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We are all in the gutter, but some of us are looking at the stars.
- Oscar Wilde





Abstract

The main objective for digital image- and video camera systems is to repro-
duce a real-world scene in such a way that a high visual quality is obtained.
A crucial aspect in this regard is, naturally, the quality of the hardware
components of the camera device. There are, however, always some unde-
sired limitations imposed by the sensor of the camera. To begin with, the
dynamic range of light intensities that the sensor can capture in its non-
saturated region is much smaller than the dynamic range of most common
daylight scenes. Secondly, the achievable spatial resolution of the camera
is limited, especially for video capture with a high frame rate. Signal pro-
cessing software algorithms can be used that fuse the information from a
sequence of images into one enhanced image. Thus, the dynamic range
limitation can be overcome, and the spatial resolution can be improved.

This thesis discusses different methods that utilize data from a set of
multiple images, that exhibits photometric diversity, spatial diversity, or
both. For the case where the images are differently exposed, photometric
alignment is performed prior to reconstructing an image of a higher dynamic
range. For the case where there is spatial diversity, a Super-Resolution re-
construction method is applied, in which an inverse problem is formulated
and solved to obtain a high resolution reconstruction result. For either case,
as well as for the optimistic and promising combination of the two methods,
the problem formulation should consider how the scene information is per-
ceived by humans. Incorporating the properties of the human vision system
in novel mathematical formulations for joint high dynamic range and high
resolution image reconstruction is the main contribution of the thesis, in
particular of the published papers that are included. The potential use-
fulness of high dynamic range image reconstruction on the one hand, and
Super-Resolution image reconstruction on the other, are demonstrated. Fi-
nally, the combination of the two is discussed and results from simulations
are given.

Keywords: Super-resolution, Dynamic range, Image reconstruction, In-
verse problem, Human visual system, Digital camera system, Spatial align-
ment, Photometric alignment
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Introductory chapters





Chapter 1

Introduction

Prehistoric cave paintings are testament to the longstanding human fasci-
nation of making images of the world. The relatively modern technique
of photography, which has enabled us to record realistic looking images in
an instant, first saw light about 200 years ago. Earlier variants of cameras
date back much further, to ancient times. Nowadays, it is safe to say that
the technology has matured significantly, however much is expected still in
the development of the modern digital camera technology. For instance,
so called High Dynamic Range (HDR) image capture is currently emerg-
ing as a new functionality of camera devices. For a single image with a
fixed exposure duration, the camera sensor hardware has a dynamic range
which is often insufficient. As a result, certain images areas are either over-
or underexposed. Thus, in order to produce an HDR image, information
from multiple differently exposed images is combined [1]. In overcoming
the dynamic range limitation, reliable HDR functionality should actually
be seen as quite revolutionary. In order to fuse multiple images robustly,
the images first need to be aligned to compensate for camera movement and
possible movement within the image. If the pose of an object has changed
from one image to the next, that has to be accounted for in order to avoid
reconstruction artifacts in the fused image.

A somewhat related field of research to HDR image reconstruction is
that of Super-Resolution Reconstruction (SRR) [2], which is used in or-
der to enhance spatial resolution by utilizing several images. Thus, both
techniques attempt to combine information from an image set of the same
real-world scene, in order to produce a single image of high visual quality.
In particular, these respective techniques may help to provide images with
higher contrasts, owing to the enhanced dynamic range, and improved clar-
ity of visible details, thanks to a higher spatial resolution. The extension
of these techniques from producing a single output image to full video se-
quences is straightforward. A sliding window approach on the frames of the
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Chapter 1. Introduction

video sequence may be used to enhance each frame separately. Thus, all
the discussed methods applied to reconstruct a still image could be used
on video data, by simply repeating the same method for each frame. The
terms image as well as video frame will be used interchangeably as seen
appropriate. Furthermore, input images to SRR are referred to as a Low
Resolution (LR) images, and the reconstructed image of enhanced resolu-
tion are referred to as a High Resolution (HR) image.

In the image reconstruction methods discussed throughout this thesis,
the aim is to capture as much meaningful data about the original scene as
possible, or as necessary. The next step, if we consider a full camera sys-
tem, is concerned with how to code the raw data (all the observations of
the scene), in order to for example visualize it on a display device, or for
storage. Image (and video) formats that are widely used today are designed
for the hardware that has been available over the last several decades. That
essentially means that, due to the relatively Low Dynamic Range (LDR)
of both capture and display devices historically, modeling of the Human
Visual System (HVS), that serves as the basis for image coding, is lack-
ing for high dynamic range scenarios. HDR technology was not around to
influence standardization of these earlier formats, but with HDR technol-
ogy now becoming more common, so is work on HDR coding for use in
standardization.

SRR techniques may also be subject to future use in image coding. For
example, it has been suggested for use in image compression [3]. Another
area for SRR is the case where a video sequence of a given resolution should
be displayed on a device with a higher resolution. This is to date typically
achieved with simple interpolation. Thirdly, in terms of hardware, having
a small pixel size comes at the cost of increasing the exposure duration [4],
which can cause undesired effects such as motion blur. Thus, under such
circumstances, the size of the pixels could be kept larger, while instead using
SRR to achieve the same total resolution. Custom sensor equipment has
been proposed to accommodate this [5].

1.1 Aim of the thesis

The main topic of this thesis is about the answer to the following question.
Given a set of related images of the same real-world scene, how can the
information in the respective images best be utilized in order to produce one
enhanced image representation that is perceived to have a high resemblance
with reality? Specifically, the text aims to achieve the following:
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1.2. Thesis outline

• Present a unified survey of reconstruction methods based on multiple
input images. This provides a broad view of the research area, in
which the contributions of the included papers are placed.

• Discuss the potential for joint image reconstruction of high resolution,
high dynamic range images.

• Highlight the impact of the human visual system in the problem for-
mulation for high dynamic range image reconstruction.

1.2 Thesis outline

This thesis is divided into two parts. In Part I, the research area of image re-
construction based on multiple images is discussed, providing a background
for the two papers that are included in Part II of the thesis. The presen-
tation of the related literature is not exhaustive. Rather, it is a selection
of work which is relevant to the methods used, and in particular to the
proposed method of joint HR, HDR image reconstruction (Chapter 5). In
Chapter 2, an introduction to digital camera systems is given, including
certain properties of human visual perception. The mathematical model
for the camera that is used in the formulation of the image reconstruction
methods is also presented. Chapter 3 treats reconstruction of high dynamic
range images from differently exposed LDR input images. Reconstruction
of images with enhanced spatial resolution, by the use of a Super-Resolution
method, is discussed in Chapter 4. In Chapter 5, SRR of HDR images is
discussed. First, a generic method is outlined, where similar to all previous
work on joint SR, HDR, reconstruction is formulated in an unsuitable im-
age domain. Then, an alternative method is presented, in which perceptual
characteristics of human vision is taken into account in the mathematical
formulation. A summary of the included papers (in Part II) is given in
Chapter 6, and concluding remarks are given in Chapter 7.
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Chapter 2

Introduction to digital camera
systems

A digital camera is used to capture still images or video for digital repro-
duction of a real-world scene. The intended application may vary. In this
thesis, the application is to output visually pleasing images (or video). In
contrast, the camera could for example be a part of an automatic image
analysis system, for which the design objectives of the camera differ. The
remainder of this chapter is structured as follows. First, in the context of
digital image processing, characteristics of natural scenes are discussed, as
well as what is required for an image of a scene to be of high visual quality.
The human eyes has certain properties when it comes to how light is per-
ceived. These properties, as part of the Human Visual System (HVS), are
discussed in the following section with relation to its relevance for camera
design and digital image processing. Finally, a mathematical model for the
camera is introduced.

2.1 Digital image processing overview

To reproduce an image of a natural scene, the entire digital camera system
must be considered, from the characteristics of the scene itself to the final
step, the observer. The critical aspects in order to enable high visual quality
of the output image should then be analyzed and addressed. An overview
of a general digital camera system is presented in Figure 2.1. To the left
of the figure is a real-world scene, which may be observed either directly
by a human observer, or on a display device as an image which has been
captured and processed digitally. The intermediate steps, divided into three
steps here, impact the characteristics of the output image. First, there is the
camera, the capture device which collects data from the scene. Secondly,
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Chapter 2. Introduction to digital camera systems

the captured data is coded suitably (in the camera itself or in a computer),
such that it retains the essential information of the scene, and outputs that
data to the third and final step, the display device, in a suitable format. In
summary, the overall objective of the system is to enable to visualize, on
some display device, a high quality image of the original scene.

Figure 2.1: A digital camera system. Data of an original scene is captured
with a camera, coded with some algorithm and visualized on a display
device. The ambition is that the produced image should be perceptually
similar to directly observing the scene.

A scene to be imaged is perceived as it is due to the light reflectance
properties of its contained objects. An incident spectrum of light from the
scene passes the lens of an eye or a camera and is registered by the cone
cells in the retina of the eye or the pixel elements of the camera sensor
respectively, producing a visual sensation or an image respectively. The
spectral response of the sensor determines what fraction, as a function of
wavelength, of the incoming light that is registered. In mathematical terms,
the registered light is the inner product of the incident light spectrum and
the spectral response of the sensor, thus producing a scalar output value [6],
that may or may not be in the operational range of the sensor. In the case
of the camera, these scalar outputs from the pixel elements is the raw data
from a single image that is available for image coding.

An important question that arises is, how is image quality assessed? The
question can be posed in the context of comparing an image to the underly-
ing real-world scene, and in that case, first of all, relates to the acquisition of
data. The captured image data should have a sufficient dynamic range, and
it should provide a high spatial resolution with crisp (not blurred) image
content, in order to be of high visual quality. Quality assessment can also
be framed as comparing a degraded image (as a general example, this could
for instance be a compressed image) to an original image. This has to do
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2.1. Digital image processing overview

with how the specific available image data is coded, in order to maintain
fidelity of colors, contrasts and to provide a natural looking images. The
image coding aspects, of course, are equally important for the case of qual-
ity assessment with regard to the underlying scene. Some objective image
quality measures, that are used at later stages of this thesis, are presented
in Section 2.1.4.

The motivation for this work essentially stems from the limitations im-
posed by the sensor of the camera, in terms of dynamic range of registered
light, as well as spatial resolution, two concepts that are discussed in the
following subsections. By using the camera in Figure 2.1 to capture multi-
ple images of the scene, the total information captured enables to produce
and display an image that is free from over- and underexposure, and has a
high spatial resolution, both crucial properties for a high perceived visual
quality.

2.1.1 Dynamic range

For some arbitrary positive quantity Q, the dynamic range is defined as the
ratio of the largest and smallest value that the quantity can take, that is

DR(Q) = Qmax/Qmin. (2.1)

For analogue signals that contain noise, this definition is too vague. Thus,
consider a signal Q that is the input signal to a sensor, with the logarithm
of Q plotted against the (normalized) output in Figure 2.2. At low signal
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Figure 2.2: The input-output relationship for a signal Q to a sensor.
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Chapter 2. Introduction to digital camera systems

levels, the signal is drowned in electrical noise. At some level, denoted Qmin,
the signal becomes statistically distinguishable from the noise. Similarly, at
signal levels above Qmax, the signal saturates the sensor. These definitions
are thus used in (2.1). If Q is digitized, Qmin and Qmax are fixed as the
lowest and highest quantization levels.

The dynamic range of an image of a real-world scene refers to the light,
in the unit of illuminance1, that is incident on each individual sensor pixel
element,

X =

∫ ∞
−∞

I(λ)V (λ)dλ, (2.2)

where I(λ) is the incident light spectrum on the surface of the sensor element
and V (λ) is the spectral response of the sensor element, specifically of its
color filter layer. Let X be an image which consists of the illuminance values,
given as in (2.2), of all pixels of the camera sensor. Then, the dynamic range
of a given, pixelated scene is DR(X) = max(X)/min(X).

As such, a general image X has no dynamic range restrictions. However,
for an image generated from a single camera exposure, things are different.
Depending on the brightness level of the scene, the camera sensor is exposed
for an appropriate duration ∆t. Thus, the sensor exposure is

E =

∫ t0+∆t

t0

X(t)dt. (2.3)

For the mathematical modeling of the camera, however, it is assumed that
X(t) is constant over the time interval of the exposure, thus E = ∆tX. A
camera sensor element has a fixed interval [Emin, Emax] of absolute exposure
values that provides a signal-to-noise ratio that is deemed to be satisfac-
tory (a design choice). The dynamic range of the camera sensor is then
DR(E) = Emax/Emin. Unfortunately, this sensor dynamic range is often
lower than that of real-world scenes, which causes the sensor to be either
over- or underexposed. However, by varying ∆t between different images (or
alternatively, varying the aperture setting), diverse scene content in terms
of illuminance values can be captured, and the information fused into one
HDR image X.

Direct sunlight corresponds to an illuminance in the order of 105 Lux,
while a clear night sky is on the order of 10−3 Lux [7]. These conditions are
naturally never experienced simultaneously. However, common real-world
scenes, such as an indoor scene with a sunlit window, or a daytime outdoor
environment containing shadow areas, have a dynamic range that often

1If V (λ) is the luminous efficacy curve, X is a photometric illuminance value. In
this thesis, however, the term illuminance is used for X as long as V (λ) approximately
mimics the human perception.
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2.1. Digital image processing overview

greatly exceeds that of the camera sensor of professional cameras. Table 2.1
presents an illustrative example of the dynamic range for the different parts
of the digital camera system portrayed in Figure 2.1. A scene may, not
uncommonly, contain a dynamic range of about 105, which is about the
level that the HVS can perceive at a given adaptation level. The HVS is
able to adapt to illuminance differences up to ten orders of magnitude, under
varying conditions. A camera typically only captures a dynamic range on
the order of 103 in each image. In the field of photography, the dynamic
range of a camera is typically expressed in the base-2 logarithm, as the
number of Stops S = log2(DR), in the unit Exposure Value (EV).

Dynamic Range Stops
Original real-world scene 105 16.6
Camera (capture device) 103 9.97
LCD monitor (display device) 103 9.97
Human visual system (observer) 105 16.6

Table 2.1: An example with representative dynamic range values, where the
real-world scene has a high dynamic range.

Typically, to visualize HDR content on a display device, such as an
LCD monitor, a dynamic range restriction is presented yet again, due to
that display devices have a low dynamic range. This issue is, however,
practically overcome by tonemapping the HDR image information to an
LDR image in such a way that it, to the HVS, is perceived similarly as the
original image that it was created from [8]. An LDR image in this context
means that the image is coded in a device independent format (for which
the concept of dynamic range is somewhat unspecific) that is appropriate
for output on LDR devices.

2.1.2 Spatial resolution

In a digital camera, a scene is imaged by a sensor that consists of a discrete
set of pixel elements in a planar array. The number of pixels horizontally
times the number of pixels vertically is the pixel resolution of the sensor.
This typically exceeds the pixel resolution of digital display devices, which
then determines the spatial resolution of the full system in terms of pixels
per inch (PPI). If a digital image is to be printed on a paper, the dots
per inch (DPI), a term related to but with a slightly different meaning than
PPI, should be relatively high to obtain a high quality of a print of relatively
large size. Thus, for that purpose, a high pixel resolution of the image is
required.

9



Chapter 2. Introduction to digital camera systems

The term spatial resolution refers to pixels per unit length. However, it is
also often used, in a non-strict manner, as a term for the pixel resolution of a
digital image, and in doing so effectively gives a distinction from the related
temporal resolution of video frames. To emphasize the spatial dimension,
spatial resolution is used with its wider meaning throughout this thesis.

For a fixed size of the sensor chip, the natural way to increase the pixel
resolution is to reduce the size of the pixel elements. However, reducing
the size of a pixel also reduces its light sensitivity. Thus, in order to reach
the same Signal-to-Noise Ratio (SNR) in the sensor element, the exposure
duration ∆t needs to be increased [4]. That is, there is a tradeoff between
two desired properties. An increase in the pixel resolution gives a require-
ment for a longer exposure duration, which reduces the temporal resolution
that is essential for video capture, and makes images more susceptible to
motion blur. Additionally, to manufacture sensors with smaller pixel ele-
ments comes with a higher cost. Generally speaking, increasing the size
of the image sensor helps to improve image quality. Even so, enlarging
the sensor size is not feasible for devices that are required to be compact.
The above tradeoff, as well as the cost benefit, serves as a motivation for
Super-Resolution techniques to be used.

2.1.3 Color properties of the camera sensor

The standard digital camera is equipped with a so called Bayer filter, which
is an array of color filters, on top of its sensor elements. Only the light
that passes through the filter is converted to electrical signals in the sensor
elements. Figure 2.3 shows the mosaic pattern of the Bayer filter on top of
the sensor elements, displayed in grey.

Figure 2.3: The color filter array of the Bayer pattern.

The color filter elements are designed so that they roughly match the
average human eye. Thus, red, green and blue (RGB) color primaries are
used, although their spectral responses may differ between different vendors
(thus, there are numerous RGB color spaces). The signal at each sensor
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2.1. Digital image processing overview

element, that was presented in (2.2), can now be specificed further as

Xc =

∫ ∞
−∞

I(λ)V c(λ)dλ, (2.4)

where V c(λ) is the spectral response for either of the red, green or blue
filters, c = {r, g, b}, in the Bayer pattern. Each pixel only has information
about one of these color channels. To obtain values for the two missing color
components, an interpolation process called demosaicing is performed. The
demosaicing could alternatively be formulated within the Super-Resolution
framework, as discussed by Farsiu et al. in [9]. Commonly, however, the
SRR is performed on demosaiced images. Thus, the color filter process,
which registers different color spectra for the same scene content depending
on how the images are shifted relative to each other, is not modeled. This
is the approach taken in this thesis. Greyscale images, sometimes used
for experimental simulations, are given as a function of the r,g,b-values of
demosaiced images.

2.1.4 Image quality measures

Image quality assessment is a delicate matter, much due to the perception of
the HVS. Proposed objective quality measures are thus tested and assessed
for how well they correlate with quality scores from extensive subjective test
procedures on human subjects. Even for the use of more established objec-
tive quality measures, the evaluated images should be presented alongside
to enable visual inspection.

Objective image quality measures can be categorized in the two classes of
reference quality measures and no-reference quality measures. The former,
where an image of interest is assessed with relation to a second image, a ref-
erence image, is (by far) the most common. No-reference quality assessment
is only practically applicable for the case where the type of degradation is
known, for instance a JPEG compressed image could be assessed without
the uncompressed original at hand. Other criteria for no-reference quality
assessment could be to estimate the sharpness of an image, or the propor-
tion of saturated image areas. No-reference image measures can be used to
determine the respective weights when fusing multiple images by weighted
average, for example in order to give saturated image areas less weight.

For the case of reference image quality assessment, the Mean Structural
Similarity (MSSIM) index provides relatively reliable results [10]. Unlike the
Peak Signal-to-Noise Ratio (PSNR), which is useful in many applications of
signal processing, but at best provides a crude benchmark for image process-
ing, the MSSIM method compares image structure rather than individual

11



Chapter 2. Introduction to digital camera systems

pixels by themselves. In fact, the MSSIM is a product of a mean intensity
comparison (for image blocks), a constrast comparison and a structure com-
parison. For more details on MSSIM (and its superiority to PSNR), refer
to the original paper by Wang et al. [10]. MSSIM, and several other qual-
ity measures, treats each color channel individually, and thus says nothing
about the quality of how colors are perceived. Color fidelity, instead, relies
on the use of a proper color space.

2.2 The Human Visual System

So far, an image has mainly been referred to as a discrete set of pixel values
in the illuminance domain. However, digital images are typically stored or
processed in standardized pixel value domains of a relatively low bit depth.
How, then, are these images related to the discussed illuminance images?
The answer to that question stems from the properties of the Human Visual
System, some of which are discussed here.

To begin with, the human visible spectrum is, roughly, light of wave-
lengths λ ∈ [400, 700] nm. Furthermore, the spectral sensitivity of the eye
differs depending on the wavelength within the visible spectrum, as a con-
sequence of the composition and properties of the three different types of
cone receptor cells (responsible for daytime vision) in the eyes. In combi-
nation, the spectral responses of each cone type determine both how colors
are perceived as well as perceived brightness. For greyscale vision, which is
conceptually simpler, the luminous efficacy curve describes what fraction of
light at each wavelength that contributes to greyscale illuminance.

The registered illuminance is in turn interpreted by the brain in a highly
nonlinear manner. Perceived brightness as a function of illuminance is ap-
proximately logarithmic, although more accurate models are used in prac-
tice. The key feature is that the eye is more sensitive to differences in
illuminance at low levels than at high absolute illuminance levels [6]. To
accommodate this feature, the exposure of a camera image (proportional
to the illuminance) is gamma compressed by a nonlinear concave function
before it is quantized to a lower bit depth. This is the case, for example,
in standard 8-bit LDR formats. The visual sensation is additionally influ-
enced by the brightness of the area surrounding a viewed object on different
scales, both by the immediate surround but also by the overall brightness
level of the background.

As for color vision, different light spectra can produce the same perceived
color. Furthermore, the same visual sensation can be expressed using dif-
ferent sets of three basis functions, referred to as color primaries. In color
science, several subjective terms are defined and objectified as standard-
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2.2. The Human Visual System

ized units, in order to quantify effects of image processing. To exemplify,
some color spaces aim to define a basis of color primaries in which color, as
perceived by the HVS, is uniformly distributed, some aim to orthogonalize
perceived brightness on the one hand and color sensation on the remaining
two basis functions. The property of color uniformity are not well fulfilled
by r,g,b-spaces (among other), which may lead to a loss of color fidelity as
a result of image processing in the r,g,b-space.

As far as this thesis is concerned, the proposed image reconstruction
method in Chapter 5 addresses the nonlinear relation of illuminance to
perceived visual brightness. This is the property that will otherwise cause
the most severe reconstruction artifacts, should it not be considered, due
to that small reconstruction errors in terms of illuminance have a large
perceptual impact in dim image areas.

2.2.1 Perceptually uniform image domains

In the traditional LDR case, image processing is performed in various per-
ceptually uniform image domains. For example, gamma compressed r,g,b
spaces (often denoted r’,g’,b’) are approximately perceptually uniform with
respect to brightness, although no special care has been taken to assure
color fidelity is maintained when manipulating the image in that domain.
For the L*a*b* color space, the L*-component is essentially the cube root
of the greyscale illuminance (which is in turn a linear function of the r,g,b-
values), and thus an approximation for subjective brightness, sometimes
denoted Lightness. The a* and b* components are so called color opponent
dimensions, that express the color sensation in a way which is perceptually
orthogonal to the lightness dimension. Conventional color spaces such as
L*a*b* are however not directly applicable to HDR data, because they are
typically designed based on modeling of the HVS for a lower dynamic range.
Thus, the modern HDR capabilities should serve as a motivation to advance
new HDR formats.

Hence forth, any image domain that attempts to approximate the non-
linear behavior of the HVS, in particular the nonlinear response of perceived
brightness as a function of illuminance, will be denoted a Perceptually Uni-
form (PU) domain. Objective quality measures, such as the ones discussed
in Section 2.1.4, should be applied in a PU domain.
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Chapter 2. Introduction to digital camera systems

2.3 Camera model

This section presents a mathematical model of a digital camera, which is
later used to derive formulations of image reconstruction methods. Specifi-
cally, the images that the camera delivers will be used as input to methods
that aim to enhance their dynamic range, spatial resolution, or both. Con-
sider a sequence of high quality digital images, {Xk}, k = 1, . . . , K, each
of size (resolution) X1 × X2, that are in the illuminance domain. These
images are merely a modeling construction, representing undegraded ver-
sions of the actual available images, {Yk}, k = 1, . . . , K, as depicted in
Figure 2.4. The Yk images are observations of the Xk images, according to
the camera model introduced shortly in this section. Both Yk and Xk are
images, of different quality, of an underlying real-world scene.

Figure 2.4: An example of K = 5 observed images Yk, that could be used
to reconstruct a reference image Xr of, for example, a higher resolution or
a higher dynamic range.

Because images are assumed to be taken in a sequence, for instance with
a single hand-held camera, the Xk will generally differ, both due to camera
movement and due to motion within the scene. To express the relation
between the Xk, let Xr denote a reference image, that should later be
reconstructed from {Yk}. Assuming brightness constancy of scene objects,
let the other images be related to the reference according to

Xk(i, j) = Xr(i+Dx
k,r(i, j), j +Dy

k,r(i, j)) (2.5)

where (i, j) is the pixel location in the image array and Dx
k,r(i, j) and

Dy
k,r(i, j) denote respectively the horizontal and vertical components of the

displacement field

Dk,r(i, j) = (Dx
k,r(i, j), D

y
k,r(i, j)) (2.6)
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2.3. Camera model

that describes the (local) motion of each pixel in image k relative to the
reference image. Note that, due to occlusion, there may be pixels for which
no displacement vector exists. Furthermore, since pixel indexes are integer
numbers, the displacements, with this formulation, are limited to be integer
numbers. Hence forth, a matrix-vector representation is used to represent
images and image operations. Using xk = vec(Xk), of size (X1X2) × 1 ,
n× 1, equation (2.5) is re-expressed as

xk = T{Dk,r}xr, (2.7)

where T{Dk,r} is a matrix of size n× n, parameterized by the X1×X2× 2
displacements Dk,r(i, j), that relate xk and xr through a warping operation.
With this formulation, non-integer displacements (with respect to the pixel
grid of xr) are straight-forwardly expressed in T{Dk,r}, thus relating mul-
tiple pixels in xr to a certain pixel in xk. For further details as well as an
example of relating images with the displacement field, refer to the book by
Katsaggelos et al. [3].

The camera model that provides observations yk = vec(Yk), of size
(n/L2)× 1, is

yk = f(∆tkRC{Hk}xk + nk) + qk. k = 1, . . . , K (2.8)

For each of the multiple observations, C{Hk} of size n × n represents 2d
convolution on the vectorized HR image xk with the convolution kernel
Hk of support H1 × H2. Different assumptions are made for Hk, with
respect to what it models and what its parametrization is, depending on
the reconstruction method employed, as discussed further in the next couple
of sections. The downsampling matrix R, of size (n/L2) × n, decimates
the spatial resolution a factor L in the x- and y-direction, and ∆tk is the
exposure duration. The noise in the camera sensor is modeled by nk and
qk represents quantization noise, both are of size (n/L2)× 1.

The exposure on the camera sensor is ek = ∆tkRC{Hk}xk + nk. For
each pixel i ∈ {1, . . . , n/L2}, the exposure [ek]i is mapped by the pixelwise,
nonlinear Camera Response Function (CRF),

f(E) =


0 , E ≤ Emin

fop(E) , Emin ≤ E ≤ Emax

1 , E ≥ Emax

, (2.9)

where fop is a concave mapping to quantized 8-bit pixel values, Y ∈ {0, . . . , 1},
in the PU (LDR) image domain of yk. The CRF has an operational range
of exposure values, [Emin, Emax], which does not cause over- or underex-
posure. Exposure values outside of this interval are clipped by the CRF
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Chapter 2. Introduction to digital camera systems

and cannot be recovered (from that single image). This is what causes the
observed images to be of low dynamic range. For example, [Emin, Emax] =
[0.01, 10] gives a sensor dynamic range of 103, as in the fictive example of
Table 2.1. The CRF is made up of several nonlinear components of the
physical camera capture process [6]. On top of that, it is adjusted in the
design process to achieve the purpose of mapping the sensor exposure data
to a PU output domain. For simulation purposes, fop(E) in the CRF may
be modeled as a parametric function, for example

fop(E) =
( E − Emin
Emax − Emin

)γLDR

, (2.10)

where the choice of γLDR = 1/2.2 is the same exponent as often used for
gamma correction applications. This description of fop(E) helps to contex-
tualize the design of a similar concave mapping to a PU domain in the HDR
scenario, for instance to be used in the formulation of image reconstruction
methods, as is discussed in Chapter 5.

Quantization of the input signal takes place twice. First, the Analog-
to-Digital (A/D) converter digitizes the exposure data to a relatively high
bit depth, typically 12-14 bits. This effect takes place before the CRF, and
is thus taken to be part of nk. Then, after the mapping by f(·), the image
is quantized to the 28 uniformly spaced quantization levels. In a device
independent interpretation, the quantization levels are commonly referred
to as pixel values in the (integer) set {0, . . . , 255}.

In summary, the observed images yk, generated by (2.8), are related to xr
due to (2.7). An overview of the generative process is shown in Figure 2.5. A

Figure 2.5: The generative camera model.

spectrum of light from an original scene is incident on a pixel grid, included
in the figure to stress that no attempt is made to include demosaicing,
discussed in Section 2.1.3, in the model. Then, the image xr, which may be
thought of as a single channel greyscale image, or to contain (demosaiced)
r,g,b information, may be warped, blurred and downsampled, as decided by
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2.3. Camera model

the scenario of interest to model. The exposure image is then mapped by
the CRF and finally quantized to produce yk.

In the following chapters, image sets {yk} are used to reconstruct images
of enhanced dynamic range (Chapter 3), spatial resolution (Chapter 4),
and of both enhanced dynamic range and spatial resolution (Chapter 5).
Ultimately, the ambition is to reconstruct (estimate) a HR, HDR image xr,
but the more restrictive reconstruction methods are treated along the way.
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Chapter 3

High Dynamic Range Image
Reconstruction

This chapter discusses how an HDR image can be reconstructed from a set
of images, {yk}. For this reconstruction method, as for the ones presented
in the next chapters, specific assumptions are made with the respect to the
operators in the generative model for yk, which is presented in general terms
in (2.8). Here, no downsampling is included, which means that no attempt
is made to enhance the spatial resolution. In terms of the model in (2.8),
R = I, where I is the Identity matrix. The blur matrix C{Hk} is excluded
as well. That is not to say that there is no blur in the images, it is just not
modeled.

Based on the above, assume that there is an HDR image x1 (the reference
image), observed through the differently exposed LDR images

y1 = f(∆t1x1 + n1) + q1,

ỹ2 = f(∆t2T{D2,1}x1 + ñ2) + q̃2,
(3.1)

where ∆t1 < ∆t2 is a short exposure duration that results in underexposure
in dim image areas, and ∆t2 is a longer exposure duration that causes bright
image areas to be overexposed. The two images have a high combined
dynamic range, which should ideally be larger than the dynamic range of
the original scene, in order to completely avoid over- and underexposure in
x1.

The first step, in order to reconstruct x1, is to align the observed images
to a reference image. In this case, ỹ2 is first spatially aligned to y1 by a
reverse warping to yield

y2 = T{D1,2}ỹ2. (3.2)

If the displacement fields between y1 and y2 adhere to a global translational
model, that is Dx

2,1(i, j) = Dx
2,1, D

y
2,1(i, j) = Dy

2,1,∀(i, j), and the transla-
tional shifts are integer numbers of pixels, it follows that, neglecting the
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Chapter 3. High Dynamic Range Image Reconstruction

image boundaries that are shifted out of the image, T{D1,2}T{D2,1} = I.
Furthermore, because f(·) is a pixelwise function,

y1 = f(∆t1x1 + n1) + q1,

y2 = f(∆t2x1 + n2) + q2.
(3.3)

Thus, y1 and y2 are two differently exposed, spatially aligned observations
of x1. If, on the other hand, the translational shifts are non-integer numbers,
y1 and y2 will not be perfectly aligned as suggested by (3.3). This is because,
in that case, interpolation is included in T, and thus T{D1,2}T{D2,1} 6=
I. Rotation, change of scale or more complex local motion all likewise
give rise to interpolation in T. Furthermore, because the reverse warp
operator, T{D1,2}, is applied outside of f(·), another small imperfection
occurs. These effects are in practice always the case, since the subpixel
displacements are arbitrary in an uncontrolled environment. If occlusion
occurs, some image parts are not possible to align at all. Imperfections
in the alignment are not desired, however they may not be crucial for this
application, since, on average, adjacent pixels (that incorrectly spill over
due to alignment errors) have similar pixel values.

Given a set of K spatially aligned images yk, for instance K = 2 as
above, or a larger number, photometric alignment should be performed in
order to obtain x1. This is achieved by mapping the yk images with the
approximate inverse of the CRF, denoted by g(·) (' f−1(·), barring quan-
tization and saturation effects in f(·)), and dividing the resulting exposure
values with their respective exposure durations to retrieve the (estimated)
illuminance values.

In order to estimate the (non-parametric) function g(Y ), using the method
of Debevec and Malik [1], a set of P pixel positions are selected at random,
to provide sample points from each of the yk. If some image areas were
not possible to align spatially, these should be avoided in the selection of
the sample points. The g(Y ) function is estimated for all input values it
can take, Y ∈ {Ymin, . . . , Ymax} = {0, . . . , 255}, jointly with the unknown
illuminance values [xr]i of the P sample point pixel positions i ∈ p, by
minimizing

∑
i∈p

K∑
k=1

{w([yk]i)[ln(g([yk]i))− ln([xr]i)− ln(∆tk)]}2+

+ α

Ymax−1∑
Y=Ymin+1

w(y)g′′(Y )2,

(3.4)
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where

w(Y ) =

{
Y , Y ≤ 127

255− Y , Y > 127
(3.5)

is a function that is designed to give a higher weight to image data in the
middle of the exposure range, which typically exhibits the best SNR. As seen
in (3.4), the minimization is performed in the logarithmic domain, which is
much closer to perceptual uniformity than linear illuminance. A smoothness
term with weight parameter α is used to enforce a slowly changing slope of
g(Y ) in the solution. The second derivative can for example be implemented
as g′′(Y ) = g(Y − 1)− 2g(Y ) + g(Y + 1). The objective is easily re-written
in a matrix formulation, and the optimum is obtained by solving a standard
Least Squares problem in a matrix formulation, see [1] for details. The total
number of unknowns are 256 + P . Thus, disregarding the influence of the
smoothness term, P and K should be chosen to fulfill (P − 1)K > 256.
More points can readily be used for a more robust estimator.

In Figure 3.1, an estimated g(Y ) function is shown. The relation between
pixel values Y ∈ {0, . . . , 255} to the exposure E ∈ {g(0), . . . , g(255} =
{Emin, . . . , Emax} = {0.0106, . . . , 11.383} is depicted in Figure 3.1 (a). The
dynamic range of the camera is thus DR(E) = 1.07 · 103. Figure 3.1 (b)
shows the operational range of illuminance values, [Emin, Emax]/∆tk, plotted
in the base-2 logarithmic domain, for each of the K = 4 differently exposed
images. That is, the horizontal axis shows log2E shifted by − log2(∆tk),
for each of the exposure durations. The dashed green line is log2E itself
(equivalent in values to illuminance, should ∆tk = 1). The exposure dura-
tions used in the example are {∆t1,∆t2,∆t3,∆t4} = {3.2, 0.8, 0.25, 0.0167}.
The combined dynamic range captured is,

2([log2(Emin)−log2(∆t1)]−[log2(Emax)−log2(∆t4)]) = 2.06 · 105.

Generally speaking, if the exposure durations are selected with appropriate
care, as few as 2 images yk are often sufficient to capture HDR scenes. At
the least, 2 images give a substantial improvement compared to a single
image, in terms of overcoming dynamic range limitations of the camera.
An alternative to estimating g(·) as in the method of Debevec and Malik,
discussed above, is to use a parametric approach. For example, Choi et al.,
use a third degree polynomial parameterization of g(·), as the inverse of fop
in (2), and estimate the polynomial coefficients [11].

With the estimated g(·) at hand, the illuminance information of the
LDR images is obtained as

ik = g(yk)/∆tk, (3.6)
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Figure 3.1: From left to right: (a) Results of estimating the inverse CRF
from the four LDR images in Figure 3.2, using the method of Debevec and
Malik [1]. (b) A plot that shows the combined dynamic range of the LDR
observations.

such that they become photometrically aligned in the same domain. In the
method of Debevec and Malik, the ik images are fused by pixelwise weighted
average in the logarithmic (PU) illuminance domain [1]. That is, the pixels
values of the reconstructed HDR image xr are given as

[xr]i = exp
(∑K

k=1 w([yk]i)(ln g([yk]i)− ln ∆tk)∑K
k=1w([yk]i)

)
. (3.7)

Note that a zero weight (w(Y ) as in (3.5)) is given to pixels valued 0 or
255, that are likely to be saturated. To exemplify the reconstruction of a
HDR image, consider the set of K = 4 spatially aligned, differently exposed
images

yk = f(∆tkxr + nk) + qk, (3.8)

taken with the same exposure durations as above. Such an image set, as
shown in Figure 3.2 (a)-(d), is often referred to as an Exposure stack. It is
used here to reconstruct xr according to (3.7).

In order to display the reconstructed HDR image, which has a dynamic
range that exceeds that of typical LDR display devices, such as commercial
digital monitors or printers, it is tonemapped to an LDR format suitable
for visualization. Figure 3.2 (e) and (f) show two different tonemapped
results, using the simple tonemapping function in Matlab (e) and the
more sophisticated tonemapping function of iCAM06 [8], which is able to
better preserve a natural look of colors. The next section gives an overview
of existing tonemapping operators.

22



3.1. Tonemapping of High Dynamic Range images

Figure 3.2: Top and middle rows: (a)-(d), Differently exposed LDR in-
put images. Bottom row: Tonemapped HDR result, using the method of
Matlab to the left (e), and iCAM06 [8] to the right (f).

3.1 Tonemapping of High Dynamic Range im-
ages

Whether an image is LDR or if it contains HDR content, it is typically
stored in a computer in a device-independent format, commonly with three
8-bit color channels. The discrete pixel values, {0, . . . , 255}, are interpreted
by the display device’s driver files, and thus mapped to appropriate output
luminance values depending on the dynamic range of the device. For con-
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Chapter 3. High Dynamic Range Image Reconstruction

ventional LDR images, the mapping from raw sensor data to pixel values is
done using standard, well established mappings, that include some form of
gamma compression to a PU domain.

HDR images, such as the xr discussed above in this chapter, should also
be stored in some device-independent format. However, due to the higher
dynamic range, the 256 quantization levels that 8-bit formats offer is a bit
more restrictive, and higher bit depths may be desirable. At this stage,
however, much research is done on how to tonemap HDR images to a PU
8-bit domain, for visualization on LDR devices. The simplest tonemapping
operators (TMO) simply compress the HDR data linearly by a pixelwise,
global function, however in a PU domain rather than directly in the illumi-
nance domain. The Matlab TMO does just this, with the compression of
the dynamic range taking place in the L*a*b* domain. As was seen in the
result of Figure 3.2 (e), the Matlab TMO does not preserve colors well,
hinting that compressing the dynamic range in the L*a*b* domain for a
HDR image may not be the best choice.

More sophisticated methods perform various kinds of local processing,
depending on the surrounding image content. For example, the iCAM06
TMO separates the image into a base layer (low-pass filtered image) and a
detail layer, and performs different operations on each layer [8]. Contrasts
are compressed only for the base layer, that is, across different image seg-
ments, rather than on the details within image segments. This method also
takes into account background light conditions, and furthermore compen-
sates for various other (peculiar) effects of perception. The various opera-
tions in the iCAM06 TMO, in addition, are implemented in a number of
different color spaces.

To judge how well a TMO performs its task, subjective evaluation is
used for a set of essential perceptual attributes. For a survey of this sort,
see for example the work by Cadik et al. [12]. A conclusion that is drawn
by the authors from their survey is that, while local processing or multi-
resolution decompositions may be of use, the most essential part in order to
obtain good perceptual results is how the actual dynamic range compression
is performed (globally). That is, it is crucial to select a color space (more
generally denoted as image domain) that is perceptually uniform, both with
regard to brightness and color sensation.
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Chapter 4

Super-Resolution Image
Reconstruction

In this chapter, a set {yk} of low resolution images are used to reconstruct,
by the Super-Resolution method, an image xr of a higher resolution. All LR
images are assumed to be taken with the same exposure duration. Thus,
the reconstructed image will be a low dynamic range image as well. What
makes SRR work is that each of the yk images provides new information
of xr, as depicted in the example of Figure 4.1. The images thus need
to be shifted relative to each other by non-integer subpixel level shifts, or
blurred by different (known or estimated) blur functions. The LR image yr
in Figure 4.1 (b) provides information about xr in Figure 4.1 (a), but it is
not sufficient to determine, for example based on the upper-left pixel value,
what all four pixel values should be in the corresponding location of xr.
Taking into consideration more observations, such as those in Figure 4.1 (c)
and (d), additional information about xr is given.

For the discussion on SRR in the traditional case where the yk have the
same exposure setting, we divert from the camera model presented in (2.8)
and alternatively use the camera model

yk = RC{Hk}T{Dk,r}f(∆txr) + nk =

= RC{Hk}T{Dk,r}zr + nk, k = 1, . . . , K
(4.1)

where the quantization noise term is left out of the expression, instead
considered to be included in nk. The HR image zr = f(∆txr) is estimated
directly in the pixel domain, due to ∆tk = ∆t,∀k. This is the camera model
that has been used traditionally in the literature on SRR of LDR images.
It was first when differently exposed images were considered, primarily in
the last couple of years, that authors on the topic of SRR for HDR images
adopted the model in (2.8), which is more natural considering the physics of
the camera, see for example Gevrekci and Gunturk [13]. It is possible that
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Chapter 4. Super-Resolution Image Reconstruction

Figure 4.1: Top row, from left to right: (a) The HR reference image. (b)
The LR observation of the reference image. Bottom row: (c)-(d) Two more
LR observations, that provide additional information by sampling the xr
pixels using different basis functions. Each square in the grids correspond
to the a pixel in the respective image.

the camera model in (4.1) is adopted regardless partially due to its pleasant
linear formulation.

A convenient notation for the model is obtained by stacking the LR
observations in a vector y = [yT1 , . . . ,y

T
K ]T and introducing the noise vector

n = [nT1 , . . . ,n
T
K ]T , both of size (nK/L2)×1, and defining the system matrix

H , [(RC{H1}T{D1,r})T , ..., (RC{HK}T{DK,r})T ]T (4.2)

of size (nK/L2)× n, such that

y = Hzr + n. (4.3)

In order to obtain a unique solution to zr given y, and for a given downsam-
pling factor L, the number of observed images K should satisfy K ≥ L2,
otherwise the system of equations is underdetermined.
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To show the possible usefulness of SRR, before proceeding to the discus-
sion of (some of) its challenges, an example on K = 3 images is presented
that compares SRR using the inverse problem formulation with two interpo-
lation approaches. The model in (4.3) is used to generate {y1,y2,y3}, where
the original zr is a pixel valued image normalized to {0, . . . , 1}, and the noise
n consists of zero-mean Gaussian components with variance σ2

n = 10−4. In
this example, R performs downsampling by a factor L = 2, the Hk rep-
resent a mean operator on an image patch of L × L pixels (averaging the
illuminance, which is an intensity measure) to model a simple, idealistic
point spread function (PSF) of the camera sensor. The (global) subpixel
shifts used are (Dx

1,r = 0.5, Dy
1,r = 0) and (Dx

3,r = 0, Dy
3,r = 0.5). Both

the PSF and the subpixel shifts in this example match the illustrations in
Figure 4.1 (b)-(d). Perfect knowledge about the operators in H is assumed
in the reconstruction.

The results of the comparative example are shown in Figure 4.2. Fig-
ure 4.2 (a) displays the original image zr. Figure 4.2 (b) shows yr upsampled
by a factor L = 2 using bicubic interpolation. The second upsampling ap-
proach, shown in Figure 4.2 (c), is the average of the three upsampled and
aligned observations. For that case, zero-order hold (ZOH) interpolation
was used for the upsampling of the yk, as it gave a better MSSIM score
than when using bicubic interpolation on the three yk. Finally, in Fig-
ure 4.2 (d), the result from the SRR with the regularized inverse problem
formulation

ẑr = arg min
zr

‖Hzr − y‖2
2 + λ‖Γzr‖2

2 (4.4)

is shown. Each color channel in zr is treated separately, by solving the
minimization problem three times with the corresponding color channel in
y. If not for the linear regularization term Γzr, of weight λ = 10−3, the
minimization for the given example would not provide a unique solution, due
to the nullspace of H. The nullspace exists because only K = 3 < L2 = 4
images are available. The matrix Γ, of size n×n in this example represents
2d convolution on the vectorized image zr with a 3×3 Laplacian convolution
kernel that penalizes the second derivative in order to enforce a smooth
solution. Table 4.1 presents MSSIM image quality scores of the respective
greyscale versions of the results from the three approaches.

In the remainder of this chapter, some of the challenges for SRR based
on the inverse problem formulation are presented. The next section gives a
review of image alignment strategies. Then, the objective function in the
SRR minimization of (4.4) is analyzed in more general terms, with respect
to the properties of the system matrix H, the choice of norm function for
the data residual and the choice of regularization function. Finally, the full
SRR algorithm is outlined.
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Chapter 4. Super-Resolution Image Reconstruction

Figure 4.2: Top row, from left to right: (a) Original image zr. (b) Bicu-
bic interpolation of y2. Bottom row: (c) Average of the zero-order hold
interpolated yk images. (d) Result of solving the SRR problem in (4.4).

Method MSSIM [10]
1. Bicubic Interpolation of yr 0.7416
2. Upsampled (ZOH interpolation) average 0.8035
3. SRR using the inverse formulation (4.4) 0.9396

Table 4.1: MSSIM results that show the superiority of solving the inverse
SRR problem compared to interpolation methods, for the example in Fig-
ure 4.2.

4.1 Estimation of displacement fields

If images are taken with, for instance, a handheld camera, as is commonly
the case, camera movement will cause the images to be shifted relative
to each other. This shift is typically well described by a planar global
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4.1. Estimation of displacement fields

motion model, for example with affine motion parameters. Furthermore,
regardless if the images are taken with a tripod, most scenes contain moving
objects that are displaced with relation to the other images in an image
sequence. This motion is described as local motion within the image. For
reconstruction of an HR image from LR images captured under real-world
conditions, the displacement fields Dk,r (contained in H) should therefore
be estimated, using a suitable model. For a high quality SRR result, the
precision of the displacement estimates is critical. The matter is further
complicated by the fact that only downsampled LR images are available for
estimating the displacement field, which should be expressed with relation
to the HR pixel grid.

To estimate Dk,r, several authors of SRR literature assume a global
motion model and use low-dimensional parameterizations for the displace-
ments, thus not attempting to model motion within the scene. A global
motion model may be a good description for the majority of the image con-
tent, the static parts of the scene, which can be useful in itself for some
applications. For instance, if the global method is combined with a method
which detects where the motion estimation is accurate and forms an im-
age mask containing those areas, the image enhancement method can be
applied there, while areas in zr for which motion estimation is unreliable
can be reconstructed with a simple upsampling method from a single yk
image. Examples of global alignment strategies include the popular Scale
Invariant Feature Transformation (SIFT) method [14], that estimates affine
transformation parameters, and frequency domain approaches, for instance
as proposed by Vandewalle et al. [15], that estimate planar translation and
rotation.

A class of methods that estimate non-parametric displacement fields,
in order to model local motion, are termed optical flow methods. Seminal
papers by Horn-Schunk [16], for global optical flow models, and Lucas-
Kanade [17], for local optical flow models, have been the basis for developing
optical flow methods for SRR applications. For instance, Baker and Kanade
extend the Lucas-Kanade optical flow method to the specific application
of SRR. Because Dk,r has two unknown flow components for each pixel,
there is not enough information in the images to estimate a non-parametric
displacement field without adding additional constraints. Local methods
address this by adding local spatial or spatiotemporal constancy constraints,
while global methods add a regularization term on the displacement field,
to enforce a flow solution that is (piecewise) smooth. Local and global
methods have their strengths and weaknesses, when it comes to robustness
to noise or to estimate flow fields within homogenous objects. Bruhn and
Weickert investigate these properties and propose a combination of the local
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Chapter 4. Super-Resolution Image Reconstruction

and global approaches in [18].
Moving objects in the images are referred to as being either rigid or

non-rigid (deformable) objects, where a swaying tree or a moving wave
are examples of the latter category. These presents larger challenges for
flow estimation, and consequently for multi-image reconstruction methods
in general. Thus, similarly as for occluded objects that always cause in-
valid motion estimates, detection of non-rigid motion should be included
in an implementations of image alignment methods, and accounted for in
subsequent image reconstruction [3].

An alternative, or rather complementary, approach to perform subpixel
scale image alignment is that of Blind Super-Resolution (BSR) [19]. The
method is similar to Multichannel Blind Deconvolution (MBD), with the ex-
tension of downsampling. Both the unknown image and (non-parametric)
kernels of a fixed support, one for each input image, are estimated, typically
by alternating minimization. Both subproblems are convex in their stan-
dard formulations, however the problem is unfortunately non-convex in the
kernels, {Hk}, and the image jointly. Prior to performing BSR reconstruc-
tion, the input images are approximately aligned by a conventional method.
Then, the alignment is fine-tuned by the estimation of the blur kernels, that
include both the blur kernels as well as small-scale spatial shifts.

4.2 The inverse SRR problem

Earlier in this chapter, the SRR problem was posed in an example as solving
the minimization problem (4.4), in order to obtain an estimate of the HR
image zr, given observed image data y. The specific objective function
contained in (4.4) is a special case of the more general formulation,

ẑr = arg min
zr

ρ1(Hzr − y) + λρ2(ψ(zr)), (4.5)

where ρ1(Hzr − y) is the data term, ρ2(ψ(zr)) is a regularization term
of weight λ, and ρ1(·), ρ2(·) are norm-like functions (not necessarily norms
in the strict sense). Naturally, the HR image should match the observed
data. That is, the residual Hzr − y should be small in ρ1(·), which should
preferably be a function that makes the residual robust, both to noise in the
observations y, and to errors in the system matrix H, due to model mis-
match or estimation errors in the model parameters. Robust norm functions
are discussed in several papers on SRR. The L1-norm has been proposed as
an improvement over the L2-norm, for its ability to better handle errors in
the model parameters, for instance related to the motion estimation [20].
The Lorentzian norm, which acts as the L2-norm for small residuals and
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as the L1-norm for large residuals, has shown promising results for various
noise assumptions [21].

If the minimization of the data term by itself is underdetermined, due
to insufficient observations K < L2, there is an infinite number of solutions
to the problem, and thus a regularization term, ρ2(ψ(zr)), must be added
to enforce a solution of desired properties. Even if H is a full rank matrix,
regularization is typically used to improve the otherwise poor condition
number of the overall problem, (4.5), at the cost of fidelity of the data
term. Note that, if the minimization problem is non-linear, the condition
number refers to linearizations of the objective function, that are used in
order to solve the problem iteratively.

Generally speaking, a common type of regularization is to penalize the
norm of the unknown vector, such that the minimal-norm solution is ob-
tained from the set of solutions. However, it does not make sense in this
context to penalize the norm of the image zr. Instead, because images are
known to be relatively smooth (they contain mostly low frequencies), the
first or second derivative may be penalized to enforce a smooth solution.
Several authors adopt nonlinear regularization functions that are designed
not to penalize strong image edges between different image segments, not-
ing that images are somewhat better described as piecewise smooth [20,21].
The use of regularization function can similarly be thought of in a Bayesian
framework, where it would represent a prior density on the HR image, and
(variational) Bayesian inference could then be used in order to perform the
SRR [22,23].

4.3 The SRR algorithm

Up until now, the two main ingredients of the full SRR algorithm, that
is, estimating the displacement fields, as well as the HR image, have been
discussed separately. A high level SRR algorithm, in which displacement
field- and HR image estimation may be iterated until some stop condition
is met, is presented in Table 4.2.

First, the image displacements Dk,r are estimated for a selected mo-
tion model. In the initial estimation, this is (typically) done on yk images
that are upsampled by interpolation to the higher resolution. The current
estimate of zr may then be used in the subsequent iterations of the dis-
placement field estimation, if the estimation process is iterated. Next, zr is
reconstructed by solving a minimization problem of the form in (4.5). If a
nonlinear objective function is adopted, or if the dimension of the problem
is so large, such that an iterative minimization method must be used, the
estimate may be initialized using an upsampled version of yr. The warp-
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SRR Algorithm
while ∼stopflag
1: {D̂k,r} ← estimate the displacement fields,
2: ẑr ← solve (4.5) to reconstruct the HR image,
3: stopflag ← check if stop condition is met,
end

Table 4.2: A high level SRR algorithm consisting of two main estimation
steps.

ing of zr by Dk,r, contained in H, to the spatial location of yk includes
interpolation onto the HR grid. The impact of this interpolation is not well
established theoretically in the SR literature. If BSR is included in the SRR
algorithm, an extra step

1b : {Ĥk} ← estimate kernels that represent blur and small-scale shifts

is added. In the BSR case, the SRR algorithm should necessarily be iterated
in order for the estimates to converge. Choices of a stop condition could be a
fixed number of iterations, or a threshold value for some minimum difference
on the updated estimates compared to that of the previous iteration. If BSR
is not included (which it seldom is), it is quite often the case in the literature
that only one iteration is performed, thus estimating displacement fields and
the HR image in a sequence.

To finish off this chapter, it is noted that the SRR methods discussed
can be straightforwardly applied to color images by solving (4.5) for each
color channel. The displacement fields may be estimated jointly for all color
channels, benefiting the estimation accuracy.
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Chapter 5

Super-Resolution Reconstruction
for differently exposed images

Similarly to the two previous chapters, an image set {yk} is used here to
reconstruct a single image, which can benefit from all the information in the
multiple observations. In this chapter, the yk provide both spatial diversity
and differently exposed observations of an underlying HDR scene. Thus, a
HR, HDR image xr may be reconstructed.

To begin with, corresponding illuminance domain images, ik, are ob-
tained from the yk as in (3.6). Using the model (2.8) for yk, it follows
that

Wkik = Wk(g(yk)/∆tk) =

= Wk(DC{Hk}T{Dk,r}xr + nk), k = 1, . . . , K
(5.1)

where Wk is a diagonal weight matrix of size (n/L2) × (n/L2). It gives
zero weight to pixels in ik that are over- or underexposed, that is, pixels
that have an exposure value outside the operational range of f(·) in (2.8).
This clipping in the yk is not invertible by g(·), and thus the impact of the
resulting erroneous information, with respective to the HDR information to
be reconstructed in xr, is excluded by Wk. The introduction of Wk leads to
that the second equality in (6) holds. All the pixel exposures that are in the
operational range are given the same weight of one, although downweighting
the low and high extremes would likely improve performance in a real case.
For mathematical convenience, the impact of the quantization noise qk is
neglected in the inverse problem formulation (quantization is nevertheless
used when generating yk), as it typically is small in relation to other sources
of reconstruction errors, such as the image alignment.

Introducing the notation, i = [iT1 , ..., i
T
K ]T , v = [nT1 /∆t1, ...,n

T
K/∆tK ]T ,

both of size (nK/L2)× 1, and W = diag(W1, ...,WK), of size (nK/L2)×
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(nK/L2), a compact equivalent form of (6) is

Wi = W(Hxr + v), (5.2)

where H is the same system matrix as in Chapter 4. Now, somewhat
analogously to the reconstruction of a HR image in Chapter 4, which was
achieved by minimizing (4.5), one could solve

x̂r = arg min
xr

ρ1(W(Hxr − i)) + λρ2(ψ(xr)) (5.3)

in order to obtain a reconstruction of a HR, HDR image, based on the
information in {yk}. Similarly to in Chapter 4, the functions ρ1(·), ρ2(·) are
norm-like functions and ψ(·) is a regularization function. There is a subtle
difference, however. Traditionally, SRR is performed on similarly exposed
LDR pixel valued images, as was the case in Chapter 4. Whereas the pixel
value domain is perceptually uniform, the illuminance domain of i and xr
in (5.3) is not. On the contrary, residuals ρ1(W(Hxr − i)) have a higher
perceptual impact for low absolute illuminance levels of xr.

The published work, so far, on HDR SRR has in common that the
reconstruction takes place in the illuminance domain. For example, see the
papers by Choi et al., Schubert et al. and Zimmer et al. [11, 24, 25]. An
objective function of the form of (5.3) is minimized in order to obtain the
resulting HR, HDR image. In the last section of this chapter, the objective
function is altered in such a way that the residual vector is expressed in
a perceptually uniform domain. First, however, consider the HDR SRR
algorithm presented in Table 5.1. It is similar to Table 4.2 with the difference

HDR SRR Algorithm
while ∼stopflag
1: {D̂k,r} ← estimate the displacement fields,
2: ĝ(·) ← estimate the mapping from pixel value to exposure,
3: x̂r ← estimate the HR, HDR image,
4: stopflag ← check if stop condition is met,
end

Table 5.1: A high level SRR algorithm for differently exposed images.

that, unlike the case in Chapter 4, the yk here are differently exposed, which
adds the step of photometrical alignment. The most common approach,
to align the input images both spatially and photometrically, is to first
estimate the displacement fields. The displacement field estimates are used
to warp the yk such that they are aligned spatially. Then, for photometric
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alignment, g(·) is estimated, and used to retrieve the illuminance domain
information images ik. Having aligned the LR, LDR observations both
spatially and photometrically, the HR, HDR image is finally estimated.

5.1 Spatial and photometric alignment

To align the yk images both spatially and photometrically is somewhat
more challenging than the case in which the images are taken with the same
exposure settings. Gevrekci and Gunturk discuss different approaches as to
go about with the task [26]. The most common approach, which Gevrekci
and Gunturk also adopt, is to first align the differently exposed images
spatially, and then perform photometric alignment. An alternative approach
is to first estimate g(·) based on, for example, a histogram-based approach,
followed by spatial alignment of images that have been photometrically
aligned.

Various approaches have been proposed to robustly align differently ex-
posed images spatially. For example, the SIFT algorithm ( [14]) has been
modified specifically for the purpose [27]. There, the SIFT key-points (im-
age features) are obtained from a contrast domain representation of the
images. Thus, accurate global motion estimation can be performed to com-
pensate for camera movement. Contrary to the SIFT-based method, which
can not handle motion within the scene, Zimmer et al. include in their
HDR SR method an optical flow alignment strategy that can handle local
motion within the scene [25]. The flow method employed is also their own
work, and includes some sophisticated elements. Ultimately, a displacement
field between two images is computed by minimizing an energy functional
in a gradient image domain, that includes robust penalization functions for
outlier handling, due to, for instance, occlusion [28]. At the time of pub-
lication, it was reported to be the top ranked method at the Middlebury
benchmark2 for evaluations of optical flow methods, but new methods by
other authors now show improved results.

To increase the robustness of image reconstruction methods (that rely
on the estimated displacement fields), algorithms that detect troublesome
image areas with regard to accurate displacement field estimation should
be used. For Example, Hu et al. propose a method for this purpose, that
includes a routine for detection of non-rigid motion [29]. These areas then
receive special treatment in the image reconstruction methods, typically by
the use of some less ambitious reconstruction method.

Once the motion between image frames has been established, image

2available at http://vision.middlebury.edu/flow/eval/results/
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warping can be performed to align the images. Then, a method for pho-
tometric alignment, that typically maps pixel valued images to the HDR
illuminance domain, is applied [1, 30].

5.2 Proposed objective function for SRR of
HDR images

In this section, which leads up to the included papers of this thesis, that are
summarized in the next chapter, an alternative objective function to that of
(5.3) is proposed. The illuminance domain formulation of the minimization
problem in (5.3) is thus generalized to

x̂r = arg min
xr

ρ1(rdata(xr)) + λρ2(ψ(xr)), (5.4)

where rdata(xr) is a residual vector related to the data term, and ψ(xr), as
before, is a regularization function. If ρ1(·) and ρ2(·) are confined to be the
L2-norm, (5.4) can be expressed as

x̂r = arg min
xr

‖r(xr)‖2
2 = arg min

xr

∥∥∥∥ [ rdata(xr)√
λψ(xr)

] ∥∥∥∥2

2

. (5.5)

Unless the data is completely noise-free and the system parameters of H
are estimated perfectly, any choice of objective function will result in some
reconstruction errors. Consider the task of minimizing the data term resid-
ual W(Hxr− i) for the case where a unique solution exists, that is, K ≥ L2

and rank(W) > X1X2. If the relative motions between the observed images
are small, such that they can be completely included in the support of Hk

(thus, T(Dk,r) is the Identity matrix), and if in addition the elements of Hk

are 0 except for a single element which is 1, denoted delta sampling here,
then cond(H) = 1, where cond(·) is the condition number of a matrix. The
unique solution will differ from xr due to noise, but noise will be suppressed
rather than amplified.

However, as soon as resolution enhancement is attempted in the recon-
struction, which means that L > 1, delta sampling (which would still allow
cond(H) = 1) is no longer a realistic point spread function. An idealistic
PSF, as modelled by Hk, would rather be an L × L mean filter (at some
position within the support of Hk). Along these lines, Baker and Kanade
report that, for any PSF that is a reasonable model of the camera sen-
sor, be it an L× L square PSF or for example a Gaussian PSF of support
equal to or greater than L×L, the condition number always grows at least
quadratically with L [31]. Furthermore, cond(H) increases linearly with
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the size of the image vector xr. Thus, ill-conditioning is a severe problem
for SRR. Reconstruction errors are largest near image edges. This is be-
cause the noise amplification when solving the inverse problem is large for
high frequency components, due to the low-pass characteristics of the for-
ward camera model. Adding more observations (increasing K) somewhat
improves the condition number of the problem, but even so, a regulariza-
tion term is typically required to further improve the conditioning, and thus
limit the noise-amplification.

If the general problem (5.4) is taken as the illuminance domain for-
mulation of (5.3), even small reconstruction errors, of the type discussed
above, will cause clearly visible edge artifacts in the dim region across im-
age edges. The numerical errors are of the same magnitude on both sides
of the edges, but the perceived impact of the reconstruction errors will be
much larger at low illuminance regions. To alleviate this issue, the illumi-
nance data, i, is first normalized to [0,1] (the same notation, i, is kept).
The data residual is then taken to be rdata(xr) = W(f̃(Hxr)− f̃(i)), where
f̃ = (·)γHDR , γHDR < 1 is a concave, pixelwise function. An interpretation
of f̃ is that it is a global tonemapping operator. It maps illuminance values
at each pixel to a PU image domain. Note that W(f̃(Hxr − i)) would not
correspond to the perceived size of the error, as the absolute illuminance
level is lost when taking the difference.

As a regularization function, ψ(xr) = ΓLf̃(xr), where Γ is a matrix that
represents 2d convolution on a vectorized image with the Laplacian kernel

L =
1

8

1 1 1
1 −8 1
1 1 1

 (5.6)

may be used. A smooth solution is thus enforced by penalizing the second
derivative. The larger the regularization weight λ, the better the condition
number of the overall problem, albeit this comes at the cost of less fidelity of
the data term. It is crucial that the regularization term is chosen such that
it enforces a structure in xr that corresponds to natural image statistics. For
this purpose, a piecewise smooth solution is typically preferred, which can
be implemented using an edge-preserving regularization function. Learning-
based methods could also be used to avoid penalizing some common image
textures, but these are not considered in this thesis.

If the (norm) function ρ2(·) is selected appropriately, the penalization
of strong image edges can be downgraded. For example, the Lorentzian
norm, which acts as the L2-norm for small values and as the L1-norm
for large values (as set by a threshold parameter), can be used [21]. The
Lorentzian-Laplacian norm then effectively fulfills the similar purpose as
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the often used, nonlinear, edge-preserving Bilateral Total Variation (BTV)
regularization function [20]. Better experimental results than the BTV are
reported by [21]. Zimmer et al., in their work on optical flow and HDR
SRR methods, use an amended regularization method, based on the work
of Sun et al., [32], that only includes smoothing constraint along image
edges, and not across image edges [25, 28]. This same function is also used
for regularization of displacement fields, where it avoids blurring flow dis-
continuities that are present around image edges. Nagel and Enkelmann
presented the theoretical foundation for the method employed by Zimmer
et al., and derive a method to obtain the local image orientations [33].

At this stage, a PU domain has been formulated for the HDR SRR prob-
lem. For the remaining discussion in this chapter, consider the L2-norm of
the proposed data- and regularization term, contained in the minimization
problem

x̂r = arg min
xr

∥∥∥∥ [W(f̃(Hxr)− f̃(i))√
λΓLf̃(xr)

] ∥∥∥∥2

2

. (5.7)

Numerical reconstruction errors are of the same magnitude for any choice
of γHDR in the expression of f̃(·), but the large perceptual impact in low
illuminance regions is avoided thanks to the PU domain which is achieved
for a suitable choice of γHDR. The value which should be used is not en-
tirely clear. As a comparison, the value for γLDR that is used in gamma
correction for common LDR formats is 1/2.2. For the HDR case, a value
as low as γHDR = 1/6 is necessary to achieve a residual function rdata(xr)
that is perceptually uniform with respect to the HVS. This value is based
on empirical experiments and coincides with the value used in the work
by Fairchild and Johnson on the image appearance model iCAM [34]. To
perform tonemapping with their updated model, iCAM06, an (gamma) ex-
ponent of 1/3 is used to encode the illuminance component of a low-pass
filtered base layer of the image, followed at a later step by a further expo-
nent in the range of [0.6, 0.85] (depending on the viewing condition) in the
r,g,b-space, for an overall gamma (somewhat loosely speaking, since differ-
ent color spaces are mixed, and additional manipulation is also made) in the
range of [1/5, 1/3.53] [8]. The importance of exact perceptual uniformity as
well as color fidelity in f̃(·) is not as crucial as for the TMO that is used
to visualize HDR images. Rather, a function that gives a mathematically
sound problem formulation should perhaps be seen as satisfactory for the
HDR image reconstruction procedure.
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Chapter 6

Summary of included papers

This chapter provides a brief summary of the two papers that are included in
Part II of the thesis. The papers have been reformatted to comply with the
layout of the thesis, but the content has otherwise not been changed. Both
papers address SRR of HDR images, and the formulated models incorporate
the perception of the HVS.

Paper 1

T. Bengtsson, I. Y-H. Gu, M. Viberg and K. Lindström, Reg-
ularized Optimization for Joint Super-Resolution and High Dy-
namic Range Image Reconstruction in a Perceptually Uniform
Domain, Proc. of IEEE Conference on Acoustics, Speech and
Signal Processing (ICASSP), March 2012, Kyoto, Japan.

In this paper, HDR SRR is performed, not in the illuminance domain,
but in the L*a*b* domain, which is designed to be perceptually uniform, al-
beit for LDR image data. Thus, the PU approximation is somewhat crude.
Although the gamma of 1/3 which is included in the conversion to L*a*b*
is not the most suitable for visualization of HDR images, it gives a reason-
able image domain for the image reconstruction procedure. Experiments
contained in the paper show, by displaying image results as well as MSSIM
quality maps, that the artifacts caused by HDR SRR in the illuminance do-
main are avoided in the PU L*a*b* domain. Furthermore, reconstruction
quality, in terms of MSSIM values, is shown for varying numbers of input
images, K.

The formulation of the objective function in Paper 1 is, however, based
on a heuristic which breaks down for certain scenarios of the system param-
eters. This is because the actual observations, yk, are generated according
to (1), while the corresponding LR, LDR representation of the unknown
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HR, HDR image is modeled according to (4.1) in the objective function
of the inverse problem formulation. With this approach, the minimization
problem becomes linear with respect to the unknown image in the L*a*b*
domain, thus it is a simple formulation, but not stringent. There is an in-
teresting analogy for this heuristic, to the case of traditional SRR for real
(non-simulated) data. Should (4.1) be used in the formulation of traditional
SRR with similarly exposed images, while (1) proves to be, in fact, closer to
the physical reality, the same issue is attained as in the objective function
in this paper.

Paper 2

T. Bengtsson, T. McKelvey and I. Y-H. Gu, Super-Resolution
Reconstruction of High Dynamic Range Images in a Perceptu-
ally Uniform Domain, SPIE, Journal of Optical Engineering,
Special Issue on High Dynamic Range Imaging , October 2013.

This paper presents a more thorough body of work, as compared to Pa-
per 1. A nonlinear objective function of the form in (5.4) is proposed. Other
choices for ρ1(·) and ρ2(·), than the L2 norm in (5.7), are discussed at greater
lengths than in Chapter 5. To a certain extent, Paper 2 is a continuation
of Chapter 5, that elaborates on the mathematics of the PU formulation
of the HDR SRR problem. Three different objective functions are derived
and experimentally evaluated. Furthermore, the choices of iterative solu-
tion strategies are discussed. Finally, reconstruction results are visualized
and presented alongside the objective quality measures PSNR and MSSIM.
These results demonstrate the benefit of using a PU domain formulation,
such as (5.7), as compared to the illuminance domain formulation (5.3).
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Chapter 7

Concluding remarks

Part I of this thesis has presented and discussed methods for reconstructing
images of high visual quality, based on a set of lower quality images. In
particular, methods for High Dynamic Range image reconstruction as well as
Super-Resolution image reconstruction have been treated, first separately,
and then jointly in Chapter 5. The respective algorithms have been outlined,
rather than covered in detail. Different existing methods have been touched
upon, for instance various approaches to image alignment, as well as for the
choice of a regularization function in the inverse formulation of the SRR
problem. For the case of differently exposed images, it has been stressed
that the reconstruction problem should be formulated in an image domain
which is perceptually uniform to human perception of brightness.

For successful image reconstruction of a high quality image, it is crucial
that the image alignment is performed with high precision. In a real case
with complex motion within the scene, this is a challenging task. The closer
in time that the multiple observations of the scene are taken, the better it
is with regard to estimation performance of the relative motion between the
images. HDR image reconstruction, without resolution enhancement, has
already been introduced to common users as a setting in consumer cameras.
Whether SR will become more widely used, looking ahead, is determined
mainly by the success of image alignment algorithms on downsampled im-
ages. Furthermore, the SR algorithms to be implemented have to meet
critical demands of computational feasibility.
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