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Abstract 
 

A particle-level rigid fiber model has been integrated into a general-purpose, open source computational fluid dynamics code to 

carry out detailed studies of fiber–flow interactions in realistic flow fields. The fibers are modeled as chains of cylindrical 

segments, and their translational and rotational degrees of freedom are considered. The equations of motion contain the 

contributions from hydrodynamic forces and torques, and the segment inertia is taken into account. The model is validated for 

the rotational motion of isolated fibers in simple shear flow, and the computed period of rotation is in good agreement with the 

one computed using Jeffery’s equation for a prolate spheroid with an equivalent aspect ratio. The model is applied by 

suspending a number of fibers in the swirling flow of a conical diffuser, resembling one stage in the dry-forming of pulp mats. 

The Reynolds-averaged Navier–Stokes equations with an eddy-viscosity turbulence model are employed to describe the fluid 

motion, and a one-way coupling between the fibers and the fluid phase is included. The dependence of the fiber motion on 

initial position and density is analyzed. 

 

Introduction 
 

The dynamics of fiber suspensions are of great interest and 

importance in many industrial processes. The suspensions 

of fibers and fiber flocs are processed to produce paper 

products and fiber composites. One example is the making 

of wood fiber mats for use in hygiene products. The 

orientation and spatial distribution of fibers affect the 

macroscopic properties of the produced material, such as 

elastic modulus, strength, and thermal and electric 

conductivities. In pulp and paper processing, the fiber 

dynamics of the sheet forming process are one of the most 

important factors that influence the sheet characteristics 

(Ross and Klingenberg 1997; Matsuoka and Yamamoto 

1995). 

  To model wet forming of paper and dry forming of pulp 

mats, it is necessary to consider large particle systems in 

high Reynolds number flow with finite Reynolds number 

fiber–flow interactions (Lindström 2008). Water-based 

papermaking has been previously modeled at particle-level 

with flexible fibers and direct numerical simulation (DNS) 

under a Stokes flow assumption (Svenning et al. 2012) and 

with a microhydrodynamics approach for finite Reynolds 

numbers (Lindström and Uesaka 2008; Lindström et al. 

2009). Dry forming is even more numerically challenging, 

with large flow geometries and fibers suspended in air that 

is less dissipative than water. The aim of this paper is to 

describe a method suitable for handling such flows, and 

apply it to the fiber motion in the swirling flow in a conical 

diffuser. 

  Several numerical approaches have been developed to 

study particle-laden flows. In the Eulerian–Eulerian 

approach the phases are treated as interpenetrating 

continua. The Lagrangian–Eulerian approach, on the other 

hand, treats particles as moving objects in a fluid medium. 

In the DNS approach, the particle geometries are resolved 

to a high level of detail, giving excellent predictive 

capability for fiber motion in suspension (Qi 2006; 

Salahuddin et al. 2012), but at a high computational cost. 

In the microhydrodynamics approach, many particles are 

combined into multi-rigid-body systems, significantly 

reducing the computational cost. The choice of model is 

always a trade-off between accuracy and system size, as 

previously discussed by Crowe et al. (1998), Lindström 

and Uesaka (2007) and Hämäläinen et al. (2011).  

  Several variants of the microhydrodynamics approach 

have been previously developed to simulate flexible fiber 

motion in shear and sedimentation flows. Matsuoka and 

Yamamoto (1995) developed a particle-level simulation 

technique to capture the dynamics of rigid and flexible 

fibers in a prescribed flow field. They represented a fiber 

by a set of spheres, lined up and connected to each 

neighboring sphere. Ross and Klingenberg (1997) 

proposed a similar model, but using a chain of rigid, 

prolate spheroids. These numerical studies were in 

qualitative agreement with experimental results for isolated 

fiber motion obtained by Forgacs and Mason (1959a,b) 

and also predicted some of the rheological properties of 

fiber suspensions. Schmid et al. (2000) developed a 

particle-level simulation technique to study flocculation of 

fibers in sheared suspensions in three dimensions. They 

investigated the influence of the shear rate, fiber shape, 

fiber flexibility, and frictional inter-particle forces on 

flocculation. The fibers were modeled as chains of 

massless, rigid cylinder segments interacting with an 

imposed flow field through viscous drag forces and with 
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other fibers through contact forces. Lindström and Uesaka 

(2007) further developed the model of Schmid et al. (2000), 

by taking into account the particle inertia and the 

intermediate to long-range hydrodynamic interactions 

between the fibers.  

  In the present work, a rigid particle-level fiber model is 

implemented in the OpenFOAM, open source 

computational fluid dynamics (CFD) software (Weller et al. 

1998). For fibers suspended in air, the hydrodynamic 

interactions are too weak to bend the fiber, so that the 

fibers can be treated as rigid bodies in their interaction 

with the flow. Therefore, the microhydrodynamics model 

with flexible fibers proposed by Lindström and Uesaka 

(2007) can be simplified by taking the fibers to be rigid. 

(Small deformations can however still be important when 

fiber interlock to form flocks, but that is beyond the scope 

of the present investigation). This is extremely beneficial 

for the time-efficiency of the implementation. The 

implemented model is validated against the known result 

for Jeffery’s orbits for the rotational motion of an isolated 

fiber in low segment Reynolds number shear flow. The 

fiber model is applied to the motion of a number of 

cylindrical rigid fibers in the swirling high Reynolds 

number flow in a conical diffuser, reminiscent of a unit 

step in the dry-forming process. The fiber reorientation is 

studied, as determined by the fiber’s initial position, length 

and density.  

 

Nomenclature 
 
Roman symbols 

d diameter (m) 

l length (m) 

m mass (kg) 

r


 position (m) 

r


 
velocity (ms−1) 

r


 acceleration (ms−2)   

ẑ  orientation vector (−) 

I  inertia tensor (kgm2) 

I


 
inertia tensor time derivative (kgm

2
s

-1
) 

F


 
force (N) 

T


 
torque (Nm) 

A  
resistance tensor (kgs

-1
) 

C  resistance tensor (kgs
-1

) 

E  
strain rate tensor (s

-1
) 

H  
resistance tensor (kgs

-1
) 

DC  drag coefficient ( ) 

Re  Reynolds number ( ) 

T  oscillatory period (s) 

t  time step (s) 

t  time (s) 

k  kinetic energy (kgm
2
s

-2
) 

I  turbulent intensity( ) 

U  axial velocity component (ms
-1

) 

W  tangential velocity component (ms
-1

) 

 

Greek symbols 
  density (kgm

-3
) 

  kinematic viscosity (m
2
s

-1
) 

  dynamic viscosity(kgm
-1

s
-1

) 

  shear rate (s
-1

) 

δ  
Kronecker delta symbol (-) 

ω


 angular velocity (s
-1

) 

υ


 fluid velocity (ms
-1

) 

Ω


 angular velocity (s
-1

) 




 random vector 

  dissipation (m
2
s

-3
) 

  relaxation time (s
-1

) 

 
Subscripts  

i  segment index 

n  time step index 
s  segment 

G fiber’s center of mass 

  

Superscripts  

h  hydrodynamic 

  viscous 

I  dynamic 

  body 

e  eddy 

t  turbulent 

tr  transit 

fluct  fluctuating 

 
Fiber Model 
 

First, the fiber geometry and the governing equations for the 

fiber motion are described, followed by approximations for 

hydrodynamic forces and torques. The discretized 

governing equations are also presented. 

 

Fiber Geometry. A fiber is modeled as a chain of N  

rigid cylindrical segments (Schmid et al. 2000; Lindström 

and Uesaka 2007), see Fig. 1. The segments are indexed 

Ni 1,  and their locations are specified with respect to a 

global Cartesian coordinate system  . The axes of this 

inertial frame are defined by the base vectors }ˆ,ˆ,ˆ{ 321 eee  

and the origin is denoted by O . A single fiber segment has 

a diameter id , a length il , a start point iP , and a unit 

vector iẑ , which is aligned with the segment. The position 

of each fiber segment's center of mass is thus 

/2ˆ= iiii zlOPr 


. The center of mass of the fiber is then 

defined as 

 

m

rm
r i ii

G







 (1) 

 

where im  is the mass of segment i and 
ii

mm  is 
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the fiber mass. A fiber translates and rotates around its 

center of mass, while the relative angle between the 

orientation vectors of two adjacent fiber segments remains 

constant, i.e. a fiber cannot deform. 

 

 
Figure 1: Fiber geometry definitions 

 

Equations of Motion. The linear momentum equation  

reads 
 

 
i

w

i

h

iGi FFrm }{=


  (2) 

 

where 
h

iF


is the hydrodynamic force acting on segment i  

and 
w

iF


is the sum of body forces. In the present work,

gmF i

w

i


 , where g


 is the gravitational acceleration 

vector. 

  The angular momentum equation reads 

 

)},({

)(

w

i

h

iGi

i

h

i

GG

FFrT

II











 (3) 

 

where 


is the fiber angular velocity, GI  is the fiber 

inertia tensor with respect to its center of mass and the 

global frame of reference, and 
h

iT


is the hydrodynamic 

torque on segment i . The inertia tensor for fiber segment i  

with respect to ir


is 

.)ˆˆ)(
12

1

16

1
(

ˆˆ
8

1

22

2

T

iiiiii

T

iiiii

zzlmdm

zzdmI







 (4) 

 

Using the parallel axis theorem, the tensor of inertia for 

segment i with respect to the fiber center of mass is  

 

  ,)( T

GiGiGiGiiiGi rrrrmII


   (5) 

 

with GiGi rrr


 . The inertia tensor of the whole fiber is 

then obtained as  i GiG II . 

 

Hydrodynamic Forces. For a given fluid velocity field, 

the strain-rate tensor is defined as, /2))((= TυυE


 , 

where T is the transpose and /2= υΩ


 is the angular 

velocity of the fluid. The operators   and   denote 

the gradient and the curl, respectively. The characteristic 

shear rate of the flow for segment i  is given as 

2):( iii EE , where )(= ii rEE


 and : is the 

double inner product. The characteristic shear rate for the 

fiber is then computed as 



N

i

i N
1

/  . The segment 

Reynolds number is defined as  /=Re vds , where 

  is the density of the fluid,   is its dynamic viscosity, 

d  is the fiber diameter and v  is the characteristic 

velocity difference between the fibers and the fluid. Here, 

we choose  Lv = , where L  is the fiber length . The 

hydrodynamic forces are dominated by viscous effects at 

small segment Reynolds numbers 1Re s , and by 

inertia effects for large segment Reynolds numbers 

1Re s . Lindström and Uesaka (2007) numerically 

investigated the consequence of expressing viscous and 

inertia drag as a sum of two separable components, and 

found a fair agreement between the model, theory and 

experiments for a cylinder in cross-flow in the viscous flow 

regime, 
110Re s , as well as in the regime dominated 

by dynamic effects, 
52 103Re10  s . The 

maximum error in drag coefficient DC  is 42% , found in 

the intermediate interval of Reynolds numbers at 

5.4Re s ( sRe was based on the cross-flow velocity in 

those numerical experiments) . The total force and torque 

exerted on fiber segment i  by the fluid are then given by 

 
Ih

i

h

i

h

i FFF ,,=



 (6) 

Ih

i

h

i

h

i TTT ,,=



 (7) 

 

The viscous drag force of a fiber segment is here 

approximated with that of a prolate spheroid. An analytical 

solution described by Kim and Karilla (1991) is available 

for the viscous drag force on an isolated spheroidal particle 

under creeping flow conditions. According to the 

semi-empirical formula of Cox (1971), a prolate spheroid is 

hydrodynamically equivalent to a finite circular cylinder in 

the sense that their orbiting behavior in shear flow is the 

same if   

 

,
)ln(

1
24.1=

cc

e

rr

r
 (8) 

where er  is the so-called equivalent aspect ratio of the 
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prolate spheroid and cr  is the cylinder aspect ratio. For 

fiber segment i  with aspect ratio iic d/l=r , we choose 

the major axis of the hydrodynamically equivalent prolate 

spheroid to be ii l=a . Its minor axis, ib  is then obtained 

by inserting iie b/a=r  into Cox's formula, becoming 

.ln
1.24

1
=

i

i
ii

d

l
db  (9) 

Cox's formula is valid for isolated particles and a 

slender-body approximation. None of these assumptions are 

true for fiber segments. However, Lindström and Uesaka 

(2007) performed numerical experiments, which have 

shown that the error in the model predictions of the orbit 

period of rigid fibers in shear flow is less than 3.4% 

compared to Eq. (7) for 10rc   when a two-way 

coupling is considered. The viscous hydrodynamic force 

,h

iF


 and torque 
,h

iT


 are then estimated by 

 

))((=,

iii

h

i rrυAF 


 (10) 

).(:))((=,

iiiii

h

i rEHωrΩCT


   (11) 

 

The hydrodynamic resistance tensors 
v

iA , 
v

iC  and 
v

iH  

are defined by Kim and Karilla (1991). 

  In the range 
52 10310  �sRe  of segment 

Reynolds numbers, the inertia drag force of a cylinder in 

cross-flow is dominant as compared to the viscous drag in 

the axial or cross-direction. If iẑ  is the cylinder orientation, 

then only the flow components in the plane perpendicular to 

iẑ  need to be considered. The drag coefficient for cross 

flow over a circular cylinder is, according to Tritton (1988), 

=C I

D 1.0, for 
52 10310  �sRe . The total drag force 

and torque on a cylindrical fiber segment are obtained 

through integration over the infinitesimal cylinder slices. 

The dynamic drag force and torque are then given by  
 

  )(,

ii

I

i

Ih

i rrυAF 
  (12) 

 

   ,:)(,

i

I

iii

I

i

Ih

i rEHωrΩCT


  (13) 

 

where the dynamic drag resistance tensors are derived by 

Lindström and Uesaka (2007). The fluid velocity )( ir


 is 

directly interpolated from the flow field. 

 

Discretized Fiber Equations of Motion. The fiber 
equations of motion are discretized in time with a time step 

t . Subscripts 1n   and n  denote the previous and 

the current time step, respectively. An implicit numerical 

scheme is used for calculating the segment velocity and 

angular velocity to enhance numerical stability. Using the 

expression for the hydrodynamic force, Eq. (1) can be 

discretized as   

 

    I

nini

i

nGnG AArr
t

m
1,1,1,, {=)( 


  

  })( ,1,

w

inini Frrυ



  (14) 

 

where 
1,,,  nGinnGni rrr

  . 

 

Using the expression for the hydrodynamic force and torque, 

Eq. (2) can be discretized as 

 

)}.))(()((

)(:)(

))((){(

)(

,1,1,1,1,

1,1,1,

1,1,1,

11,

1

1,

w

inini

I

nininGi

ni

I

nini

i

nni

I

nini

nnGn

nn

nG

FrrAAr

rEHH

rCC

I
t

I

















































 (15) 

The discretized equations are solved for 
nGr ,

 and n


, 

from which the linear velocities 
nir ,

  of the segments are 

computed. The new segment positions and orientations 

become  

 

ninini rtrr ,1,, = 
  (16) 

 .ˆˆ=ˆ
1,1,,   ninnini zωtzz


  (17) 

 

A correction of the segment positions is done at each time 

step to preclude the accumulation of errors. As in the 

algorithm implemented by Lindström and Uesaka (2007), 

the middle fiber segment is fixed in space and all the other 

segments are translated to maintain the exact original fiber 

length.  

 

Random Walk Model. The flow calculations do not 

resolve the smallest turbulent eddies. It is thus necessary to 

construct a representation of the fluctuating flow field that is 

superimposed on the mean flow field. Such a stochastic 

model of the flow fluctuations was proposed by Gosman 

and Ioannides (1983). The model consists of adding the 

local fluctuating component to the fluid velocity at the 

segment position, i.e. )( ir


  becomes 

)()()(
~

i

fluct

ii rrr


   (Gosman and Ioannides 1983). 

The local fluctuating component is estimated as  

 

)(
3

2
)( ii

fluct rkr


   (18) 

 

where 3)(2 irk


 is the local root mean square (RMS) 

of the fluid velocity fluctuation for isotropic turbulence and 
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),,( 321  


 is a vector whose components are 

random numbers generated from a Gaussian distribution of 

zero mean and variance one. A vector 


 is generated for 

each fiber at each time step. The eddy life-time 
e

it  and the 

time needed by the segment to transverse the eddy , i.e. the 

transit time 
tr

it , are calculated as 

 

)(

)()(2/363.0

i

fluct

ii

e

i

e

ie

i
r

rrkC

u

l
t 






  (19) 

 




















)()(
~1ln

iii

e

i
i

tr

i

rr

l
t 


 , (20) 

where 
A

ii lYm  3  is a segment relaxation time, 

which is defined as the ratio between the segment mass and 

the prefactor of the viscous component of the hydrodynamic 

force. The interaction time is defined as 

 tr

i

e

i

t

i ttt ,min  and  t

i

t tt  min , Ni 1, . The 

velocity )(~
ir  is kept constant during the interaction time 

tt  to evaluate the hydrodynamic forces and torques 

acting on the fiber segments and thus the linear and angular 

velocity of the fiber’s center of mass (see Eqs. 14-15).  

 

Time Step Constraints. The time step constraint due to 

the relaxation time of fiber-fluid system is 

 

Lmt   , (21) 

 

where L is the fiber length. The other constraint is that the 

segments cannot move more than a fraction of its diameter 

at each time-step, i.e. 

 

 
crt 1 . (22) 

 

Since the time step used to solve Eqs. (14) and (15) with the 

modified velocity )(
~

ir


can be shorter than the interaction 

time, the time step used in the simulations is  

 

).,min( turbtt   (23) 

 

 

Fiber Model Validation 
 

The period of revolution of an isolated fiber in shear flow is 

validated against the theoretical result for Jeffery’s orbits. 

 

Isolated Fiber in Simple Shear Flow Jeffery (1922) 

studied the motion of isolated prolate spheroids in simple 

shear flow. He showed that a prolate spheroid with an aspect 

ratio sr  undergoes periodic motion, so-called Jeffery orbits, 

and it spends most of the time aligned with the flow 

direction. The period of revolution is 2=T

 )/1/( ss rr  and increases with sr . Bretherton (1962) 

showed that any axisymmetric particle in a linear flow 

gradient rotates with a period 2=T )/1/( ee rr  , 

where er  is an equivalent aspect ration that depends on the 

particle shape. The equivalent aspect ratio for a circular 

cylinder is given by Eq. (8). We carried out the simulations 

of Jeffery’s orbits for an isolated rigid fiber in a simple 

shear flow using the implemented model. The fiber has 

diameter d =20  m, length L =1 mm and density 
=1380 kgm

-3
, which are all consistent with the properties of 

the hardwood fibers that are used later in the applied fiber 

flow simulations. The computational domain is a box of side 

0.01 m and it is discretized into a rectangular mesh with ten 

cells in each direction. The number of cells is chosen to 

accurately resolve the imposed flow gradient. The fluid 

properties are 6.1 Pas and 200 s
-1

. We compare 

the simulated orbit period of the rigid fiber with the one 

computed using Jeffery's equation in conjunction with Cox's 

equation for the equivalent aspect ratio of a circular cylinder. 

The simulated orbit period is overestimated by 10%. This 

discrepancy is due to the simplifying assumption of a 

one-way coupling between the fiber and the fluid phase 

(Lindström and Uesaka 2007). 

 
 

Flow Case for Application of the Fiber Model 
 
The fiber model is applied to the swirling flow in a conical 

diffuser. The flow case, the boundary conditions and a 

validation of the resulting flow are presented. 

 

Flow Case Description. The ERCOFTAC conical 

diffuser test case is a swirling boundary layer developing in 

a conical diffuser (Claussen et al 1993). The swirling flow is 

generated by a rotating cylinder with a honeycomb at the 

inlet. After the honeycomb the flow becomes a plug flow 

with a solid body rotation (swirl).  

   The computational set-up is built according to the 

experimental case and the flow simulations are carried out 

using the OpenFOAM open source CFD code under 

steady-state conditions (Nilsson et al. 2008). The 

computational domain and its view with the relevant 

cross-sections are shown in Figs. 2-3. 

    
 

Figure 2: ERCOFTAC conical diffuser geometry for the 
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computational test case. 

 

 
 

Figure 3: A view of the ERCOFTAC conical diffuser.  

 

The honeycomb is located at cross-section A. The 

cylindrical wall between A and B is rotating and the 

honeycomb is attached to this rotating cylinder, so that it 

also rotates. Cross-section C is the inlet of the expansion, D 

is the outlet of the expansion and E is the outlet of the 

artificial extension and the outlet of the computational 

domain. Section E-F was not present in the experimental 

set-up, i.e. the diffuser was open to the room. The 

geometrical parameters can be summarized as: the inlet 

diameter is 0.26 m, the diffuser length is 0.51m, the opening 

angle (for the conical region) is 10 deg and the extension 

length(D-E) is 0.59 m. The honeycomb has two purposes: 

first, to generate a plug flow and, secondly, to provide a 

well-defined vortex (solid-body). Thus, in the simulation, a 

plug flow is set in the axial direction according to the 

volume flow, and a tangential velocity is set according to 

solid-body rotation. Here, the axial velocity of the plug flow 

is U=11.6 ms
-1 

and the solid body rotation is  =52.646s
-1

. 

The turbulence is specified using the turbulence length scale 

lt = 0.0032m, corresponds to the size of the holes in the 

honeycomb, and the turbulence intensity I = 0.1, which is 

typically used in CFD. The ratio between the turbulent 

viscosity and the laminar viscosity is  t =27.28. 

  The k  model with wall functions is used to model 

the turbulence (Jones and Launder 1972) .The second-order 

upwind discretization scheme is used for the velocity, while 

the first-order upwind scheme is used for the turbulent 

quantities. (Versteeg and Malalasekera 1995).  

 

Flow Validation. The flow results are validated using the 

experimental results of Clausen et al (1993). The 

measurements were done at several different traverses along 

the periphery of the diffusor, as depicted in Fig. 4. A 

comparison between simulations and experiments for the 

velocity profile and the turbulent kinetic energy profile is 

made at the traverses located 25 mm and 405 mm from 

position D. The comparison is shown in Figs.5-8. Here, U 

denotes the axial velocity component, W the tangential 

velocity component, U_0 is the bulk velocity at the inlet, 

and y is the wall normal distance. The validation shows that 

the computational results are in fair agreement with the 

experimental ones. Thus, the computed flow field is 

considered representative for studying the fiber motion. 

 

 
 

Figure 4: ERCOFTAC conical diffuser – measurement 

traverses and their distance from the inlet of the conical 

region. (Nilsson et al. 2008). 

 

 
 

Figure 5: Comparison between the measured and 

computed  axial (U) and tangential (W) velocities along the 

traverse 25 mm from position D. 

 
Figure 6: Comparison between the measured and 

computed turbulent kinetic energy along the traverse 25 

mm from position D. 
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Figure 7: Comparison between the measured and 

computed axial (U) and tangential (W) velocities along the 

traverse 405 mm from position D. 

 

 
Figure 8: Comparison between the measured and 

computed turbulent kinetic energy along the traverse 

405mm from position D. 

 

Fiber Flow Results 
 
The reorientation of the fibers due to the turbulent flow is 

studied, for different initial positions and concentrations. 

 

Fibers in the ERCOFTAC case. The steady-state flow 

result for the ERCOFTAC case is used for simulating the 

fiber motion. Four cases are studied, in which the segments’ 

length and density are varied. For the base case the segment 

diameter is d =20 m, the segment length is l =0.2 mm 

and the segment density is  =1380 kgm
-3

 (all consistent 

with a hardwood fiber). In the following , we take these to 

be the fiber properties unless they are specified differently. 

In each case a total of 50 vertical fibers are placed at the 

inlet of the computational domain (see Fig.8).  Each fiber 

consists of five segments. Neither the fiber-fiber nor the 

fiber-wall interactions are taken into account. A one-way 

coupling between the fiber and the fluid is considered, and 

the random walk model is used for the turbulent fluctuation. 

The trajectories of the flowing fibers are integrated for the 

full length of the diffusor.  

 

 

 
 

Figure 8: Fibers at their initial positions at the inlet of the 

computational domain. The fiber diameters are exaggerated 

for the purpose of visualization. 

 

 

Fiber Reorientation. All the segments within one fiber 

have the same orientation, which is the orientation of the 

fiber. We define the allignment of the fiber with the flow 

directon as 33 êẑz   , 11 3  z and use 3z  to 

quantify the orientation. We consider the development of the 

enemble average of 3z . The orientation exhibits an initial 

ramp, whose characteristic time scale is ~0.1 s (see Fig. 9). 

This time scale is in the order of inverse shear rate, as 

predicted for fibers in a linear shear gradient (Jeffery 1922). 

This implies that the alignment of fibers is mainly due to the 

average shear gradient, while the velocity fluctuations in the 

diffusor has a minor influence. In addition we show that 

introducing the random walk model does not influence the 

fiber reorientation (see Fig 9). 

 
Figure 9: Alignment of initially vertical fibers. Ensemble 

average of 3z . Solid line: results with the random walk 

model; dashed line: results without the random walk 

model. 

 

The influence of fiber properties, such as segment length 

and segment density, on their reorientation is also analyzed. 

Simulations were conducted for two different species of 

fibers: one set with density   and the other with density 
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5  The orientation change in the initial phase is slower 

for the heavier fibers. The relaxation time of heavier fibers 

is longer, and thus, the initial ramp depends on fiber inertia 

(see Fig.10). When the segment length is varied between

2/l  and l2  no significant effect on fiber motion is 

observed (Fig 11).  

 

 
 

Figure 10: Alignment of initially vertical fibers–

dependence on fiber density. Thin line: lower segment 

density; thick line: higher segment density. 

. 
 

 
 

Figure 11: Alignment of initially vertical fibers –
dependence on segment length. Solid line: segment length l; 

dashed line: segment length l/2; dashed-dotted line: segment 

length 2l. 
 
 
Conclusions 
 

A particle-level rigid fiber model was integrated into a 

general purpose CFD code. The fibers are modeled as chains 

of rigid cylindrical segments and their parameters are 

typical for the hardwood fibers. The model was validated 

against the known analytical result for isolated fiber motion 

in linear shear gradient. The reorientation of the hardwood 

fibers suspended in the turbulent air-flow in a conical 

diffuser was studied using the implemented model. The 

fluid flow is described using the incompressible 

Navier-Stokes equations with k  turbulence model. It 

was found that the reorientation occurs at time-scale of the 

inverse average shear rate for the fibers and that the fiber 

inertia has a sinificant effect on the fiber reorientation, while 

the sensitivity to the fiber length at a constant fiber density 

is minor. 
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