

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, February 2013

Implementing a PCI-Express AMBA interface

controller on a Spartan6 FPGA
Master of Science Thesis in Integrated Electronic System Design

Anandhavel Sakthivel

2

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Implementing a PCI-Express AMBA interface controller on a Spartan6 FPGA

ANANDHAVEL SAKTHIVEL

© ANANDHAVEL SAKTHIVEL, February 2013.

Examiner: ARNE LINDE

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: The cover shows Xilinx Spartan6 FPGA SP605 board

Department of Computer Science and Engineering

Göteborg, Sweden February 2013

3

Abstract

The Purpose of this Master thesis is to integrate the Xilinx PCI-Express interface core to the

GRLIB framework. Xilinx Spartan6 Endpoint block for PCI-EXPRESS is generated using

Coregen and integrated with the GRLIB framework. The design accounts for crossing clock

domains as it is inevitable in a system of chip design with multiple components running at

different frequencies. The implementation satisfies the Specification provided by AMBA and

PCI-EXPRESS. The performance and area requirement are taken into consideration and

different forms of the design is implemented in order to address it. The communication

between PC and GRLIB memory environment and the other way around is performed and

verified. Simple C codes are developed in order to initiate transfers and also to verify the

design. Debugging tools like GRMON, LSPCI and drivers provided by Xilinx are used for

analysing and verifying the design. Using GRMON the PCI-EXPRESS debug environment

could transfer data at the rate of 120 Mbits/second from PC to the memory of GRLIB. The

complete design work was carried out at Aeroflex Gaisler AB.

Keywords: AMBA, LEON3, FPGA, VHDL, Two Process Methodology, DMA, GRLIB, IP

core, PCI-EXPRESS, Xilinx, Spartan6.

4

Contents

1 Introduction .. 10

1.1 Background .. 10

1.2 Purpose .. 10

1.3 Methodology .. 10

1.4 Outline ... 10

2 Hardware and Software Tools .. 11

2.1 GRLIB ... 11

2.2 AMBA ... 11

2.3 Two-process design method .. 14

2.4 PCI-EXPRESS... 15

2.4.1 Posted and Non-posted ... 15

2.4.2 PCI Configuration Space .. 15

2.5 Development Platform ... 16

2.5.1 Key Features ... 16

2.6 Xilinx CORE Generator Systems .. 16

2.7 Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® 17

2.7.1 Core settings for PCI Express wrapper .. 17

2.7.2 Maximum payload size .. 18

2.7.3 Maximum Read Request Size .. 18

2.7.4 Read Completion Boundary ... 18

2.7.5 Bus Mastering .. 19

2.7.6 Error Detection ... 19

2.7.7 Flow control ... 19

2.8 Designing with the core ... 20

2.8.1 Receiving Packets .. 20

2.8.2 Receive packet throttling .. 21

2.8.3 Transmitting Packets .. 22

2.8.4 Transmit source throttling .. 23

2.8.5 Transmit Destination Throttling ... 23

3 Implementation ... 25

3.1 Common Design techniques .. 25

3.1.1 Endpoint Inputs/outputs ... 25

3.1.2 Clock Synchronisation ... 25

3.2 PCI-EXPRESS Target ... 25

3.2.1 Core settings ... 26

5

3.2.2 Design Details .. 27

3.3 PCI-EXPRESS Master/Target ... 28

3.3.1 Design Details .. 28

3.4 PCI-EXPRESS Master Burst Transfer (With FIFO and optional DMA) 30

3.4.1 Design Details .. 30

4 Verification ... 33

4.1 Simulation .. 33

4.1.1 Simulation libraries .. 33

4.1.2 Verification ... 33

4.2 Hardware Verification ... 34

4.2.1 PCI-EXPRESS debug interface ... 34

4.2.2 Xilinx driver ... 34

4.2.3 JTAG and Ethernet for bus mastering and burst transfers 34

5 Discussion .. 35

6 Conclusion .. 35

7 Future Work ... 36

8 References .. 37

Appendix A - Transaction Level Packets (TLPs) .. 38

6

Acknowledgement

I like to thank my supervisor Jiri Gaisler for giving this opportunity and setting up a

wonderful work environment. I like to thank the staffs of Aeroflex Gaisler AB for their

technical support and friendly behaviour towards me. Finally, I like to thank my Examiner in

Chalmers Arne Linde for his constant support throughout the thesis.

7

List of Figures

Figure 1 : Example LEON3 system designed with GRLIB [1] .. 11

Figure 2 : A typical AMBA-based microcontroller [4] .. 12

Figure 3: AMBA AHB/APB conceptual view [1] ... 12

Figure 4: AHB inter-connection view page [1] ... 13

Figure 5 : APB inter-connection view [1] ... 13

Figure 6 : Generic two-process circuit [5] .. 14

Figure 7: Layering Diagram .. 15

Figure 8: Xilinx SP605 Board Features [2] .. 16

Figure 9: TLP 3-DW Header without Payload [7] .. 21

Figure 10: TLP 3-DW Header with Payload [7] ... 21

Figure 11 : User Application Throttling Receive TLP [7]... 22

Figure 12: TLP with 3-DW Header with Payload [7] ... 22

Figure 13: Source throttling on the Transmit Data path [7] ... 23

Figure 14: Destination throttling on the Transmit Data path [7] ... 24

Figure 15: Interfacing PCI-EXPRESS to the GRLIB ... 26

Figure 16: Address translation from PCI-EXPRESS bus address to AMBA Address 27

Figure 17: PCI-EXPRESS Master/Target implementation .. 28

Figure 18: Address translation from PCI-EXPRESS bus address to AMBA Address 29

Figure 19: PCI-EXPRESS Master Burst Transfer implementation ... 30

Figure 20: Two port sync RAM and its interface ... 31

8

List of Tables

Table 1: BRAMS required according to performance and MPS selection 17

Table 2: Configuration dcommand [7:5] value ... 18

Table 3 : Configuration dcommand [14:12] value .. 18

Table 4: Configuration lcommand[3] value .. 19

Table 5: configuration dstatus register and correponding error representation 19

Table 6: Available transmit buffers[7] ... 20

Table 7: Required BRAMS corresponding to Performance and MPS selection 26

9

Abbreviations

AHB Advanced High-performance Bus - AMBA standard bus for High-performance

AMBA Advanced Microcontroller Bus Architecture - On-Chip Communication Bus

APB Advanced Peripheral Bus - AMBA standard bus for Low-power peripherals

ASB Advanced System Bus - AMBA standard bus for High-performance

ATX Advanced Technology Extended - motherboard form factor specification

BRAM Block Random Access Memory - Type of memory used in FPGA

CPU Central Processing Unit - main component of Computer

DDR Double Data Rate - Type of memory

DMA Direct Memory Access - access system memory independent of CPU.

DW Double Word - 32 bits

FIFO First In First Out - Type of data Access

FMT Format of TLP - Specifies the TLP type

FPGA Field Programmable Gate Array - Integrated circuit configurable by User

GRLIB Gaisler Research Library - Library consist of IP cores, scripts for tools etc

GRMON Gaisler Research Debug Monitor - Debugging

GT Giga Transfer - Unit for data transfer

GUI Graphical User Interface - Used in tools for providing settings

IP Intellectual Property - Portable and reusable design cores

JTAG Joint Test Action Group - Design Interface

MB Mega Bytes - Unit for data transfer

MPS Maximum Payload Size - amount of Payload appended in a packet

PCI Peripheral Component Interconnect - Design Interface

RCB Read Completion Boundary - Value significant for receiving data

SRAM Static Random-Access Memory - type of memory

SPARC Scalable Processor Architecture - type of Architecture used by LEON Processor

SPI Serial Peripheral Interface Bus - Design Interface

TLP Transaction Level Packets - Headers and Data Packets in PCI-EXPRESS transfers

UART Universal Asynchronous Receiver/Transmitter - Design Interface

VHDL Very High Speed Integrated Circuits Hardware Description Language - Description

for defining hardware

10

1 Introduction

1.1 Background

Aeroflex Gaisler AB provides GRLIB IP Library a set of reusable IP cores freely

available in open-source. The library consists of LEON3 SPARC V8 processor, PCI, USB

host/device controllers, DDR and Ethernet interfaces etc. The library supports different

vendors, Synthesis, Simulation tools and target technologies. AMBA on-chip bus is used as

the standard communication interface between the GRLIB cores [1].

1.2 Purpose

The Purpose of this thesis is to interface the Xilinx PCI-Express interface core to the

GRLIB framework. The Xilinx PCI-Express controller is generated by the Coregen tool, and

uses hard macros on the Xilinx FPGA's. The work consists of bridging the custom interface

on the PCI-Express core with the AMBA AHB on-chip bus used in GRLIB. The PCI-

Express/AMBA interface should be implemented in VHDL and assembled with the PCI-

Express core. The interface is connected finally in a complete LEON3/GRLIB system. The

board is inserted on a PCI-Express slot of a PC motherboard and communication should be

made between the PC and GRLIB framework. The communication between the devices is

supported with both single and burst transfers of the AMBA. Two- Process design style is

used for implementing the entire system. This style is chosen in order to achieve the benefits

associated like efficient simulation, synthesis, maintenance, easy code analysis and

debugging[5].

1.3 Methodology

The Work splitted into study, developing specification for wrapper, implementation,

analysis and verification and carried out step by step. The study period mainly consist of

understanding the functionality of PCI-EXPRESS core, PCI-EXPRESS specifications,

AMBA specifications and understanding the GRLIB framework. After the study period the

requirements are clear and specifiations for the wrapper is developed. The implementations

are made as per the requirement, further they are analysed for improvements and verified for

proper functionality.

1.4 Outline

The Hardware and sotware tools details is provided in the section 2 , explaining about

GRLIB, AMBA plug and play, two-process design method, Xilinx Spartan6, PCI-Express

core properties and specification used, section 3 describes implementation details of PCI-

Express/AMBA interface controller. Section 4 consists of details about debugging using

GRMON and verification in simulation and hardware. Section 5, 6 and 7 are Discussions,

Conclusions and Future work respectively.

11

2 Hardware and Software Tools

This chapter explains the tools used for implementing the design, hardware settings available

and designing with the Endpoint core. This chapter also explains different options available

from the tools.

2.1 GRLIB

GRLIB consist of reusable IP cores supporting different target technologies and CAD tools.

AMBA on-chip bus is used for central communication. GRLIB uses unique plug and play for

connecting different components of the system. The library is constructed to be vendor

independent. Makefiles are used to create simulation and synthesis scripts for different

vendors. Figure 1 shows an example template design with several components of a system-

on-chip.

Figure 1 : Example LEON3 system designed with GRLIB [1]

Some of the Features available in GRLIB are Plug and play (the ability to detect available

system hardware through software), Distributed address decoding (to avoid dependencies on

a global resource) and Portability (Technology independent). For further details please refer

to GRLIB IP Library User’s Manual [1].

2.2 AMBA

GRLIB AMBA on-chip bus is in compliance with AMBA specification 2.0. Three different

buses are available as per specification Advanced High-performance Bus (AHB), Advanced

12

System Bus (ASB) and Advanced Peripheral Bus (APB). GRLIB uses AHB for high

performance and high clock frequency and APB for low power peripherals. Figure 2 shows a

typical example of AMBA and peripheral system [4].

Figure 2 : A typical AMBA-based microcontroller [4]

Figure 3 below shows how the system is divided into masters, slaves and connected through

AMBA. A single AHB slave is used to implement AHB/APB bridge. AHB slave2/APB

master represents AHB/APB bridge and it is the only APB master. By placing multiple

AHB/APB bridges several APB buses can be achieved.

Figure 3: AMBA AHB/APB conceptual view [1]

Figure 4 shows how masters and slaves are divided and controlled by a global bus control for

AHB interconnection, details about input and output signals also provided. The signals in

13

figure below are composed of record types. Details about the signals are available in GRLIB

IP Library User’s Manual [1].

Figure 4: AHB inter-connection view page [1]

Figure 5 shows APB interconnection with details about input and output signals. The signals

in figure below are composed of record types. Details about the signals are available in

GRLIB IP Library User’s Manual [1].

Figure 5 : APB inter-connection view [1]

For further details please refer to AMBA specification[4].

14

2.3 Two-process design method

The dataflow style of coding would result in difficulty for reading and understanding the code

because of numerous number of concurrent statements and processes. Low abstraction level

and longer simulation time are other difficulties associated with the dataflow method. Two-

process coding method helps to overcome these difficulties. Meanwhile to overcome these

difficulties some simple measures like using record types in all signal declarations, two-

processes per entity and high level sequential statements[5]. Figure 6 shows two-process

design methodology.

Figure 6 : Generic two-process circuit [5]

Only two processes combinational (asynchronous) and sequential (registers) are used. The

complete design can be coded sequential in the combinational process and sequential process

updates the state using registers.

Following advantages are achieved by two-process design methodology

• Structured and readable VHDL code

• Efficient simulation and synthesis

• Easy code analyses and maintenance

• Higher abstraction level

• Simplified debugging and analysis

For further details please refer to two- process design documentation[5].

15

2.4 PCI-EXPRESS

PCI-EXPRESS is a computer expansion bus standard which replaces the older PCI and PCI-X

bus standards. The standard specifies the architecture in three layers which are transaction,

data link and physical layers. Figure 7 shows the layering arrangement. PCI-EXPRESS uses

packets to transfer information between devices. The packets are formed and passes along

different layers collecting additional information’s, similarly the reverse happens at the

receiving end. Some works done by layers are transaction level packets generation and

analysis, data protection, flow-control, error detection, serialization and de-serialization. The

PCI-EXPRESS is backward compatible with the existing PCI software model [6].

Figure 7: Layering Diagram

2.4.1 Posted and Non-posted

During write operations, the packets are formed and given to the data link layer and the write

transaction is completed. This type of transaction is Posted transaction. In read operation,

from the requester the packets are formed and given to data link layer. The requester should

wait for the respective completions. This type is non-posted transaction.

2.4.2 PCI Configuration Space

From the configuration space for PCI-EXPRESS, important registers like status, command,

device status, device control, link control and link status are given to the user application

through configuration ports. Apart from those, user application can read the complete

configuration space. The user application cannot write into the configuration space. The root

port can write and read the entire configuration space.

 Transaction Layer

 Transaction Layer

 Data Link Layer

 Data Link Layer

 Physical Layer

TX RX

 Physical Layer

TX RX

16

2.5 Development Platform

The template design used for this thesis is available in GRLIB which is leon3-Xilinx-

SP605. The leon3-Xilinx-SP605 template design contains IP cores for memory interface, user

interface like JTAG, USB, Ethernet and several other components. Figure 8 below shows the

Xilinx Spartan-6 FPGA SP605 evaluation board used in this thesis. The board has PCI-

EXPRESS x1 edge connector (single lane) which is inserted into the PCI-Express slot of the

motherboard.

Figure 8: Xilinx SP605 Board Features [2]

2.5.1 Key Features

• Spartan-6 FPGA XC6SLX45T-3C in FGG484 package

• 128 MB DDR3 memory

• 32 MB parallel (BPI) flash memory

• 8Kb IIC EEPROM

• 8 MB Quad SPI flash memory

• 10 Mb/s, 100 Mb/s, 1,000 Mb/s Ethernet

• GTP transceiver port (TX, RX) with four SMA connectors

• PCI Express® x1 edge connector

• 12V wall adapter or ATX power supply

Configuration can be performed using onboard JTAG configuration circuitry, 8 MB Quad SPI

flash memory; 32 MB Parallel (BPI) flash memory and 2 GB Compact Flash (CF) memory

card [3].

2.6 Xilinx CORE Generator Systems

Xilinx CORE Generator system helps to reduce the design time by providing

optimized intellectual properties (IP) for Xilinx FPGAs. Spartan®-6 FPGA Integrated

17

Endpoint Block for PCI Express® core is generated using Coregen and used in this design to

implement the PCI-EXPRESS/AMBA interface controller.

2.7 Spartan®-6 FPGA Integrated Endpoint Block for PCI Express®

Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® core was generated using

Coregen and used in this design to implement the PCI-EXPRESS/AMBA interface controller.

2.7.1 Core settings for PCI Express wrapper

The core is configured by appropriately setting in GUI.

Device/Port type: PCI Express Endpoint device

Base Address Registers: Base Address Registers have two purposes. First it specifies the

amount of address space required for the device in the system memory map. Secondly the

BIOS or OS programmes base address registers with the assigned addresses for the device

which gives information to perform address decoding for the device. In this core there are 6

Base Address Registers available for 32 bit BARs, the address range can be as small as 128

bytes for memory or 16 bytes for I/O. 2 gigabytes is the maximum address range [7].

ID values: Vendor ID- Specifies the manufactures of the device. Identifiers are given by PCI

Special Interest Group for uniqueness.

Device ID- Identifier for the application can be any value.

Max Payload Size: The maximum data payload that can be appended along with other headers

for a write transmission. The maximum data payload can be 128, 256 or 512 bytes. The final

value for this is written in the device control registers by the BIOS. The values are explained

in section 2.7.2

BRAM configuration options: The performance level can be set to good or high based on the

amount of Header and Data credits needed for transmission. The amount of TLP buffers

needed for transmission is also depends on performance level. The BRAMs used depends on

these performance level settings as well as the Max payload size. The table 1 shows the

BRAMs requirements according to performance and MPS selection

MPS (bytes) Performance BRAMs Required

128 Good 2

High 4

256 Good 4

High 8

512 Good 8

High 18

Table 1: BRAMS required according to performance and MPS selection

18

The core supports link speed of 2.5 GT/s with width single lane (x1). The reference clock

frequency used is 125 MHz .The PCI-EXPRESS specification version 1.1 is used for building

the core.

2.7.2 Maximum payload size

The device control registers specifies amount of data which can be sent as a payload. The

root complex sets the device control registers after the link is trained, even though we

requested for a specific maximum payload size using the software GUI. The root complex

driven value can be less than or equal to the advertised capacity selected.

Configuration dcommand [7:5] signal which is available to the user application gives the

value of MPS as shown in table 2.

Configuration dcommand [7:5] MPS(bytes)

000b 128

001b 256

010b 512

Table 2: Configuration dcommand [7:5] value

2.7.3 Maximum Read Request Size

The amount of data which can be requested by the user as payload is given by the device

control registers. The root complex sets the device control registers after the link is trained,

even though we requested for a specific maximum read request size using the software GUI.

The root complex driven value can be less than or equal to the advertised capacity selected.

Configuration dcommand [14:12] signal which is available to the user application gives the

value of Maximum Read Request Size as shown in table 3.

Configuration dcommand [14:12] Maximum Read Request Size

(bytes)

000b 128

001b 256

010b 512

Table 3 : Configuration dcommand [14:12] value

2.7.4 Read Completion Boundary

The requested data can be answered with multiple completions. The number of completions

depends on the amount of data requested and Read completion boundary. Read completion

boundary value is written on the device control register Configuration lcommand (3). Table 4

shows the valve in configuration lcommand register and associated bytes value.

19

Cfg_lcommand[3] Bytes

0 64

1 128

Table 4: Configuration lcommand[3] value

The Completions are quantised in a way the payload starts and end at an aligned RCB length

except when completions of starting or ending are serviced. Detailed explanation of RCB is

given at section 3.4.1 under Multiple completions for burst read.

2.7.5 Bus Mastering

The endpoints can write and read the CPU memory directly like a Root Complex. For this the

bus master bit configuration command (2) should be enabled. This bit is enabled during the

link training. The configuration command bit is available for user application to determine

whether the bit is enabled or not. If configuration command bit is enabled then memory or

I/O requests can be generated.

2.7.6 Error Detection

The configuration dstatus is available for user application to determine the internal state of the

system. When any error conditions occurs it is reflected in the device status registers as

shown in table 5

Configuration dstatus(0) Correctable Error Detected

Configuration dstatus(1) Non-fatal Error Detected

Configuration dstatus(2) Fatal Error Detected

Configuration dstatus(3) Undefined Request Detected

Table 5: configuration dstatus register and correponding error representation

2.7.7 Flow control

Receive Buffer Credits

The buffers credits available in endpoints are available to the user application from the

following signals trn_fc_ph, trn_fc_pd, trn_fc_nph, trn_fc_npd, trn_fc_cplh and

trn_fc_cpld[11:0].

As per PCI-EXPRESS specification, Endpoints should advertise infinite credits available for

completions. The user application should implement logics not overflowing the available

completion credits. The completion credits reduce when a completion is received after read

request from the endpoint. The read requests have to be cautiously sent from endpoint

without emptying the completion credits and therefore producing an infinite completion

possibility.

20

Transmit Buffer

The number of available transmit buffers is given by the signal trn_tbuf_av. A single buffer

can hold a maximum sized TLP which is 4DW of headers and maximum payload size data.

The buffers are exclusive for a single transfer i.e. even if there is a single 32 bit memory read

request which needs only 3DW header that will occupy a single TLP buffer. The TLP’s are

not shared. The table 6 shows available buffers as per MPS and performance level selection

made in the GUI of Coregen.

Maximum Payload Size

(bytes)

Performance Level

Good High

128 13 27

256 14 29

512 15 30

Table 6: Available transmit buffers[7]

The trn_tbuf_av can fluctuate without any packet transmission from the user application; the

buffers are also shared with configuration management module (CMM). The configuration

management module generates completion packets when configuration writes or reads,

interrupts and message transfers occurs.

2.8 Designing with the core

The Core generated Sparan6 endpoint device has control and data transfer signals which has

to be connected to the user application. The control signals like start of frame, end of frame

should be properly given at proper timings along with data to make a successful transmission.

Below sections explain about the control and data signal interfacing with the user application.

2.8.1 Receiving Packets

For receiving a packet the headers and payload data should be available at sequences with

proper control signals asserted at right time.

The user application should assert trn_rdst_rdy_n when it is ready to accept a new packet. The

core asserts trn_rsrc_rdy_n and trn_rsof_n together and provides the initial frame on trn_td.

When final frame is sent trn_reof_n is asserted. The figures 9 and 10 shows read request and

write request respectively. The headers are described in Appendix A.

21

Figure 9: TLP 3-DW Header without Payload [7]

Figure 10: TLP 3-DW Header with Payload [7]

2.8.2 Receive packet throttling

 When the user application is not ready to process incoming requests, it can throttle the

requests by deasserting trn_rdst_rdy_n. The trn_rdst_rdy_n can be deasserted for any length

of time and can be desserted any time, even during middle of a TLP reception. The figure 11

explains throttling using trn_rdst_rdy_n.

22

Figure 11 : User Application Throttling Receive TLP [7]

2.8.3 Transmitting Packets

The core assert trn_tdst_rdy_n when it is ready to accept a new packet, the user application

should asserts trn_tsrc_rdy_n and trn_tsof_n together providing the initial frame on trn_td.

During final frame trn_teof_n is asserted. The figures 12 shows a write request. The headers

are described in Appendix A.

Figure 12: TLP with 3-DW Header with Payload [7]

23

Figure 13: Source throttling on the Transmit Data path [7]

2.8.4 Transmit source throttling

The user application can throttle transmitting if it don’t have data on the consecutive clock

cycles. This is done by deasserting trn_tsrc_rdy_n as shown in figure 13.

2.8.5 Transmit Destination Throttling

When the internal transmit buffers (see section 2.7.7 for transmit buffers) are not available the

core can throttle the transmission by deasserting trn_tdst_rdy_n as shown in figure 14. The

trn_tbuf_av gives the number of buffers available for the transmission. By asserting

trn_tdst_rdy_n the core accepts start of frame and also it guarantees it will accept the entire

TLP with the Payload available in it.

24

Figure 14: Destination throttling on the Transmit Data path [7]

25

3 Implementation

This chapter explains implementation of different design versions like Target, Master and

Master with FIFO. The implementations are made with emphasis on performance and area.

The interfaces associated with AMBA are different in each designs are explained in detail.

The chapter also explains about some common design techniques followed for all the different

wrappers implemented.

3.1 Common Design techniques

Pin out I/O and timing constraints are given similar to the user constraints available in the

example design generated from Coregen, as the design constraints should exactly match the

specification given in the GUI of Coregen. The power is obtained by the DC power supply or

through 12V ATX power supply, power connections available in PCI-EXPRESS edge

connector are not used [8]. The slot clock Configuration is enabled allowing the Endpoint to

use platform provided physical reference clock available on the PCI-EXPRESS edge

connector.

3.1.1 Endpoint Inputs/outputs

The PCI-EXPRESS cores inputs and outputs are grouped according to the functions they

perform as Record types and they are listed below.

• inputs and outputs from user application

• Flow control – Gives the amount of buffers available for Posted, completions and

nonposted transactions to the user design.

• Configuration – Species the user status and command configuration of the device,

error control and interrupt handling etc.

3.1.2 Clock Synchronisation

Clock synchronisation is performed using handshaking with double stage synchronizers

which provides immunity to the possible meta-stability occurrence. The Generic nsync is set

to two for double stage synchronisation.

3.2 PCI-EXPRESS Target

The PCI-EXPRESS Target is the simplest of all the implementation using lesser hardware

resources. The design cannot perform burst transfer and it can only act as a slave to the Root

Complex. Writes or reads cannot be generated from the endpoint block. The PCI-EXPRESS

Target acts as a slave to system Root complex. It accepts the memory read and write request

from upstream components through Root complex. The Target generated completions as a

response to read requests are sent to the upstream components through Root complex. The

user application uses AHB Master Configuration to access the memory space of Leon3

system. AHB Master is interfaced along with the PCI-EXPRESS core to configure a new

master in the GRLIB system.

26

The wrapper consist of Core generated PCI-EXPRESS core and interface to the AMBA on-

chip bus, along with techniques like clock synchronisation and byte twisting. The

implemented design is based on the Two Process design style and Inputs and Outputs are

grouped as record types for easy debugging and implementations. The two process technique

is explained at section 2.3. The figure 15 shows different blocks of PCI-EXPRESS Target

implementation along with GRLIB components.

Figure 15: Interfacing PCI-EXPRESS to the GRLIB

3.2.1 Core settings

The Core generator can be configured to generate a Spartan6 Endpoint block with the needed

settings. The GUI from core generator tool helps to give proper settings for the core to be

generated.

Base Address Registers:

Type: Memory 32 bits (For PCIE Target only)

Size: 2 Megabytes (The base address register can be configurable through generics which can

be in the range of 128 bytes to 2 Gigabytes)

Max Payload Size: 128 bytes. BRAM configuration Performance option: Good

MPS (bytes) Performance BRAMs Required

128 Good 2

High 4

Table 7: Required BRAMS corresponding to Performance and MPS selection

27

No user configuration and extended configuration space is implemented.

Details about core settings are explained in section 2.7.1 all other settings apart from the

mentioned above are set to default.

3.2.2 Design Details

• The user design uses clock (trn_clk) provided by the PCI-EXPRESS endpoint core

Frequency 62.5 Mhz. Similarly trn_reset from the Endpoint is used for user design

reset. When main system_reset is asserted for the endpoint or when link disabled it is

set asynchronously.

• All top interfaces to the PCI-EXPRESS core like system clock, System reset, data

Input and outputs are channelled through this wrapper. Similarly the inputs and

outputs needed for the AMBA interface is also accessed.

• The AMBA interface consist of reset, Clock, AHB master input and AHB master

output where these are all connected through respective signal's from the top main.

• Byte-Twisting is performed as the PCI-EXPRESS data transfer is in big endian

format.

• Address translation: The address space allocated for the PCI-EXPRESS memory is

divided into two halves. Access to the upper half writes AHB address register and

access to the lower half is forwarded to internal AHB access. The internal access

address is formed by taking significant part from the AHB address register and the

remaining original address provided for access. The figure 16 explains the mechanism.

Upper half access writes to the AHB address register

AHB Address[31:abits-1] Unused (abits -2 to 0)

Lower half access the memory

AHB Address[31:abits-1] Original Address from Root complex

Figure 16: Address translation from PCI-EXPRESS bus address to AMBA Address

The abits are made as generics in order to account if memory ranges are changed in

PCI-EXPRESS bars.

28

3.3 PCI-EXPRESS Master/Target

The PCI-EXPRESS Master/Target can act as master or slave to the AMBA, corresponding to

target or Master to the PCI-EXPRESS interface. The GRLIB system through any of its master

can generate memory request using the PCI-EXPRESS master interface, bus mastering should

be enabled to perform this communication. The figure 17 shows different blocks of PCI-

EXPRESS Master/Target implementation.

Figure 17: PCI-EXPRESS Master/Target implementation

The core settings are similar to PCI-EXPRESS Target implementation.

3.3.1 Design Details

The communication from root port to the GRLIB frame work remains same as explained in

section 3.2, all the techniques used like address decoding, clock synchronisation and byte

twisting remains the same. The details about ability of the core to generate memory

transaction (bus mastering) are explained below.

• The PCI-EXPRESS Master block contains the necessary logic for creating the

memory transaction level packets (TLPs). The packets are generated when AHB slave

block gets inputs from any of the masters in GRLIB framework.

29

• The AMBA interface consist of reset, Clock, AHB slave input and AHB slave output.

The AHB slave block controls the communication with hresponse, hready and some

other signal as per AMBA Protocol.

• The APB registers specified is used for register access associated with PCI-EXPRESS.

The PCI-EXPRESS bus address to which the memory transaction has to be performed

is given by a register PCIBA. The PCIBA can be accessed through APB and

configured with the needed address as shown in figure 18.

Figure 18: Address translation from PCI-EXPRESS bus address to AMBA Address

The width of PCIBA can be adjustable according to the generics provided in the core which is

dependent on the memory space window provided for the PCI-EXPRESS.

• The bus master bit configuration command (2) should be enabled for bus mastering.

This bit is enabled during the link training. The configuration command is available

for user application to determine whether the bit is enabled or not.

• The availability of transmit buffer is checked before every start of transmission.

• Endpoints are required to advertise an infinite amount of completion space which can

be achieved by sending read requests according to the available completion

buffers(applicable when Endpoint act as master)[7]. The condition is satisfied by

checking availability of completion headers before every new read request.

• The APB access is also used for monitoring internal registers when debugging using

GRMON [9].

30

3.4 PCI-EXPRESS Master Burst Transfer (With FIFO and optional DMA)

The PCI-EXPRESS Master Burst Transfer is capable of generating burst of transfer from

GRLIB framework to the upstream root complex. The wrapper has a FIFO to act as buffers

for the transfer and an optional DMA. figure 19 depicts different blocks associated with this

design.

Figure 19: PCI-EXPRESS Master Burst Transfer implementation

3.4.1 Design Details

• The core can handle burst transaction generated from GRLIB masters as well as the

normal single writes and reads. The difference between burst and single operations are

identified using hburst signal from AHB slave inputs.

• The burst transfers are generated when AHB slave block gets requests from any of the

masters in GRLIB framework . The resulting datas from the burst transfer are loaded

into the FIFOs. The PCI-EXPRESS Master block contains the necessary logic for

creating the burst memory transaction level packets (TLPs) .

31

• The DMA controller shown in figure 19 can be configured using APB interface to

start burst of transfer. The DMA registers can be configured with burst starting

address, length, destination address. After configuration when the start is asserted

burst transfer occurs. Optional interrupt can also be set to indicate end of

communication. When DMA engine is not in work the core can perform burst transfer

from other masters, the address translation for these masters are similar to the address

translation explained at section 3.3.1 (figure 18) using APB.

• The AMBA interface consist of reset, Clock, AHB slave input and AHB slave output.

The AHB slave block controls the communication with hresponse, hready, hburst,

htrans and some other signal as per AMBA Protocol.

• The write and read have separate FIFOs where each is split into 2 halves. Syncram 2P

Two port RAM from GRLIB is used for the FIFOs. The FIFO is of 32 (double words)

depth and separate clocks AMBA and PCI-EXPRESS clocks are used. The figure 20

shows the interfacing of FIFO which is inbetween the AMBA AHB slave and PCI-

EXPRESS Master.

Figure 20: Two port sync RAM and its interface

• Burst write - As soon as first half of FIFO is fully written by AHB slave interface the

PCI-EXPRESS master empties it, at the same time AHB slave interface keeps on

writing till the second half gets filled. When the second half is also full PCI-

EXPRESS master empties everything in the FIFO. When these happens the access to

FIFO from AHB slave interface gets retry response.

32

• Burst read- When AHB slave gets a read burst request it is transformed into PCI-

EXPRESS burst read. As soon as first half of FIFO is fully written by PCI-EXPRESS

master the AHB slave interface empties it, at the same time PCI-EXPRESS master

keep on writing to the second half. After the second half is full AHB slave interface

empties it. When AHB slave is waiting for the PCI-EXPRESS master to fill it gives

retry response.

• Multiple completions for burst read - The number of completions received for a burst

read request is based on Read completion boundary value available in control registers

(see section 2.7.4). The core is designed for Read completion boundaries of 64 bytes.

Every burst read request is of size 128 bytes (32 DW) can be completed either with

two 64 bytes completions or 3 completions of variable payload. Two or three

completions depends on the address from which the request starts. For example a 128

byte (32 double word) address request start from 0x00000000 the completions are

received as two 64 byte (16 double words each) at 0x00000000 and 0x00000040

starting addresses. If the 128 byte (32 double word) address request start from

0x00000004, three completions are received 60 byte (15 DW), 64 byte (16 DW) and 4

byte (1 DW) at 0x00000004, 0x00000040 and 0x00000044 starting addresses.

Basically the return completions are quantized according to the Read Completion

Boundaries. The core takes care of this multiple completions using the received length

and byte count value available with the completion TLPs .

• 4k Address Crossing- The address and length of read or write request should not cross

4k address boundary as per PCI-EXPRESS specification, if this case occurs the TLPs

are not processed by the endpoint and not further pass to the root port resulting in

malfunction of the system. The core handles this by splitting the burst into before

crossing and after crossing whenever an address crossing occurs.

33

4 Verification

Logic Simulation and Hardware implementation are performed to verify the working of the

system. Modelsim is used for simulation and Xilinx Spartan6 is used for hardware

implementation. Simulation is performed with the help of simulation environment provided

by Coregen generated endpoint block for PCI-EXPRESS, AMBA test framework from

GRLIB and using the available testbench in the Xilinx SP605 template design. Hardware

analysis is assisted by Debugging tools like GRMON, LSPCI and drivers provided by Xilinx.

4.1 Simulation

The simulation environment provided along with Xilinx endpoint block is integrated to the

GRLIB framework to simulate the traffic. The simulation environment provided helps to

generate traffic from root port and accept completions associated with it. If the traffic is

generated from GRLIB (bus mastering) the simulation environment provided won’t respond

for any TLPs reaching it.

4.1.1 Simulation libraries

The complete simulation libraries needed for Modelsim environment is generated using

Xilinx ISE and stored in the PC. The Modelsim.ini file present in the template design is

modified to access the libraries needed for simulation. The secureip and unisim files already

available in GRLIB under GRLIB/lib/tech are disabled.

4.1.2 Verification

The functionality of PCI-EXPRESS target is verified by Writing to an address and reading

from the same address and comparing weather both of them are same. The other cores which

have bus mastering capability the functionality was not completely verified using simulation

as the root port don’t return any TLP’s for request from GRLIB framework. The functionality

for PCI-EXPRESS master is only verified partially by generating TLPs and checking whether

the datas are channelled through AMBA properly and send it to the PCI-EXPRESS core, the

notion of generation of TLP’s and possible answers are manually generated and verified. For

example instead of sending the read request to the upper layers of PCI-EXPRESS, the

completions are manually done and results are given and verified for correctness.

For generating simple single write and read traffic from GRLIB framework prom.s file is

modified to generate memory request. Sparc assembly is used for generating the traffic using

prom.s. Similarly while generating traffic from DMA, prom file is used for giving fetch,

destinations address, length and start. AMBA test framework is used for generating burst

transfer, the ATF is instantiated into the GRLIB framework and used for generating AMBA

burst read and write traffic.

34

4.2 Hardware Verification

The descriptions are synthesized and a bitstream is generated using Xilinx tools for testing

the system. The bitstream are flashed into the FPGA and analysed. GRMON is used as a

debug monitor for the GRLIB framework, which can be used to read/write system memory

and registers, downloading, executing LEON applications etc. The debug links like USB,

JTAG, RS232, PCI, Ethernet and Space wire are supported by GRMON.

4.2.1 PCI-EXPRESS debug interface

The software features associated with PCI is completely compatible with PCI-EXPRESS, so

the supporting features GRMON provides for PCI is available for PCI-EXPRESS as well. The

PCI-EXPRESS target can act as a debug interface for the GRLIB framework. PCI-EXPRESS

debug environment could transfer data at the rate of 120 Mbits/second from PC to the

memory of GRLIB.

4.2.2 Xilinx driver

The drivers provided by Xilinx memory endpoint test driver [refer xapp1022] is used for

simple transfer of data from PC to GRLIB framework and vice versa. The application C files

are modified to transfer from PC to GRLIB, similarly the device driver files are modified to

place a buffer memory space in the PC memory to write read and verify while bus mastering.

4.2.3 JTAG and Ethernet for bus mastering and burst transfers

Simple C codes are written in order to generate traffic. JTAG and Ethernet is used for loading

the executables into the system and execute it for transfers. The write are made followed by

reading then compared weather they are the same or not. For verifying burst transfers using

DMA similar C code giving details about fetch, destinations address, length and start is used.

The Ethernet is used for generating burst transfers, mem and bload commands in GRMON are

used in order to achieve burst transfers.

35

5 Discussion

The works specified according to the specification are implemented, verified and performance

evaluation was carried out step by step and analysed. Whenever necessary the specifications

are modified and adapted with implementations to make improvements in performance or

hardware resource utilization. The respinning was quiet time consuming as a simple change in

specifications resulted in reiteration of implementation and complete verification. The number

of versions of wrapper makes it complicated if a common specification for each design is

modified. The Two-Process design style used for implementing the system helped greatly

while simulating and analysing the design. The code is readable and can be maintained easily

because of the structured coding style resulting from two process design. The advantages

available from GRLIB in implementation, simulation and debugging are extensively utilized

to make this working module.

6 Conclusion

The purpose of this Master thesis to integrate the Xilinx PCI-Express interface core to the

GRLIB framework was fulfilled. The work is carried out with performance and area

requirement in mind. The different forms of the design is implemented in order to address for

every need. The design is made in accordance with specifications provided by AMBA and

PCI-EXPRESS. The difficulties arised like clock synchronisation,boundary crossing and tool

related issues are addressed properly and a working module is implemented on the Xilinx

Spartan6 board. Possible changes like timing and I/O contrainsts to the Xilinx SP605 GRLIB

template design is made to make the PCI-EXPRESS work along with other components of

GRLIB framework.

The board inserted into the PCI-Express slot of a PC motherboard and communication is

made between the PC and GRLIB framework and also the other way around. The

communication between devices is supported with both single and burst transfers of the

AMBA. The Example simulation environment provided with PCI-EXPRESS core helped to

verify the system using modelsim simulation. The Hardware design is verified and analysed

using drivers from Xilix and GRMON debug environment .

36

7 Future Work

The performance achieved by this design can be improved by several means. The PCI-

EXPRESS Master Burst Transfer which has hardcode FIFO depths, the FIFO depths can be

made variable and faster burst transfer can be achieved. Other features of PCI-EXPRESS like

interrupts can be added to this design. The unavailability of simulation response when the

PCI-EXPRESS core act as master results in complicating the implementation and through

simulation only partial verification can be achieved, this can be rectified by incorporating root

module which respond to request given by GRLIB PCI-EXPRESS Master. Further all the

cores only support word trasfers, logic can be added to support byte tranfer.

37

8 References

[1] GRLIB IP Library User’s Manual. Version 1.1.0 B4113 January, 2012

http://www.gaisler.com/products/grlib/grlib.pdf

[2] Xilinx SP605-Hardware Setup Guide,

http://www.xilinx.com/support/documentation/boards_and_kits/xtp089.pdf

[3] Xilinx SP605 Getting Started Guide ug525,

http://japan.xilinx.com/support/documentation/boards_and_kits/ug525.pdf

[4] AMBA Specification Revision 2.0. ARM Limited. 1999.

[5] Gaisler, J. Fault-tolerant Microprocessors for Space Applications. Gaisler Research.

[6] PCI-EXPRESS Base 1.1 Specification. PCI-SIG.

[7] Xilinx Spartan-6 FPGA Integrated Endpoint Block for PCI Express User Guide,

http://www.xilinx.com/support/documentation/user_guides/s6_pcie_ug654.pdf

[8] Xilinx SP605-Hardware Setup Guide,

 http://www.xilinx.com/support/documentation/boards_and_kits/ug526.pdf

[9] GRMON User’s Manual. Version 1.1.51. Aeroflex Gaisler AB. November, 2011,

http://www.gaisler.com/doc/grmon.pdf

38

Appendix A - Transaction Level Packets (TLPs)

Write TLPs

The figure below shows an example write TLP (4 DWs) which has 3 headers and a data field

using 32 bit addressing.

First DW:

R- Reserved

Fmt TLP Format

00 No data, 3 DW header

01 No data, 4 DW header

10 3 DW header and data

11 4 DW header and data

 FMT and TLP format

TLP Fmt Type

Memory Read 00 or 01 00000

Memory Write 10 or 11 00000

I/O Read 00 00010

I/O Write 10 00010

Completion 10 01010

 FMT and type for respective TLPs

Fmt and Type field together indicates whether it is a Read, Write or completion TLP.

TC - Traffic class

TD - Presence of TLP digest at the end of TLP is indicated by setting this bit 1b.

EP – Indicates Poisoned TLP

Length – Indicates the data payload length in DWs.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Fmt Type R TC Reserved T

D

E

P

Attr R Length

Requester ID Tag Last

DW BE

First DW

BE

 Address[31:2] R

 Data[31:0]

39

Second DW:

Requester ID

Bus Number

7:0

Device Number

4:0

Function Number

2:0

Used for reporting back errors during write but significant during reads.

Tag -No significance during writes

First DW BE - Indicates which four bytes are significant in the first DW of the data payload

Last DW BE - Indicates which four bytes are significant in the last DW of the data payload

Third DW: Contains 30 most significant address bits and 2 reserved bits which should be

zero.

Fourth DW: Single DW of data.

Read TLPs

The figure below shows an example read TLP (3 DWs).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Fmt Type R TC Reserved T

D

E

P

Attr R Length

Requester ID Tag Last

DW BE

First DW

BE

Address[31:2] R

The Read TLP request is similar to the write TLP with few differences. Only the differences

are discussed below.

Second DW :

The Requester Id specifies where to send the completion of a read request.

Tag – This field can be given any value but it is useful for the requester to keep track of the

completions coming back.

Completion TLP

The figure below shows an example Completion TLP (4 DWs) which has 3 headers and a

data field using 32 bit addressing.

40

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Fmt Type R TC Reserved T

D

E

P

Attr R Length

Completer ID Completion

Status

B

C

M

Byte Count

Requester ID Tag R Lower Address

Data[31:0]

The First DW is similar to read/write request.

Second DW:

Completer Id - sender of the packet

Completion status – Indicates completion status

BCM- Set by PCI-X completers not set by PCI-EXPRESS completers.

Byte count- The amount of bytes pending for transmission including the available data in the

current payload, useful if multiple completions are expected.

Third DW:

Requester ID and Tag – similar to read request

Lower Address – least seven bits of the requested address.

