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Gap Waveguide: Low Loss Microwave Passive Components and 
MMIC Packaging Technique for High Frequency Applications  

ASHRAF UZ ZAMAN 

Department of Signals and Systems 

Chalmers University of Technology 

Abstract

 

The heavy congestion at the existing radio frequency spectrum allocated for the today’s wireless 

communications motivates and accelerates the research work at mmWave bands or even higher 

frequency range where more spectrum space is available for massive data rate delivery. The inclination 

of modern wireless system research and development is towards small size, reliable, high-performance 

and high-yield microwave multifunctional products. Interconnect problems, packaging problems and 

the mechanical assembly issues related to radio front-end components have been the major limitations 

towards using the mmWave technology for regular commercial applications. 

 There are some key issues to be considered while using conventional microwave technologies 

such as planar microstrip line or the metal waveguide for building up high frequency microwave 

modules or systems.  At first, this thesis explains these factors briefly and put forward the existing 

performance gap between the planar transmission lines such as microstrip or coplanar waveguide and the 

non-planar metal waveguides in terms of losses, manufacturing flexibility and cost. The packaging 

problems in conventional microwave circuitry are also brought up from practical view point.  

After that, the newly proposed gap waveguide technology is presented as a promising solution for 

high frequency microwave problems. Chapter 2 explains the operating principle of the proposed gap 

waveguide technology along with design of the parallel plate stop-band. Measurement results for the 

manufactured gap waveguide demonstrators are also provided with emphasis on loss analysis.  

Chapter 3 presents mechanically flexible design of high Q resonators and bandpass filters based 

on groove gap waveguide. Narrowband filter design with Chebyshev response is presented at Ku-band 

and Ka-band. The filter in Ka band has been designed with commercial specifications in mind and this 

opens up the whole new idea of designing filters without problematic electrical contact between split 

blocks and sidewalls. 

In chapter 4, ridge gap waveguide planar slot array has been described. One 4×1 element linear 

array and one 2×2 element array have been designed, manufactured and measured. Good agreement has 

been obtained between simulated and measured reflection coefficient for both slot array antennas. 

Obtained radiation patterns are also in agreement with the simulated patterns.  

Chapter 5 shows how the parallel plate stop-band obtained from PMC surface and smooth metal 

surface can be utilized as a new packaging solution for high frequency RF circuitry. The basics of new 



ii 
 

PMC packaging along with some experimental verification for passive structures as well as active 

MMIC amplifier chain are detailed in this chapter.  

Chapter 6 deals with crucial transition design for gap waveguide structures. One microstrip to 

ridge gap waveguide transition has been designed and measured at Ka-band. This transition is compact 

and utilizes only mechanical pressure contact between the microstrip line and ridge gap waveguide line 

instead of soldering or epoxy gluing process. The ridge waveguide to rectangular waveguide transition is 

also designed in two different approaches. In one approach, the ridge height is reduced in several steps to 

match the height of rectangular waveguide. In the other approach, the ridge gap waveguide is fed from 

the bottom by a rectangular waveguide and the width of the ridge section is tuned at the rectangular 

waveguide opening. 

Thus, the topic of this doctoral dissertation is concerned with research tasks to validate the concept 

of gap waveguide technology and to investigate its potentials for high frequency microwave applications. 

All the studies presented in this thesis are proof of concepts and accomplished mainly in Ku-band or Ka- 

band. Nevertheless, the gap waveguide technology is quite suitable for mmWave frequency or even 

higher frequency applications. 

 

Keywords:  PMC surface, parallel plate stop-band, Quasi-TEM mode, gap waveguide, PMC packaging, high 

Q resonators, narrowband filter, fractional bandwidth, slot array antenna, corporate feed network.  
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Chapter	1	
Introduction	
 

Recently, there is a significant growth in wireless telecommunication applications. In near 

future telecommunication or RF applications will shift more and more to the higher frequency 

spectrum due to large available bandwidth, smaller component size, less interference etc. Potential 

high frequency commercial wireless applications include point to multipoint services, chip to chip 

high speed links, satellite communications, automotive radars, radiometers, imaging and security 

systems [1-8].  As a result, significant research activity has been going on around mmWave 

frequency range (or even higher) to validate different microwave system aspects.  

On the other hand, there are plenty of technological and mechanical challenges in designing high 

frequency microwave RF front ends. These factors are cost pressure, smaller size requirement, increased 

system density, packaging and cross-talk suppression, lower power loss dissipation etc. Usually, RF 

front-ends are composed of both integrated circuits (ICs) and passive devices including antennas and 

filters that are not integrated on the semiconductor substrate. While the progress in active components 

in RF systems has propelled with the advancement of monolithic microwave integrated circuit 

(MMIC) technology, resulting in the fact that the active components of RF systems occupy only a 

small segment of the board space area, passive components on the other hand have not advanced in a 

similar manner due to the fabrication tolerance issues associated with geometrical scaling governed by 

operating frequency. There is a need for re-thinking in design techniques in terms of manufacturing 

flexibility and improved performance with continued affordability for RF front-end passive 

components (e.g., antennas and filter/diplexer). In this regard, having upcoming high frequency 

applications in mind, some new technology development seems to be important. 

 

1.1 Metal waveguide problems 

Classical metal waveguides shown in figure 1.1 have existed in microwave operation for a long 

time in the form of circular and rectangular waveguides. These waveguide based passive components 

can be very low loss even at mmWave spectrum and are very suitable for low loss applications. 

However, traditional machining techniques for manufacturing metal waveguides operating at 

mmWave frequencies, specifically above 60GHz, are complicated and costly [9-11]. This mature 

technology is not very suitable for low-cost mass-production since tedious and expensive post 

fabrication modification and mechanical assembling presents a bottleneck problem for manufacturers 

and commercial companies.  Also, when realized as components and manufactured in two blocks, it is 

difficult to achieve the low loss and high Q values at high frequencies. The reason is usually the field 
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leakage through the tiny gaps between two split blocks (originated due to manufacturing imperfections 

or metal deformations caused by thermal expansion). Also, poor electrical contact between the 

conductors is one of the most common sources of passive intermodulation (PIM) [12] which is 

considered as a hidden threat in many microwave applications.  

 

 
Fig.1.1   Typical metal waveguides. 

 

Apart from these manufacturing problem issues at high frequency, the integration of the active 

microwave electronic circuitry with metal waveguide is not very easy and often challenges the engineers. 

Today’s planar MMICs are incompatible with non-planar metal waveguides and require the use of 

different transitions which add more complexity in the overall system. Often at higher frequency, these 

transitions show degraded results and overall performance of the whole microwave module deteriorates. 

So, in spite of numerous indisputable advantages of metal waveguide components such as low loss and 

high power handling capacity, there are still some issues related mainly to the manufacturing cost and 

integration problem that should be considered while designing mmWave systems and modules. 

1.2 Printed planar transmission line problems 

Mircrostrip and Coplanar lines are the most representative planar transmission lines and are shown 

in figure 1.2. These are robust, low cost solutions and very suitable for integrating active microwave 

components on circuit boards. Especially, the CPW is widely used in monolithic microwave integrated 

circuits (MMIC) capable of a very high metal pattern resolution. But, the transmission properties of both 

microstrip and CPW lines greatly depend on the substrate parameters. Both lines suffer from high 

insertion loss at mmWave frequency spectrum due to the presence of lossy dielectric material. Published 

studies in [13-15] show that significant power leakage exists on various printed circuit transmission 

lines, often related to surface waves in the dielectric substrate causing serious cross-talk and interference 

problems. Particularly in the case of top-covered microstrip line, this leakage begins at a much lower 

frequency than expected and become a matter of serious concern for power loss as well as cross-talk 

issue [14]. Similarly, conventional packaging of CPW modifies the CPW into a conductor- backed CPW 

(CBCPW), and this thereby generates power leakage in the form of coupling to parasitic parallel-plate 

(PP) modes. This unwanted radiation can cause unexpected cross-talk problems, isolation problems and 

packaging problems [16]. Even for antenna applications, this unwanted or spurious radiation from feed 

lines can produce a dramatic degradation on radiation patterns and efficiency [17-18]. 
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Fig.1.2   Typical microstrip and the CPW lines. 

 

 

1.3 High Frequency high-gain planar antennas  

Usually, planar waveguide-type slot antennas shown in figure 1.3 are very attractive candidate for 

high frequency high- efficiency antenna because the lower losses in the feed line are directly linked with 

the efficiency of the antenna. One of the key problems in this case has been the high manufacturing cost 

of 3-dimensional waveguide feed network. The feeding networks in this concern can be classified in two 

major categories: series-feed type and corporate-feed type.  The series-type array is a simple structure but 

suffers from the narrow bandwidth problem (4 -5%) due to long line effect and beam squinting problems 

[19-20].  In corporate feed network larger bandwidth (8-10%) can be achieved but, the distance between 

the adjacent elements is difficult to maintain smaller than one wavelength in a single waveguide layer 

and grating lobe problems arise.  Published studies suggest the possibility of using complex multilayer 

structure to solve the issue [21]. But in all cases, manufacturing costs are high at high frequency due to 

the requirements of electrically tight contacts between the slotted plate and the feed structure.   

 

Fig.1.3   Single layer and multi-layer waveguide slot array antenna. 
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1.4 High frequency narrow band filters  

The successful commercialization of broadband wireless links at mmWave frequencies depends 

to a large extent on the availability of low-cost components. Among them, filters and diplexers are of 

particular concern since they are in many cases the single most expensive component in a mmWave 

system. The number of research contributions devoted to the design and analysis of microwave filters 

and diplexers is enormous.  One of the fundamental problems in filter realization is to overcome 

dissipation losses as sensitivity of a wireless receiver is determined by noise and nonlinearity in the RF 

front-end.  The insertion loss in the passband is inversely proportional to the filter bandwidth and the 

resonator Q-factor and is proportional to the number of resonators used. Thus, for very narrow band 

channel selection applications, very high resonator Q-factors must be used in order to achieve low 

passband loss [22-24]. Typically, H-plane iris filters and E-plane metal insert filters shown in fig. 1.4 

are used extensively. But the Q value decreases in H-plane iris filters due to leakage of energy through 

tiny gaps between the top metal plate and filter body which results from thermal expansion and metal 

deformation. Also, high quality surface finishing over the whole metal contact area is required for 

good mechanical assembly. In E-plane filters, tolerances associated with the thickness of metal inserts 

become critical as the dimensions of millimeter-wave circuits reach the limits. These strict mechanical 

requirements lead to very high precision metal machining technique which increases the cost of 

manufacturing and cause much delay in production chain. 

 

 

Fig.1.4   H-plane Iris filter and E-plane metal insert waveguide filter. 

 

1.5 Packaging problems in high frequency microwave module 

Electronic circuits must be enclosed both to protect the circuit from metal contamination, harsh 

weather and also to provide electrical isolation. Also, to comply with the smaller size requirements and 

compactness for mmWave microwave modules, large amount of electronic components must be placed 

into a confined area. For such high density microwave modules, RF packaging is more and more 

important in terms of isolation and interference suppression. Packaging of high frequency microwave 
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The prevailing idea throughout this dissertation is to exploit a new low loss transmission line 

technology known as gap waveguide to design the critical passive components. Gap waveguide 

technology has much lower loss than microstrip or CPW. Losses in gap waveguide are comparable to 

those of conventional metal waveguides and are in the same order. Also, gap waveguide structures are 

more flexible and easy to assemble than the conventional metal waveguides. Thus, this newly proposed 

solution gives a very good trade-off between two opposing factors such as low loss and manufacturing 

flexibility. Another aspect of the thesis is to propose new packaging method for high frequency 

microwave modules by using the parallel-plate mode suppression capabilities of gap waveguide 

technology.  

 

1.7 Organization of the thesis 

The entire work is organized in seven short chapters. Chapter 2 starts with the basic overview of 

the gap waveguide technology. It presents the experimental validation of the first gapwaveguide 

prototype. Also, it describes the loss performance of the gap waveguide demonstrator after TRL 

calibration has been performed. 

Chapter 3 describes high Q gap waveguide resonators and narrow band filter design based on 

groove gap waveguide technology. Two different coupling techniques between adjacent resonators are 

verified and narrow band filters are designed at Ku-band and Ka-band. 

Chapter 4 provides a summary of gap waveguide slot antenna design. Description of a 4×1 linear 

slot array antenna and a 2×2 planar antenna are presented with measured results. The antennas are 

designed in two metal plates; one of the plates has a ridge placed in between texture of metal pins and the 

other one is a smooth plate which contains the radiating slots. 

Chapter 5 explores the packaging aspect and parallel plate mode suppression capabilities of gap 

waveguide technology. This packaging technique is applied to various passive circuits and has been used 

for improving isolation of circuit components in high frequency microwave module. Experimental 

results are presented, demonstrating the effectiveness of gap waveguide packaging technique.  

Chapter 6 describes a back-to-back transition from microstrip line to ridge gap waveguide 

technology. The transition is designed around Ka band and is quite compact and suitable for MMIC to 

ridge gap waveguide antenna integration. This chapter also includes description about ridge gap 

waveguide to standard rectangular waveguide transitions. 

Chapter 7 contains general conclusions, and possible future work. 
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Chapter	2	
Overview	of	Gap	Waveguide	Technology		

It is expected that high-density integration techniques, combined with a low-cost fabrication 

process, should be able to offer widespread solutions for future high frequency microwave or mm-

Wave commercial applications. Lot of research has been done in microwave community to meet these 

requirements.  Researchers have come out with technologies such as substrate integrated waveguide 

(SIW) [25-27], low loss thin-film microstrip lines (TFMS) [28-29], LTCC [30-31] etc. Each of the 

proposed techniques has their own merits and demerits.  Recently, a new transmission line technology 

known as gap waveguide has been proposed in [32-33]. This new technology is free from dielectric 

losses and more flexible than metal waveguide in the sense of modular assembly. Thus, gap waveguide 

is a suitable candidate for critical components such as high gain antennas and narrow band filters.   

 

2.1 Fundamentals of gap waveguide technology 
 

Gap waveguide technology is an extension of the research about hard and soft surfaces [34]. Gap 

waveguide uses the basic cut-off of a PEC-PMC parallel-plate waveguide configuration to control the 

electromagnetic wave propagation between the two parallel plates. As long as the separation between the 

PEC and PMC plates is less than λ/4, no wave can propagate between the plates. But if a PEC strip is 

now placed on the PMC plate, wave can propagate along the strip. This is shown in figure 2.1. As PMCs 

are not available in nature, the PMC condition must be emulated by artificial magnetic conductor (AMC) 

in the form of periodic structures such as metal pins [35] or mushroom structures [36]. 

 

Fig.2.1   Basic concept of gap waveguide technology. 

All the global parallel-plate (PP) modes are in cut-off within the frequency band where the AMC 

has high enough surface impedance to create a stop-band of the PP modes and thereby allows only the 

desired waves along ridges or grooves to propagate within the gap waveguide structure. Gap waveguide 

technology exists in three versions depending upon the guiding structure: ridge gap waveguide, groove 

gap waveguide and microstrip gap waveguide [37- 40]. These three configurations are shown in 

figure.2.2 where periodic metal pins are used as AMC surface. Out of these versions, the ridge gap 

waveguide and microstrip gap waveguide both support quasi TEM mode of propagation. On the other 

hand, the groove gap waveguide supports a mode very similar to TE10 mode of rectangular waveguide 
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[41].  The main advantage of the gap waveguide is that  it can be realized without any requirement of 

metal contact between the upper metal surface and the lower metal surface allowing cheap 

manufacturing of low loss waveguide components in high frequency bands. 

 

Fig.2.2    Three versions: (a) Ridge gap waveguide (b) Groove gap waveguide and (c) Microstrip gap 
waveguide. 

2.2 Design of parallel plate stop-band with pin surface 

As mentioned in section 2.1, the main performance of the gap waveguide is determined by its 

ability to create parallel-plate stop-band for wave propagation in the undesired direction. This stop- 

band is usually achieved by a periodic texture located around the metal ridge, groove or the strip. The 

periodic structure functions as a high impedance surface when placed closely (with an air gap smaller 

than λ/4) to a metal plate and is often referred to as AMC surface. The most important thing in 

designing the stop-band is to obtain the lower and upper cut-off frequency of this stop-band. Usually, 

the cut-off study is performed as a function of the geometrical parameters of the periodic structure to 

be used. This kind of study is well described in [42]. For the first gap waveguide demonstrator, a 

textured surface made of square pin is designed to emulate the AMC surface for a frequency range of 

10-20 GHz. The figure 2.3 shows the details of the pin surface. The computed dispersion diagram for 

this corresponding structure is shown in figure 2.4.  A large stop-band is created by the pin surface 

after 10 GHz where no waves can propagate without the presence of the ridge. But in presence of the 

ridge, there is a mode propagation which follows the light line and is considered as the desired Quasi-

TEM mode. 

 

Fig. 2.3   Detailed dimensions of the periodic metal pin.  



Page | 9  
 

  

 

Fig. 2.4   Dispersion diagram for different cases. 

 

2.3 Field attenuation in the pin region and measured attenuation 

One very important aspect to know for such oversized parallel plate structures is the level of field 

attenuation in the periodic structure which has been designed to act as high impedance surface or AMC 

surface. This gives also an indication of the parallel-plate stop-band achieved by the periodic structure.  

Throughout this thesis, the periodic structure which is considered as an AMC surface for the gap 

waveguide is the ‘bed of nails’ or periodic metal pins with specific dimensions. The modal field is 

computed in the transverse plane inside ridge gap waveguide to determine the level of decay in the pin 

region. The computed field distribution is shown in figure 2.5. As shown in figure 2.5, field distribution 

is nearly constant over the ridge and then it falls almost at a rate of 18-20 dB per row of pins (within 

the stop-band), most rapidly near the upper end of the frequency band. The periodic variations in the 

field pattern coincide also with the period of the pins. This attenuation has been measured also by 

placing two ridge gap waveguide sections and separating them by three rows of pins. The measured 

isolation is shown in figure 2.6.  The measured results correspond well with the computed attenuation 

level. The measured isolation between two lines placed side by side has been found better than 60dB 

for the entire Ku- band.  
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Chapter	3	
Gap	Waveguide	Narrow‐band	Filters	

A full duplex communication wireless link consists of transmitters and receivers. In such links, 

narrow band RF filters are required after high power amplifiers (HPAs) and prior to low noise amplifiers 

(LNAs). Usually, such full-duplex communication systems transmit and receive simultaneously. The 

transmitted power in the system is far too high in comparison to the received power. So, the transmitter 

filter must have very high attenuation in the receive band to stop the intermodulation noise and wide 

band thermal noise to be fed into the receiver. Also, the loss of the transmitter filter needs to be low due 

to the linearity and efficiency constrains of power amplifiers. In the receiver case, the noise figure of the 

receiver is dictated by the losses in the receiver filter as this filter sits before the LNA in the receiver 

chain. So, the receiver filter should also have a low insertion loss and very high selectivity in the 

transmitting band.  As the number of resonators in a filter is increased in order to increase the selectivity, 

the insertion loss increases [46-47]. For a specific insertion loss, a narrow band filter usually requires 

resonators with higher unloaded Q than a broad band filter. Apart from the electrical performance 

requirement, the filters have to be mass producible and low cost.  For this reason, H-plane iris coupled 

filters and E-plane metal insert filters are extensively used in narrow band waveguide filter design.  

As mentioned in chapter 1, both these type of filters have certain drawbacks at high frequency. In 

case of H-plane filters, filter assembly will exhibit a transitional resistance between the top metal plate 

and milled waveguide section. As this transition occurs at location of high current density, this has to be 

taken care of by ensuring good electrical contact between the two parts; otherwise significant amount of 

energy will leak through tiny gaps leading to Q value degradation of the resonators [48]. Also, the 

milling process requires very small tools to manufacture rounded corners with smaller radius [49]. On 

the other hand, in case of E-plane filters, the electrical performance of filters is mainly determined by 

the pattern of the metal inserts. For example, the thickness of the metal insert needs to be thin enough 

(30–80 micrometer) for a moderate filter requirement at 38GHz. The thickness of the metal insert will 

have to be even thinner at mmWave frequency range to comply with the filter requirements. Also, 

these metal waveguide types of filters are very difficult to integrate in a single module with other 

passive components such as couplers or antennas.  

In this concern, there is a need for developing new types of high Q filters which are more robust 

in terms of mechanical assembly and can be integrated with other modules of passive components 

such as antennas. The groove gap waveguide based high Q filters can be of interest in this case. These 

high Q filters can be built in an open parallel plate structure surrounded by periodic metal pins without 

any side walls. The electrical contact between the parallel plates will not play major role in the filter 

performance as the field leakage will be negligible after two or three rows of pins. Also, measured Q 

values for such groove gap resonator are similar to that of a rectangular waveguide [50].  
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case of ridge coupling, the pin dimensions for the resonators are 1.75×1.75×6 mm3.  The width, length 

and height of the ridge section can be varied to achieve coupling coefficient values varying over large 

range. For the other case, the pin dimensions for the resonators are 1.0×1.0×6.25 mm3. For this case, 

only the periodicity of the pin rows and distance between the pin rows separating the two resonators are 

varied. Very low values of coupling coefficients are possible to obtain which is required for very narrow 

band filters.  

 

Fig. 3.4   Two types of  coupling mechanism for groove gap waveguide resonators. 

Based on these two coupling mechanisms, 3rd order and 5th order Chebyshev band-pass filters 

have been designed at Ku band.  The excitation of the input and output resonators of the filters has been 

achieved by typical coaxial line using SMA connectors for simplicity of measurements with the help of 

available Vector Network Analyzer at Ku band. Two  3rd order filters having 1% relative bandwidth and 

pass-band ripple of 0.032dB and 0.1dB are shown in figure 3.5. The simulated results for the two 3rd 

order filters are shown in figure 3.6. Out of these two filters, the filter with 0.1dB pass-band ripple has 

been manufactured and tested. The measured results are presented in figure 3.7.  The details of this filter 

design can be found in [48].  

 

Fig. 3.5 Two different groove gap waveguide coupled resonator filters. 
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Fig. 3.6 Two different groove gap waveguide 3rd order filter simulated responses. 

 

Fig. 3.7   3rd order  groove gap waveguide filter measured results [48]. 

3.3 Ka band filter design for commercial diplexer application 

Usually, diplexer filters require very low insertion loss in the passband and high selectivity to 

reject frequencies close to passband. The purpose of this section is to demonstrate the potential of gap 

waveguide technology to design filters with very stringent commercial specifications. The key filter 

specifications for commercial 38GHz diplexers are shown in the following table: 

Table: I  Specification for the 38GHz diplexer filter 

Passband  37.058-37.618 GHz 

Stopband 38.318-38.878 GHz 

Passband Insertion loss  Max. 1.5 dB 

Attenuation in the Stopband 70 dB 

Return loss  -17 dB 
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Chapter	4	
Gap	Waveguide	Slot	Array	Antenna	

Wireless communication systems have evolved from cellular telephony with data rates of 

kilobits per second (kbps) to wireless local area networks (WLANs) and wireless personal area 

networks (WPANs) that communicate with megabits per second (Mbps). High-gain and large-aperture 

antennas with fixed beams are required to achieve high S/N ratio for point-to-point high-speed systems 

(e.g., network backhaul) in the mmWave frequency band.   

Although high antenna efficiency can be obtained by using dielectric lens antennas or reflector 

antennas [53-56], it is difficult to realize planar structures because they essentially need focal spatial 

length. Microstrip array antennas can be light weight, low cost and low profile but they suffer from 

high dielectric losses and ohmic losses at high frequency bands [57]. Also, microstrip array antennas 

are associated with problems such as leakage via surface waves and undesired radiation [58-59]. Thus, 

realization of a high efficiency high gain microstrip antenna array is quite challenging especially at 

mmWave frequencies and above.  

Slotted hollow waveguide planar array antennas are free from large feed-network loss and can 

be applied to design high-efficiency high-gain or moderate-gain antennas [60-61]. However, the 

production cost of waveguide antennas is generally very high because they usually consist of metal 

blocks with complicated three-dimensional structures. Usually, high precision manufacturing 

techniques are needed to achieve good electrical contacts between the slotted metal plate and the 

bottom feed structure in such waveguide fed slot array antennas [62]. Apart from the manufacturing 

costs and assembly complications, some limitations of waveguide slot arrays have been reported in 

literature. Single layer waveguide slot arrays (if the elements are series feed) are simple but have 

narrow bandwidth due to long line effect [19]. In single layer structure, it is difficult to feed each 

radiating element in parallel (fully corporate-feed) without having the element spacing close to one 

wavelength (λo) and avoiding grating lobe issues [63-64]. For wider bandwidth, multilayer antenna 

configuration has been considered in [21], [65] which add extra complexity in feed network and 

mechanical assembly. 

The ridge gap waveguide technology mentioned in the previous sections of this thesis can be used 

to design low loss slot array antennas. The low loss feed network needed for an array can be built very 

easily with the help of ridge gap waveguide concept. In addition, radiating slots can be placed 

conveniently on the top smooth metal plate of ridge gap waveguide. It is possible to design slot antenna 

without having strict requirements of good electrical contacts between the slotted metal plate and the 

bottom feeding structure. Thus, the ridge gapwaveguide slot antenna with flexible mechanical assembly 

can be an attractive as well as cost effective solution for high gain and high efficiency applications. The 

corporate feed network (consisting of simple T-junctions) which is a key for wideband slot array 

application, can be designed in a fashion similar to that of a microstrip array. 
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Fig. 4.8   Measured E and H plane patterns for the planar array. 

4.4 Summary 

A 4×1 element linear slot array and 2×2 element planar array antenna based on ridge gap 

waveguide technology have been presented in this section. For both antennas, the low-loss corporate 

feed network has been designed on the bottom metal plate with guiding ridge and periodic pins, and 

above the ridges there are radiating slots in the top metal plate. There is absolutely no need for electrical 

contact between these bottom layers and top radiating layers of these antennas, thus making them cost 

effective to manufacture and very simple to assemble mechanically. The simulated and measured results 

also show reasonable agreement for both the antennas. 
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5.2 Gap waveguide packaging for improved isolation within microwave modules 

Instability in a mmWave amplifier (if biasing circuit is properly designed) is mainly the result of 

unwanted feedback across the amplifier and such feedback is normally introduced during the 

packaging [77-79]. Engineers are left with options such as placing lossy absorber material in the 

packaged cavity or relocating a particular circuit element to a different position in the cavity, in order 

to solve problems with cavity resonances and other package phenomena. These particular approaches 

are effective if the amplifier gain in each cavity is not very high, typically below 20~22dB, and they 

become less effective if larger gains are required of the amplifiers in every cavity.  This section 

describes the performance (stability, oscillation tendency etc.) improvement in case of a Ka band high 

gain amplifier chain when the proposed gap waveguide packaging technique is used in comparison to 

the standard metal wall and absorber based solution. The two isolation cases investigated in this work 

are shown below in figure 5.2.  

 

Fig. 5.2   Test circuits for isolation evaluation of a single amplifier chain (side walls not shown). 

The amplifier chains used in the test circuits consisted of four variable gain amplifiers from UMS 

(CHA3694-QDG) and have been placed on the Arlon main substrate. This main substrate is attached to a 

smooth metal plate by using silver epoxy.  Passive components such as capacitors and resistors, as a part 

of the biasing network, and DC-connectors are placed in another FR4 substrate and are attached on the 

other side of the same metal plate. DC and RF sides are interconnected using Samtec’s through-hole 

headers. Two experimental approaches have been followed to test the isolation performance of the single 

chain amplifier: stable forward gain test and self-oscillation test. This has been explained in details in 

[80]. The measured results for only the self-oscillation test are presented in this section in figure 5.3. As 
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shown in the figure, no oscillation peaks have been observed for gap waveguide packaging (pin lid 

packaging) even after 65~70 dB of forward gain. On the other hand, for traditional metal wall packaging 

with absorbing material, resonance peaks appeared at around 40dB of total forward gain.  

Gap waveguide Packaging  Metal wall + absorber 

Fig. 5.3   Measured results for self-oscillation test. 

5.3 Summary 

The gap waveguide technology represents hereby, a new and advantageous way of packaging high 

frequency microwave circuits. The performance of the complete microwave system can be destroyed 

due to the packaging problems such as cavity resonance, spurious radiation, dominant mode coupling to 

substrate modes etc. This chapter clearly shows that- the proposed gap waveguide technology is a very 

suitable technology which can overcome the problems of packaging of RF circuits and can improve the 

electrical performance of the overall system.  
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Chapter	6		
Gap	Waveguide	Transitions		

The transitions between gap waveguide and other standard transmission line such as microstrip 

and rectangular waveguide are very important constituent related to gap waveguide components. Most 

often, other transmission lines have standardized cross-sections (e.g., rectangular waveguide) or 

characteristic impedance (e.g., microstrip line). In order to reduce the reflections from the interface 

between gap waveguide and standard transmission lines, impedance transformers or matching sections 

are required. This chapter deals with one microstrip to ridge gap waveguide transition and two ridge gap 

waveguide to standard rectangular waveguide transitions.  

 

6.1 Microstrip to ridge gap waveguide transition 

This transition is based on the fact that the E- field of dominant mode in a microstrip line can be 

transformed easily to a standard ridge waveguide mode [81-82]. In case of ridge gap waveguide, it is 

even simpler as the dominant mode is also a Quasi-TEM mode. This is shown in figure 6.1. 

 

 

Fig. 6.1  E-field distributions of  dominant mode of microstrip line and ridge gap waveguide. 

Due to such similar field distribution, only requirement for a good transition between these two 

different transmission lines is an interface for transforming E-fields in the dielectric to E-fields in the air. 

This can be done by tapering down the width of the ridge section in several steps. In the proposed design, 

the narrower ridge section is viewed as an extended section of the regular ridge section and is placed just 

above the microstrip line. The width of the ridge at this section is kept similar to that of the metal strip in 

microstrip line. In this way, this tapered ridge section needs to be in electrical contact with the microstrip 

line and the substrate. This can be achieved by soldering, gluing or simply by pressing the ridge section 

down. In this work, the electric contact is achieved only by mechanical pressure contact. Schematic of 

the designed transition between the microstrip line and ridge gap waveguide is shown in figure 6.2. A 

standard Chebychev transformer based on several λg/4 sections of different width can also be employed 
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6.2 Ridge gap waveguide to rectangular waveguide transition 

Two transitions from ridge gap waveguide to rectangular waveguide have been designed recently. 

One is the inline transition where the height of the guiding ridge is reduced in several steps to match the 

height of the empty rectangular waveguide. In the other transition, the ridge gap waveguide is excited by 

a rectangular waveguide from the bottom. The first transition with stepped ridge sections is designed at 

Ka-band and is shown in figure 6.4  where the critical dimensions are as follows:  L1 = 2.46mm; L2 = 

2.27mm; L3 = 2.17mm; L4 = 1.78mm and S1= 0.22mm; S2= 0.52mm; S3= 0.76mm, S4 = 0.53mm and S5= 

0.42mm.  The simulated performance of this back to back transition is shown in figure 6.5. We can 

observe a good performance in the whole waveguide band. 

 
Fig. 6.4   Back-to-back transition with stepped ridge section, top metal plate not shown here. 

 

Fig. 6.5   Simulated S-parameters for the stepped ridge back-to-back transition. 

The other transition is also a simple transition where the rectangular waveguide is feeding the ridge 

gap waveguide from the bottom. This type of transition is needed for measuring the ridge gap waveguide 

antenna where the feeding waveguide has to be placed below the antenna. The transition is designed at 
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Ku-band and is shown in figure 6.6 where all critical dimensions for this transition are as follows: PL = 

3.65mm; Pw = 1.25mm; Ps = 4.25mm; Rw = 4mm; R = 2mm. The simulated performance of the single 

transition is shown in figure 6.7. 

 

Fig. 6.6  Ridge gap waveguide to rectangular waveguide transition  (fed from bottom). 

 

Fig. 6.7   Simulated S-parameters for the single transition of ridge gap waveguide to rectangular waveguide 

(fed from bottom). 

6.3 Summary 

Three important transitions have been presented in this chapter. The microstrip to ridge gap 

waveguide transition has been manufactured and measured. The other two ridge gap waveguide to 

rectangular waveguide transitions have been used in the two ridge gap waveguide slot array antenna 

presented in chapter four. All these transitions worked over considerable bandwidth and measured results 

remain within acceptable limits and are in reasonable agreement with the simulated results. 
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Chapter	7	
Conclusion	and	future	work	

To leverage the vast unlicensed bandwidth available at mmWave frequencies, wireless and 

microwave designers have begun developing high frequency system architectures, circuits, antennas and 

packages. But as expected, they face enormous challenges to design, develop and integrate components 

cost effectively. As for example, a simple interconnect that works very well at 5GHz may have 

unacceptable loss above 60GHz and can become a source of unwanted radiation. Due to the increasingly 

short wavelengths, power dissipated along straight lines can be of lesser importance in comparison to the 

influence of discontinuities that become electrically large and cause reactance, radiation and excitation of 

surface waves. Also, power generation at these high frequencies is difficult and designers cannot afford 

this hard-fought-for RF power to lose in interconnects, discontinuities or components. Thus, the 

challenges are many at mmWave frequencies, making this an incredibly rich and deep area of research in 

the coming years. Surely, microwave engineers will come up with streams of new concepts, ideas and 

technologies around all the problem areas and will reinvent the wireless industry. 

The gap waveguide technology presented in this thesis is a similar new concept with lots of 

potential in it to be used at high frequency spectrum.  It is much lower loss than microstrip or CPW and 

has very flexible mechanically assembly compared to metal waveguide. It also solves the difficult 

problems of unwanted radiation, excitation of surface waves, cavity modes and isolation and can easily 

be applied for packaging high frequency modules and circuits. In fact, this new technology can be used 

to design all critical passive components (e.g., filters, antennas etc.) and the packaging lid for the active 

circuits in a single module. This single unit will become a more robust and compact module providing 

improved electrical performance, reduced cost and will cause less delay in production chain. 

The scope of this dissertation focuses on the gap waveguide passive components and packaging 

solutions for RF front-ends. This thesis deals mainly with ridge gap and groove gap waveguide and uses 

periodic metal pins as AMC surface.  Major contributions from this work can be summarized as follows: 

 Firstly, validation of gap waveguide concept has been done by designing and manufacturing 

first ridge gap waveguide demonstrator. Theoretical and experimental work has been done to 

confirm the low loss property of the first demonstrator by designing in house TRL 

calibration kit and characterizing losses of ridge gap waveguide. For such oversized parallel 

plate structures, the level of field attenuation in the periodic structure is very significant. 

This field attenuation has been carefully investigated and measured for gap waveguide 

structures. 

 Secondly, narrow band filters with high selectivity have been designed at Ku-band and Ka- 

band based on groove gap waveguide technology. Good electrical performance is achieved 

for manufactured high Q filter structures even after removing the sidewalls. Two different 
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types of coupling mechanisms have been investigated and used to design these filters. For 

these groove gap waveguide filters, the spit-block assembly is not critical at all, thus making 

these filters much more flexible to manufacture and integrate with other critical components 

such as antennas. 

 Thirdly, planar slot array antennas have been designed as a proof of concept for gap 

waveguide based high gain antenna. Initially, a wideband single slot element has been 

developed. Later on, a 4×1 element linear array and a 2×2 element planar array have been 

designed and manufactured at Ku-band as a demonstrator. These two slot array antennas 

work over 20% of relative bandwidth.  Both the antennas have the feeding network in the 

bottom metal plate consisting of guiding ridge and periodic pins, and above the ridges there 

are radiating slots in the top metal plate. Thus, these antennas have very simple single layer 

feeding network which is of great advantage considering the mechanical assembly and 

manufacturing complexity of the 3-D structure. 

 Fourthly, the parallel-plate mode suppression quality of gap waveguide technology is 

applied in microwave modules to package microstrip circuits. By using the gap waveguide 

package, many critical package related phenomena such as onset of  cavity modes, leakage 

to substrate modes, radiation from discontinuity, feedback issue due to over the air coupling 

etc. have been prevented within the band of interest. Gap waveguide packaging technique 

has been successfully utilized to improve the performance of passive circuits such as 

microstrip filters and active amplifier chains yielding high forward gain. The main 

advantage of the proposed packaging technique is that- it is scalable to any frequency range. 

Also, packaging  performance does not depend on mechanical issues such as stress and 

corrosion, joint reliability, surface properties, and deformations or apertures caused by 

thermal expansions or contractions. 

 Lastly, transitions between ridge gap waveguide and other standard transmission lines such 

as microstrip and rectangular waveguide have been designed and tested. The microstrip to 

ridge gap waveguide transition has a compact design with a transformation of EM fields 

from typical microstrip mode to air-filled ridge gap waveguide mode. The transition works 

even without soldering which is quite an advantage in some systems where large number of 

transitions is needed in separable modules or split-blocks. On the other hand, one of the 

ridge gap waveguide to rectangular waveguide transition is a typical inline transition where 

the height of the guiding ridge is reduced in several steps to match the height of the empty 

rectangular waveguide. In the second transition, the ridge gap waveguide is excited by a 

rectangular waveguide from the bottom which is very suitable for antenna measurements. 

In summary, this research work lays the foundation for promoting and investigating the gap 

waveguide technology for the development of a broad range of high frequency and mmWave devices or 

systems. This dissertation will help in exploration and development of future generation high-volume 

and mass-producible high frequency microwave components based on gap waveguide technology.  
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Future work 

Following the work and studies described in this dissertation, a number of technical issues are still 

waiting to be resolved. Some of these issues are mentioned below: 

 
 The work presented in the thesis serves as a proof of concept for gap waveguide technology 

and its potential, but its applications in the field of mmWave frequency or even higher 

frequency wireless systems need more system level evaluation. More efforts will be needed to 

accomplish a well-developed academic/industrial project.  

 This thesis mainly deals with ridge gap waveguide and groove gap waveguide technology. The 

potential of microstrip gap waveguide technology needs to be investigated more at high 

frequency and mmWave frequency range.  

 High frequency active components need to be integrated in a good way with the gap 

waveguide structures to exploit the full benefit of this technology. New wideband transition 

design is necessary to be able to do so.  

 Fabrication tolerances associated with commonly used CNC milling or molding techniques 

have to be investigated more in depth to realize the gap waveguide components at mmWave 

frequency range. Apart from the fabrication tolerance issue, the conductor losses for gap 

waveguide have to be characterized well at mmWave frequency, in particular, for frequency 

ranges where the skin depth is comparable with the surface roughness. 

 Fabrication techniques such as silicon based micromachining have been tried recently for 

realizing gap waveguide structures at a frequency of 100 GHz and above [83-84]. However, 

there are other manufacturing techniques such as laser milling and 3D printing process in 

metal, etc. These fabrication techniques can also be suitable for realizing high frequency gap 

waveguide structures and needs more thorough investigation. 
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