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Abstract 
 

A flexible fiber model has been implemented in a general-purpose, open-source computational fluid dynamics code. The 

fibers are modeled as chains of cylindrical segments. Each segment is tracked individually and their equations of motion 

account for the hydrodynamic forces and torques from the interaction with the fluid, the elastic bending and twisting torques, 

and the connectivity forces and moments that ensure the fiber integrity. The segment inertia is taken into account and a 

one-way coupling with the fluid phase is considered. The model is applied to the rotational motion of an isolated fiber in a 

low segment Reynolds number shear flow. In the case of a stiff, straight fiber, the computed period of rotation is in good 

agreement with the one computed using Jeffery's equation for an equivalent spheroid aspect ratio. A qualitative comparison is 

made with experimental data for flexible fibers. These results show that the implemented model can reproduce the known 

dynamics of rigid and flexible fibers successfully.  

 

 
Introduction 

 

The dynamics of particles suspended in flowing fluid are 

of great interest and importance in many industrial 

processes. Particularly, suspensions of fibers and fiber 

flocs are processed to produce paper products and fiber 

composites. One example is the making of pulp mats for 

use in hygiene products. When a fiber suspension is made 

to flow, the fibers translate, rotate and deform into 

configurations that become locked into the formed product. 

These changes in the microstructures of the suspension 

affect the macroscopic properties of the produced material, 

such as elastic modulus, strength, and thermal and electric 

conductivities. In pulp and paper processing, the fiber 

dynamics of the sheet forming process are one of the most 

important factors that influence the sheet characteristics 

(Ross and Klingenberg 1997; Matsuoka and Yamamoto 

1995). 

  To model these industrial processes, including wet 

forming of paper and dry forming of pulp mats, it is 

necessary to consider large particle systems in high 

Reynolds number flow with finite Reynolds number fiber–

flow interactions (Lindström 2008). The forming unit 

process in water-based papermaking has been previously 

modeled at a particle-level with direct numerical 

simulation (DNS) under a Stokes flow assumption 

(Svenning et al. 2012) and with a microhydrodynamics 

approach for finite Reynolds numbers (Lindström and 

Uesaka 2008; Lindström et al. 2009). The characteristics of 

dry forming, with large flow geometries and fibers 

suspended in air, present a numerically even more 

challenging conditions, since air is less dissipative than 

water. 

This work constitutes a first step toward a complete model 

for air-fiber suspensions modeling, and thus considers the 

motion of isolated fibers in shear flow. 

  There has been experimental work on the behavior of 

fibers in different flow conditions. Forgacs and Mason 

(1959a,b) identified different regimes for fiber motion in 

creeping shear flow. They observed that flexible fibers 

move in different regimes of motion, stiff, spring-like and 

a coiled regime with or without entanglement, depending 

on the fiber stiffness, length, and the flow properties such 

as shear rate and fluid viscosity. 

  A number of numerical approaches have been developed 

to study particle-laden flows. In the Eulerian–Eulerian 

approach the phases are treated as interpenetrating 

continua. The Lagrangian–Eulerian approach, on the other 

hand, treats particles as moving objects in a fluid medium. 

In the DNS approach, the particle geometries are resolved 

to a high level of detail, giving excellent predictive 

capability for fiber motion in suspension (Qi 2006; 

Salahuddin et al. 2012), but at a relatively high 

computational cost. In the microhydrodynamics approach, 

many particles are combined into a multi-rigid-body 

system. The choice of model is always a trade-off between 

accuracy and system size, as previously discussed by 

Crowe et al. (1998), Lindström and Uesaka (2007) and 

Hämäläinen et al. (2011).  

  Several variants of the microhydrodynamics approach 

have been previously developed to simulate flexible fiber 

motion in shear and sedimentation flows. Matsuoka and 

Yamamoto (1995) developed a particle-level simulation 

technique to capture the dynamics of rigid and flexible 

fibers in a prescribed flow field. They represented a fiber 

by a set of spheres, lined up and connected to each 
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neighboring sphere. Ross and Klingenberg (1997) 

proposed a similar model, but using a chain of rigid, 

prolate spheroids. These numerical studies were in 

qualitative agreement with the experimental results of 

isolated fiber motion obtained by Forgacs and Mason 

(1959a,b) and also predicted some of the rheological 

properties of fiber suspensions. Schmid et al. (2000) 

developed a particle-level simulation technique to study 

flocculation of fibers in sheared suspensions in three 

dimensions. They investigated the influence of the shear 

rate, fiber shape, fiber flexibility, and frictional 

inter-particle forces on flocculation. The fibers were 

modeled as chains of massless, rigid cylinder segments 

interacting with an imposed flow field through viscous 

drag forces and with other fibers through contact forces. 

Lindström and Uesaka (2007) further developed the model 

of Schmid et al. (2000), by taking into account the particle 

inertia and the intermediate to long-range hydrodynamic 

interactions between the fibers. They derived an 

approximation for the non-creeping interaction between 

the fiber segments and the surrounding fluid, for finite 

segment Reynolds numbers, and took into account the 

two-way coupling between the particles and the carrying 

fluid. Their simulations successfully reproduced the 

different regimes of motion for threadlike particles 

(Lindström and Uesaka 2007), and were subsequently used 

to study paper forming (Lindström and Uesaka 2008; 

Lindström et al. 2009). 

  In the present work, a model similar to the flexible fiber 

model developed by Lindström and Uesaka (2007) is 

implemented in the OpenFOAM, open source 

computational fluid dynamics (CFD) software (Weller et al. 

1998). The model is applied to simulate the motion of an 

isolated cylindrical flexible fiber in a low segment 

Reynolds number simple shear flow. The simulation 

results are compared with experimental and analytical 

results available in the literature. 
 

Nomenclature 
 
Roman symbols 

d diameter (m) 

l length (m) 

m mass (kg) 

r position (m) 

r


 velocity (ms−1) 

r


 acceleration (ms−2)   

ẑ  orientation vector (−) 

I  
inertia tensor (kgm2) 

I


 
inertia tensor time derivative (kgm

2
s

-1
) 

F


 
force (N) 

X


 
connectivity force (N) 

T


 
torque (Nm) 

Y


 
bending and twisting torque (Nm) 

A  
resistance tensor (kgs

-1
) 

C  
resistance tensor (kgs

-1
) 

H  
resistance tensor (kgs

-1
) 

DC  drag coefficient (-) 

Re  Reynolds number ( ) 

T  oscillatory period (s) 

t  time step (s) 

 

Greek symbols 

  density (kgm
-3

) 

  dynamic viscosity(kgm
-1

s
-1

) 

  shear rate (s
-1

) 

δ  
Kronecker delta symbol (-) 

ω


 angular velocity (s
-1

) 

υ


 fluid velocity (ms
-1

) 

Ω


 
fluid angular velocity (s

-1
) 

E  
strain rate tensor (s

-1
) 

 
Subscripts  

i  segment index 

n  time step index 
s  segment 

 
Superscripts  

h  hydrodynamic 

  viscous 

I  dynamic 

  body 

b  bending 

t  twisting 

 
 
Fiber Model 
 

First the fiber geometry and the governing equations for 

fiber motion aredescribed. The hydrodynamic forces and 

torques, and bending and twisting torques are then 

presented. The numerical algorithms to solve the discretized 

governing equations and the constraints on the 

discretization time step are also discussed. 

 

Fiber Geometry. A fiber is modeled as a chain of N  

rigid cylindrical segments (Schmid et al. 2000; Lindström 

and Uesaka 2007), see Fig. 1. The segments are indexed 

Ni 1,  and their locations are specified with respect to a 

global Cartesian coordinate system  . The axes of this 

inertial frame are defined by the base vectors },,{ 321 êêê  

and the origin is denoted by O . A single fiber segment has 

a diameter id , a length il , a start point iP , and a unit 

vector iẑ , which is aligned with the segment. The position 

of each fiber segment's center of mass is thus 

/2ẑlOP=r iiii 


.    
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Figure 1: Fiber geometry definitions 

 

The fiber equilibrium shape needs to be included in the 

geometry description. For this purpose, a local coordinate 

system i  is defined for each segment. i  is a right-hand 

orthogonal coordinate system with axes }ˆ,ˆ,ˆ{ iii zyx  and 

origin iP . The fiber equilibrium shape is then defined by 

fixing a local coordinate system }ˆ,ˆ,ˆ{ iii zyx  on each 

segment i  and an equilibrium coordinate system 

}ˆ,ˆ,ˆ{ eq

i

eq

i

eq

i zyx  for each segment i  on its preceding 

segment 1i . For a given local coordinate system 1i  

for segment 1i  , the angles i  and i  of twist and 

bend respectively can be determined, so that coordinate 

system 
eq

i  can be calculated from 1i . First, 1i  is 

rotated an angle i  about iẑ , which gives 
1

i  with 

coordinate axes },,{ 111

iii ẑŷx̂ . 
1

i  is then rotated an angle 

i  about 
1yi
ˆ  and 

eq

i  is obtained. 

 

Equations of Motion. The equations of motion comprise 

Euler's first and second law for each fiber segment i , as 

formulated by Schmid et al. 2000; Lindström and Uesaka 

2007 , yielding  
 

ii

h

iii XXFrm


  1=               (1) 





 11

ˆ
2

=
)(

ii

i

ii

h

i

ii Xz
l

YYT
t

ωI 

 .
2

ii

i Xẑ
l 








 
                         (2) 

In Eq. (1), im  is the mass of the segment i , 
h

iF


 is the 

hydrodynamic force acting on the segment i  and iX


 is 

the connectivity force exerted on segment 1i  by 

segment i . For the end segments 0=X=X 1N1 


. In Eq. 

(2), iI  is the tensor of inertia of segment i  with respect 

to  , iω


 is the angular velocity, 
h

iT


 is the hydrodynamic 

torque and iY


 is the sum of the bending and twisting 

torques exerted on segment 1i  by segment i . For the 

end segments 0=Y=Y 1N1 


. It is required that the 

end-points of adjacent fiber segments coincide, i.e.  

  

.ẑ
2

l
r=ẑ

2

l
r 1i

1i
1ii

i
i 


 


               (3) 

A connectivity equation is then obtained by taking the time 

derivative of Eq. (3), yielding 

 

.
22

= 11
1

1 


  ii
i

ii
i

ii ẑω
l

ẑω
l

rr
        (4) 

 

Hydrodynamic Forces.  First, we define the segment 

Reynolds number as  /=Re vds , where   is the 

density of the fluid,   is its dynamic viscosity, d  is the 

fiber diameter and v  is the characteristic velocity 

difference between the fibers and the fluid. Here, we choose 

 lv = , where   is the characteristic shear rate of the 

flow. The hydrodynamic forces are dominated by viscous 

effects at small segment Reynolds numbers 1sRe , and 

by inertia effects for large segment Reynolds numbers 

1sRe . Lindström and Uesaka (2007) numerically 

investigated the consequence of expressing viscous and 

inertia drag as a sum of two separable components, and 

found a fair agreement between the model, theory and 

experiments for a cylinder in cross-flow in the viscous flow 

regime, 
110sRe , as well as in the regime dominated 

by dynamic effects, 
52 10310  sRe . The maximum 

error in drag coefficient DC  is 42% , found in the 

intermediate interval of Reynolds numbers at 5.4sRe

( sRe was based on the cross-flow velocity in those 

numerical experiments) . The total force and torque exerted 

on fiber segment i  by the fluid are then given by 

 
Ih

i

h

i

h

i FFF ,,=



                    (5) 

Ih

i

h

i

h

i TTT ,,=



                        (6) 

 

The viscous drag force of a fiber segment is here 

approximated with that of a prolate spheroid. An analytical 

solution described by Kim and Karilla (1991) is available 

for the viscous drag force on an isolated spheroidal particle 

under laminar conditions. According to the semi-empirical 

formula of Cox (1971), a prolate spheroid is 

hydrodynamically equivalent to a finite circular cylinder in 

the sense that their orbiting behavior in shear flow is the 

same if   

 

  ,ln24.1=
1/2

c

c

e r
r

r
                  (7) 
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where er  is the equivalent aspect ratio of the prolate 

spheroid and cr  is the cylinder aspect ratio. For fiber 

segment i  with aspect ratio iic dlr /= , We choose the 

major axis of the hydrodynamically equivalent prolate 

spheroid to be ii la = . Its minor axis, ib  is then obtained 

by inserting iie bar /=  into Cox's formula as 

.ln
1.24

1
=

i

i

ii
d

l
db                  (8) 

Cox's formula is valid for isolated particles and a 

slender-body approximation. None of these assumptions are 

true for fiber segments. However, Lindström and Uesaka 

(2007) performed numerical experiments, which have 

shown that the error in the model predictions of orbit period 

of rigid fibers in shear flow is less than 3.4% compared to 

Eq. (7) for 10cr  when a two-way coupling is 

considered. Thus, for a given velocity field υ  of the fluid, 

the viscous hydrodynamic force 
,h

iF


 and torque 
,h

iT


 

are defined by   

 

))((=,

iii

h

i rrυAF 


               (9) 

).(:))((=,

iiiii

h

i rEHωrΩCT


      (10) 

 

Here, /2= υΩ


  is the angular velocity of the fluid 

and /2)(= TυυE


  is the strain rate tensor, with 

T  the transpose. The operators   and   denote the 

gradient and the curl, respectively. The hydrodynamic 

resistance tensors 
v

iA , 
v

iC  and 
v

iH  are defined as 

 

)ˆˆ)((3= ii

A

i

A

i

A

iii zzYXδYlA 
      (11) 

)ˆˆ)((= 3

ii

C

i

C

i

C

iii zzYXδYlC 
        (12) 

,ˆ)ˆ(= 3

ii

H

iii zzεYlH 
               (13) 

 

where δ  and ε  are the unit and the permutation tensor, 

respectively. The hydrodynamic coefficients 
A

iX , 
A

iY , 

C

iX , 
C

iY  and 
H

iY  depend on the eccentricity 

 1/222/1= iii abe   and are according to  Kim and Karilla 

(1991) defined as   

 

i

i

i
e

e
eL





1

1
ln=)(  

123 ))()(12(
3

8
=)(  iiiii

A

i eLeeeeX  

123 ))(1)(32(
3

16
=)(  iiiii

A

i eLeeeeY  

1223 ))()(12()(1
3

4
=)(  iiiiii

C

i eLeeeeeX  (14) 

1223 ))()(12()(2
3

4
=)(  iiiiii

C

i eLeeeeeY  

.))()(12(
3

4
=)( 125  iiiii

H

i eLeeeeY  

 

In the range 
52 10310  sRe  of segment Reynolds 

numbers, the inertia drag force of a cylinder in cross-flow is 

dominant as compared to the viscous drag in the axial or 

cross-direction. If iẑ  is the cylinder orientation, then only 

the flow components in the plane perpendicular to iẑ  need 

to be considered. The drag coefficient for cross flow over a 

circular cylinder is, according to Tritton (1988), 1=I

DC , 

for 
52 10310  �sRe . The total drag force and torque 

on a cylindrical fiber segment are obtained through 

integration over the infinitesimal cylinder slices. The 

dynamic drag force and torque are then given by   
 

  )(,

ii

I

i

Ih

i rrυAF 
                (15) 

 

   ,:)(,

i

I

iii

I

i

Ih

i rEHωrΩCT


       (16) 

 

where the dynamic drag resistance tensors are 

 

)ˆˆ(
2

1
= , iiiii

I

D

I

i zzδldCA            (17) 

)ˆˆ(
24

1
= ,

3

iiiii

I

D

I

i zzδldCC           (18) 

  iiiii

I

D

I

i zzεldCH ˆˆ
24

1
= ,

3            (19) 

 

and   |))((ˆˆ=|, iiiii rrυzzδ 
  is the cross-flow 

velocity of the fluid relative to the fiber segment. 

 

Bending and twisting torques. The bending and 

twisting torque exerted by segment 1i  on segment i  

are denoted by 
b

iY


 and 
t

iY


, respectively, and taken into 

account in Eq. (2) as 
t

i

b

ii YYY


= . Bending and twisting 

torques act to restore the fiber shape when it is deformed out 

of its equilibrium. The bending torque exerted by segment 

1i  on segment i  is   

 

.= ,,, ibibib

b

i êkY 


                  (20) 

 

Here, ibk ,  is a bending constant, 

 eq

iiib zz ˆˆarccos=,   is the bending angle, and 
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  ||/=,

eq

ii

eq

iiib ẑẑẑẑê   is the bending torque 

direction. The bending constant ibk ,  is related to the 

bending stiffness of an elastic cylinder as 

   iiiiYb llIIEk   11 /= , where 
YE  is the Young's 

modulus of the fiber material, and /64=
4

ii dI   is the 

area moment of inertia of a circular cylinder with diameter 

id . The twisting torque exerted by segment 1i  on 

segment i  is   

 

.= ,, iitit

t

i ĉkY 


                 (21) 

Here itk ,  is the twisting constant,

   ,

,
ˆˆarccos= eq

iiit yy  is the twisting angle, and 

 
 

 
 

,
|ˆˆˆ|

ˆˆˆ
=,

|ˆˆˆ|

ˆˆˆ
= ,

eq

iii

eq

iiieq

i

iii

iii

i

ycc

ycc
y

ycc

ycc
y







 








 

 

where     ||/= 11   iiiii rrrrĉ


. The twisting 

constant    iiiit llJJGk   11 /= , where G  is the 

shear modulus of the material and /32=
4

ii dJ   is the 

corresponding area moment of inertia. 

 

Discretized Fiber Equations of Motion. The fiber 
equations of motion are discretized in time with a time step 

t . Subscripts 1n  and n  denote the previous and the 

current time step, respectively. An implicit numerical 

scheme is used for calculating the segment velocity and 

angular velocity to enhance numerical stability. In all the 

equations presented in this section, the connectivity forces 

iX


 and 1iX


 are treated as unknowns. Using the 

expression for the hydrodynamic force, Eq. (1) can be 

discretized as   

 

  

I

nininini AArr
t

m
1,1,1,, =)( 


  

  .)( ,1,,1, nininini XXrrυ



           (22) 

 
In the angular momentum equation (2), the time differential 

term can be discretized as 

 

nininini

nini
ωIωI

t

ωI
,1,,1,

,1,
=

)( 









 

 .1
1,,1,,1,   ninininini ωωI

t
ωI




    (23) 

Using the expression for the hydrodynamic force, Eq. (2) 

yields   

 

 =
1

1,,1,,1,   ninininini ωωI
t

ωI



 

   



 nini

I

nini ,1,1,1, ωrΩ)CC(


 

    11,1,1,1, :)( nini

I

nini YrEHH
  

 .ˆ
2

,1,1,1, ninini

i

ni XXz
l

Y


 
         (24) 

Finally, Eq. (4) is discretized as   

 

.ˆ
2

ˆ
2

= 11,1,

1

1,,1,, 



  nini

i

nini

i

nini zω
l

zω
l

rr
  

………………………………………….(25) 

 

The momentum equation (22), the angular momentum 

equation (24) and the connectivity equation (25) form a 

system of equations, which can be solved for the unknown 

connectivity forces, velocities and angular velocities at time 

n . Since these variables have different physical units, the 

coefficients of the linear system will differ by many orders 

of magnitude and make the system ill-conditioned. Thus, a 

system of dimensionless equations should be considered. 
 

Dimensionless Connectivity Force Linear System. 
The dimensionless system of equations for the unknown 

connectivity forces, where )(  denotes dimensionless 

quantities, reads  
 

.= **

2,

**

1,

**

,

*

iniiniinii VXTXSXQ


     (26) 

 
The corresponding dimensionless tensors are known for the 

previous time step and the subscript 1n   is omitted for 

convenience. These tensors read   

 

i

*

z

p

I

i

v

ii C
r

AAδ
t

m
Q

4

3
)(= 1**

*

*

 


 

 



1**

*

*

1, )(= I

i

v

ini AAδ
t

m
S


 

1*

1

*

1*

*

)( 
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,ˆ)1 iii zYY  




 

 

where 
i

*

zC  is a second-order tensor and is a function of 

the tensor 

1

***

*

* 1










 I

iiii CCI
t

I 




 and the 

orientation vector iẑ .After applying Tikhonov regularization 

(see Andrić (2012)), this system can be solved for the 

unknown dimensionless connectivity forces 
*

,niX


, 

Ni 2 , with 0XX nNn == *

1,

*

1, 


. After computing 

the dimensionless velocities and scaling them back to their 

dimensional form, new segment positions and orientations 

can be computed as 

 

ninini rtrr ,1,, = 
                  (27) 

 .ˆˆ=ˆ
1,,1,,   nininini zωtzz


         (28) 

 
A correction of the segment positions is done at each time 

step to preclude the accumulation of errors. As in the 

algorithm implemented by Lindström and Uesaka (2007), 

the middle fiber segment is fixed in space and all the other 

segments are translated to maintain the exact original fiber 

length. 

 

Numerical Stability and Time Step Constraints. 
Assuming the worst case from the point of stability—that 

the inertia terms are zero—and using expressions (9) and 

(11), the hydrodynamic force on segment i , flowing in a 

stationary fluid, can be estimated as  
 

vd~F h

i ||


,                   (29) 

 
so that 

 

.||~|| iii rlrm                     (30) 

 
Denoting the speed of the segment by v , Eq. (30) is 

essentially a first-order, ordinary differential equation, 

which can be written in the form  

 

0,1 ~vCv                       (31) 

 

where 

i

i

m

l
C


=1 . The stability condition for this type of 

equation imposes the time step constraint   

 

.=
1

1 i

i

l

m

C
t


                    (32) 

From Eq. (20), the bending torque for fiber segment i  can 

be estimated as iiiY

b

i lIE~Y /||  


, where 

 eq

iii zz ˆˆarccos=   is the deviation angle from the 

equilibrium shape. From expressions (10) and (12), the 

hydrodynamic torque on segment i  is estimated as 

|||| 3

ii

h

i ωl~T


 , when inertia terms are neglected. The 

magnitude of the hydrodynamic torque || h

iT


 must be 

comparable to the magnitude of the bending torque || b

iY


, 

i.e.   

 

,||3

i

iiY
ii

l

IE
~ωl





               (33) 

which yields 

 

.||
4 i

i

iY
i

l

IE
~ω 



                (34) 

Since dt)(dω ii |=|


, Eq.(34) also represents a 

first-order differential equation 

 

0)( 2  ii Cdtd             (35) 

 

and 
4

2 /= iiY lIEC  . The time step constraint is again 

given as 

 

.=
1 4

2 iY

i

IE

l

C
t


   

 
Results and Validation 
 

In this section, the results of the numerical simulations using 

the implemented model are compared to three different 

experiments available in the literature. The implementation 

of the fiber inertia was validated by Andrić (2012) for the 

period of a two-segment physical pendulum. The simulated 

period was in excellent agreement with the analytical 

solution. 
 

Individual Fiber Motion in Shear Flow. Jeffery 

(1922) studied the motion of isolated prolate spheroids in 

simple shear flow. He showed that a prolate spheroid with 

an aspect ratio sr  undergoes periodic motion, so-called 

Jeffery orbits, and it spends most of the time aligned with 

the flow direction. The period of revolution is 

 )/1/(2= ss rrT   and increases with sr . This 

relation can use an effective aspect ratio for non-spheroidal 

particles. Bretherton (1962) showed that any axisymmetric 

particle in a linear flow gradient rotates with a period

 )/1/(2= ee rrT  , where er  is an equivalent aspect 

ratio that depends on the particle shape. The equivalent 

aspect ratio for a circular cylinder is given by Eq. (7). 

Forgacs and Mason (1959a) theoretically studied the 

deformation of cylindrical particles rotating in shear flow. 

They derived the equations to calculate the critical value of 

  at which the axial compression due to shear will cause 
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the fiber to buckle. Schmid et al. (2000) used the 

dimensionless group, named bending ratio (BR), to predict 

the bending of a cylindrical fiber in the flow-gradient plane, 

where  

 

BR
 
  42

1.50)(2ln

f

eY

r

rE

 


            (37) 

 

with dLr ff /= , where fL  is the fiber length and d  is 

its diameter. 

 

Regimes of Fiber Motion in Shear Flow. Forgacs 

and Mason (1959b) experimentally studied the orbiting 

behavior of flexible fibers in shear flow, varying fiber length, 

fiber stiffness, shear rate and fluid viscosity. In this work, 

we chose three experimental instances, which correspond to 

rigid, springy and snake-like regime, respectively, to make 

qualitative comparison with the numerical simulations. The 

geometrical characteristics of the fibers and the flow 

parameters are summarized in Table1. 

 

 

fL [mm] d [µm] fr [-]   [Pas] Orbit type 

1.40 7.8 180 469 Rigid 

2.42 7.8 310 445 Springy 

3.23 7.8 414 440 Snake-like 

 

 

Table1: The parameter settings for three experimental 

samples described by Forgacs and Mason (1959b) and 

numerically studied by Lindström and Uesaka (2007). The 

fiber material is Dacron with Young's modulus 
YE =2GPa. 

 

Comparison with Experiments. We carried out the 

simulations of an isolated fibers in simple shear flow using 

the implemented model. The computational domain is a box 

of side 0.01 m and it is discretized into a rectangular mesh 

with ten cells in each direction. The number of cells is 

chosen to make sure that interpolation of the prescribed flow 

field at the segment centers is taking place in non-boundary 

cells only, preserving a second-order interpolation of the 

linear velocity distribution. The time series of images from 

the separate simulations for the corresponding orbit types 

are shown in Fig. 2. The fibers are initially aligned with the 

flow. In the case of a rigid orbit, the equilibrium shape of 

the fiber is straight. For springy and snake-like orbits the 

equilibrium fiber shape is a U-shape with an intrinsic radius 

of curvature 
fu LR 100= , to mimic the geometrical 

imperfection of the physical fibers. The evolution of the 

fiber shapes reproduce those observed by Forgacs and 

Mason (1959b). We compare the simulated orbit period of 

the rigid fiber with the one computed using Jeffery's 

equation in conjunction with Cox's equation for the 

equivalent aspect ratio of a circular cylinder. The simulated 

orbiting period is overestimated by 20%. This discrepancy is 

due to the one-way coupling between the fiber and the fluid 

phase (Lindström and Uesaka 2007). For the rigid, springy 

and snakelike regime, we find that the simulated orbits are 

in qualitative agreement with the experimental observations 

for each orbit type.  

 

 

 

 

 
Figure 2: The time series of images show the simulation 

results for the fiber shape development in a simple shear 

flow for half of a period of revolution. Each case 

corresponds to an actual experiment by Forgacs and Mason 

(1959b). Three different orbit types a)rigid, b)springy, and 

c)snake-like are observed. The fiber diameters are 

exaggerated for the purpose of visualization. 

 

 

Conclusions 
 

A particle-level fiber model has been integrated into a 
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general-purpose CFD code. The fibers are modeled as 

chains of cylindrical segments and their motion is described 

by Euler's first and second law for each segment. All the 

degrees of freedom necessary to realistically reproduce the 

dynamics of real fibers, are taken into account. The 

implemented model was validated against known analytical 

and experimental results for fiber motion in shear flow. It 

was found that the model reproduces the known orbiting 

behavior for rigid and flexible fibers in low segment 

Reynolds number shear flow. 
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