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Abstract—We investigate the maximal achievable rate for a
given blocklength and error probability over quasi-static single-
input multiple-output (SIMO) fading channels. Under mild
conditions on the channel gains, it is shown that the channel
dispersion is zero regardless of whether the fading realizations
are available at the transmitter and/or the receiver. The result
follows from computationally and analytically tractable converse
and achievability bounds. Through numerical evaluation, we
verify that, in some scenarios, zero dispersion indeed entails fast
convergence to outage capacity as the blocklength increases. In
the example of a particular 1 × 2 SIMO Rician channel, the
blocklength required to achieve 90% of capacity is about an order
of magnitude smaller compared to the blocklength required for
an AWGN channel with the same capacity.

I. INTRODUCTION

We study the maximal achievable rate R∗(n, ǫ) for a given

blocklength n and block error probability ǫ over a quasi-static

single-input multiple-output (SIMO) fading channel, i.e., a

random channel that remains constant during the transmission

of each codeword, subject to a per-codeword power constraint.

We consider two scenarios: i) perfect channel-state informa-

tion (CSI) is available at both the transmitter and the receiver;1

ii) neither the transmitter nor the receiver have a priori CSI.

For quasi-static fading channels, the Shannon capacity,

which is the limit of R∗(n, ǫ) for n → ∞ and ǫ → 0,

is zero for many fading distributions of practical interest

(e.g., Rayleigh, Rician, and Nakagami fading). In this case,

the ǫ-capacity [1] (also known as outage capacity), which is

obtained by letting n → ∞ in R∗(n, ǫ) for a fixed ǫ > 0,

is a more appropriate performance metric. The ǫ-capacity of

quasi-static SIMO fading channels does not depend on whether

CSI is available at the receiver [2, p. 2632]. In fact, since the

channel stays constant during the transmission of a codeword,

it can be accurately estimated at the receiver through the

transmission of known training sequences with no rate penalty

as n → ∞. Furthermore, in the limit n → ∞ the per-codeword

power constraint renders CSIT ineffectual [3, Prop. 3], in
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1Hereafter, we write CSIT and CSIR to denote the availability of perfect
CSI at the transmitter and at the receiver, respectively. The acronym CSIRT
will be used to denote the availability of both CSIR and CSIT.

contrast to the situation where a long-term power constraint is

imposed [3], [4].

Building upon classical asymptotic results of Dobrushin

and Strassen, it was recently shown by Polyanskiy, Poor, and

Verdú [5] that for various channels with positive Shannon

capacity C, the maximal achievable rate can be tightly ap-

proximated by

R∗(n, ǫ) = C −
√

V

n
Q−1(ǫ) +O

(
log n

n

)
. (1)

Here, Q−1(·) denotes the inverse of the Gaussian Q-function

and V is the channel dispersion [5, Def. 1]. The approxima-

tion (1) implies that to sustain the desired error probability ǫ
at a finite blocklength n, one pays a penalty on the rate (com-

pared to the channel capacity) that is proportional to 1/
√
n.

Contributions: We provide achievability and converse

bounds on R∗(n, ǫ) for quasi-static SIMO fading channels.

The asymptotic analysis of these bounds shows that under mild

technical conditions on the distribution of the fading gains,

R∗(n, ǫ) = Cǫ +O(log(n)/n) . (2)

This result implies that for the quasi-static fading case, the

1/
√
n rate penalty is absent. In other words, the ǫ-dispersion

(see [5, Def. 2] or (25) below) of quasi-static fading channels

is zero. This result turns out to hold regardless of whether CSI

is available at the transmitter and/or the receiver.

Numerical evidence suggests that, in some scenarios, the

absence of the 1/
√
n term in (2) implies fast convergence

to Cǫ as n increases. For example, for a 1× 2 SIMO Rician-

fading channel with Cǫ = 1 bit/channel use and ǫ = 10−3, the

blocklength required to achieve 90% of Cǫ is between 120 and

320, which is about an order of magnitude smaller compared

to the blocklength required for an AWGN channel with the

same capacity. In general, to estimate R∗(n, ǫ) accurately

for moderate n, an asymptotic characterization more precise

than (2) is required.

Our converse bound on R∗(n, ǫ) is based on the meta-

converse theorem [5, Thm. 26]. Application of standard

achievability bounds for the case of no CSI encounters

formidable technical and numerical difficulties. To circumvent

them, we apply the κβ bound [5, Thm. 25] to a stochastically

degraded channel, whose choice is motivated by geometric

considerations. The main tool used to establish (2) is a Cramer-

Esseen-type central-limit theorem [6, Thm. VI.1].



Notation: Upper case letters denote scalar random vari-

ables and lower case letters denote their realizations. We use

boldface upper case letters to denote random vectors, e.g., X ,

and boldface lower case letters for their realizations, e.g., x.

Upper case letters of two special fonts are used to denote

deterministic matrices (e.g., Y) and random matrices (e.g., Y).

The superscripts T and H stand for transposition and Hermitian

transposition, respectively. Furthermore, CN (0,A) stands for

the distribution of a circularly-symmetric complex Gaussian

random vector with covariance matrix A. The indicator func-

tion is denoted by 1{·}. Finally, log(·) indicates the natural

logarithm, and Beta(·, ·) denotes the Beta distribution [7,

Ch. 25].

II. CHANNEL MODEL AND FUNDAMENTAL LIMITS

We consider a quasi-static SIMO channel with r receive

antennas. The channel input-output relation is given by

Y = xH
T +W (3)

=



x1H1 +W11 · · · x1Hr +W1r

...
...

xnH1 +Wn1 · · · xnHr +Wnr


 . (4)

The vector H = [H1 · · · Hr]
T contains the complex fading

coefficients, which are random but remain constant for all n
channel uses; {Wlm} are independent and identically dis-

tributed (i.i.d.) CN (0, 1) random variables; x = [x1 · · · xn]
T

contains the transmitted symbols.

We consider both the case when the transmitter and the

receiver do not know the realizations of H (no CSI) and the

case where the realizations of H are available to both the

transmitter and the receiver (CSIRT). Next, we introduce the

notion of a channel code for these two settings.

Definition 1: An (n,M, ǫ)no-CSI code consists of:

i) an encoder f : {1, . . . ,M} 7→ Cn that maps the message

J ∈ {1, . . . ,M} to a codeword x ∈ {c1, . . . , cM}. The

codewords satisfy the power constraint

‖ci‖2 ≤ nρ, i = 1, . . . ,M. (5)

We assume that J is equiprobable on {1, . . . ,M}.

ii) A decoder g: Cn×r 7→ {1, . . . ,M} satisfying P[g(Y) 6=
J ] ≤ ǫ, where Y is the channel output induced by the

transmitted codeword according to (3).

The maximal achievable rate for the no-CSI case is defined as

R∗
no(n, ǫ) , sup

{
logM

n
: ∃(n,M, ǫ)no-CSI code

}
. (6)

Definition 2: An (n,M, ǫ)CSIRT code consists of:

i) an encoder f : {1, . . . ,M} × C
r 7→ C

n that maps the

message J ∈ {1, . . . ,M} and the channel H to a

codeword x ∈ {c1(H), . . . , cM (H)}. The codewords

satisfy the power constraint

‖ci(h)‖2 ≤ nρ, ∀i = 1, . . .M, ∀h ∈ C
r. (7)

We assume that J is equiprobable on {1, . . . ,M}.

ii) A decoder g: Cn×r × Cr 7→ {1, . . . ,M} satisfying

P[g(Y,H) 6= J ] ≤ ǫ.

The maximal achievable rate for the CSIRT case is defined as

R∗
rt(n, ǫ) , sup

{
logM

n
: ∃(n,M, ǫ)CSIRT code

}
. (8)

It follows that R∗
no(n, ǫ) ≤ R∗

rt(n, ǫ).
Let G , ‖H‖2, and define

FC(ξ) , P [log(1 + ρG) ≤ ξ] . (9)

For every ǫ > 0, the ǫ-capacity Cǫ of the channel (3) is [1,

Thm. 6]

Cǫ = lim
n→∞

R∗
no(n, ǫ) = lim

n→∞
R∗

rt(n, ǫ) = sup {ξ : FC(ξ) ≤ ǫ} .
(10)

III. MAIN RESULTS

In Section III-A, we present a converse (upper) bound on

R∗
rt(n, ǫ) and in Section III-B we present an achievability

(lower) bound on R∗
no(n, ǫ). We show in Section III-C that

the two bounds match asymptotically up to a O(log(n)/n)
term, which allows us to establish (2).

A. Converse Bound

Theorem 1: Let

Ln , n log(1 + ρG) +

n∑

i=1

(
1−

∣∣√ρGZi −
√
1 + ρG

∣∣2
)

(11)

Sn , n log(1 + ρG) +
n∑

i=1

(
1−

∣∣√ρGZi − 1
∣∣2

1 + ρG

)
(12)

with G = ‖H‖2 and {Zi}ni=1 i.i.d. CN (0, 1)-distributed. For

every n and every 0 < ǫ < 1, the maximal achievable rate

on the quasi-static SIMO fading channel (3) with CSIRT is

upper-bounded by

R∗
rt(n− 1, ǫ) ≤ 1

n− 1
log

1

P[Ln ≥ nγn]
(13)

where γn is the solution of P[Sn ≤ nγn] = ǫ.
Proof: See Appendix A.

B. Achievability Bound

Let Z(Y) : Cn×r 7→ {0, 1} be a test between PY|X=x and

an arbitrary distribution QY, where Z = 0 indicates that the

test chooses QY. Let F ⊂ Cn be a set of permissible channel

inputs as specified by (5). We define the following measure

of performance κ̃τ (F , QY) for the composite hypothesis test

between QY and the collection {PY|X=x}x∈F :

κ̃τ (F , QY) , inf QY [Z(Y) = 1] (14)

where the infimum is over all deterministic tests Z(·) satisfy-

ing:

i) PY|X=x [Z(Y) = 1] ≥ τ, ∀x ∈ F , and

ii) Z(Y) = Z(Ỹ) whenever the columns of Y and Ỹ span

the same subspace in Cn.

Note that, κ̃τ (F , QY) in (14) coincides with κτ (F , QY) de-

fined in [5, eq. (107)] if the additional constraint ii) is dropped

and if the infimum in (14) is taken over randomized tests.

Hence, κτ (F , QY) ≤ κ̃τ (F , QY).



To state our lower bound on R∗
no(n, ǫ), we will need the

following definition.

Definition 3: Let a be a nonzero vector and let B be an

l-dimensional (l < n) subspace in Cn. The angle θ(a,B) ∈
[0, π/2] between a and B is defined by

cos θ(a,B) = max
b∈B, ‖b‖=1

|aH
b|/‖a‖. (15)

With a slight abuse of notation, for a matrix B ∈ Cn×l we

use θ(a,B) to indicate the angle between a and the subspace B
spanned by the columns of B. In particular, if the columns of

B are an orthonormal basis for B, then

cos θ(a,B) = ‖aH
B‖/‖a‖. (16)

Theorem 2: Let F ⊂ Cn be a measurable set of chan-

nel inputs satisfying (5). For every 0 < ǫ < 1, every

0 < τ < ǫ, and every probability distribution QY, there exists

an (n,M, ǫ)no-CSI code satisfying

M ≥ κ̃τ (F , QY)

supx∈F QY[Zx(Y) = 1]
(17)

where

Zx(Y) = 1{cos2θ(x,Y) ≥ 1− γn(x)} (18)

with γn(x) ∈ [0, 1] chosen so that

PY|X=x[Zx(Y) = 1] ≥ 1− ǫ+ τ. (19)

Proof: The bound (17) follows by applying the κβ
bound [5, Thm. 25] to a stochastically degraded version of (3),

whose output is the subspace spanned by the columns of Y.

The geometric intuition behind the choice of the test (18) is

that x in (3) belongs to the subspace spanned by the columns

of Y if the additive noise W is neglected.

In Corollary 3 below, we present a further lower bound

on M that is obtained from Theorem 2 by choosing

QY =

n∏

i=1

CN (0, Ir) (20)

and by requiring that the codewords belong to the set

Fn ,
{
x ∈ C

n : ‖x‖2 = nρ
}
. (21)

The resulting bound allows for numerical evaluation.

Corollary 3: For every 0<ǫ< 1 and every 0<τ <ǫ there

exists an (n,M, ǫ)no-CSI code with codewords in the set Fn

satisfying

M ≥ τ

F (γn;n− r, r)
(22)

where F (·;n − r, r) is the cumulative distribution function

(cdf) of a Beta(n − r, r)-distributed random variable and

γn ∈ [0, 1] is chosen so that

PY|X=x0
[Zx0(Y) = 1] ≥ 1− ǫ + τ (23)

with

x0 ,
[√

ρ
√
ρ · · · √ρ

]T
. (24)

Proof: See Appendix B.

C. Asymptotic Analysis

Following [5, Def. 2], we define the ǫ-dispersion of the

channel (3) via R∗
no(n, ǫ) (resp. R∗

rt(n, ǫ)) as

V no
ǫ , lim sup

n→∞
n

(
Cǫ −R∗

no(n, ǫ)

Q−1(ǫ)

)2

, ǫ ∈ (0, 1)\
{1
2

}
(25)

V rt
ǫ , lim sup

n→∞
n

(
Cǫ −R∗

rt(n, ǫ)

Q−1(ǫ)

)2

, ǫ ∈ (0, 1)\
{1
2

}
. (26)

The rationale behind the definition of the channel dispersion

is that—for ergodic channels—the probability of error ǫ and

the optimal rate R∗(n, ǫ) roughly satisfy

ǫ ≈ P

[
C +

√
V/nZ ≤ R∗(n, ǫ)

]
(27)

where C and V are the channel capacity and dispersion,

respectively, and Z is a zero-mean unit-variance real Gaussian

random variable. The quasi-static fading channel is condition-

ally ergodic given H, which suggests that

ǫ ≈ P

[
C(H) +

√
V (H)/nZ ≤ R∗(n, ǫ)

]
(28)

where C(H) and V (H) are the capacity and the dispersion

of the conditional channels. Assume that Z is independent of

H . Then, given H = h, the probability P[Z ≤ (R∗(n, ǫ) −
C(h))/

√
V (h)/n] is close to one in the “outage” case

C(h) < R∗(n, ǫ), and close to zero otherwise. Hence, we

expect that (28) be well-approximated by

ǫ ≈ P[C(H) ≤ R∗(n, ǫ)] . (29)

This observation is formalized in the following lemma.

Lemma 4: Let A be a random variable with zero mean,

unit variance, and finite third moment. Let B be independent

of A with twice continuously differentiable probability density

function (pdf) fB. Then, there exists k1 < ∞ such that

lim
n→∞

n3/2

∣∣∣∣P[A ≤ √
nB]− P[B ≥ 0] +

f ′
B(0)

2n

∣∣∣∣ ≤ k1. (30)

From (28) and (29), and recalling (10) we may expect that

for a quasi-static fading channel R∗(n, ǫ) satisfies

R∗(n, ǫ) = Cǫ + 0 · 1√
n
+ smaller-order terms . (31)

This intuitive reasoning turns out to be correct as the

following result demonstrates.

Theorem 5: Assume that the channel gain G = ‖H‖2 has a

twice continuously differentiable pdf and that Cǫ is a point of

growth of the capacity-outage function (9), i.e., F ′
C(Cǫ) > 0.

Then, the maximal achievable rates satisfy
{
R∗

no(n, ǫ), R
∗
rt(n, ǫ)

}
= Cǫ +O(log(n)/n) . (32)

Hence, the ǫ-dispersion is zero for both the no-CSI and the

CSIRT case:

V no
ǫ = V rt

ǫ = 0 , ǫ ∈ (0, 1)\{1/2} . (33)

Proof: The proof is outlined in Appendix C.

The assumptions on the channel gain are satisfied by the

probability distributions commonly used to model fading, such
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Fig. 1. Bounds for the quasi-static SIMO Rician-fading channel with
K-factor equal to 20 dB, two receive antennas, SNR = −1.55 dB, and
ǫ = 10−3.

as Rayleigh, Rician, and Nakagami. However, the standard

AWGN channel, which can be seen as a quasi-static fading

channel with fading distribution equal to a step function

centered at one, does not meet these assumptions and in fact

has positive dispersion [5, Thm. 54].

Note that, as the fading distribution approaches a step

function, the higher-order terms in the expansion (32) become

more dominant, and zero dispersion does not necessarily imply

fast convergence to capacity. Consider for example a single-

input single-output Rician fading with Rician factor K . For

ǫ < 1/2, one can refine (32) and show that [11, p. 4]

Cǫ −
logn

n
+

c1
√
K + c2
n

+ o

(
1

n

)
≤ R∗

no(n, ǫ)

≤ R∗
rt(n, ǫ) ≤ Cǫ +

log n

n
+

c̃1
√
K + c̃2
n

+ o

(
1

n

)
(34)

where c1, c2, c̃1 and c̃2 are finite constants with c1 < 0 and

c̃1 < 0. As K increases and the fading distribution converges

to a step function, the third term in both the upper and lower

bounds in (34) becomes increasingly large in absolute value.

D. Numerical Results

Fig. 1 shows the achievability bound (22) and the converse

bound (13) for a quasi-static SIMO fading channel with two

receive antennas. The channel between the transmit antenna

and each of the two receive antennas is Rician-distributed with

K-factor equal to 20 dB. The two channels are assumed to be

independent. We set ǫ = 10−3 and choose ρ = −1.55 dB so

that Cǫ = 1 bit/channel use. For reference, we also plotted a

lower bound on R∗
rt(n, ǫ) obtained by using the κβ bound [5,

Thm. 25] and assuming CSIR.2 Fig. 1 shows also the approx-

imation (1) for R∗(n, ǫ) corresponding to an AWGN channel

with C = 1 bit/channel use. Note that we replaced the term

O(log(n)/n) in (1) with log(n)/(2n) (see [5, Eq. (296)]).3

2Specifically, we took F = Fn with Fn defined in (21), and QYH =
PHQY |H with QY |H defined in (36).

3The validity of the approximation [5, Eq. (296)] is numerically verified
in [5] for a real AWGN channel. Since a complex AWGN channel can be
treated as two real AWGN channels with the same SNR, the approximation [5,

Eq. (296)] with C = log(1+ρ) and V = ρ
2+2ρ

(1+ρ)2
is accurate for the complex

case [8, Thm. 78].

The blocklength required to achieve 90% of the ǫ-capacity of

the quasi-static fading channel is in the range [120, 320] for the

CSIRT case and in the range [120, 480] for the no-CSI case.

For the AWGN channel, this number is approximately 1420.

Hence, for the parameters chosen in Fig. 1, the prediction

(based on zero dispersion) of fast convergence to capacity is

validated.
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APPENDIX A

For the channel (3) with CSIRT, the input is the pair

(X,H), and the output is the pair (Y,H). Note that the

encoder induces a distribution PX |H on X and is necessarily

randomized, since H is independent of the message J . Denote

by R∗
e(n, ǫ) the maximal achievable rate under the constraint

that each codeword cj(h) satisfies the power constraint (7)

with equality, namely, cj(h) ∈ Fn for j = 1, . . . ,M and

for all h ∈ Cr. Then by [5, Lem. 39],

R∗
rt(n− 1, ǫ) ≤ n

n− 1
R∗

e(n, ǫ). (35)

We next establish an upper bound on R∗
e(n, ǫ) using the

meta-converse theorem [5, Thm. 26]. As auxiliary channel

QYH |XH , we take a channel that passes H unchanged and

generates Y according to the following distribution

QY |H=h,X=x =

n∏

j=1

CN (0, Ir + ρhhH). (36)

In particular, Y and X are conditionally independent given H .

Since H and the message J are independent, Y and J are

independent under the auxiliary Q-channel. Hence, the average

error probability ǫ′ under the auxiliary Q-channel is bounded

as ǫ′ ≥ 1− 1/M . Then, [5, Thm. 26]

nR∗
e(n, ǫ) ≤ sup

PX |H

log

(
1

β1−ǫ(PXYH , PHPX |HQY |H)

)
(37)

where β1−ǫ(·, ·) is defined in [5, Eq. (100)], and the supremum

is over all conditional distributions PX |H supported on Fn.

We next note that, by the spherical symmetry of Fn and

of (36), the function βα(PY |X=x,H=h, QY |H=h) does not

depend on x ∈ Fn. By [5, Lem. 29], this implies

βα(PXY |H=h, PX |H=hQY |H=h)

= βα(PY |X=x0,H=h, QY |H=h) (38)

(with x0 defined in (24)) for every PX |H=h supported on Fn,

every h ∈ Cr, and every α. Following similar steps as in the

proof of [5, Lem. 29] and using (38), we conclude that

β1−ǫ(PXYH , PHPX |HQY |H)

= β1−ǫ(PHPY |X=x0,H , PHQY |H) (39)

for every PX |H supported on Fn.



In the following, to shorten notation, we define

P0 , PHPY |X=x0,H , Q0 , PHQY |H . (40)

Using this notation, (37) becomes

nR∗
e(n, ǫ) ≤ − log β1−ǫ(P0, Q0). (41)

Let r(x0;YH) , log(dP0/dQ0). By the Neyman-Pearson

lemma (see for example [9, p. 23]),

β1−ǫ(P0, Q0) = Q0

[
r(x0;YH) ≥ nγn

]
(42)

where γn is the solution of P0

[
r(x0;YH) ≤ nγn

]
= ǫ.

We conclude the proof by noting that, under Q0, the random

variable r(x0;YH) has the same distribution as Ln in (11),

and under P0, it has the same distribution as Sn in (12).

APPENDIX B

Due to spherical symmetry and to the assumption that

x ∈ Fn, the term PY |X=x[cos
2 θ(x,Y) ≥ 1−γn] on the LHS

of (18), does not depend on x. Hence, we can set x = x0.

We next evaluate supx∈Fn
QY[Zx(Y) = 1] for the Gaussian

distribution QY in (20). Under QY, the random subspace

spanned by the columns of Y is r-dimensional with probability

one, and is uniformly distributed on the Grassmann manifold

of r-planes in Cn [10, Sec. 6]. If we take A ∼ QA =
CN (0, In) to be independent of Y ∼ QY, then for every

x ∈ Fn and every Y ∈ Cn×r with full column rank

QY[Zx(Y) = 1] = QY,A[ZA(Y) = 1] (43)

= QA[ZA(Y) = 1]. (44)

In (43) we used that QY[Zx(Y) = 1] does not depend on x;

(44) holds because QA is isotropic.

To compute the RHS of (44), we will choose for simplicity

Y =

[
Ir

0(n−r)×r

]
. (45)

The columns of Y are orthonormal. Hence, by (16) and (18)

QA[ZA(Y) = 1] = QA

[
‖AH

Y‖2/‖A‖2 ≥ 1− γn
]

(46)

= QA

[∑n
i=r+1 |Ai|2∑n
i=1 |Ai|2

≤ γn

]
(47)

where Ai ∼ CN (0, 1) is the ith entry of A. Observe that

the ratio
(∑n

i=r+1 |Ai|2
)
/
(∑n

i=1 |Ai|2
)

is Beta(n− r, r)-
distributed [7, Ch. 25.2].

To conclude the proof, we need to compute κ̃τ (Fn, QY).
If we replace the constraint i) in (14) by the less stringent

constraint that

PY[Z(Y) = 1] = E
P

(unif)
X

[
PY |X [Z(Y) = 1]

]
≥ τ (48)

with PY being the output distribution induced by the uniform

input distribution P
(unif)
X

on Fn, we get an infimum in (14),

which we denote by κ̄τ , that is no larger than κ̃τ (Fn, QY).
Because both QY and the output distribution PY induced by

P
(unif)
X

are isotropic, we conclude that

PY[Z(Y) = 1] = QY[Z(Y) = 1] ≥ τ (49)

for all tests Z(Y) that satisfy (48) and the constraint ii) in

(14). Therefore, κ̃τ (Fn, QY) ≥ κ̄τ = τ .

APPENDIX C

To establish (32), we study the converse bound (13) and

the achievability bound (22) in the large-n limit. Due to space

limitations, we shall only provide a sketch of the proof of

Theorem 5. We refer the reader to [11] for the missing steps.

Applying [5, Eq. (102)] to the RHS of (41) yields

R∗
rt(n− 1, ǫ) ≤ n

n− 1

(
γn +

logn

n

)
(50)

where γn satisfies

P[Sn ≤ nγn] = ǫ + 1/n. (51)

To compute γn, note that—given G—the random variable Sn

is the sum of n i.i.d. random variables with mean µ(G) ,

log(1 + ρG) and variance σ2(G) , ρG(ρG+ 2)(1 + ρG)−2.

An application of a Cramer-Esseen-type central-limit theorem

[6, Thm. VI.1] allows us to establish that [11]

P[Sn ≤ nγn] = P
[
Z ≤ √

nU(γn)
]
+O

(
n−3/2

)
(52)

where Z ∼ N (0, 1) and U(γn) , (γn − µ(G))/σ(G) are

independent. Then, by Lemma 4,

P[Sn ≤ nγn] = P[µ(G) ≤ γn]︸ ︷︷ ︸
=FC(γn)

+q(γn)/n+O
(
n−3/2

)
(53)

where q(γn) , f ′
U(γn)

(0). Substituting (53) into (51), and

applying Taylor’s theorem to FC(γn), we get

γn = Cǫ +
q(Cǫ) + 2

2n
· 1

F ′
C(Cǫ)

+ o(1/n). (54)

Since F ′
C(Cǫ) > 0 by assumption, we conclude that γn =

Cǫ +O(1/n).
The analysis of the achievability bound follows similar

steps [11].
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