities are first time-averaged and then also averaged spatially for each
horizontal layer of cells. This yields the time-averaged velocityU = U(x2)ê1 as a
function of x2, shown in Fig. 3(a). A zoom of the near-wall region in log-log scale
is shown in Fig. 3(b). The results from both meshes are identical, and very sim-
ilar to DNS results in [5]. The mean velocity is then used in the calculation of
the RMS values for each cell and finally the RMS values are spatially averaged
for each horizontal layer. Figures 3(c) and 3(d) show the RMS velocity profile, of
which the x1 component decreases slightly while refining the mesh in the flow
direction. The fine mesh reproduces the x1 component of [5] completely.
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Fig. 3 Mean velocity and RMS velocity distributions. The thick and thin curves are the results
of the present work for the fine mesh and coarse mesh, respectively. The results from Davidson
et al. [5] are shown by square markers. (a) Mean flow velocities U/Ub for the full channel
width (b) close to the wall. (c) RMS velocities for the full channel width. Solid curve: u1rms/Ub,
dashed curve: u2rms/Ub, dash-dotted curve: u3rms/Ub (d) close to the wall.
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Being the important properties in fiber flow simulations, the mesh sensitiv-
ity of the mean and RMS vorticity is shown in Fig. 4, where ν = η/ρ. Figures 4(a)
and 4(b) show the mean vorticity as a function of x2, and a zoom of the near-wall
region. The results from the two mesh resolutions are identical. All components
except the x3 component are zero, which indicates that the averaging is suffi-
cient. Figures 4(c) and 4(d) show the RMS vorticity as a function of x2, and a
zoom of the near-wall region. There is some mesh dependence in the RMS vortic-
ity in the x1 direction, while the other two components are much less dependent
on the difference in resolution. Davidson et al. [5] did not provide such results,
but the present results are very similar to those of Kim et al. [13], which were
determined at a slightly different Reynolds number.
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Fig. 4 Mean (a),(b) and RMS (c),(d) vorticity. The thick and thin curves are the results for the
fine and coarse mesh respectively. Solid curve: x1 component, dashed curve: x2 component,
dash-dotted curve: x3 component (a) for the full channel width (b) close to the wall.

The comparisons show that the present results are very similar to the DNS
results of Davidson et al. [5]. There is no mesh dependence for the mean quanti-
ties, but there is a small difference in the RMS of velocity and RMS of vorticity.
The fine mesh simulation is chosen as a sufficiently good approximation of the
flow for the current fiber simulation. Very similar results for the fiber behavior
have been obtained for the coarse mesh, although not presented in the paper.
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Table 1 Case specification

Segment length Segment density/Fluid density

Case1 l = 0.02h 1150
Case2 l = 0.02h 2300
Case3 2/3 l 1150
Case4 2/3 l 2300
Case5 3/2 l 1150
Case6 3/2 l 2300

4 Results and discussion

First, the simulation set-ups for different cases are described. In all the cases,
the fibers are placed into the same flow field at the same time instance. The
translational motion of the fibers and their reorientation are investigated.

4.1 Case descriptions

Six different cases were studied, in which the fiber segments’ position, length
and density were varied. The simulation time in viscous units is 81 for all the
cases, and it is computed as a ratio between the actual time and the viscous time
scale t+ = ν/u∗2. The simulation time corresponds to almost one through-flow
simulation. The summary of the cases is given in Table 1. In each case, a total of
50 fibers are placed in the computational domain(see Fig. 5). The fibers are ini-
tially straight and vertical. Each fiber consists of seven segments (see Sect. 2.5).
The segment response time is τs ≈ m/(3πηlY A), which is the ratio between the
fiber mass and the prefactor of the viscous component of the hydrodynamic re-
sistance tensor and τs/t

+ ≈ 13.5. Neither fiber–fiber interactions nor two-way
coupling is considered, so the fibers behave as if they were isolated.

Fig. 5 Fiber at their initial positions in the computational domain.
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Fig. 6 The fiber trajectories projected to the x3x2 plane. The initial positions are shown by
circles. The plotting box represents the channel cross-section.

4.2 Fiber translational motion

The trajectories rG(t) of the centers of mass G of the fibers display apparent
stochastic motion in the cross-directions due to the turbulence of the flow field
(Fig. 6). In the absence of a flow perturbation, infinitesimal particle would trace
the straight streamlines ofU . However, for any finite turbulence ṽ, particles will
describe erratic, seemingly stochastic paths due to the apparent randomness of
the fluctuating velocity field. At short time-scales, when the velocity fluctuations
of the flow are still correlated, the particle is expected to move directionally with
the flow, while at long time-scales, when the velocity fluctuations become de-
correlated, diffusive-like motion is expected. For turbulent flows with an iner-
tial sub-range, this de-correlation coincides with the Lagrangian integral time
scale TL. However, if the integral time scale is not clearly separated from the
Kolmogorov microscale τη, the time-scale of transition into the diffusive regime
is not trivially predicted, due to possible interference between these scales. For
the present flow, the ratio between TL and τη is small, indicating that there is no
clear separation of scales and no distinct inertial sub-range, motivating further
research.

The long time-scale stochastic quality of the particle trajectories has been
previously described as a diffusion-like phenomenon, governed by the Fokker–
Planck equation for translational motion [6]

∂Ψ

∂t
−Dt∇2Ψ +∇ · (UΨ) = 0, (15)

where Ψ(x, t) is the probability distribution function and Dt is the transla-
tional dispersion coefficient. The Fokker–Planck equation is valid for inertia-
less, Brownian particles. An approximate expression for the translational dis-
persion coefficient was derived assuming inertialess, rigid fibers in a homoge-
neous, isotropic turbulent flow [21], and diffusive-like behavior has been ob-
served in simulations under those conditions, in the long time-scale limit [20].
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It is of great interest and importance to investigate when the Fokker–Planck
equation could be applied to turbulence-induced particle motion in a channel at
time-scales relevant to industrial applications, such as papermaking.

For the particular flow geometry under study,U vanishes in the cross-direction
of the channel, rendering

∂Ψ

∂t
−Dt∇2Ψ + U(x2)

∂Ψ

∂x1
= 0. (16)

Now, using the ansatz Ψ(x, t) = Ψ1(x1, t)Ψ23(x2, x3, t), we obtain

Ψ23

[
∂Ψ1

∂t
−Dt

∂2Ψ1

∂2x1
+ U

∂Ψ1

∂x1

]
+ Ψ1

[
∂Ψ23

∂t
−Dt

(
∂2

∂2x2
+

∂2

∂2x3

)
Ψ23

]
= 0.

A solution is obtained by requiring that each one of the two terms is zero. Con-
sequently,

∂Ψ23

∂t
−Dt

(
∂2

∂2x2
+

∂2

∂2x3

)
Ψ23 = 0. (17)

If the origin is placed at the initial position of a particle, Ψ23(x2, x3, 0) = δ(x2, x3),
with δ the two-dimensional Dirac delta function, the solution of Eq. (17) becomes

Ψ23(x2, x3, t) = Ψ23(ρ, t) =
ρ

2Dtt
exp

(
− ρ2

4Dtt

)
, ρ =

√
x22 + x23. (18)

The definition of the two-dimensional mean square displacement (MSD) yields

MSD23(t) =

∫ ∞
0

ρ2Ψ23(ρ, t)dρ = 4Dtt, t ≥ 0, (19)

which is a well-known result for Brownian motion in the plane [2].
For individual fiber trajectories rG(t), the two-dimensional MSD is defined

as
MSD23(t) =

∫ ∞
−∞
|(δ − x̂1x̂1) [rG(τ + t)− rG(τ)]|

2
dτ, t ≥ 0, (20)

for which an estimate may be computed using the ensemble average of several
particles studied for a finite time.

We compute MSD23(t) from the observed particles trajectories (Fig. 7a), as
well as the corresponding ensemble average MSD (Fig. 7b). It is obvious from
the individual particle MSDs that they are superlinear in time. The ensem-
ble average MSD for Case1 has the slope 1.926 in a log-log diagram (Fig. 7b)
confirming that the fibers are strongly superdiffusive for the range of time-
scales investigated. The MSD slope of ≈ 1.9 was observed in the remaining
five cases as well. Importantly, since the Fokker–Planck equation infers that
MSD23(t) ∝ t (see Eq. (20)), the observation that MSD23(t) ∝ t1.9 shows that the
turbulent flow field does not exhibit diffusive-like fiber motion in the present
case at the investigated time-scales, and that the Fokker–Planck equation does
not describe the fiber motion at these time-scales. However, it is likely that there
exists a regime of diffusive-like behavior at longer time-scales t � TL, but the
transition may be postponed, as previously mentioned, because this flow has no
well-defined inertial sub-range. In many applications—papermaking, dry form-
ing etc.—where the geometry is not extremely elongated, our results show that
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Fig. 7 Case1. (a) MSD of individual particle trajectories. (b) Ensemble average of the MSD.

great caution must be taken in employing the Fokker–Planck equation to model
the translational motion of fibers.

In this discussion, it is also important to say something in relation to the
type of the processes governing the fluid dynamics and the motion of the parti-
cles. For example, when a diffusive regime is reached at longer time scales, the
behavior of the underlying process depends exclusively on two mean quantities,
namely its variance and its integral time scale. In other words, the behavior
does not depend on the particular form of the autocorrelation of the process.
However, for shorter time spans, the form of the autocorrelation plays a cru-
cial role. Therefore, it is necessary for our analysis to specify that the process
under study is statistically stationary, so that its autocorrelation function only
depends on the time increment and not, for instance, on the starting time for
the analysis. For such a process, the autocorrelation is parameterized by the
integral time scale and becomes an exponential function of the time increment.
Looking at the dispersion of fibers in a turbulent flow field, we also take the
autocorrelation function of the fibers to be of the same type as that of the fluid,
for example, the Lagrangian velocity autocorrelation function. In such a case,
the integral time scale is to be modified due to the fact that the fibers have finite
inertia, while the form of the function remains the same. Therefore, the conclu-
sions presented above are fully valid for fibers suspended in an isotropic, sta-
tionary, turbulent flow field. Similar conclusions can be drawn for cases such as
homogeneous turbulence with a constant velocity mean gradient (shear flows).
However, for any other type of turbulence, very little can be said since any statis-
tics is conditioned on location, prohibiting the a priori prediction of the form of
the Lagrangian autocorrelation function. In this work we deal with a statisti-
cally stationary process and for that reason, we are able to clearly demarcate
the particular results for long- and short-term processes, respectively.

It is observed that MSD23(t) ∝ t1.926 (Fig. 7b). This square dependence is
consistent with the ballistic regime of particle motion. The ballistic regime is
limited above by the fiber relaxation time τf , which is equal to the fiber segment
relaxation time if one-way coupling is considered, and τf/t

+ = 13.5. The MSD
is also consistent with the directional push of the velocity fluctuations, which
persist to a time-scale TL. For the present flow, TL � τf , indicating that the
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superdiffusive behavior is mainly explained by the velocity field, and not the
inertia of the fibers.

4.3 Fiber reorientation

The reorientation of the initially vertical fibers has been studied. The orienta-
tion of a fiber with N segments is defined by

ẑ =
z

|z| , z =
N∑
i=1

ẑi.

We quantify the alignment of the fiber with the flow direction by

z1 = ẑ · ê1, −1 ≤ z1 ≤ 1.

and typically use |z1| to quantify orientation to account for the ambiguity in
the enumeration of fiber segments. Moreover, the variance of the orientation is
defined as

σ2ẑ =
1

N − 1

N∑
i=1

|ẑi − ẑ|2.

This variance is zero for straight fibers and increases as the fiber shape becomes
coiled.

We consider the ensemble average for |z1| for the fibers initially positioned
at different distances from the walls. The ensemble average, as well as |z1|±σz1
of Case1 are plotted in Fig. 8. There are two characteristic time-scales that
can be observed. First, the time-scale ∼ 13 of the initial ramp. This process of
alignment in the flow direction could be due to the gradient of the average flow
field, or due to the randomization of the fiber orientation due to turbulence.
We observe that the ramp rate of vertically aligned fibers is in the order of the
shear rate as predicted by [10] for stiff fibers in a linear shear gradient (Fig. 8).
Investigating the signed orientation z1 (Fig.9(a)), it is observed that the vertical
fibers rotate with the vorticity of the flow, which infers that their alignment is
mainly governed by the average shear gradient . Secondly, there is a time-scale
≈ 40 that appears to be associated with a randomization of the orientation of
individual fiber segments, as supported by the steady increase of the variance
(Fig. 9(b)). This second time-scale is inconsistent with the dimensionless half-
period of Jeffery orbits for stiff fibers (π(re + 1/re)/γ̇)/t

+ ≈ 3378, with re the
equivalent aspect ratio of the fiber. The plot of the variance shows that the
thread-like fibers evolve into increasingly complex geometrical conformations in
a turbulent flow field, similarly to the random conformations of polymer strands
subjected to thermal fluctuations in suspension. However, the simulation time
is not sufficient for evaluating the steady-state characteristic size of these coils.

The influence of the fiber properties on their reorientation has also been
investigated. From Fig. 10(a), it can be seen that the orientation change in the
initial transient phase is slower for the heavier fibers. Notably, the heavier fibers
have a longer relaxation time τ than those of base case. The initial ramp is thus
dependent on the inertia of the particles. When the length of the fiber segment is
varied in Fig. 10(b), no significant effect is observed on the fiber motion. This is
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explained by the fact that the segment relaxation time is essentially unchanging
when the segment length is varied, and this underscores the crucial role of the
segment relaxation time for fiber motion in the investigated flow regime.
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Fig. 8 Alignment of the fibers. Solid curve: ensemble average of |z1|; dashed curve: |z1| + σz1 ;
dash-dotted curve:|z1| - σz1 . (a) Fibers initially closest to walls. (b) Fibers initially positioned
in the next layers close to the walls. (c) Fibers initially positioned in the middle between the
walls.

5 Conclusions

A particle-level flexible fiber model has been integrated into a general-purpose
CFD code. The fibers are modeled as chains of cylindrical segments and their
motion is described by Euler’s first and second law for each segment. The fluid
flow is described using DNS of the incompressible Navier–Stokes equations. The
translational motion and reorientation of fibers suspended in a turbulent chan-
nel flow has been studied, with the parameters of the fibers and the fluid typical
to those of cellulose fibers suspended in air. It was found that the fibers are su-
perdiffusive at the investigated time-scales. The slope of the MSD is close to
2.0 when plotted in log-log scale. Because the relaxation times of the fibers are
smaller than the Lagrangian integral time-scale, it is concluded that the su-
perdiffusive regime is mainly governed by the flow fluctuations.

The reorientation of fibers in the turbulent field occurs at the time-scale of
the reciprocal average shear rate for fibers aligned in the shear gradient direc-



16 Jelena Andrić et al.
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Fig. 9 Orientational component z1 for individual fibers. (a) Solid curve: initially closest to the
lower wall; dashed curve: initially closest to the upper wall. (b) Variance
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Fig. 10 Alignment of fibers – dependence on segment length and density ratio. (a) Thin curve:
lower segment density; thick curve: higher segment density. (b) Solid curve: segment length l;
dashed curve: segment length 2/3l; dash-dotted curve: segment length 3/2l.

tion. This turbulence-induced reorientation should not be understood as align-
ment, but as a randomization of the orientation of individual segments; initially
straight, thread-like particle reconform into coiled shapes in the turbulent field.

This investigation highlights several issues related to the flow of fibers sus-
pended in air. For such a system, the ballistic regime ranges into relatively long
time increments, and also, the fiber inertia affects the time-scales of fiber reori-
entation. From the point of application, the fiber-level dynamics of dry forming
is dominated by inertia, contrasting the viscosity-dominated aqueous fiber sus-
pensions typical to wet forming processes.
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A Viscous and dynamic drag forces

A.1 Viscous drag force

An analytical solution, described by [12], is available for the viscous drag force on an isolated
spheroidal particle under laminar conditions. According to the semi-empirical formula of [3], a
prolate spheroid is hydrodynamically equivalent to a finite circular cylinder in the sense that
their orbiting behavior in shear flow is the same if

re

rc
= 1.24 (ln rc)

−1/2 (21)

where re is the equivalent aspect ratio of the prolate spheroid and rc is the cylinder aspect
ratio. For fiber segment i with aspect ratio rc = li/di, we choose the major axis of the hydro-
dynamically equivalent prolate spheroid to be ai = li. Its minor axis, bi is then obtained by
inserting re = ai/bi into Cox’ formula:

bi =
1

1.24
di

√
ln
li

di
(22)

Cox’s formula is valid for isolated particles and a slender body approximation. None of these as-
sumptions are true for fiber segments. However, [15] performed numerical experiments, which
have shown that the error in the model predictions of orbit period of rigid fibers in shear flow
becomes less than 3.4% compared to Eq. (21) for rc ≥ 10 when a two-way coupling is con-
sidered. Thus, the viscous drag force of a fiber segment is here approximated with that of a
prolate spheroid, in accordance with [12]. For a given velocity field υ of the fluid, the viscous
hydrodynamic force F h,υi and torque T h,υi are defined by

F h,υi = Aυi · [υ(ri)− ṙi] (23)

T h,υi = Cυi · [Ω(ri)− ωi] +Hυ
i : G(ri) (24)

The hydrodynamic resistance tensors Avi , Cvi and Hv
i are defined as

Aυi = 3πηli[Y
A
i δ + (XA

i − Y Ai )ẑiẑi] (25)

Cυi = πηl3i [Y
C
i δ + (XC

i − Y Ci )ẑiẑi] (26)

Hυ
i = −πηl3i Y Hi (ε · ẑi)ẑi, (27)

where δ and ε are the unit and the permutation tensor, respectively. The parameters XA
i ,

Y Ai , XC
i , Y Ci and Y Hi are the hydrodynamic coefficients, which depend on the eccentricity

ei =
(
1− b2i /a2i

)1/2 and are defined as [12]

L(ei) = ln
1 + ei

1− ei

XA
i (ei) =

8

3
e3i [−2ei + (1 + e2i )L(ei)]

−1

Y Ai (ei) =
16

3
e3i [2ei + (3e2i − 1)L(ei)]

−1

XC
i (ei) =

4

3
e3i (1− e2i )[2ei − (1− e2i )L(ei)]

−1 (28)

Y Ci (ei) =
4

3
e3i (2− e2i )[−2ei − (1 + e2i )L(ei)]

−1

Y Hi (ei) =
4

3
e5i [−2ei + (1 + e2i )L(ei)]

−1
.
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A.2 Dynamic drag force

In the range 102 . Res . 3 × 105 of segment Reynolds numbers, the drag force of a cylinder
in cross-flow is dominant as compared to the viscous drag in the axial direction. If ẑi is the
cylinder orientation, then only the flow components in the plane perpendicular to ẑi need to
be considered. The drag coefficient for cross flow over a circular cylinder is, according to [27],
CID = 1, for 102 . Res . 3×105. The total drag force and torque on a cylindrical fiber segment
are obtained through integration over the infinitesimal cylinder slices. The dynamic drag force
and torque are then given by

F h,Ii ≈ AIi · [υ (ri)− ṙi] (29)

T h,Ii ≈ CIi · [Ω (ri)− ωi] +HI
i : G (ri) , (30)

where the dynamic drag resistance tensors are

AIi =
1

2
CIDρdiliυ⊥,i[δ − ẑiẑi]

CIi =
1

24
CIDρdil

3
i υ⊥,i[δ − ẑiẑi] (31)

HI
i =

1

24
CIDρdil

3
i υ⊥,i[(ε · ẑi) ẑi]

and υ⊥,i = | (δ − ẑiẑi) · [υ(ri) − ṙi]| is the cross-flow velocity of the fluid relative to the fiber
segment.

B Dimensionless equations

The dimensionless tensors from the connectivity force linear system are given as

Q∗i,n−1 = −(
m∗

∆t∗
δ +Av∗i,n−1 +AI∗i,n−1)

−1 +
3

4rp
C∗

z i,n−1

S∗i,n−1 = (
m∗

∆t∗
δ +Av∗i,n−1 +AI∗i,n−1)

−1 + (
m∗

∆t∗
δ +Av∗i+1,n−1 +AI∗i+1,n−1)

−1

+
3

4rp
C∗

z i,n−1 +
3

4rp
C∗

z i+1,n−1

T ∗i,n−1 = −(
m∗

∆t∗
δ +Av∗i+1,n−1 +AI∗i+1,n−1)

−1 +
3

4rp
C∗

z i+1,n−1

V ∗i,n−1 = −(s∗i,n−1 − s∗i+1,n−1 + rp(b
∗
i,n−1 + b∗i+1,n−1))

s∗i,n−1 = (
m∗

∆t∗
δ +Av∗i,n−1 +AI∗i,n−1)

−1 ·
( m∗
∆t∗

ṙ∗i,n−1

+ (Av∗i,n−1 +AI∗i,n−1) · υ∗(ri,n−1)
)

b∗i,n−1 =
(
(I∗i,n−1 +

1

∆t∗
I∗i,n−1 +Cv∗i,n−1 +CI∗i,n−1)

−1 ·
( 1

∆t
I∗i,n−1 · ω∗i,n−1+

(Cv∗i,n−1 +CI∗i,n−1) ·Ω∗(ri,n−1) + (Hv∗
i,n−1 +HI∗

i,n−1) : G
∗
i,n−1(ri,n−1)

)
× ẑi,n−1

where C∗
z i,n−1 is a second-order tensor, which is a function of tensor(

İ
∗
i,n−1 + 1

∆t∗ I
∗
i,n−1 +Cυ∗i,n−1 +CI∗i,n−1

)−1
and the orientation vector ẑi,n−1 and its com-

ponents are
C∗z i,n−1,11 = C∗I i,n−1,22

ẑ2i,n−1,3 − C∗I i,n−1,23
ẑi,n−1,2ẑi,n−1,3 − C∗I i,n−1,32

ẑi,n−1,3ẑi,n−1,2

+C∗I i,n−1,33
ẑ2i,n−1,2

C∗z i,n−1,12 = −C∗I i,n−1,21
ẑ2i,n−1,3 + C∗I i,n−1,23

ẑi,n−1,1ẑi,n−1,3 + C∗I i,n−1,31
ẑi,n−1,2

ẑi,n−1,3 − C∗I i,n−1,33
ẑi,n−1,1ẑi,n−1,2
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C∗z i,n−1,13 = C∗I i,n−1,21
ẑi,n−1,2ẑi,n−1,3 − C∗I i,n−1,22

ẑi,n−1,1ẑi,n−1,3 − C∗I i,n−1,31
ẑ2i,n−1,2

+C∗I i,n−1,32
ẑi,n−1,1ẑi,n−1,2

C∗z i,n−1,21 = C∗I i,n−1,32
ẑi,n−1,3ẑi,n−1,1 − C∗I i,n−1,33

ẑi,n−1,1ẑi,n−1,2 − C∗I i,n−1,12
ẑ2i,n−1,3

+C∗I i,n−1,13
ẑi,n−1,2ẑi,n−1,3

C∗z i,n−1,22 = −C∗I i,n−1,31
ẑi,n−1,1ẑi,n−1,3 + C∗I i,n−1,33

ẑ2i,n−1,1 + C∗I i,n−1,1
ẑ2i,n−1,3

−C∗I i,n−1,13
ẑi,n−1,1ẑi,n−1,3

C∗z i,n−1,23 = C∗I i,n−1,31
ẑi,n−1,1ẑi,n−1,2 − C∗I i,n−1,32

ẑ2i,n−1,1 − C∗I i,n−1,11
ẑi,n−1,2ẑi,n−1,3

+C∗I i,n−1,12
ẑi,n−1,1ẑi,n−1,3

C∗z i,n−1,31 = C∗I i,n−1,12
ẑi,n−1,2ẑi,n−1,3 − C∗I i,n−1,13

ẑ2i,n−1,2 − C∗I i,n−1,22
ẑi,n−1,1ẑi,n−1,3

+C∗I i,n−1,23
ẑi,n−1,2ẑi,n−1,1

C∗z i,n−1,32 = −C∗I i,n−1,11
ẑi,n−1,2ẑi,n−1,3 + C∗I i,n−1,13

ẑi,n−1,1ẑi,n−1,3 + C∗I i,n−1,21
ẑi,n−1,3

ẑi,n−1,1 − C∗I i,n−1,23
ẑ2i,n−1,1

C∗z i,n−1,33 = C∗I i,n−1,11
ẑi,n−1,2ẑi,n−1,3 − C∗I i,n−1,12

ẑi,n−1,1ẑi,n−1,2 − C∗I i,n−1,21
ẑi,n−1,2

ẑi,n−1,1 + C∗I i,n−1,22
ẑ2i,n−1,1
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