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ABSTRACT

This thesis is a result of investigations carried out during the implementation of a 
free  surface  capturing  method  in  a  RANS  solver. The  work  consists  of  two 
distinct parts which complement each other, and the purpose is to improve the 
free surface interface sharpness and to reduce numerical diffusion of the gravity 
waves. The first part deals with numerical schemes and the second with local grid 
refinement  and  adaptivity  near  the  interface.  There  is  a  vast  amount  of 
discretization schemes for convection equations. However, only a subset is found 
to be applicable to the water fraction transport equation. Here we investigate the 
performance of selected schemes applied to hydrodynamic problems. Moreover, 
an additional scheme is  developed based on the experience gained during the 
work. This part of the work was carried out since there is very little information in 
the literature for problems beyond academic test cases such as bubble convection 
or  two  dimensional  shape  translation  and  rotation.  The  second  part  of  the 
presented work concerns air-water interface refinements using fixed and adaptive 
overlapping grids. The adaptive refinement grid follows approximately the free 
surface interface and reduces the refinement thickness, thus reducing the required 
number  of  discretization  cells. The  grid  alignment  with  the  interface  reduces 
further the diffusion of the water fraction in the transition region from air to 
water.  The method is  validated on 2D and 3D cases. The Duncan submerged 
hydrofoil test case  as well as Wigley, Series 60 and KCS hulls are compared with 
experiments. A grid dependence study is presented for Wigley and KCS which 
shows that the code is robust and the deviations from the measurement data are 
within the expected accuracy of a CFD code for naval applications.

Keywords: RANS; free-surface; overset.
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NOMENCLATURE
A , A1, A2 Discrete Jacobian

Fn Froude number

f , g ,h  Convective fluxes

f v , gv ,hv  Viscous fluxes

k Turbulent kinetic energy

L , R Left and right eigenvectors of A

n i  Normal to surface

p  Time average pressure

Q Primitive variable vector

Ri Volume force

Rn  Reynolds number

t  Time

u i , u , v ,w  Time average velocity components in Cartesian directions

x i , x , y , z Cartesian coordinates

 Volume fraction 

  Dissipation of turbulent kinetic energy

 Eigenvalues of A

μ  Dynamic viscosity

μT  Turbulent dynamic viscosity

τij Stress tensor

  Kinematic viscosity,  /

T Turbulent kinematic viscosity, T /

E  Total kinematic viscosity, T

 General variable

 Density

 ij  Total stress tensor

B  Parameter direction crossing the boundary

  Specific dissipation of turbulent kinetic energy
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Lpp Length between perpendiculars

NVD Normalised Variable Diagram

RANS Reynolds Averaged Navier-Stokes

TVD Total Variation Diminishing

VOF Volume of Fluid
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1 INTRODUCTION

1.1 Motivation

In the design process of ships an accurate assessment of forces acting on the hull 
in motion is of a great importance. Nowadays model tests in towing tanks still 
play the major role in this process. However, an interest in the Computational 
Fluid  Dynamics  (CFD)  tools  for  designers  is  growing  steadily  since  the  first 
commercial  methods were introduced over 20 years ago. The numerical  codes 
become more and more accurate and robust. Maybe it will take another 20 years 
until  the physical  tests  are  obsolete  for  routine applications, such as  required 
power  prediction  or  manoeuvring  performance, but  we  can  already  get  great 
support from CFD as a complement to the model tests. The field of aero- and 
hydrodynamics  of  ships  can  be  illustrated  as  a  combination  of  theory, 
experimental and CFD methods supporting each other, see Figure 1.

Numerical  predictions are helpful  in an early  assessment of  ship performance 
already at the design stage. Also, as a complement to the model basin they can 
reduce the number of tests or give an excellent guidance on what cases are most  
interesting to investigate. CFD  gives an opportunity to explore novel solutions 
and stimulate progress in ship developments with reduced cost compared to the 
tests.

The main goal of the following work is the further development of an easy to use 
CFD tool for ship designers and includes introduction of a free-surface capturing 
capability. 

1.2 Background

During the last two decades computational fluid dynamics (CFD) has been used 
for various applications in naval architecture and it has become a valuable tool 
for ship designers. The CFD methods can be utilized for a variety of applications 
including  steady  and  unsteady  flow  predictions  around  ship  hulls  and 
superstructures.  The  result  may  include  resistance,  propulsion  as  well  as  sea 
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keeping properties and contains forces and moments acting on the ship. It also 
provides  insight  into  the  flow  field  around  it.  Depending  on  the  objective, 
different  levels  of  physical  simplifications  can  be  made.  The  potential  flow 
methods  are  the  most  popular  ones  due  to  their  short  computation  time. 
However, these methods disregard viscous effects and are used mainly for wave 
resistance  prediction  and  minimization  Jensen  (1989),  Raven  (1992),  Janson 
(1997). More  elaborate  methods  solve  the  Reynolds  Averaged  Navier-Stokes 
(RANS) equations  with  turbulence modelling. With  these methods, the entire 
flow field around ship hulls, appendages, and propulsors as well as superstructures 
can be simulated. 

In order to simulate free surface flows with gravity waves, the RANS methods use 
surface tracking or surface capturing techniques. Additional equations are solved, 
providing information about the interface location. The position may be followed 
by an adaptive grid, such as in surface tracking methods or captured within a 
fixed grid, as in surface capturing methods. The first one gives sharp boundaries 
between water and air, but the grid adaptation to complex geometries of breaking 
waves can be difficult. The latter is more flexible, and large deformations of the 
interface, air entrapment, wave breaking, and spray can be handled. However, this 
requires  sophisticated  numerical  approaches  to  keep  the  interface  sharp  and 
stable at the same time. 

For many years research within computational fluid dynamics (CFD) was focused 
on higher order and anti-diffusive discretization schemes. Very good results can 
be achieved with regard to accuracy and sharpness  of  the interface but  often 
stability is compromised and therefore methods are difficult to apply on more 
general cases. Recently, grid refinements are becoming increasingly popular Hay, 
(2005). The  grid  resolution  is  increased  only  in  the  areas  that  require  better 
spatial representation. There are two basic approaches that can be recognized. 
Either an unstructured single grid is subdivided into more cells locally or more 
than one grid is used to form overlapping grids, also known as overset grids. There 
are several groups working on overlapping grid techniques around the world. The 
most well-known RANS general code with overlapping technique is Overture, 
Henshaw (1994). In naval  applications the leading codes that  incorporate this 
solution are SHIPFLOW from FLOWTECH International AB and CFDSHIP-
IOWA, from University  of  Iowa. The latter  successfully  uses  overlapping grid 
refinements of the free surface vicinity, while the first one so far has had no free 
surface capability. The overlapping grids have been used to refine or represent 
complex geometries and appendages, Regnström (2000). 

1.3 Present Contributions

In this work, the SHIPFLOW steady state RANS code is extended to include the 
computation of free surface flows. A volume-of-fluid (VOF) surface capturing 
method  is  used  to  locate  the  water-air  interface  and  the  overlapping  grid  is 
complemented with an adaptive free surface interface refinement. 

Various  discretization schemes for  convective  fluxes, with an emphasis  on the 
water fraction transport equation have been investigated. This particular equation 
requires a special attention in order to keep the air and water interface as sharp 
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as possible, at the same time avoiding non-physical  solutions. Several schemes 
were implemented and tested in order to find a suitable method.

The  second interesting  feature  of  the  implementation  is  that  the  free-surface 
solution  is  computed  with  an  artificial  time  step  as  opposed  to  other  well 
established codes  which use time dependent techniques  to acquire the steady 
state wave height.

Finally, the overlapping grid technique is applied to refine the spatial resolution 
near the free-surface. An attempt to adapt the refinement grid to the wave profile 
is made. 

1.4 Structure of the thesis

The thesis is divided in six chapters. The major parts deal with mathematical and 
numerical modelling, the overlapping adaptive grid technique and validation of 
the methods applied. In the final chapter the work is summarised and suggestions 
for the future are given.

3
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2 MATHEMATICAL MODEL

2.1 Introduction

The continuity, momentum and energy equations are the fundamental governing 
equations of fluid dynamics. In the CFD literature the system of those equations 
is commonly named the Navier-Stokes equations and a brief introduction will be 
given  in  subsequent  sections. A  formulation  suitable  for  viscous  free  surface 
simulations is highlighted and a surface capturing technique presented. 

2.2 Flow equations

The fluid motion, also in aero- and hydro-dynamics of ships, can be described by 
the Navier-Stokes equations obtained by applying Newton's second law to a fluid 
element and assuming that the viscous stress is proportional to the strain rate. 
However, the Navier-Stokes equations cannot  be solved for  cases  of  practical 
interest because they contain too small scales to resolve. Therefore, the equations 
are time averaged, Larsson and Raven (2010), to remove turbulence scales from 
the  simulations  at  the  expense  of  introducing  the  new  unknowns, known  as 
Reynolds  stresses. The  time averaged  equations  are  called  Reynolds-averaged 
Navier-Stokes, RANS, equations. Separate equations are required for Reynolds 
stresses. In the continuous model the fluid is modelled as a mixture of air and 
water so the same equations can be used to model both. Considering the fact that 
the gravity is the only body force acting on the particle and is directed along the z, 
axis  vertically  upwards, the steady state, incompressible RANS equations in a 
component form will be: 

∂
∂ x
(ρ u2

+ p)+ ∂
∂ y
(ρuv )+ ∂

∂ z
(ρuw)=(

∂ τxx

∂ x
+
∂ τ xy

∂ y
+
∂ τ xz

∂ z
)

∂
∂ x
(ρ uv)+ ∂

∂ y
(ρ v2

+ p)+ ∂
∂ z
(ρvw)=(

∂τ yx

∂ x
+
∂ τ yy

∂ y
+
∂ τ yz

∂ z
)

∂
∂ x
(ρ uw)+ ∂

∂ y
(ρvw)+ ∂

∂ z
(ρw 2

+ p)=(
∂ τzx

∂ x
+
∂τ zy

∂ y
+
∂ τ zz

∂ z
)−ρ g ,

(1)

where  u, v, w are the mean velocity components, p is  the mean pressure plus
2
3
ρ k ,  is the density and g is the acceleration of gravity.  The stress tensor 

τij is defined as:

τij=(μ+μT)(
∂ui

∂ x j

+
∂u j

∂ x i

) , (2)

where  is the dynamic viscosity and μT the turbulent dynamic viscosity used to 
model the Reynolds stresses according to Boussinesq approximation, Larsson and 
Raven (2010). k is the turbulent kinetic energy. 

The flow is solved both in air and water. The  and  are discontinuous at the 
interface with pure air above it and pure water below. 
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The  RANS  equations  are  solved  together  with  the  continuity  equation, that 
describes the conservative transport of mass, is derived. It is based on the fact that 
the total net mass transport out of the control volume must be zero when no 
sources are included. For incompressible fluids the equation is as follows:

∂u
∂ x
+
∂v
∂ y
+
∂w
∂ z

=0 . (3)

2.3 Interface capturing method

The formulations (1) and (3) allow for a variable density, which is used here to 
represent  a  mixture  of  two incompressible  fluids  in  a  continuous  manner. In 
addition to the described mass and momentum conservation equations, a water 
fraction   , transport equation is introduced which is derived from the mass 
conservation equation for the water only.

∂

∂ x
 u

∂

∂ y
 v

∂

∂ z
w =0 , (4)

where  indicates the amount of water in the mixture and takes values from 0 
to 1. The density and dynamic viscosity for pure fluids are considered constant – 
incompressible flow – however the mixture used in equations (1) varies in the 
domain. Therefore the density  and the dynamic viscosity  at  each location are 
proportional to the water fraction  :

=w1−a ,
=w1−a . (5)

2.4 Turbulence model

The Menter k−SST turbulence model, Menter (1993), is  used in the current 
implementation to compute μT . The model is valid all the way to the solid walls, 
so there is no need for wall functions. No special treatment is applied near the 
free  surface  interface.  The k−SST combines  good  properties  of  the k−

model near the wall and k− outside of this region using blending or switching 
functions. Since the main focus of this paper is to provide information on the free 
surface modelling in the code no further details on the turbulence model will be 
given. More details can be found in Broberg et al. (2007).  

2.5 Boundary conditions

To  solve  the  system  of  equations  appropriate  boundary  conditions  (BC)  are 
necessary. Two basic boundary conditions are used: Dirichlet and Neumann. The 
first  specifies the value of a solution at the domain boundaries and the latter 
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specifies values of the derivative normal to the surface of a solution. These are 
used then according to the physical properties of different types of boundaries 
that define a computational problem, Versteg and Malalasekra (1995). 

Inlet. At the inlet it is assumed that the flow is undisturbed. Constant values are 
prescribed for the  velocity as well as the turbulent quantities. The void fraction is 
also described with the Dirichlet BC. but the fraction varies at the inlet face. It 
gets values equal to 1 in the water and 0 in the air. The pressure gradient in the 
longitudinal direction is set to zero. 

Outlet.  A simplification  is  made  that  the  boundary  is  far  downstream, which 
means that the flow is fully developed and that the waves are entirely damped. 
Therefore, it is acceptable to use the Neumann BC for the velocity, void fraction 
and  turbulent  quantities.  For  the  current  surface  capturing  method 
implementation the Neumann BC is also used for the pressure.

Slip. The physical boundaries-such as top, bottom and side faces of the domain are 
assumed solid walls and create an enclosed space in which the hull is placed. No 
flow through such a boundary is ensured – the normal velocity component is zero 
– and the flow is free to slip along the boundaries – the normal velocity gradient 
is zero. The Neumann BC is used for the pressure, void fraction and turbulent 
quantities.  The  same  conditions  are  used  at  the  symmetry  plane.  The  slip 
condition is  a good approximation for the symmetry plane and also the outer 
boundary if the computational domain is large compared to the ship dimensions. 
A modified slip condition is applied to a part of the top boundary. The Dirichlet 
BC is used for the pressure in order to solve the equations.

Noslip. At the hull surface the velocity is zero i.e. no flow through the boundary is  
possible  and the fluid sticks  to the surface. The Neumann BC is  used for  the 
pressure and void fraction.

7
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3 NUMERICAL METHOD

The partial differential equations are discretized to algebraic equations with the 
Finite  Volume  Method  (FVM).  The  averaged  values  in  each  cell  volume 
surrounding  the  centres  are  calculated  from  face  fluxes.  The  flux  entering  a 
volume through a face equals the flux leaving the adjacent volume through that 
face and therefore the method is conservative. 

3.1 Governing equations in vector form

The  system  of  equations  (1)  and  (3)  in  conservation  form  including  the 
turbulence equations can be represented in a generic, vector form by 

∂ f
∂ x

+
∂ g
∂ y
+
∂h
∂ z
=
∂ f v
∂ x

+
∂ g v
∂ y

+
∂hv
∂ z

+r  (6)

where f, g, h, fv, gv, hv, r are column vectors. The column vectors on the left side of 
the equation (6), given by f, g, and h represent inviscid fluxes, while fv, gv, and hv 

represent viscous fluxes.

f =(
u2ρ+ p

uvρ

uwρ

u

uα

uk

uω

) , g=(
uvρ

v2ρ+ p

vwρ

v

vα

vk

vω

) , h=(
wuρ

wvρ

w2ρ+ p

w

wα

wk

wω

) (7)

f v=(
τ xx

τ yx

τ zx

0

0

νk

∂k
∂ x

νω
∂ω
∂ x

) , g v=(
τ xy

τ yy

τzy

0

0

νk

∂ k
∂ y

νω
∂ω
∂ y

)  , hv=(
τ xz

τ yz

τzz

0

0

νk

∂k
∂ z

νω
∂ω
∂ z

) (8)
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r=(
0

0

−g

0

0

0

0

) (9)

The flux vectors of the equations (1), (3) and (4) are split into convective (7) and 
viscous (8) fluxes. The right side, vector r, represents the source term, which in our 
case is the gravity force acting in the z-axis direction (9). 

3.2 Discretization

In the FVM the variation of flow properties is approximated between cells with 
differencing schemes. An appropriate scheme is chosen to support the physical 
behaviour  of  the  flow  in  the  best  possible  manner.  The  diffusion  terms  are 
discretized with central differences while for convection hybrid schemes are used.

3.2.1 Convection term

The convective  fluxes  discretization is  based on the first  order Roe type flux 
difference splitting algorithm, Roe (1981). Higher order accuracy is achieved by 
an  explicit  defect  correction  with  flux  extrapolation  presented  by  Dick  and 
Linden (1992) and extended with several types of limiters in order to find suitable 
solutions for different equations. 

3.2.2 Roe fluxes

The convective flux differences can be written:

Δ f =A1(Δ q)  , Δ g=A2(Δq)  , Δ h=A3(Δ q) (10)

where q=(u , v ,w , p ,α , k ,w )
T and the discrete Jacobians are:
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A1=(
2ρu 0 0 1 0 0 0
ρv ρu 0 0 0 0 0
ρw 0 ρu 0 0 0 0
1 0 0 0 0 0 0
α 0 0 0 u 0 0
k 0 0 0 0 u 0
ω 0 0 0 0 0 u

)  , A2=(
ρv ρu 0 0 0 0 0
0 2ρ v 0 1 0 0 0
0 ρw ρv 0 0 0 0
0 1 0 0 0 0 0
0 α 0 0 v 0 0
0 k 0 0 0 v 0
0 ω 0 0 0 0 v

) ,

A3=(
ρw 0 ρu 0 0 0 0
0 ρw ρ v 0 0 0 0
0 0 2ρw 1 0 0 0
0 0 1 0 0 0 0
0 0 α 0 w 0 0
0 0 k 0 0 w 0
0 0 ω 0 0 0 w

)
(11)

The  eigensystem  is  evaluated  for  a  linear  combination  of  the  Jacobians 
A=nx A1+n y A2+nz A3 ,  with  dependent  variables  calculated  at  the  interface 

between the two states.

3.2.3 Eigensystem

The eigenvalues (12), left and right eigenvectors (13) of the matrix A are

 λ1,2 ,3,4 ,5,6 ,7=b ,b ,b ,b ,b ,−a+b ,a+b , (12)

R=(
0 0 0 −nz −n y

−β2 nx+au−bu

aβ2
ρ

β2 n x+au+bu

aβ2
ρ

0 0 0 −nz nx+n z

−β2 n y+av−bv

aβ2ρ

β2 n y+av+bv

aβ2ρ

0 0 0 nx+ny −n y

−β2 n z+aw−bw

aβ2
ρ

β2 nz+aw+bw

aβ2
ρ

0 0 0 0 0 1 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

)  

and

L=R−1 ,

(13)

where for clarity and simplification b=nx u+ny v+nz w , n x
2+n y

2+nz
2=1 and 

a=√β2+b2 .

The matrix A is rewritten by using eigendecomposition and split into positive and 
negative parts 
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A=AA−  (14)
with 

A
=R L  , A−

=R− L , (15)

where the positive and negative diagonal eigenvalue matrices are formed by 

Λ+=diag (λ1
+ ,λ2

+ ,λ3
+ ,λ4

+ ,λ5
+ ,λ6

+ ,λ7
+) , Λ−=diag (λ1

− ,λ2
− ,λ3

− ,λ4
− ,λ5

− ,λ6
− ,λ7

−) (16)

created by applying min – max functions to the original eigenvalues:

i

=max  i ,0  , i

−
=mini , 0 .

The splitting of the combined Jacobian matrices (15) as described above makes it 
also possible to split any linear combinations of flux differences which constitutes 
a basis for the discretization used in the code. The flux difference then can be 
written 

Δϕ≡nxΔ f +n yΔ g+nzΔh=A+Δq+A−Δq . (17)

3.2.4 First order upwind formulation

We will  consider  the inviscid  part  of  equation (6)  in  a  2D control  volume as 
shown in Figure 2.

The upwind definition of the flux at face i
1
2 is 

 F
i 1

2

=
1
2
F iF i1−

1
2
∣ F i , i1∣ (18)

and flux difference over the surface S
i

1
2

is:

 Δ F i ,i+1=F i+1−F i=Δ s
i+

1
2

(n xΔ f i ,i+1+n yΔ gi , i+1)=Δ s
i+

1
2

Ai ,i+1Δξi , i+1 (19)

12

Figure 2: Control volume.
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where ΔξT=(u ,v , p ,α , k ,ω) is the vector of dependent variables.

The Jacobian matrices are further split into positive and negative parts and the 
absolute value of the flux difference can be written as:

 ∣ F i , i1∣= s
i 1

2

Ai , i1


−A i , i1
−

 i ,i1 (20)

The inviscid flux balance over the control volume is:

F
i

1
2

−F
i−

1
2

F
j

1
2

−F
j

1
2

=0  , (21)

the first term can be rewritten to:

F
i+

1
2

=
1
2
(F i+F i+1)−

1
2
∣Δ F i , i+1∣=

1
2
(F i+F i+Δ F i , i+1)−

1
2
∣Δ F i ,i+1∣=  

   F i+
1
2
Δ F i , i+1−

1
2
∣Δ F i , i+1∣=

   F i+
1
2
Δ s

i+
1
2

(A i , i+1
+ +Ai ,i+1

− )Δξi , i+1−
1
2
Δ s

i+
1
2

(Ai ,i+1
+ −A i , i+1

− )Δξi ,i+1=

   F i+Δ s
i+

1
2

Ai , i+1
− Δξi ,i+1

(22)

and the second to:

F
i−

1
2

=
1
2
(F i+F i−1)−

1
2
∣Δ F i−1, i∣=

1
2
(F i+F i+Δ F i−1, i)−

1
2
∣Δ F i−1, i∣=

   F i+
1
2
Δ F i−1,i−

1
2
∣Δ F i−1,i∣=

   F i−
1
2
Δ s

i−
1
2

(A i−1, i
+ +A i−1, i

− )Δ ξi−1,i−
1
2
Δ s

i−
1
2

(Ai−1,i
+ −Ai−1,i

− )Δξi−1, i=   

   F i−Δ s
i−

1
2

Ai−1,i
+ Δξi−1,i

(23)

Hence the resulting flux balance is:

F i+Δ s
i+

1
2

Ai , i+1
−

Δξi , i+1−F i−Δ s
i−

1
2

Ai−1,i
+

Δξi−1,i+F j+

F j+Δ s
j+

1
2

A j , j+1
−

Δξ j , j+1−F j−Δ s
j−

1
2

A j−1, j
+

Δξ j−1, j=  
Δ s

i+
1
2

Ai ,i+1
− Δξi , i+1+Δ s

i−
1
2

Ai−1,i
+ Δξi−1,i+Δ s

j+
1
2

A j , j+1
− Δξ j , j+1+Δ s

j−
1
2

A j−1, j
+ Δξ j−1, j=0  

(24)

3.2.5 Second order formulation

The second order  accuracy is  obtained with  the explicit  correction defined in 
Dick and Linden (1992) which stems from the Chakravarthy and Osher (1985) 
formulation. In the latter formulation the second order correction is defined by 
shifted eigenvalues together with the geometric terms of the face, while in the 
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first formulation the problem is simplified by leaving the eigenvalues calculated 
for  the  central  face  assuming  that, in  practice, the  difference  is  small. In  the 
correction  to  second  order,  additional  terms  are  introduced  and  the  flux  is 
composed of limited upwind and central fluxes.

A pure second order upwind flux is as follows:

F
i 1

2

=
1
2
F iF i1−

1
2
∑

n
 F i , i1

n


1
2
∑

n
 F i , i1

n−


1
2
∑

n

 F i−1,i
n
−

1
2
∑

n

 F i1,i2
n−

(25)

where     F i−1,i
n
= s

i1
2

r
i1

2

n


i 1
2

n l
i1

2

n


i−1
2

and

a pure second order central difference flux is:

F
i1

2

=
1
2
F iF i1  (26)

To obtain results with a low numerical diffusion but maintaining stability a high 
resolution  scheme  is  constructed  based  on  a  hybrid  of  upwind  and  central 
differences flux with help of limiters:

F
i 1

2

=
1
2
F iF i1−

1
2
∑

n
 F i , i1

n


1
2
∑

n
 F i , i1

n−


1
2
∑

n

 F i−1,i
n
−

1
2
∑

n

 F i1, i2
n−

(27)

where the limited values are 

 F i1,i2
n−

=lim  F i1,i2
n− , F i , i1

n−
  (28)

and lim denotes a limited combination of both arguments. 

3.3 Flux limiters

The flux limiters are incorporated into the discretization scheme in order to avoid 
wiggles  in  the  solution  that  may  occur  due  to  not  monotonicity-preserving 
schemes such as central  or fully  upwind. The limiter functions, denoted in the 
previous section as  lim, select an appropriate argument based on their mutual 
relations which can indicate non-physical oscillations, overshoots to non-realistic 
values of the solution. Stable results are achieved with blending of schemes and 
locally  lowering  the  order  of  accuracy. The  most  well-known  techniques  for 
constructing and analysing the schemes are those by Sweby (1984) and Leonard 
(1991). In this report the latter one is used.

3.3.1 Normalised Variable Diagram

The  higher  resolution  schemes  can  be  constructed  based  on  a  Normalised 
Variable Diagram (NVD) which are described in detail by Leonard (1991). This 
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approach helps to determine the face value from surrounding cell centres. 

In Figure 3 a one-dimensional control volume is illustrated and the face value on 
the left side of that volume is considered. The cell centres that are used for the 
face value reconstruction are depicted as D, C and U and their order depends on 
the flow direction at the face. This abbreviation comes from their relative location 
and indicates the downstream, central and upstream cells. It should be noted that 
in case of  the current implementation the recognition of the flow direction is 
taken  care  of  by  the  underlying  Roe  discretization  scheme that  is  inherently 
upwind. 

Any value   in the shown group of cells can be normalized with respect to the 
difference between the downstream and upstream values:

 =
−U

D−U
. (29)

Applying this normalization to the cell centre values surrounding the face, Figure 
4, it can be seen that the normalized face value depends only on the normalized 
centre  cell  since  the  other  normalized  node  values  are  constant: U=0 and 
D=1 .
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Figure 3: Definition of upstream (U), central (C) and 
downstream (D) nodes with respect to flow direction.

Φ
U

Φ
C

Φ
D

Φ
f

U
f

Figure 4: Normalized node values.

U
f

DCU

00

1

Φ
C

~



The scheme constructed using NVD diagram can be used thereafter to find a real 
face value by using the normalised face value:

 f=C−C−U   f [ D−C C−U]  . (30)

The  f is  then chosen in such a way that the desired scheme is  created. The 
basic  schemes  are  plotted  in  the  NVD,  Figure  5,  and  have  the  following 
normalized face values:

Abbreviation Scheme type Normalised face value

FOU first order 
upwind 

 f= C

SOU second order 
upwind 

 f=
3
2
C

CD central  f=
1
2
1 C

DD downwind  f=1

It is however virtually impossible to use the above schemes for convective terms 
in their pure form. The perfect scheme needs to be accurate to avoid excessive 
numerical diffusion, stable and bounded  to physical values. However no scheme 
possesses these qualities simultaneously. High resolution composite schemes have 
been  developed  to  overcome  problems  with  non-physical  oscillations  and 
overshoots of a solution. A Convective Boundedness Criterion, CBC, proposed 
by Gaskel and Lau (1998), and more restrictive constraint called Total Variation 
Diminishing, TVD, introduced by Harten (1983) help to maximize accuracy while 
at  the  same  time  preserving  the  stability  and  boundedness. Both  criteria  are 
illustrated in the NVD diagrams in Figure 6. 
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Figure 5: NVD for basic differencing 
schemes.
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3.3.2 Common schemes for convection

In the present method the base for the momentum and continuity equations is 
the MUSCL scheme. Additionally several schemes have been tested for the water 
fraction transport equation. In order to keep the air and water interface sharp a 
certain amount of anti-diffusion is required. A scheme that can sharpen the step 
discontinuity  of  the  fluid  density  should  be  used.  Therefore,  the  transport 
equation for the volume fraction usually uses a special scheme that possesses this 
feature. Here, several linear and non-linear schemes were investigated, including 
the  more  diffusive  ones,  Osher  and  MUSCL  and  the  compressive  schemes 
SuperBee, Super-C and SuperBee-C. For references, see Figures  7a through  7h. 
Another family, the so called blended schemes, is represented here by STACS, 
Darwish  and  Moukalled  (2006).  This  scheme  blends  diffusive  and  highly 
compressive schemes depending on the angle between the free surface interface 
and the control volume face.

The Osher method, Chakravarthy and Osher (1985), Figure 7b, is related to the 
basic  Minimum  Modulus,  MinMod,  of  Roe,  Figure  7a.  It  uses  second-order 
upwinding combined with first-order downwinding instead of central differences 
which makes  it  less  diffusive. The difference is  substantial  between these two 
schemes  and  makes  the  Osher  scheme an  acceptable  solution  for  convection 
equations that do not need to resolve extremely steep gradients such as the water 
fraction variation at the interface.

The MUSCLE scheme by Van Leer (1979), Figure  7c, is based on the Fromm 
method, Fromm (1968) in the region near  C=0.5 . It is, however, altered with 
piecewise  modifications  passing  through  (0,0)  and  (1,1)  in  the  NVD, using  a 
monotonic limiter in the lower range and first order downwinding in the upper. 
The first-order upwind method is used elsewhere. The scheme performs better 
than Osher, however still it is not a suitable solution for water fraction transport 
equation.

A scheme called SuperBee developed by Roe (1985), Figure  7d, is one of the 
most  compressive  schemes.  The  normalized  face  value  is  a  piecewise  linear 
function constructed with slopes of  2 C in the lower part, central differences 
and second-order upwind near C=0.5 , and first-order downwind in the upper 
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Figure 6: CBC and TVD criteria.

Φ
f

~

Φ

C

~10

1

Φ
f

~

Φ

C

~10

1



part  of  the  NVD. It  is  able  to  represent  step  changes  in  the  computed  flow 
quantities which makes it very suitable for free surface applications.

The next more extreme scheme is the Super-C, Leonard (1988), Figure  7e. The 
name suggests  that  the  scheme is  ”super   compressive” and  indeed  the  step 
changes are represented with steeper gradients than in case of SuperBee. The 
piecewise linear function in the NVD follows the contour of central differences, 
second-order upwind and first-order downwind. The most compressive scheme is 
Hyper-C, Figure 7g. It is using limited first-order downwinding.

The tests run with the Super-C and Hyper-C methods indicated some stability 
issues. Also their requirement to keep the Courant number low increased the 
computation time. An idea of a scheme that would be somewhere between the 
SuperBee and Super-C arose, Figure 7f. A parameter to control the lower part of 
the NVD was introduced in such a way that the amount of central differencing 
could be adjusted. A natural way of naming the scheme seemed to be SuperBee-
C. The parameter was thereafter adjusted based on test calculations and a good 
compromise  turned  out  to  be  closer  to  the  Super-C scheme with  the  central 
differencing clipped in the lower part of the NVD with a line sloping at around

16 C .

As a reference the Switching Techniques for Advection and Capturing of Surfaces 
(STACS) scheme was implemented, Figure  7h, which was found to outperform 
well  established  HRIC  and  CICSAM, Darwish  and  Moukalled (2006).   This 
blended  scheme is  switching, as  stated  in  Darwish, between  the  STOIC, high 
resolution scheme and the SuperBee, compressive scheme, which however seems 
to be defined differently than the one in Leonard (1998). The blending depends 
on the angle between the normal to the interface and the normal to the cell face. 
When the interface is parallel to the face the compressive scheme is used. The 
blending  function [cos]4 allows for rapid changes away from the compressive 
to the high-resolution scheme when the interface is not along the grid direction.

Results of the calculations with various schemes are presented in Chapter 5.
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Scheme Definition with Normalised Variable Normalised Variable 
Diagram

a. MinMod,
(Roe 1986)

 f = {
3
2
C for 0 C

1
2

1
2
1 C 

1
2
 C1

C otherwise
}

b. Osher,
(Chakravarthy 
and Osher 
1983)

 f = {
3
2
C for 0 C

2
3

1
2
3
 C1

C otherwise
}

c. MUSCL,
(Van Leer 
1979)

 f = {
2 C for 0 C

1
4

1
4
 C

1
4
 C

3
4

1 3
4
 C1

C otherwise
}

d. SuperBee,
(Roe 1985)

 f = {
2 C for 0 C

1
3

1
2
1 C 

1
3
 C

1
2

3
2
C

1
2
 C

2
3

1 2
3
 C1

C otherwise

}
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e. Super-C,
(Leonard 
1988)

 f = {
1
2
1 C  for 0 C

1
2

3
2
C

1
2
 C

2
3

1 2
3
 C1

C otherwise
}

  

f. SuperBee-C

ϕ̃ f = {
k ϕ̃C for 0<ϕ̃C<

1
2 k−1

1
2
(1+ϕ̃C)

1
2k−1

⩽ϕ̃C<
1
2

3
2
ϕ̃C

1
2
⩽ϕ̃C<

2
3

1
2
3
⩽ϕ̃C<1

ϕ̃C otherwise

}
where k>2

  becomes: SuperBee for k=2 and
  Super-C for k=infinity

g. HyperC,
(Leonard 
1988)

 f = {min1,
C

Co
 for 0 C1

C otherwise }

h. STACS,
(Darwish 
2006)

 f , STACS =  f , SuperBee [cos]4

                 f , STOIC 1−[cos]4
where  is the anglebetween the gradient
of the volume fraction at the interface and
the normal to the cell face

and

 f , STOIC = {
1
2
1 C 0 C

1
2

3
8


3
4
C

1
2
 C

5
6

1
5
6
 C1

C otherwise
}

Figure 7: NVD diagrams.
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3.4 Diffusion terms

The diffusion terms of the turbulent incompressible Navier-Stokes equations (6) 
are:

∂
∂ x j

E 
∂ui

∂ x j


∂ u j

∂ xi

=
∂
∂ x j

E

∂ui

∂ x j


∂
∂ x j

 E

∂u j

∂ x i

=  

=
∂
∂ x j

E

∂ui

∂ x j


∂E∂ u j

∂ x j∂ xi

E

∂ ∂ u j

∂ x j∂ x i

=[
∂u j

∂ x j

=0 ]=

=
∂
∂ x j

E

∂ ui

∂ x j


∂E∂ u j

∂ x j∂ xi

(31)

The  first  term  is  discretized  with  central  differences.  The  second  term  is 
discretized in a finite difference way with central differences and is added to the 
right hand side of the system. 

The turbulent equations contain only the first term, which is treated in the same 
way as in the Navier-Stokes equations.

3.5 Gravity source term

A  source  balancing  method  is  used  to  introduce  gravity,  Leveque  (1998), 
Hubbard and Garcia-Navarro (1999). The body forces that arise from the gravity 
are  incorporated  into  the  approximate  Riemann  solver  and  the  Roe  type 
discretization. The pressure gradient due to gravity is subtracted from the input 
states for the solver. Thus, only the perturbations from the steady state are seen, 
not the large hydrostatic pressure gradient that would otherwise create spurious 
accelerations of the fluid particles due to strong coupling of pressure and velocity.

The constant value Qi is replaced by two values Qi
+ and Qi

- with with a jump 

at a cell centre, see Figure 8. 

Q i
+=Q i+δ i , Q i

−
=Q i− i (32)

The introduced jump corresponds to the source term 
i

Fn2
 V i , representing the 

variation in pressure arising from the gravitational force. 

The  Riemann  solver  and  limiters  for  the  second  order  correction  terms  are 
applied directly to the perturbations from the steady state. 
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Figure 8: Data in two adjacent cells before and after introducing a jump in cell 
centres.
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3.6 Initial and Boundary conditions

The boundary conditions are  implemented using two layers  of  ghost  cells. As 
mentioned in the previous chapter the OUTFLOW is modified as compared to a 
RANS code without free-surface capturing method. The Neumann condition is 
applied  to  the  pressure  in  order  to  allow certain  free  surface  level  variation. 
Additionally a new boundary condition type is implemented here and referred to 
as  the  TOP  and  based  on  the  standard  SLIP  boundary  but  with  Dirichlet 
condition for the pressure. The TOP is used far from the disturbance of the hull  
where the pressure variation can be assumed negligible. Figure  9 illustrates the 
boundary conditions used for a typical flow domain. 

The initial conditions are set to a uniform flow with an undisturbed free surface. 
The hydrostatic pressure and void fraction fields are prescribed accordingly. The 
initial  guess  for  the  velocity  field  is  based  on  the  Reynolds  number  and  a 
boundary layer is introduced in the vicinity of the non-slip surfaces. A special 
consideration is made for ships with transom where a separated flow region is 
expected. There, the initial  boundary layer  is  much thicker  than on the other 
parts.  This  was  found  to  improve  the  solver  stability  in  the  beginning  of 
computations.
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Figure 9: Boundary conditions.
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3.7 Solution Algorithm

A local  artificial  time-step is  added to the equations and the discrete coupled 
equations  are  solved  with  the  Alternating  Direction  Implicit  (ADI)  method. 
Since an acceleration of  the flow velocity  is  not applicable  due to the steady 
solver  implementation, the  pressure  and  velocities  may  change  rapidly  in  the 
beginning of the calculations. This may cause instabilities of the free-surface and 
lead to solution divergence. The problem is addressed by introducing a start-up 
phase, where in order to stabilize the computations the fluid viscosity is modified. 
It was found that increasing the viscosity by three orders of magnitude and slowly 
decreasing it over several hundred iterations until it reaches the appropriate level 
resolves the initial instability issue. 

A common problem with surface capturing methods used with RANS solvers 
without the wall  function approach for a turbulence model is  the necessity of 
using very thin cells close to non-slip boundaries. This leads not only to a slower  
convergence of the free surface location but also to a risk of  drawing the air 
fraction under the hull. This is a major problem that causes a substantial error in 
resistance prediction. An extrapolation of the water fraction to the wall is used to 
efficiently resolve the issue, see Figure  10. A very small distance from the hull 
surface is affected by the procedure which has a limited influence on the solution 
and therefore is considered as a suitable treatment.
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Figure 10: Example air sheet problem illustrated on a hull section. 
      Without (left) and with (right) extrapolation. Schematic    
      drawing, not to scale.
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4 ADAPTIVE OVERLAPPING GRID REFINEMENT

The overlapping grid idea dates back to the early 1980s and has its roots at NASA 
Ames Research Center in USA. More often it is called overset or Chimera grids 
and the development officially began in 1983 when Steger, Dougherty and Benek 
presented a general framework for Chimera grids, Steger et. al. (1983). The major 
driving force for this approach was an ability to use good quality structured grids 
on complicated geometries and to have a possibility to apply relative motions 
between  components  in  a  flexible  way  without  regridding  the  computational 
domain. An additional advantage is also that the parts of the geometry can be 
modified, repositioned, added or removed with small effort.

The  major  difficulty  for  the  overlapping  algorithm  is  usually  an  intergrid 
boundary definition. Two approaches can be distinguished that address this issue. 
The first is priority based where each component grid is assigned a value that 
specifies which grid cuts hole in the other grid This approach is utilised in the very 
well-known PEGASUS and SUGGAR codes, Noack (2005). It is widely used for 
aeronautical,  and  recently  marine  applications  Carrica  (2005).  The  second 
approach is using a local distance function to set the boundaries. At least two 
independent  groups  have  been  working  on  that  method:  Nakahashi  (2000), 
unstructured  grids  for  multiple  moving-body  aeronautical  problems  and 
Regnström (2000), structured  grids  for  local  refinements  and  appendages  for 
marine applications.

Overlapping grid techniques are usually introduced in order to compute the flow 
around complicated geometries without compromising cell quality. This technique 
was already used in SHIPFLOW at the start of this project. It may be used to 
describe the geometry or to refine locally the grids in the domain regions that 
require  higher spatial  resolution. In the present  work the latter  application is 
incorporated in the near free surface region to avoid excessive wave damping and 
to  increase  the  interface  sharpness.  Additionally  the  refinement  grid  can  be 
automatically adapted to the wave profile, which allows to reduce the size of the 
refined region and also further decreases the air-water transition band thickness.

A  background  grid  describes  the  computational  domain  extent  and  can  also 
represent  the  main  geometry  features,  while  the  component  grids  add  more 
details to the geometry or increase the grid resolution. The grids overlap each 
other  and  the  communication  between  them  is  realized  by  interpolation.  A 
principle of the overlapping grid set up is shown in Figure 11.
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The major difficulty is to decide upon which way to interpolate i.e. which grid to 
be  used  to  represent  the  flow.  As  mentioned  already  the  algorithms  differ 
considerably between codes. In most reported overlapping methods priorities are 
assigned to each component thus creating hierarchical structure. In the current 
framework, however, a local distance function criterion is used, see Figure 12. The 
distance  function  is  equal  to  the  shortest  distance  to  the  physical  boundary 
represented by the grid. In the overlapping regions the FB is compared at each 
cell centre and the one with smaller value is selected. This method proved to be 
robust and and requires little user input. 

In the method developed by Regnström, (2007), for each component grid in the 
calculated case the overlapping algorithm follows the procedure below: 

• Set  up  interpolation  information  for  periodic,  folded  and  multi  block 
interfaces.

• Calculate the local distance function FB.

• Find interpolation information between grids that overlap.

• Correct boundary mismatch in regions where two grids represent the same 
surface.
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Figure 11: Overlapping grids principle.

Figure 12: Distance funciton based overlapping grid 
algorithm.



• Flag cells that are outside the domain as non-fluid.

• Trim double interpolations to avoid circular dependence 

For the free surface flows the core technology of the overlapping algorithm is 
utilized and extended further to handle the complications implied by the new 
application. A new standard component grid is added for free surface refinement. 
A rectangular grid is created around the air-water interface with a hyperbolic grid 
generator. The isosurface of the air volume concentration equal to 0.5 is used first 
to create the surface mesh, then the refinement grid grows above and below the 
interface. The water level is then followed and the refinement is recreated when 
the  wave  amplitude  change  exceeds  a  given  criterion. In  order  to  keep  the 
interface inside the refined region the criterion is set usually to 2-3 cell heights. 
Specifying smaller values would help to adapt the grid more accurately but too 
frequent updates may take time and also slow down convergence. A flowchart of 
the implemented adaptation algorithm is illustrated in Figure  13. First the grids 
are  imported  or  generated  by  the  integrated  grid  generation  tool  and  the 
overlapping  algorithm  is  executed  and  interpolation  information  computed. 
Thereafter, the solver is started and the adaptation criterion is checked every 10th 
iteration. When the wave amplitude change is sufficiently large the refinement 
grid  is  adapted  to  the  free  surface  shape.  The  overlap  and  interpolation 
information  are  set  up  after  each  adaptation  and  the  solver  continues  until 
convergence.  

The  refinement  may  cover  the  whole  free  surface  or  only  a  part, increasing 
solution accuracy in the region of interest, and creating wave damping zones near 
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Figure 13: Program flow chart with adaptation 
loop.
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domain  boundaries.  An  example  grid  assembly  is  shown  in  Figure  14.  A 
submerged hydrofoil  component grid is  placed in a much coarser  background 
grid. A part of the free surface is refined with additional component grid, which 
can be adapted to  the waves. The adapted grid  for  the converged solution is 
shown in Figure 15.
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Figure 14: Overlapping grid arrangement with free surface refinement.

Figure 15: Result of calculations with overlapping grid 
fixed and adapted to the free surface profile.
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5 CASE STUDIES

Four different test cases are used for the free surface flow code verification and 
validation. The investigation starts with looking at effects of discretization of the 
volume fraction equation and effects of the overlapping grid refinement of the air 
to  water  interface. For  this  purpose  a  2D  case  of  submerged  hydrofoil,  the 
Duncan test case, and the Series 60 ship hull are used. A number of discretization 
schemes  are  applied  to  illustrate  an  importance  of  the  convection  part 
discretization  on  the  free  surface  sharpness.  A  verification  and  validation  is 
carried out for the Wigley hull as well as the KRISO Container Ship, KCS. The 
results  are  compared  with  the  available  measurements.   The  verification  is 
performed with Least Squares Root Method as described in  Eça and Hoekstra, 
(2006). 

5.1 Submerged hydrofoil  test case

5.1.1 Case description

The first test setup corresponds to the experiments carried out by Duncan (1983). 
A hydrofoil with a NACA 0012 section and a chord length of 0.203 m was placed 
in a towing tank with a total depth of 0.385 m. The tank was 0.610 m wide and the 
span of the hydrofoil was 0.600 m which, due to a very small gap between the foil 
tips and the tank walls, allowed to disregard the three-dimensional effects. For the 
current simulations a case where no wave breaking occurred was selected. The 
submergence  for  this  conditions  was  0.210  m and  the  angle  of  attack  was  5 
degrees. The towing carriage speed was 0.8 m/s which corresponded to the Froude 
number of Fn=0.567 and the Reynolds number of about Rn=1.6*105 based on the 
chord length. 

5.1.2 Computational setup

This test case is computed as two-dimensional and the grid is composed of three 
structured  overlapping  components  with  quadrilateral  panels,  similar  to  that 
shown in Figure  16. A relatively coarse regular background grid determines the 
extent of the computational domain, which is  2 chord lengths upstream and 16 
downstream of  the hydrofoil  leading edge. The height  is  4  chord lengths. The 
background grid has only 1800 cells. The hydrofoil section is represented with a 
boundary fitted curvilinear component grid generated with a conformal mapping 
method and has 1000 cells. The outer edge of this component is nearly circular 
with a radius of about 1 chord length. In order to improve the results with a  
minimal computational cost, a thin, local refinement grid is placed around a part 
of the air and water interface. The thickness is chosen such that the height of the 
refinement is larger than the expected wave amplitude, and the refinement starts 
at  the  inlet  boundary  of  the  background  grid  and  extends  7  chord  lengths 
downstream of the hydrofoil's leading edge. It is symmetrical above and below 
the  free  surface.  The  remaining  length,  downstream  to  the  domain  outflow 
boundary, is used for wave damping to avoid reflections from the downstream 
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boundary. The  refinement  has  24000  cells  and  is  either  a  regular  type  or  a 
boundary fitted adaptive curvilinear grid with a middle layer conforming to the 
computed instantaneous free surface shape. The cell size in the refined region is 
0.01 and 0.03 chord lengths in the vertical and longitudinal direction respectively. 
For  the  given  conditions  there  are  66  cells  per  wave  length  and  the  wave 
amplitude is around 15 cells. The calculations are carried out using the k−SST

turbulence model at Rn according to the experimental set up. In all cases the CFL 
number is reduced to 0.2 in order to minimize the risk of instabilities that may 
occur for some of the more compressive discretization schemes.

The  result  of  computations  with  the  Superbee  scheme  and  measured  wave 
profiles are shown in Figure 17. The agreement is good in general, the wave phase 
is correct, however the amplitude is underestimated. The reason for this is the 
very coarse background and hydrofoil grids which is influencing the accuracy of
the  pressure  computations.  This  difference  is  however  insignificant  since  the 
emphasis in the present investigation is the interface sharpness.
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Figure 16: Computational grid for Duncan case with refinement.



5.1.3 Effects of discretization scheme

The interface thickness with a fixed grid varies from about 14 to 3 cell thicknesses 
for  the investigated schemes, see  Table  1. The estimate is  done in  the trough 
downstream of the first wave behind the hydrofoil. 

Interface thickness

Scheme Fixed refinement Adaptive refinement

MinMod 14.5 6.5

Osher 9.0 5.5

MUSCL 7.0 4.8

SuperBee 4.8 4.2

SuperBee-C 3.9 3.9

Hyper-C 3.4 3.4

STACS 2.9 2.9

Table 1: Approximate interface thickness in cells, measured between water  
fraction isolines of 0.01 and 0.99.

Figure  18 illustrates the first wave behind the submerged hydrofoil. The water 
fraction isolines  of 0.01, 0.5 and 0.99 are shown. The interface is  considerably 
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Figure 17: Measured and computed wave profiles comparison.



smeared out for the MinMod and the wave crests tend to break due to increased 
wave slopes in the low water fraction part of the transition band. This case was 
not  iterated  until  convergence  but  rather  stopped  just  before  the  breaking 
occurred. A visible reduction of the interface thickness is achieved with the Osher 
and further with the MUSCLE  schemes. The interface band is reduced by about 
50% compared to the MinMod and is more uniform along the wave train. No 
problems  with  breaking  were  observed.  The  compressive  schemes  bring  a 
significant  improvement  compared to  the other  solutions. The Superbee gives 
thickness  just  below 5 cell  heights  which is  already a satisfactory result. Even 
greater  decrease  of  the  interface  thickness  was  achieved  with  the  Hyper-C. 
However, a staircase like wave profiles can be recognized due to an alignment of 
the interface with the grid lines, see also Orych et al. (2009). A remedy for that is  
to use blended schemes such as STACS which was also investigated. It performs 
very well  in  terms of  keeping the interface thin; achieved result  was 2.9 cells 
across. However, the computations are a bit slower compared to other schemes 
described  here  due  to  its  more  complex  implementation.  The  proposed 
SuperBee-C scheme, which is an intermediate solution between SuperBee and 
Hyper-C  gives  interface  thickness  of  3.9  cells.  This  is  one  cell  less  than  the 
SuperBee but still the staircase like wave contours are not visible.

The wave height is nearly the same for all schemes even though the air to water 
transition  band  differs  significantly.  The  MinMod  is  excluded  from  the 
comparison for the reasons mentioned earlier. A very interesting observation is 
made about the wave  length. The results are consistent except for the Hyper-C 
and STACS, also based on the  Hyper-C, where the wave length is about 10% 
larger compared to the other schemes. 
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5.1.4 Effects of overlapping refinement 

The second objective of the work was to investigate the adaptive grid refinement 
effects  on  the  solution. The  interface  thickness  comparison  with  the  adaptive 
refinement for various discretization schemes is illustrated on the first wave crest, 
Figure 19. The alignment of the grid lines with the free surface profile decreases 
the  interface  diffusion  considerably  for  the  non-compressive  schemes.  A 
reasonable thickness was even achieved for the MinMod. The observed thickness 
reduction was in this case over 50% compared to the case computed with the 
fixed grid with the same cell size, see Table 1. A large reduction was also achieved 
for the Osher and MUSCL scheme and was about 40% and 30% respectively. The 
improvements  decrease  as  the  discretization  schemes  are  less  diffusive.  The 
Superbee shows only a slight change while the Superbee-C, Hyper-C and STACS 
do not indicate any noticeable change in the interface thickness. However, since 
the grid lines are aligned with the free surface the stair case phenomena do not 
appear for the highly compressive schemes as was the case for the fixed grid. 
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Figure 19: Interface thickness 
comparison with refinement adaptation 
for various discretization schemes 
illustrated on the first wave crest. The 
water fraction isolines of 0.01, 0.5 and 
0.99 are shown in blue, green and red 
respectively.
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Figure 18: Interface thickness 
comparison without refinement 
adaptation for various discretization 
schemes illustrated on the first wave 
crest. The water fraction isolines of 0.01, 
0.5 and 0.99 are shown in blue, green 
and red respectively.
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5.2 Series 60 test case

The Series 60 (CB=0.6) hull  is chosen as the second test case. The results are 
compared to the measurements of Toda et al. (1992). The selected measurements 
are performed with a 3.048 m long model at a Froude number of 0.316 and a  
Reynolds  number  of  5.245*106.  A  bare  hull  is  considered  in  model-fixed 
conditions, without effects of dynamic sinkage and trim.

5.2.1 Computational setup

The computations are carried out with two grid sets, without and with refinement. 
For the case without a refinement a single-block grid with H-O topology is used. 
The  computational  domain  extends  0.5  length  between  perpendiculars  (Lpp) 
upstream of the forward perpendicular and 1.0 Lpp behind the aft perpendicular. 
The outer boundary has a radius of 2 Lpp and the top is 0.1 Lpp above the water  
plane. The  cells  are  stretched  in  the  normal  direction  to  the  hull  to  satisfy 
requirements of the turbulence model. In the vertical direction the grid is refined 
close to the free surface, where the cells  had the thickness  Δz = 0.00175 Lpp. 
Along the hull there are 82 cells with stretching applied near the bow and stern. 
The cell length Δx varies between 0.01 and 0.018 which corresponds to 62 and 35 
cells per wave length. Behind the hull the cell size increases for wave damping 
purposes to avoid reflections from the outlet and therefore the waves become less 
pronounced shortly behind the transom. In total only 590 000 grid cells are used. 
The grid is relatively coarse in order to emphasize the effects of the discretization 
schemes and the grid refinement. 

The second grid setup is created by adding a local refinement of the air-water 
interface around the hull, Figure  20. It starts 0.05 Lpp in front of the bow and 
ends 0.35 Lpp behind the stern. The transverse extent is 0.65 Lpp and covers the 
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Figure 20: Background grid with a local 
free surface interface refinement near the 
hull.

Local refinement 
outline



wave pattern at the whole length of the hull. The refinement spreads 0.18 and 0.17 
above and below the undisturbed free surface level. In each direction the cell 
number is doubled in this volume giving 950 000 additional cells. All simulations 
are  performed  with  the  CFL  number  of  0.5  for  stability  reasons.  Figure  21 
illustrates the wave patterns from the grid with a refinement, top part, and the 
measured one, bottom part. Considering the limited grid resolution the results 
show a good agreement with the measurements.  There is a small difference in the 
wave length and amplitude due to the numerical  diffusion, however the wave 
pattern characteristic features can be recognized. 

The next  two subsections  deal  with  the discretization scheme and refinement 
influence  on  the  results. In  both  cases  2D  wave  profiles  in  longitudinal  and 
transverse planes are used to check the interface thickness. Selected parts of the 
wave profiles are visualized with 0.1, 0.5 and 0.9 isolines of the water fraction. 

5.2.2 Effects of discretization scheme

The wave patterns computed with Superbee-C and MUSCL are illustrated in 
Figure  22. There  is  a  very  small  difference  between  the  contour  lines. It  was 
already  observed  in  the  Duncan  case  that  the  discretization  scheme  mostly 
influenced the interface thickness, while the wave profiles were nearly the same. 
The wave pattern as a three-dimensional wave amplitude distribution shows the 
same trend. The most visible difference can be observed looking at the diverging 
bow waves which seem to be damped more when the MUSCL was used.

35

Figure 21: Wave pattern comparison, top: 
CFD, bottom: measurements. Spacing 
between contour lines 0.0025 L.



A longitudinal cut at 0.08 Lpp from the center plane and a transverse cut at 0.1 
Lpp downstream of the forward perpendicular, shown in Figures  23, 24 and  25, 
include results of three discretization schemes: MUSCL (green lines), Superbee 
(blue) and Superbee-C (red). In all cases the wave amplitude has been scaled by a 
factor of five for better picture clarity. The contour lines of the water fraction of 
0.5 coincide with each other for all schemes in the major part of the wave profile. 
The  exceptions  can  be  found  in  the  bow  wave  crest  where  the  Superbee-C 
predicts a little higher peak, see Figure  23 and  25. An air-water transition band 
thickness reduction of about 30% can be observed along the hull comparing the 
MUSCL and Superbee-C methods.

Looking at the whole wave pattern it is noticeable that the interface thickness in 
case of the MUSCL scheme is increasing in the downstream direction and also 
the wave amplitude is  reduced further away from the hull. The Superbee and 
Superbee-C maintain the interface thicknesses and the waves are less damped.
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Figure 22: Wave pattern comparison, top: 
SuperbeeC, bottom: MUSCL. Spacing 
between contour lines 0.0025 L.

Figure 23: Water fraction contour lines at 
the transverse plane located 0.1 Lpp 
downstream of forward perpendicular.



In  the  transverse  cut  the  computational  grid  lines  are  included  for  better 
understanding of the interface thickness relative to the cell size, Figure 23. 

5.2.3 Effects of overlapping refinement 

The computations with a grid refinement are illustrated on a case for which the 
Superbee scheme was used. The grid adaptation implementation has not yet been 
finalized in 3D, since several important issues were discovered which were not 
posing problems in the 2D example. There are two major difficulties in this case: 
treatment of the near wall region and interpolation from the background grid to 
the refinement grid upstream of the hull.
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Figure 24: Water fraction contour lines of the  
longitudinal wave cut at 0.08Lpp off the 
center plane. The water fraction isolines of 
0.1, 0.5 and 0.9 are shown for MUSCL 
(green), Superbee (blue) and Superbee-C 
(red).

Figure 25: Close up of the water fraction 
contour lines near the bow. The water 
fraction isolines of 0.1, 0.5 and 0.9 are 
shown for MUSCL (green), Superbee 
(blue) and Superbee-C (red).



Using an adaptive grid that is not fitted to the hull causes difficulties in the near 
wall region where the refinement grid intersects the hull surface. In this region 
the interpolation of the solution from the body fitted grid, describing the hull, to 
the  adaptive  refinement  is  necessary. Since  the  cell  size  and  the  aspect  ratio 
changes rapidly the information about the flow field received by the refinement is 
of a coarse quality. Several attempts have been made to compute such cases but 
the results were not satisfactory. Therefore, a conclusion has been made that the 
adaptive grid should be body fitted and slide on the hull surface in order to take 
full advantage of the method.
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Figure 26: Wave pattern comparison, top: no 
refinement, bottom: with refinement. Spacing 
between contour lines 0.0025 L.

Figure 27: Close up of the water fraction 
contour lines near the bow, with and 
without refinement. The water fraction 
isolines of 0.1, 0.5 and 0.9 are shown for the 
refined region in blue, green and red colors 
respectively. The isolines for the grid without 
the refinement are indicated with black lines.

forward perpendicular
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The  results  presented  here  are  based  on  a  fixed  body  fitted  refinement.  A 
comparison of  the wave pattern without and with the refinement is  shown in 
Figure 26. An improvement in contour details and an increased wave amplitude 
of the diverging waves are clearly visible. The longitudinal wave cuts shown in 
Figures 27 and 28 cover only a bow and a stern regions including the ends of the 
refinement. Thin lines indicate the hull ends and the still water plane level . Thick 
dashed vertical lines indicate the beginning and end of the refinement. The black 
solid contour lines which continue across the whole width of the pictures belong 
to the computation without the refinement and the blue, green and red are water 
fraction contours are computations with the refinement. The information about 
the  thick  interface  coming  from  the  upstream, coarse  part  of  the  domain  is  
interpolated into the refinement and acts as a bad quality, with respect to the 
interface  sharpness,  inflow  boundary  condition.  This  is  then  convected 
downstream and only a small reduction of the thickness can be noticed. This is 
due to the finer grid used for solving the flow. However, the advantage of using 
the refinement is not fully utilized. A method for passing the information about 
the  free  surface  location  which  would  not  include  the  interface  thickness  or 
compress it quickly where the interpolation is towards the finer grid should be 
developed. Extending the refinement up to the domain inlet is possible and was 
made in 2D case, however a considerable amount of cells would be added.

5.3 Wigley test case

The Wigley hull form is still widely used for viscous free surface code verification 
and validation due to its simple geometry and exact mathematical description. 
The slender  body and V-shaped sections  allow for  easy  grid  generation using 
various grid topologies ranging from H-H to O-O type. There is a large amount of 
experimental and computational data available for validation and comparisons 
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Figure 28: Close up of the water fraction 
contour lines near the stern, with and without  
refinement. The water fraction isolines of 0.1,  
0.5 and 0.9 are shown for the refined region 
in blue, green and red colors respectively. 
The isolines for the grid without the 
refinement are indicated with black lines.

end of refinement
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which makes the case very attractive for the first real hull simulations.

In this test the hull is fixed, no trim or sink allowed, sailing at a Froude numbers 
of 0.250 and 0.316 with corresponding Reynolds numbers of 5.57*106 and 7.04*106 

which follows the tests performed at SRI, see Kajitani et al. (1983).

5.3.1 Computational setup

A structured H-O topology grid was used. The computational domain extends 1.0 
Lpp upstream of the hull, 2.0 Lpp downstream, 3.0 Lpp to the side and below and 
0.15 Lpp above the undisturbed free surface level. 

In  total,  seven systematically  varied, geometrically  similar  grids  are  generated 
applying a grid refinement ratio  of  4√2  in the three directions of the domain: 
longitudinal, circumferential and radial. The number of grid cells and the relative 
grid cell sizes are given in Table 2. The grids are stretched in longitudinal direction 
with cell concentration near bow and stern. The size increase upstream of the bow 
and downstream of the stern. In the normal direction to the hull the grids are 
stretched towards the hull surface and the spacing close to it varies from y+=0.7 
up to 1.98 for the finest and coarsest grid respectively. The large cell size away 
from the hull is used to limit amount of cells and also to create a wave damping 
zone to avoid reflections from the boundaries. In order to capture the free surface 
interface accurately the grid is stretched towards the still water plane. The spacing 
in the vertical  direction is  5*10-4 Lpp  for the finest  grid  and the  refined zone 
extends 0.015 Lpp above and 0.005 Lpp below the water plane to cover the free 
surface  waves. The computations  are  carried  out  with  Superbee discretization 
scheme.

Grid Cells
(1e6)

hi/h1

( i=1, 2, …, 7 )

G1 9.91 1.000

G2 5.89 1.189

G3 3.50 1.414

G4 2.08 1.682

G5 1.24 2.000

G6 0.74 2.378

G7 0.44 2.828

Table 2: Grid sequence for the Wigley hull.

5.3.2 Results – resistance

The results obtained with the code including total resistance coefficient as well as 
pressure and frictional components are presented in Table  3 and  4. The tables 
contain also values extrapolated to zero grid cell  size and the measured total 
resistance  coefficient.  The  grid  convergence  is  investigated  using  the  Least 
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Squares  Root  approach  (Eça  and  Hoekstra, 2006). As  can  be  seen  the  total 
resistance coefficient  values  extrapolated to  zero grid  size  show an extremely 
small deviation from the measurements of about 0.2% for both Froude numbers.

Exp. G0 G1 G2 G3 G4 G5 G6 G7

CF - 3.26 3.21 3.20 3.20 3.14 3.10 2.95 2.71

CP - 0.93 0.96 0.95 0.94 0.95 1.01 1.04 1.07

CT 4.20 4.19 4.18 4.16 4.14 4.10 4.11 3.99 3.79

Table 3: Measured and computed results including values extrapolated to zero cell  
size, Fn = 0.250. (All results multiplied by 1000.)

Exp. G0 G1 G2 G3 G4 G5 G6 G7

CF - 3.16 3.12 3.12 3.10 3.04 2.97 2.83 2.60

CP - 1.65 1.67 1.67 1.67 1.69 1.71 1.75 1.79

CT 4.80 4.81 4.79 4.79 4.77 4.73 4.69 4.59 4.39

Table 4: Measured and computed results including values extrapolated to zero cell  
size, Fn = 0.316. (All results multiplied by 1000.)

The grid convergence is monotonic, however the observed order of accuracy, p, 
exceeds  the  theoretical  one. This, most  probably, is  due  to  the  fact  that  the 
coarsest  grids  are  too coarse  to give  satisfactory solution. After  removing the 
coarsest grids from the curve fitting the results are more realistic and are between 
two and three. The full result of the verification calculations is presented in Table 
5. The comparison error  E is  defined  as  a  difference  between the  simulation 
results for the finest grid  S and the experimental data  D. The solution change 
between two finest grids is denoted as ε12. Both E and ε12 are very small, however 
the iterative error  UI indicates that the number of iterations for the finest grids 
should have been increased to consider this error as negligible in the uncertainty 
estimation, Zou and Larsson, (2013). The numerical uncertainty USN is very low at 
a level about 3% of the results extrapolated to zero grid size. The Figures 29 and 
30 illustrate grid convergence with least square fit curve. A scatter that can be 
noticed is relatively small. A formal validation cannot be carried out due to lack 
of the experimental data uncertainty. 

Fn E% ε12% p UI% USN%

0.250 0.48 0.46 2.78 0.77 3.14

0.316 0.31 0.00 2.92 0.05 3.05

Table 5: Results of uncertainty analysis for CT.
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Figure 29: Grid convergence of CT CP and CF at Fn of 0.250.

Figure 30: Grid convergence of CT CP and CF at Fn of 0.316.
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5.3.3 Results – wave pattern

To evaluate the free-surface code a wave profile along the hull is compared to the 
measurements. Figures  31 and  32 illustrate the wave elevation for two Froude 
numbers. There are small  deviations from the experimental  data, however the 
agreement can be considered as good.  The wave pattern, Figure 33, shows little 
wave damping even in the regions further away from the hull. 
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Figure 31: Computed and measured wave profile, Fn = 0.250.

Figure 32: Computed and measured wave profile, Fn = 0.316.



5.4 KRISO Container Ship test case

The final test case is the KRISO Container Ship, KCS, which was designed in the 
mid '90s for validation purposes. Even though there is no full scale ship built, it 
represents a typical container vessel hull form with a bulbous bow. 

The validation data originates from the experiments carried out at MOERI, see 
Kim et al (2001). In this study the Froude number was 0.26 and the corresponding 
Reynolds  number  was  1.4*107.  A  bare  hull  was  considered  in  model-fixed 
conditions, without effects of dynamic sinkage and trim.

5.4.1 Computational setup

The computations are carried out  with  structured, H-O type multi-block grid, 
Figure 34. One block constituted the main part and covers the whole hull except 
the  volume  behind  the  flat  transom  where  an  additional  block  is  fitted. The 
domain  extends  1.0  length  between  perpendiculars  (Lpp)  upstream  of  the 
forward  perpendicular  and  2.0  Lpp  behind  the  aft  perpendicular.  The  outer 
boundary has a radius of 3.0 Lpp and the top is about 0.15 Lpp above the water 
plane. The cells are stretched in the normal direction to the hull down to y+ ~ 1, 
varying with grid size, in order to satisfy requirements of the turbulence model. 
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Figure 33: Wave pattern at Fn=0.250 (top) and 0.316 (bottom), 
contour spacing 0.001.



In the vertical direction the grid is refined close to the free surface and the cell 
faces are aligned with the undisturbed free surface for the grid layers in the range 
from -0.01 to 0.015 Lpp in the z-direction, see Figure 35.

Figure 35: Surface grid on hull with visible fine region near free surface level, bow 
and stern part.

A  sequence  of  six  geometrically  similar  grids  is  generated  for  the  grid 
dependence study. The number of cells varies from 0.35 to 7.88 million, see Table 
6. The computations are carried out with Superbee discretization scheme.
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Figure 34: Multi-block, H-O volume grid  
with visible surface mesh at the inlet 
(grid was coarsened for the picture 
clarity).



Grid Cells
(1e6)

hi/h1

( i=1, 2, …, 7 )

G1 7.88 1.000

G2 2.78 1.414

G3 1.65 1.682

G4 0.98 2.000

G5 0.58 2.378

G6 0.35 2.828

Table 6: Grid sequence for the KCS hull.

5.4.2 Results – resistance 

Similarly to the previous test case the grid convergence is investigated using the 
Least Squares Root approach. The measured resistance coefficient is presented 
together with the results obtained with the code in Table  7. The total resistance 
coefficient  extrapolated  to  zero  grid  size  shows  a  deviation  from  the 
measurements of about 2.5%.

Exp. G0 G1 G2 G3 G4 G5 G6

CF - 2.83 2.77 2.71 2.65 2.60 2.45 2.31

CP - 0.65 0.75 0.62 0.63 0.89 0.84 0.83

CT 3.56 3.47 3.52 3.33 3.28 3.49 3.29 3.15

Table 7: Measured and computed results including values extrapolated to zero cell  
size. (All results multiplied by 1000.)

The grid convergence is monotonic and the observed order of accuracy, p, is 2.42. 
Table 8 summarizes the results of the uncertainty analysis. Figure 36 illustrates the 
grid  convergence with  a least  square fit  curve. A noticeable, but not unusual, 
scatter  (Larsson and Zou (2010))  can be noticed for  the pressure component 
which  also  affects  the  total  resistance  coefficient.  The  scatter  that  can  be 
measured as a standard deviation of the data fit with the least square method 
contributes to about 50% of the numerical error of the total resistance coefficient. 

Fn E% ε12% p UI% USN%

0.260 1.01 5.67 2.42 0.92 6.96

Table 8: Results of uncertainty analysis for CT.
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Figure 36: Grid convergence of CT CP and CF.

5.4.3 Results – wave pattern

The computed free surface was compared to the measurements. The wave profile 
along the hull is presented in Figure 37. Apparently the predicted profile follows 
the measured one well. The largest deviations are at the bow and stern, where a 
thin  film  of  the  water  is  very  difficult  to  predict.  The  bow  wave  crest  is 
underestimated while the trough at the aft shoulder and the crest at the stern are 
slightly overestimated. The wave cuts show a very good correspondence with the 
measurements. Figures 38, 39 and 40 illustrate the cuts at y/Lpp of -0.074, -0.102 
and -0.151. Analysis  of  the wave pattern indicates  that  all  major  features  are 
represented well in the computations and that the pattern in general corresponds 
well with the measurements, see Figure 41. In the regions far from the hull, where 
the grid is coarsened rapidly, the waves are dampened noticeably and lose their 
details. This  can  be  mostly  observed  for  the  diverging  and  transverse  waves 
behind the stern . 
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Figure 37: Computed and measured wave profile.

Figure 38: Computed and measured wave cut at y/Lpp=-0.074.

Figure 39: Computed and measured wave cut at y/Lpp=-0.102.



Figure 41: Computed (top) and measured (bottom) wave pattern, contour spacing 
0.0005.
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Figure 40: Computed and measured wave cut at y/Lpp=-0.151.
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6 CONCLUSIONS AND FUTURE WORK

A  free  surface  modeling  has  been  implemented  in  an  existing  finite  volume 
RANS  code.  A  void  fraction  transport  equation  is  solved  together  with 
momentum and continuity equations in a coupled manner. The Roe flux splitting 
with a defect correction is used for the convective flux discretization. 

Several discretization schemes for the void fraction equation were tested on two 
test cases. It was found that the scheme has little effect on the wave profiles near 
the wave generating body, while the waves further away were more damped when 
a non-compressive scheme is  used. However, the interface thickness reduction 
achievable with the compressive schemes had a great importance on the wave 
details and it was required to properly resolve for example a wave crest, e.g. near 
the bow. 

Due to the refinement application it was possible to reduce numerical diffusion 
using smaller cells close to the interface. Further improvement was achieved by 
the adaptation method that makes the cells parallel to the interface. The results 
showed that it was possible to keep the interface sharp with a limited number of  
additional cells. The cell face alignment with the interface improved the sharpness 
for the relatively diffusive discretization scheme applied for this calculation. It 
was also found that the method for interpolation of the water fraction field had to 
be modified at the upstream boundary of the refinement. This was to reduce the 
interface  thickness  convected  into  the  refinement  from  the  coarse  upstream 
background grid.

The  simulations  of  a  submerged  hydrofoil  case  showed  reasonably  good 
agreement with the experimental data. Very little wave damping could be seen 
and  the  interface  was  sharp.  The  simulations  of  the  Series  60  test  case  gave 
satisfactory results despite a rather coarse grid. The wave pattern was in good 
agreement with the measurements and the numerical damping was visible mostly 
in the coarse grid region away from the ship. The grid dependence study carried 
out  on the Wigley  and KCS hulls  showed the robustness  of  the code and its 
capability to accurately predict ship resistance. 

Based  on  the  experience  gained  during  the  work  the  following  important 
conclusions can be drawn. The adaptive refinements following the wave profiles 
can be difficult to handle in case of wave breaking. The comparison of the results 
with the fixed and adaptive grids for various discretization methods indicate that 
with a well suited compressive scheme the interface thickness does not become 
smaller  when  the  adaptation  is  used.  Therefore,  more  important  than  the 
adaptivity is the discretization scheme itself and the local refinement, even if it is 
fixed. The further work should address grid quality which was not discussed here 
but the importance of it should not be underestimated. Apart from introducing a 
dynamic sinkage and trim more effort should be put into improving convergence 
rate and validation of both low and high Froude number cases.
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