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The use of consensus scores and directionality classes
enables us to get a more varied picture of how the gene
sets are affected by differential expression. To explain this,
we will use the three gene sets marked in Figure 5B as
examples. The OXPHOS_HG-U133A_probes gene set
has a consensus score (median rank) of 1 in the non-
directional, mixed-directional (up) and distinct-directional
(up) class. The corresponding median P-values are also
highly significant for these classes (Supplementary
Figure S6). This tells us that the gene set is in general
highly regulated, as the non-directional class identifies
gene sets that contain a high amount of significant

genes, although not taking direction into account.
Further on, if we are just interested of the part of the
gene set that contains upregulated genes (upregulated in
the normal glucose tolerant group compared with the type
2 diabetes group), we still find that this part is significantly
differentially expressed (as reported by the mixed-
directional up class). This tells us that there is an import-
ant component of upregulation, even though there could
also be an important component of downregulation sim-
ultaneously. For the OXPHOS_HG-U133A_probes gene
set, this is not the case, as the mixed-directional (down)
class reports a median rank of 61. Finally, the
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Figure 5. (A) Boxplots of individual ranks for the 149 Mootha gene sets representing metabolic pathways and co-regulated genes (c1–c36). Each box
shows the ranks given in a specific gene set by the different runs of the GSA workflow, for the distinct-directional class (see Supplementary Figure S5
for the other classes). The gene sets are sorted, from top to bottom, based on their median rank, i.e. the consensus score. All outliers are shown as
gray points. The vertically aligned outliers of the bottom ranked gene sets originate from the GSEA runs, which score gene sets with positive and
negative gene set statistics separately. In this case, the negative gene sets are not scored and thus ranked equally and last. (B) A heatmap of the
consensus scores of selected gene sets. All gene sets that received a median rank <10, in at least one class, are included. The three gene sets selected
by a black rectangle are further discussed in the text. Gene sets with median P-values <0.05 are marked with an asterisk, and all corresponding
median gene set P-values are shown in Supplementary Figure S6. (C) For all gene sets and each directionality class, the median P-value over all runs
of the GSA workflow is plotted against the consensus rank (y-axis is logarithmic). For a chosen consensus score-based cut-off (horizontal line), one
can observe the corresponding median P-value cut-off (vertical line) that all selected gene sets pass, i.e. for which they all end up in quadrant b. The
P-values that are <1e-10 are set to this value in the plot.
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distinct-directional (up) class tells us that this gene set is
coordinately upregulated (in the normal glucose tolerant
group), all in correlation with the main results of Mootha
et al. (16). Note that a gene set can receive good scores in
the distinct-directional class, of one direction, and still get
a good score in the mixed-directional class, of the other
direction. This only means that, as a whole, the gene set is
regulated in a distinct direction, but it can contain a small
subset of genes that compose a component of regulation
in the opposite direction. This is the case for the
MAP00240_Pyrimidine_metabolism gene set.
The MAP00240_Pyrimidine_metabolism gene set has a

score of 18 for the distinct-directional (up) class, as
compared with 130 for the distinct-directional (down)
class. Naturally, this tells us that the gene set is
coordinately upregulated. However, in the mixed-
directional (down) class the gene set is given a score of
3. Combined, this information tells us that the small
subset of downregulated genes is highly significant
(median P-value of 0.0069), but as a whole, the upregula-
tion overrides this downregulated component.
As a third example of the benefits with the directionality

classes, during the interpretation step, we will use the
MAP00910_Nitrogen_metabolism gene set. This gene set
receives a good score in the distinct-directional (down)
class (median rank of 5 and median P-value of 0.0075),
but not in the mixed-directional (down) class or any of the
other classes. This means that the gene set as a whole is
biased towards downregulation. In fact, 22 genes are
downregulated, whereas only 8 are upregulated.
However, as we can see from the mixed-directional
(down) class, the downregulated genes on their own are
not significant.

Robustness analysis

The previous section demonstrates the advantages with
the directionality classification during the biological inter-
pretation. An important question that remains to be
answered is if the consensus scoring approach is robust,
i.e. if it generates comparable results with regard to what
input it is given. We, therefore, investigated two issues
regarding how consistent the consensus scoring is: first
by using runs of the GSA workflow with different
numbers of permutations during the P-value calculations
and second by using randomly selected runs.
Starting with the first issue, the concern is that when

using a low number of permutations for the gene set
P-value calculations, the resolution of the P-values will
be low, resulting in that several gene sets may share the
exact same P-value. Consequently, these gene sets will
receive the same rank (see Supplementary Figure S7A
for different numbers of permutations) when used as
input to the consensus scoring algorithm. The question
is if such a case would produce similar consensus scores
when compared with the case of using GSA runs with a
high number of permutations as input. To investigate this,
we reran the GSA workflow, based on the human diabetes
data with the original Mootha gene sets, for a selection of
methods (Supplementary Methods) using different
numbers of gene permutations (500, 750, 1000, 1500,

2000, 5000 and 10 000). The results from the runs in
each of the seven permutation groups were aggregated
so that each group resulted in a consensus score vector
(actually one for each directionality class) for the gene
sets. These consensus score vectors can be compared by
calculating the Spearman correlation between all possible
pairs, and it turns out that they correlate well. The
minimum pairwise correlation (over all directionality
classes and the four rank aggregation methods) is 0.997,
showing that the correlation is high even in the worst case
(Table 1). Next, we aggregated the runs again, but this
time by randomly choosing methods from the different
permutation groups, so that results that were aggregated
into consensus scores originated from a mix of permuta-
tion numbers. This was repeated 1000 times, each time
using a different random set of runs from the seven
groups. Again, the resulting 1000 consensus score
vectors for each directionality class correlate well
(minimum correlation is 0.998), confirming that the con-
sensus scoring approach is robust and not heavily
influenced by mixing methods using different numbers of
permutations for significance estimation (Table 1).

Regarding the second issue, the concern is that the con-
sensus scores will differ depending on which GSA runs are
chosen to be aggregated. To test this, we used the results
from the case study on the human diabetes data. From
these results, we randomly selected 95% of the GSA runs
as input to the consensus scoring algorithm and repeated
this 1000 times, thus generating 1000 consensus score
vectors for each directionality class. As it turns out, the
correlation of these results is high, and the minimum cor-
relation is 0.994. This approach was also repeated when
randomly using 85 and 70% of the GSA runs, showing
similar results (see Table 1 for details). The robustness
analysis, using 95, 85 and 70% of the runs, was also
performed for the S. cerevisiae data set and the human
diabetes data set with GO terms (Supplementary
Table S3).

All the aforementioned results on robustness are on a
global scale, i.e. comparing all gene sets. In practice, it
may be interesting to also focus on the top-ranked gene
sets and compare these between runs of the consensus
scoring algorithm during the robustness analysis.
Reassuringly, it turns out that the vast majority of the
top-ranked gene sets, i.e. the ones that would be selected
for further biological interpretation, are highly ranked in
all consensus scoring runs, regardless of the input (i.e.
which GSA runs and how many permutations). See
Supplementary Figure S7 for full details.

The Piano R package for enriched gene set analysis

The workflow described in this article, as well as the con-
sensus scoring approach, is implemented as the R package
Piano (Platform for Integrated Analysis of Omics data).
Additionally, Piano includes functions for importing gene
set collections of various formats, including the Cytoscape
sif-format, the gmt-files available from the Molecular
Signatures Database (17) and genome-scale metabolic
models in the SBML-format, e.g. available through the
web-based BioMet ToolBox (39) and the Human
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Metabolic Atlas (40) for microorganisms and human cell
types, respectively. The package contains implementations
of all the gene set statistic methods described in this
article, serving as a good platform for testing different
gene set analyses using the same set-up. The package
also includes several functions for result visualization,
including a network-based plot showing overlapping
gene sets and their significance. Finally, Piano also
contains functions for the full analysis of microarray
data, if the user wants a fully integrated GSA starting
from raw expression data. See Supplementary Figure S8
for an overview of the functions in the Piano R package.
Piano is available, together with a user manual, for
download at www.sysbio.se/piano.

DISCUSSION

In this article, we have addressed the practical issues with
gene set analysis based on the questions raised in the
‘Introduction’ section. We have defined a new workflow
for GSA where we include a step of using different modi-
fications of the gene-level statistics. We have also
proposed to separate the GSA results into three classes,
based on the choices made at each step of the analysis,
describing different aspects of gene expression direction-
ality. As our workflow is fully implemented in the Piano R
package, it serves well as a platform for testing and
evaluating different GSA runs in a simple way.
However, its major use should be to run repeated
analyses with different settings and use the consensus
scoring approach, and in particular the directionality
classes to interpret the results.

In this study, we initially use the Piano package to
evaluate the impact of the separate components of the
GSA workflow. The primary observation is that the dif-
ferent methods produce comparable results. However, it
should be mentioned that the choice of gene-level statistics
as well as gene set statistics do influence the results to
some extent, although from a global point of view, they
still correlate well. Regarding the three significance esti-
mation methods (theoretical null distribution, gene
sampling and sample permutation), we did not observe
any great differences between the results. In particular,
the gene set P-values show a high correlation when

comparing gene sampling with sample permutation. The
lack of great difference between these two significance es-
timation methods means that the choice between them
should be based on which is more practical and which is
statistically theoretically correct. However, these two
issues, in particular the latter, need to be further
investigated. From a theoretical point of view, it is of
course important to consider the change of null hypothesis
depending on the choice of significance estimation
method, but in general and from a practical point of
view, we prefer using gene sampling. The reason for this
is that permutated null distributions do not rely on the
assumptions that the theoretical null distributions make
on the gene-level statistics. These assumptions may pose
a problem for some gene-level data, as we showed for the
case of Fisher’s and Stouffer’s method. Further on, sample
permutation takes a considerable higher amount of com-
putational time compared with gene sampling, as the step
of recalculating the gene-level statistics has to be included.
Furthermore, to sufficiently permute the sample labels to
generate an appropriate background of gene-level statis-
tics, a proper number of samples have to be available. For
small-scale experiments with few replicates, this may often
not be the case.
The similarity of the different methods, or actually, the

different runs of the GSA workflow, leads to a difficulty in
selecting the best method. Instead, perhaps other factors
will become more guiding, such as availability of software
in a familiar system. As a consequence of this, we propose
to use a combination of methods and use the consensus
scoring approach to find important gene sets. This would
normally be a somewhat laborious task but is easily per-
formed with the implementations in Piano. Regarding
runtime, of all the methods implemented, the GSEA and
Wilcoxon rank-sum test take the longest time, up to
several hours if the gene set collection is large. However,
it is possible to run the consensus approach with a
majority of the methods within a reasonable time. As an
example, running the S. cerevisiae microarray data with
1436 GO term gene sets, using all methods except GSEA
and Wilcoxon, takes �15 min on an ordinary desktop
computer. Future efforts should include improving the
implementations of the slower methods with regard to
decreasing the runtime.

Table 1. Robustness of the consensus scoring approach

Robustness analysis Mean rank Median rank Borda Copeland

Different number of permutations 0.998 0.997 0.998 0.998
Mixed number of permutations 0.999 0.998 0.998 0.998
95% of the GSA runs 0.997 0.994 0.997 0.997
85% of the GSA runs 0.991 0.978 0.991 0.991
70% of the GSA runs 0.978 0.968 0.979 0.978

Minimum Spearman correlation (over all directionality classes) between repeated runs of the consensus scoring algorithm, using varying input, for
each of the four rank aggregation methods. The first row shows the correlation when using the same number of permutations for the input GSA
runs, but varying this fixed number between seven different consensus score runs (for each directionality class). The second row shows the results
from randomly selecting the number of permutations for each input GSA run, creating an input with mixed numbers of permutations. This is
repeated 1000 times for each directionality class. The last three rows are based on randomly selecting a percentage of the GSA runs as input, and this
is repeated 1000 times for each directionality class. The results are for the human diabetes data and the 149 Mootha gene sets, similar results for the
S. cerevisiae data set and for the human diabetes data set using GO terms are presented in Supplementary Table S3.
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The reason for using gene set ranks in the result aggre-
gation, rather than the gene set P-values directly, is to give
equal weight to conservative and less conservative
methods. A limitation of this is that it may become diffi-
cult to compare the results of different experiments, based
solely on the consensus scores. It should be kept in mind
that a rank of one, only means that this gene set is the
most significant; however, it does not per se say anything
about the level of significance. Hence, it is important to
evaluate the consensus scores in combination with the
gene set P-values, as described in Figure 5 and
Supplementary Figure S6, to not lose the information
about statistical significance. Apart from aggregating the
results of different methods, the consensus scoring
approach can enable the generation of gene set results
for all of the directionality classes (which not all
methods can do on their own). An important issue is the
robustness of the aggregation and we investigated this
with regard to the issue of using GSA results with different
P-value resolutions (derived from the use of different
numbers of permutations during significance estimation)
and with regard to randomly choosing a subset of the
GSA results. Reassuringly, in both cases, we show that
the consistency of the consensus scoring is high.
The directionality classification aims to give compre-

hensible information on the effect of gene expression
directionality in the context of gene sets, as well as cat-
egorize what kind of directionality information is captured
by the P-values given by different GSA methods. If the
goal is to analyze gene sets without the interest in expres-
sion directionality, the non-directional class is the choice.
If the goal is to incorporate directionality information in
the analysis, the mixed-directional and distinct-directional
classes should be used. The mixed-directional class gives
information on the significance of the separate subsets of
up- and downregulated genes in a gene set, disregarding
the relative amount of genes in each of the two subsets.
This can for instance be important for the biological in-
terpretation of large gene sets, experiencing complex regu-
lation with components of regulation in both directions.
The distinct-directional class, on the other hand, incorp-
orates the directionality information on the gene set as
whole to assess whether there is a consolidated significance
in one distinct direction. Of course, it is encouraged to use
the combined information given by all three directionality
classes in the interpretation step.
The important point with using the directionality clas-

sification and consensus scoring is demonstrated by the
three example gene sets (OXPHOS_HG-U133A_probes,
MAP00240_Pyrimidine_metabolism and MAP00910_
Nitrogen_metabolism), as mentioned in the end of the
‘Results’ section. The information given by the combin-
ation of P-values of different directionality classes is
superior of that given by only a single P-value. For
instance, if one would use the mean gene statistic
starting from gene-level t-values (resulting in the
distinct-directional class), the interpretation would be
that nitrogen metabolism is downregulated. However, if
the gene-level P-values were used instead (resulting in the
mixed-directional class), the interpretation would com-
pletely change to that nitrogen metabolism is not

affected at all. These are of course two different results.
The benefit of the directionality classes comes from using
them in combination, to get the whole picture. This can be
achieved by combining the results from different runs of
the GSA workflow.

In conclusion, our refined and implemented GSA
workflow can be used to analyze gene expression data,
as well as proteomics, metabolomics and genome-wide as-
sociation data. Different methods can easily be run in
parallel, enabling comparison and assessment of the vari-
ation of the results and the possibility of calculating gene
set consensus scores. In combination with the directional-
ity classes, this constitutes a more thorough basis for the
biological interpretation of the gene set results.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3, Supplementary Figures 1–8
and Supplementary Methods.
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