
Chalmers Publication Library

Integration of clinical data with a genome-scale metabolic model of the human
adipocyte

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Molecular Systems Biology (ISSN: 1744-4292)

Citation for the published paper:
Mardinoglu, A. ; Ågren, R. ; Kampf, C. (2013) "Integration of clinical data with a genome-
scale metabolic model of the human adipocyte". Molecular Systems Biology, vol. 9 pp. 649.

http://dx.doi.org/10.1038/msb.2013.5

Downloaded from: http://publications.lib.chalmers.se/publication/175876

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1038/msb.2013.5
http://publications.lib.chalmers.se/publication/175876


Integration of clinical data with a genome-scale
metabolic model of the human adipocyte

Adil Mardinoglu1, Rasmus Agren1, Caroline Kampf2, Anna Asplund2, Intawat Nookaew1, Peter Jacobson3, Andrew J Walley4,
Philippe Froguel4,5, Lena M Carlsson3, Mathias Uhlen6 and Jens Nielsen1,*

1 Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2 Department of Immunology, Genetics and
Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden, 3 Department of Molecular and Clinical Medicine and Center for Cardiovascular and
Metabolic Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 4 Department of Genomics of Common Diseases, School of Public
Health, Imperial College London, Hammersmith Hospital, London, UK, 5 Unité Mixte de Recherche 8199, Centre National de Recherche Scientifique (CNRS)
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We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from
different tissue samples using immunohistochemistry. By combining this with previously published
adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human
adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale
metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables
mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold
for integration of omics data to understand the genotype–phenotype relationship in obese subjects.
By integrating human transcriptome and fluxome data, we found an increase in the metabolic
activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and
keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared
with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating
obesity through combination of high throughput patient data and metabolic modeling.
Molecular Systems Biology 9: 649; published online 19 March 2013; doi:10.1038/msb.2013.5
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Introduction

White adipose tissue (WAT) serves as an important buffer for
handling daily lipid flux by uptake of fatty acids (FAs) in the
post-prandial state and release in the post-absorptive state
(Frayn, 2002). Furthermore, studies in recent years have
revealed that WAT is a major endocrine organ sending out
hormones and signaling molecules that regulate and coordi-
nate energy homeostasis, insulin sensitivity, lipid metabolism,
substrate selection, satiety and appetite (Cristancho and Lazar,
2011). WAT also cooperates with other tissues including liver,
muscle, pancreas, heart and brain through the release of FAs
(lipokines), secretory factors (adipokines) and pro-inflamma-
tory cytokines. WAT dysfunction or overload of its lipid storage
capacity can lead to wide range of diseases (e.g., immunolo-
gical and inflammatory diseases), including metabolic dis-
eases such as obesity and its adverse outcomes (Lago et al,
2007; Auffray et al, 2009). Obesity can lead to preventable
cause of death and increases the likelihood of coronary heart
disease, diabetes and several forms of cancer (Cao, 2010) and
B33% of the adults older than 20 years living in the United
States and 20% of European adult population are obese.

Obesity is therefore considered to be one of the greatest threats
to global human health (Caveney et al, 2011). However, obesity
is not directly related with particular etiological factors and it is
therefore essential to enable stratification and prediction of
disease risks among obese subjects to ensure early treatment
either through diet intervention, exercise or surgery.

An increased understanding of the mechanisms behind
obesity and related diseases will provide valuable insights into
their etiology, pathogenesis and may lead to new treatment
strategies. It is inherently difficult to find the exact disease
onset, since such systemic diseases are caused by a combina-
tion of different genetic and environmental factors and often
result in similar disease phenotypes. Therefore, it remains
challenging to identify the cellular and molecular mechanisms
associated with obesity, in particular as the metabolism of the
single cell involves thousands of metabolites and intercon-
nected chemical reactions that occur simultaneously. Proper
understanding of such a complex system requires a holistic
approach. For this purpose, the so-called genome-scale
metabolic models (GEMs) are suitable as they allow for
analysis of metabolism at the genome scale but at the same
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time ensures identification of specific pathways, enzymes and
metabolites associated with specific phenotypes (Nielsen,
2009; Thiele and Palsson, 2010).

GEMs integrate biochemical and physiological data on genes
and enzymatic reactions and allow the study of relationships
between networks, functions, diseases and patients at a
systems level. Reconstructed large-scale GEMs can serve as
scaffolds for data analysis and identify biologically meaningful
correlations and mechanistic relationships between compo-
nents of different sub-systems (Patil and Nielsen, 2005).
Hereby, GEMs can be employed for understanding the under-
lying mechanisms of complex diseases, and hence be used for
identification of novel therapeutic and drug targets and
discovery of new biomarkers. The diseases that we are

discussing are not difficult to diagnose (e.g., obesity and
diabetes) but efficient biomarkers would be of interest to
predict prognosis and outcome of the disease and thereby
enabled patient stratification which will be the basis for
developing personalized medicine (Mardinoglu and Nielsen,
2012; Nielsen, 2012; Figure 1).

Two generic literature-based GEMs of human metabolism,
Recon 1 (Duarte et al, 2007) and the Edinburgh human
metabolic network (EHMN; Ma et al, 2007) have been
reconstructed previously. Although these first reconstructions
represent a major advancement, human metabolism is
specialized in different cell types, and hence there is a need
for reconstruction of cell type or tissue-specific GEMs. In this
context, tissue-specific GEMs have been developed for liver
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Figure 1 Genome-scale metabolic models (GEMs) provide a scaffold for integrative analysis of clinical data. Schematic illustration of how a comprehensive and
functional GEM for adipocytes may provide links between specific molecular processes and subject phenotypes and hereby contribute to the development of
personalized medicine for obesity. Here, the GEM iAdipocytes1809 was reconstructed to bridge the gap between genotype and phenotype through the use of proteome,
metabolome, lipidome and transcriptome data, literature-based models (Recon 1, Edinburg Human Metabolic Network (EHMN) and HepatoNet1) and public resources
(Reactome, HumanCyc, KEGG and the Human Metabolic Atlas). We first performed global protein profiling of adipocytes encoded by 14 077 genes to study adipocyte
biology at the genome-wide level using antibodies generated within the Human Protein Atlas (HPA). We further used information on metabolome and lipidome data from
the Human Metabolome Database (HMDB) and LIPID MAPS Lipidomics Gateway, respectively. Model driven simulations, network-dependent analysis and condition-
specific transcriptome data allowed for model refinement. iAdipocytes1809 was used for the analysis of gene expression data obtained from subjects with different body
mass indexes in the Swedish Obese Subjects (SOS) Sib Pair study and other adipose tissue relevant clinical data such as uptake/secretion rates in lean and obese
subjects. Employing iAdipocytes1809 for integration of transcriptome and fluxome enables understanding of adipocyte metabolism in obese subjects compared with lean
subjects. Furthermore, the results of the study lead to identification of molecular mechanisms underlying obesity and its adverse outcomes. This can be useful for
identification of new therapeutic and drug targets and discovery of new biomarkers for predicting prognosis and outcome of the disease, developing a system-oriented
drug design strategy, obtaining novel diagnostic and therapeutic techniques and eventually determining effective personalized medicines for treatment of obesity-related
diseases.
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(hepatocytes) (Gille et al, 2010; Jerby et al, 2010), cardiomyo-
cytes (Karlstaedt et al, 2012), kidney (Chang et al, 2010), brain
(Lewis et al, 2010) and alveolar macrophage (Bordbar et al,
2010) and recently, three small cell type-specific GEMs of
hepatocytes, myocytes and adipocytes (iAB586) were devel-
oped (Bordbar et al, 2011). Furthermore, using the Integrative
Network Inference for Tissues (INIT) algorithm, we previously
reconstructed cell type-specific draft GEMs for 69 different cell
types and 16 cancer types (Agren et al, 2012).

With the objective of gaining new insight into adipocyte
metabolism at the genome level, we first used human
antibodies to evaluate the presence/absence of 14 077 proteins
in adipocytes found in breast and two different soft tissue
samples and checked their presence call with previously
published adipocyte proteome data. Second, we manually
reconstructed a high-quality, simulation ready GEM for
adipocytes by using all adipocyte-specific proteome data.
The model is based on previously published GEMs but also on
publicly available databases on metabolism. Third, we
employed the functional GEM for the analysis of microarrays
that profile the gene expression from subcutaneous adipose
tissue (SAT) of subjects from the Swedish Obese Subjects
(SOS) Sib Pair Study, which includes nuclear families with
body mass index (BMI)–discordant sibling pairs (BMI differ-
enceX10 kg/m2). The male and female participants of the
study were divided into three different groups based on their
BMIs: lean, overweight and obese. Analysis of transcription
data from this study recently demonstrated that there are
differences in mitochondrial function between men and
women (Nookaew et al, 2012), but there was not performed
any analysis on the effect of obesity. We incorporated
differentially expressed genes between obese and lean subjects
into the GEM. Besides the gene expression data from the SOS
Sib Pair Study, additional clinical data (e.g., plasma and WAT
lipid concentrations) were also incorporated into the model.
By integrating gene expression data and adipose tissue uptake/
secretion rates with the reconstructed GEM, we identified
metabolic differences between individuals with different BMIs
by using the concept of Reporter Metabolites (Patil and
Nielsen, 2005) and transcriptionally controlled reaction fluxes
(Bordel et al, 2010; Figure 1).

Results

Immunohistochemistry-based proteomics of
human adipocytes

Several studies have reported proteomics data of human WAT
that include not only adipocytes but also the connective tissue
matrix, nerve tissue, stromal vascular cells and immune cells
(Peinado et al, 2012). Recently, Xie et al (2010) characterized
the proteome of human adipocytes and reported existence of
proteins encoded by 1574 genes in subcutaneous abdominal
adipocytes taken from three healthy lean subjects. Although
this first adipocyte-specific proteome study is promising to
understand the unique characteristics of the adipocytes, it is
still necessary to expand the protein coverage to be able to
study adipocyte biology at the genome-wide level.

The Human Protein Atlas (HPA) is a knowledge-based portal
that cover the annotated protein expression feature for protein

targets analyzed with one or more antibodies and the main
subcellular localization of protein targets in all major human
cell types and cell lines (Uhlen et al, 2010). Here, we
expanded the coverage of the HPA so as to define the protein
profiles of adipocytes found in breast and two different soft
tissues and examined the spatial distribution and the relative
abundance of proteins encoded by 14 077 genes in adipo-
cytes (Supplementary Dataset 1a). Soft tissue cores with
1 mm diameter were sampled from different locations of the
human body and included in tissue microarrays (TMAs)
together with breast tissue core as previously described
(Kampf et al, 2012). A total of 17 296 high-throughput
generated affinity-purified antibodies (Supplementary
Dataset 1a) against 14 077 proteins were arranged according
to abundance of the corresponding protein target. Immuno-
histochemically stained sections from TMAs blocks were
scanned in high-resolution scanners and separated to
individual spot images to represent each core. Here, proteins
with strong, moderate and weak relative expression were
included in the reconstruction process of the GEM for
adipocytes. It is important to point out that the absolute
levels of each protein have not been determined and could
vary by orders of magnitude. The high-resolution images
together with annotation of the presence or absence of a
particular protein target in adipocytes are publically avail-
able through the HPA (http://www.proteinatlas.org).

The proteome data generated for adipocytes found in breast
and two different soft tissues were merged with previously
published proteome data as presented in Figure 2A
(Supplementary Dataset 1b). In total, we have proteome
evidence for the presence/absence of proteins associated with
14 337 genes in adipocytes and together with the genes in our
Human Metabolic Reaction (HMR) database (see later), we
cover 98% of the enzymes (Supplementary Dataset 1c)
reported in the HPA database (Figure 2B). Our proteomics
analysis resulted in provision of evidence for presence of
proteins associated with 7340 genes in adipocytes that could
be used for our GEM reconstruction. Each protein that has
evidence for presence/absence in adipocytes was annotated
with UniProt id (Apweiler et al, 2011) and the corresponding
encoding genes were annotated with Ensembl (Flicek et al,
2011) id for standardization.

Since adipocytes obtained from breast and two different soft
tissues were used for the protein profiling, there was some
variation between the samples. To estimate the effect of these
variations on the functionality of the adipocytes, we used the
functional annotation tool DAVID to calculate the enrichment
in KEGG pathways (Huang et al, 2009). The results are
presented in Figure 2C for breast, the two types of soft tissues,
as well as for all proteomics data used for the GEM
reconstruction. The analysis demonstrated that for all the
adipocyte-specific proteome data, there is enrichment in terms
of metabolic pathways including FA metabolism, elongation
and biosynthesis as well as major signaling pathways
including adipocytokine, insulin, neurotrophin and PPAR
signaling pathways. The figure shows that the samples from
different tissues exhibit some differences, but that the overall
pattern is similar. We therefore decided to reconstruct a
general GEM for adipocytes by incorporating all proteins that
were expressed in any of the three tissues.
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Subcellular localization of the proteins and
associated reactions

Metabolism is distributed across subcellular compartments of
the cell and precise coordination is important for overall
cellular function and maintenance of metabolic homeostasis.
For instance, b-oxidation of very long chain FAs (VLCFAs) is
a process that starts in the peroxisome and ends in the
mitochondria. The subcellular localization of reactions has
large implications on the functionality of GEMs, as only a
portion of metabolites can be transported between compart-
ments. Furthermore, compartments can be individually redox
and/or energy balanced. It is therefore important to under-
stand the locations of individual enzymes as well as their
associated reactions when metabolism is going to be studied at
the genome scale. The HPA includes subcellular profiling data
using immunofluorescence-based confocal microscopy in
three human cancer cell lines of different origin to be used
for further in-depth functional studies.

Here, proteins were classified into eight different compart-
ments following our HMR database standard (Agren et al,
2012): cytosol, nucleus, endoplasmic reticulum (ER), Golgi
apparatus (GA), peroxisome, lysosome, mitochondria and
extracellular space. Reactions were assigned to compartments
through their association with proteins in these different
compartments. We assigned a confidence score ranging from
one to three for each protein due the availability of knowledge
in HPA and Uniprot (Supplementary Dataset 2a). Proteins
localized in the aggresome, centrosome and cytoskeletons
were assigned to the cytoplasm, whereas proteins in cell
junctions and focal adhesions were assigned to the extra-
cellular compartment (Supplementary Dataset 2b). Lysosome
and peroxisome were merged into vesicles in the HPA data, but
proteins associated with vesicles in our model were separated
based on Uniprot data. In the case a protein has different
locations in the two resources, we chose to assign the protein
in the location reported based on the HPA data. In cases where
the subcellular localization information was absent in HPA,
Uniprot and literature (indirect physiological evidence),
proteins and their associated reactions were assigned to be
present in the cytosol.

Transcriptome data for SAT and its correlation
with proteome data

Gene expression in SATof 304 subjects involved in the SOS Sib
Pair Study was analyzed by using Affymetrix U133 Plus 2.0
microarrays (Affymetrix, Santa Clara, CA, USA). The partici-
pants of the study, 209 female and 95 male subjects, were

divided into three different groups according to their BMI: lean
(18.5oBMI o25), overweight (25p BMIo30) and obese
(30pBMI) (Supplementary Table S1). Our study considers the
differences in male and female obese subjects compared with
lean male and female subjects independently. Differentially
expressed genes between obese, overweight and lean subjects
for male and female subjects were identified and differentially
expressed genes on male and female obese subjects were
incorporated during the reconstruction process of GEM for
adipocytes to analyze gene expression data from the SOS Sib
Pair Study.

Although the generated proteome data for adipocytes cover
the entire set of cellular processes (e.g., signaling, metabolism
and cell cycle), GEMs are applicable only for the study
of metabolism. To get a general overview of the global
changes between obese, overweight and lean subjects, the
enrichment of differentially expressed genes was calculated
for KEGG pathways (Supplementary Figures S1 and S2)
and for biological process Gene Ontology (BP:GO) terms
(Supplementary Figures S3 and S4). This was done using
DAVID and for male and female subjects (Huang et al, 2009).
To check the correlation of the genome-wide transcription data
of SATwith the proteome data, the enrichment of differentially
expressed genes in male and female obese subjects was
calculated for the most significant KEGG pathways from the
analysis of the proteome data (Figure 2C). This was done as
the transcriptome data for SAT represent not only adipocytes
but also other cell types; including immune cells and
preadipocytes linked with different BMIs.

The analysis demonstrates that some of the metabolic and
signaling pathways found to be enriched in adipocytes based
on the proteome data also show significant changes in gene
expression between lean and obese subjects, both in males and
in females. Similarly, we find that BP:GO terms that are
enriched based on the proteome data (assessed with DAVID;
Huang et al, 2009) also show enrichment based on the
transcriptome data (Supplementary Dataset 3). Thus, enriched
BP:GO terms such as post-translational protein modification,
cellular protein metabolic process, lipid metabolic process,
cellular lipid metabolic process and FA metabolic process are
found both from the adipocyte-specific proteome data and
from comparison of expression data for lean and obese
subjects.

Reconstruction of the adipocytes GEM
iAdipocytes1809

GEMs are reconstructed based on high-throughput data
such as genome, transcriptome, proteome, metabolome and

Figure 2 Adipocytes proteome data and its correlation with transcriptome data. (A) Proteins encoded by 14 077 genes were annotated for their presence or absence in
adipocytes found in breast and two different soft tissues sampled from different locations within the body using antibodies generated within the Human Protein Atlas
(HPA) project. The proteome evidence for adipocytes in each tissue sample and previously published adipocytes proteome data were merged and there are proteome
evidence for the presence/absence of proteins associated with 14 337 genes in adipocytes. (B) The here generated proteome data combined with published adipocytes
specific proteome data encodes for a total of 7340 genes that were used to reconstruct a comprehensive genome-scale metabolic model (GEM) for adipocytes,
iAdipocytes1809. The Venn diagram shows how these genes overlap with genes in an updated version of the Human Metabolic Reaction (HMR) database and enzymes
in the HPA. (þ ) indicates the presence of protein encoded genes whereas (� ) means the absence of protein encoded genes in adipocytes based on the here
generated HPA data. (C) Enrichment of KEGG pathways is presented (P-value from hypergeometric distribution is used) to check the coverage of here generated
adipocyte-specific proteome data found in breast, soft tissue 1 (Soft-1), soft tissue 2 (Soft-2) and all adipocyte-specific proteome data. The enrichment of differentially
expressed genes in subcutaneous adipose tissue (SAT) of male and female obese subjects compared with lean subjects was identified in the enriched KEGG pathways
in all adipocyte-specific proteome data.
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fluxome and they provide an excellent scaffold for integrative
analysis of this kind of data (Patil and Nielsen, 2005; Cakir
et al, 2006). To reconstruct a large-scale comprehensive GEM
for adipocytes, biochemical and genetic evidence were
combined with data on protein expression and localization.
Besides the proteins associated with 7340 genes identified
from our proteomics analysis, we further used differentially
expressed genes in SAT of obese male and female subjects for
our reconstruction process. However, SAT contains not only
adipocytes but also other cell types and it is therefore
necessary to check the functionality of the genes before
including into the GEM.

HepatoNet1, a GEM for hepatocytes which is reconstructed
based on the manual evaluation of the original scientific
literature (Gille et al, 2010), was used as a starting point for
our reconstruction process and used to generate an initial
candidate list of network components (Figure 3A). First,
metabolism of lipids and lipoproteins in Reactome, a
manually curated and peer-reviewed pathway database
(Croft et al, 2011), was merged into HepatoNet1. Second, the
resulting network was combined with the evidence-based
generic human models Recon1 (Duarte et al, 2007) and the
compartmentalized EHMN (Hao et al, 2010). This combined
reaction list resulted in an updated version of our HMR
database that is available at http://www.metabolicatlas.org.
The HMR database contains 6000 metabolites in 8 different
compartments (3160 unique metabolites), 8100 reactions and
3668 genes associated with those reactions. HMR includes all
of the genes and gene-associated reactions in HepatoNet1,
Recon1 and EHMN and other isolated gene-associated
reactions, and represents the most comprehensive human
reaction database for genome-scale modeling (Figure 3B).
Third, the existence of each protein coding genes associated
with a reaction in HMR was assessed for the presence or
absence in adipocytes using previously published and the
here generated adipocyte-specific proteome data. Differen-
tially expressed genes and associated reactions in obese
subjects compared with lean subjects were also included in
the model by checking their functionality. This process
provided us with a list of reactions that occur in adipocytes.
Gaps in the resulting network were filled using our recently
developed iHuman1512 metabolic network (Agren et al,
2012), public databases such as KEGG (Kanehisa et al, 2010)
and HumanCyc (Romero et al, 2005) and manual evaluation
of the literature about adipocyte metabolism. This gap filling
resulted in generation of iAdipocytes1809 that is a functional
and fully connected GEM for adipocytes (Figure 3A). Reac-
tions were included in the GEM depending on evidence from
previously published models and databases (Supplementary
Table S2) or on the availability of specific experimental
evidence, for example, enzyme assay or protein identification,
for the occurrence of the corresponding reaction in adipo-
cytes. Reaction directionality in the model was treated as in
the original resource and the directionality was only changed
if it was necessary to perform successful simulations of
known biological functions of adipocytes. iAdipocytes1809
contains 6160 reactions and 4550 metabolites in 8 different
compartments (2497 unique metabolites) (Supplementary
Table S3) and it is available in the Systems Biology Mark-up
Language (SBML) format at http://www.metabolicatlas.org.

There are 1809 genes in the model and 80% of the reactions
are associated with one or more genes. In iAdipocytes1809,
individual metabolites rather than generic pool metabolites
for 59 FAs (Supplementary Table S4) have been used
and this allowed us to incorporate measured concentrations
of different FAs in human plasma and adipocytes into the
model.

Adipocyte-specific metabolome data from the Human
Metabolome Database (HMDB) (Wishart et al, 2009) and a
comprehensive database for lipid biology, Lipidomics Gateway
(Harkewicz and Dennis, 2010), were used in the reconstruction
process. To ensure standardization, each metabolite in the
GEM was assigned at least one of the following: HMDB ids,
Lipidomics Gateway ids, KEGG ids (Kanehisa et al, 2010),
Chemical Entities of Biological Interest (ChEBI) (Degtyarenko
et al, 2008), or International Chemical Identifiers (InChI). In
the model, new genes were assigned to the reactions in
iAdipocytes1809 using EC numbers from UniProt (Apweiler
et al, 2011) and the Lipid Map proteome database (Cotter et al,
2006).

The reconstruction of iAdipocytes1809 involved a compre-
hensive review of lipid metabolism and gene products
related to the lipid metabolism in publicly available databases
were closely examined for their existence in adipocytes. In all,
1235 protein encoding genes with proteome evidence in
adipocytes and 244 genes in iAB586 were included in
iAdipocytes1809 (Figure 3C). Another 137 genes were included
in the model due to positive evidence for the presence of
these proteins from the transcriptome data. These 137 genes
were significantly higher expressed both in male and in
female obese subjects compared with lean subjects, and are
hence relevant for the analysis of gene expression data
from the SOS Sib Pair Study. Another 193 genes and their
associated reactions were included in the model due to
connectivity constraints and known function of adipocytes
and these genes are mainly associated with transport across
membranes. In all, 73 of these genes do not have any negative
evidence whereas 120 of these genes have negative HPA
scores. These 120 genes are likely to be false negatives in the
HPA, and they can be explained by either poor antibody
hybridization to adipocytes or condition-dependent protein
expression. We also compared iAdipocytes1809 with iAB586
and the previously published generic human network, iHu-
man1512, and we found that iAdipocytes1809 contains all of
the genes and associated reactions in iAB586 and adipocyte-
specific reactions and associated genes of iHuman1512
(Figure 3D).

In iAdipocytes1809, 59 different common long and very long
chain FAs (Supplementary Table S4) in human plasma can be
taken up as NEFAs and lipoproteins (Supplementary Figures
S5–S7). Cholesterol and its 59 different CEs can also be taken
up from low-density lipoproteins (LDLs) and high-density
lipoproteins (HDLs). In the post-prandial state, FAs and CEs
can be incorporated into LD structures and in the post-
absorptive state LDs can be broken down to FAs and CEs. The
comprehensive iAdipocytes1809 covers all metabolic path-
ways known to exist in adipocytes as well as extensive
knowledge of lipid metabolism in human cells and adipocytes
in particular. Lipid metabolism in adipocytes involve uptake of
FAs from two potential sources: non-esterified FAs (NEFAs)
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and lipoproteins (Supplementary Table S5) including chylo-
microns, very low-density lipoprotein (VLDL), LDL and HDL
through LPL. iAdipocytes1809 also cover the transport of FAs,
cholesterol and cholesterol esters (CEs) across the plasma
membrane, small amount of de novo FA and cholesterol
synthesis, FA transport into mitochondria and peroxisomes for
b-oxidation, FA esterification into triacylglycerols (TAGs),

lipolysis and lipid droplet (LD) formation and maintenance
(see Supplementary information).

Model validation and formation of lipid droplets

Due to the large size of GEMs (typically thousands of
metabolic reactions), proper validation is essential to ensure
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that a reconstructed model has predictive ability (Mardinoglu
and Nielsen, 2012). A common problem is lack of mass
balancing of the individual reactions, and this typically
involves metabolites with ill-defined formulas, such as
polymers or metabolite pools, but different protonation states
can also be problematic. This type of problem results in a
situation where the model can take up or excrete metabolites
in an unbalanced manner. The model was tested so that all
reactions except pool reactions were mass balanced. A second
issue is that reactions can violate thermodynamic constraints
by being written in the wrong direction or where irreversible
reactions are written as reversible. This was tested by making
sure that the model could not generate high-energy com-
pounds from low-energy compounds (such as ATP and water
from ADP and phosphate or any organic compound from CO2

and water). A third issue is that reactions may be dead-ends,
meaning that they cannot carry flux, either because the model
is not able to produce/take up some of the substrates or
because it is not able to consume/excrete some of the
products. Dead-end reactions tend to propagate as one
unconnected reaction can give rise to many more. Therefore,
many GEMs contain a large proportion of dead-end reactions.
Considerable efforts were spent in making sure that the
number of dead-end reactions was kept to a minimum.

Furthermore, with the simulation ready iAdipocytes1809, the
production of all metabolites in the model was checked with
minimum input to the model (Supplementary Dataset 4) to
ensure the connectivity. Lastly, even a well-connected,
thermodynamically correct and balanced model may not be
able to perform all relevant metabolic functions, or it may be
able to perform functions that it should not do (such as
synthesis of essential amino acids or FAs). The model was
therefore validated for 250 known metabolic functions of
adipocytes, adapted from the definitions provided in connec-
tion with setting up HepatoNet1 (Gille et al, 2010;
Supplementary Dataset 5). All validation steps and simula-
tions were performed using the RAVEN Toolbox (Agren et al,
2013).

Formation of LDs (Figure 4) is included in iAdipocytes1809.
LDs protect the cell from the lipotoxic effects of unesterified
lipids, but they are also associated with the development of
metabolic diseases, such as obesity, type 2 diabetes, athero-
sclerosis and liver steatosis that are characterized by the
extensive accumulation of LDs. LDs represent a significant
energy storage that can be mobilized by catabolism and this
process is highly regulated by hormones and signaling
pathways. Although LDs are recognized as an organelle called
adiposomes (Farese and Walther, 2009), we represented it as a
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large composite metabolite in our model. LDs have polar
surfaces that contain a variety of proteins, PLs and sterols and
have a non-polar core that contain CEs, DAGs and TAGs (Gross
et al, 2011; Supplementary Table S6). The diameter of LDs
varies from 50 nm to 200mm and LDs may grow to enormous
sizes with different mechanisms including localized synthesis
of lipids, transport of lipids and coalescence of LDs.

The function of iAdipocytes1809 was examined by estimat-
ing the formation of LDs and by means of available
physiological, biochemical and genetic evidence in lean and
obese subjects and clinically observed data. Recently,
McQuaid et al (2011) measured the delivery and transport of
FAs in adipose tissue using multiple and simultaneous stable-
isotope FA tracers in lean and obese subject groups over 24-h
period. Even though abdominally obese subjects have greater
adipose tissue mass than control lean subjects, the rates of
delivery of NEFAs were downregulated in obese subjects.
Clinical data on Supplementary Table S1, NEFA release, TAG
extraction, glucose uptake (Supplementary Dataset 6;
McQuaid et al, 2011) and amino-acid uptake rates (Supple-
mentary Dataset 7; Patterson et al, 2002) and FA concentra-
tions in plasma and adipocytes (Supplementary Dataset 8)
were incorporated into the model to predict the formation of
LDs. Based on measurements of the uptake of glucose and TAG
and the release of NEFAs over a 24-h period (Figure 5A and
5B), we simulated the change in LD size (Figure 5C;
Supplementary Dataset 9a). We found from our simulations
that lean subjects have large dynamic changes in LD formation
compared with obese subjects, which is in agreement with
experimental data (Arner et al, 2011). Furthermore, we
predicted a lower acetyl-CoA production in obese subjects,
as shown in Figure 5D (Supplementary Dataset 9b).

Identification of obesity-specific metabolic
features

Modeling using iAdipocytes1809 can be applied to predict
metabolic states under various perturbations, study regulation
of the adipocytes, identify potential therapeutic targets and
discover novel biomarkers for the development of more
effective therapies. Here, we used the model to identify
Reporter Metabolites (Patil and Nielsen, 2005) of male and
female obese subjects compared with lean subjects using gene
expression data obtained from the SOS Sib Pair Study. Reporter
Metabolites are metabolite nodes in the metabolic network
around which there are significant transcriptional changes.
Here, 20 statistically significant Reporter Metabolites are
presented for upregulated and downregulated genes in male
and female obese subjects through the employment of
iAdipocytes1809 (Figure 6). The most significant results from
our Reporter Metabolites analysis for upregulated and down-
regulated genes are correlated with the KEGG pathways
enrichment results of significantly expressed genes in the
obese subject groups (Supplementary Figures S1 and S2).

To illustrate the improvement of iAdipocytes1809 over the
published iAB586, the Reporter Metabolites were also calcu-
lated for male and female obese subjects by using iAB586
(Supplementary Figures S8). Reporter Metabolites involved in
the mitochondrial dysfunction as well as different amino acids

were identified to be similar to the Reporter Metabolite
analysis using iAdipocytes1809. However, iAB586 could not
detect several of the most significant and in our view most
interesting Reporter Metabolites identified when using iAdi-
pocytes1809 due to the increase in number of reactions,
metabolites and genes (see Discussion). Thus, the Reporter
Metabolite analysis with iAdipocytes1809 and iAB586 pro-
vides an unbiased confirmation that iAdipocytes1809 represent
significant advancement of the adipocyte metabolic network
compared with iAB586.

Identification of obesity-specific transcriptionally
regulated reactions by random sampling

We identified changes in metabolic fluxes in response to
obesity and which of these changes are likely to be associated
with transcriptional changes using iAdipocytes1809. We
defined a region of feasible flux distributions using uptake
rates for TAGs and glucose and NEFA release rates for lean and
obese subjects, and used these to calculate a set of possible
flux distributions using a random sampling algorithm (Bordel
et al, 2010). The average values and standard deviations for
each of the fluxes in iAdipocytes1809 were calculated and the
changing fluxes were compared with the significance of
change in gene transcription for the corresponding enzymes.
This allowed us to identify specific reactions for which flux
changes are likely to be transcriptionally regulated.

The results from this analysis showed that the following
pathway fluxes were transcriptionally downregulated in obese
subjects: uptake of glucose, uptake of FAs, oxidative phos-
phorylation, mitochondrial and perixomal b-oxidation, FA
metabolism and tricarboxylic acid (TCA) cycle. This analysis is
consistent with the findings from the Reporter Metabolites
analysis and KEGG enrichment pathway analysis
(Supplementary Table S7). Furthermore, fluxes associated
with beta-alanine metabolism were found to be transcription-
ally downregulated in obese subjects (Figure 7). Previously, it
has been reported that blood flow, glucose uptake, release of
NEFA and the extraction of TAG from plasma were significantly
lower in abdominally obese subjects compared with lean
subjects (McQuaid et al, 2011). Our random sampling results
clearly indicate that all metabolic pathways in mitochondria
are downregulated (Kusminski and Scherer, 2012) similar to
the mitochondrial decline that is a hallmark of different
diseases associated with aging.

Discussion

We evaluated the presence/absence of 14 077 proteins in
adipocytes using human antibodies and presented a high-
quality, simulation ready and functional GEM for adipocytes,
iAdipocytes1809, based on proteome, metabolome and tran-
scriptome data. iAdipocytes1809 was used to analyze clinically
observed transcriptome and fluxome data to understand the
mechanistic changes in adipocyte metabolism in response to
obesity. Gene expression and associated metabolites in obese
and lean subjects were studied using a systems biology
approach, which allowed us to understand how the transcrip-
tome data in SAT represent different metabolic functions in
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obesity. An increased understanding of metabolic pathways
altered in complex diseases may contribute to the identifica-
tion of novel therapeutic targets (Cheong et al, 2012) and here
potential therapeutic targets for obesity were discovered
through Reporter Metabolite analysis and random sampling
of flux states. Moreover, protein coding genes related to the
therapeutic targets may be used as potential drug targets.

Through our analysis, it was observed that expression of
genes involved in metabolic pathways including mitochon-
drial and perixomal b-oxidation, FA synthesis, amino-acid
metabolism, pyruvate metabolism, oxidative phosphorylation
and TCA cycle are downregulated in obese subjects. Most of
these pathways are linked with the mitochondrial dysfunction
and different therapeutic interventions including antioxidants

and chemical uncoupler treatments have proven to improve
the mitochondrial dysfunction (Kusminski and Scherer, 2012).
Recently, Canto et al (2012) have reported that increasing the
NADþ levels, identified as therapeutic targets in our study,
through supplements (NADþ precursors) enhances the
oxidative metabolism and protects the cells against high-fat
diet-induced obesity.

Mitochondrial acetyl-CoA has a central role in different
pathways in the mitochondria and it reacts with oxaloacetate
to form citrate, which can be transported from the mitochon-
dria to the cytosol where it is participating in FA synthesis
(Dean et al, 2009). Acetyl-CoA derived through other principal
sources, including degradation of amino-acid and ketone
bodies, and FA oxidation processes are insufficient for FA
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Figure 5 Simulation results for lipid droplets and acetyl-CoA production. Formation of lipid droplets (LDs) and acetyl-CoA that is the central node in the mitochondria
has been simulated and qualitative amounts were predicted through the use of iAdipocytes1809. Acetyl-CoA is central metabolite in the mitochondria and the reduced
dynamics in LD levels in obese clearly results in lower fluxes through this key metabolite in obese subjects. The uptake rates for glucose and triacylglycerols (TAGs) and
release rates for non-esterified fatty acids (NEFAs) in adipocytes for lean (A) and obese (B) subjects have been used as lower and upper bounds for input reactions
(McQuaid et al, 2011) and the amount of LDs (C) and acetyl-CoA (D) is generated for 24 h. In addition, the NEFA concentrations in adipocytes and plasma and FA
content of lipid structures are incorporated into the model during the generation of pool metabolites. The dashed lines at time¼ 0, 5, 10 represent breakfast, lunch and
dinner, respectively, for each participants of the study. iAdipocytes1809 cannot produce LDs and acetyl-CoA at some time points since adipocytes degrade the LDs at
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LDs in the obese subject groups as in clinical data.
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synthesis. Increasing the acetyl-CoA concentration and even-
tually FA synthesis in adipose tissue of obese subjects results in
whole body regulation of metabolism, including stimulation of
muscle insulin action and suppression of hepatosteatosis, as
reported by Cao et al (2008). Here, we propose to boost the
metabolic activity of mitochondria in the adipocytes of obese
subjects by increasing the mitochondrial acetyl-CoA which is

another therapeutic target identified in our study. Acetyl-CoA
formation in lean and obese subjects was predicted through
use of iAdipocytes1809 in lean and obese subjects and its
concentration can be increased through the uptake of beta-
alanine. The effect of beta-alanine as a dietary supplement was
previously examined in football players and it is reported
that it has effect on lean tissue accruement and body fat

Figure 6 Representation of the Reporter Metabolites for male and female obese subjects. The Reporter Metabolites algorithm marks the regions in metabolism around
which significant transcriptional changes occur. Reporter Metabolites are obtained using the P-values calculated from the comparison of obese subjects with lean
subjects in male and female subjects separately. Top-scoring reporter metabolites androsterone, ganglioside GM2 and degradation products of heparan sulfate and
keratan sulfate are associated with the upregulated differentially expressed genes and mitochondrial metabolites are associated with downregulated differentially
expressed genes in obese subjects comparing with lean subjects. Top 20 metabolites associated with upregulated and downregulated genes in male and female obese
subject were presented in the figure.
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composition (Hoffman et al, 2006). Furthermore, rat studies
reported that beta-alanine decreases the LPL enzyme activity in
adipose tissue (Prabha et al, 1988) that may help to decrease

the uptake of FAs to be stored in adipocytes. Our results suggest
that increasing the level of beta-alanine in obese subjects may
help to decrease the fat composition in obese subjects.

Figure 7 Illustration of the reactions and metabolites obtained from random sampling. The random sampling algorithm identifies set of reactions that are
transcriptionally regulated and enzymes with transcriptional regulation showed enrichment. This suggests that the regulation of metabolism in adipocytes in obese and
lean subjects has evolved to contain a few flux-regulating potential transcription factors that could be the target for genetic manipulations to redirect fluxes. The random
sampling algorithms indicate that uptake of glucose, fatty acids (FAs) and water, FA synthesis and mitochondrial metabolic processes such as oxidative phosphorylation,
b-oxidation, TCA cycle and b-alanine metabolism is downregulated (blue arrows in figure). Increasing the metabolic activity of mitochondria by increasing the
concentration of mitochondrial acetyl-CoA may provide new strategies for treatment of obesity. One way to increase the mitochondrial acetyl-CoA concentration may be
through increasing the uptake of beta-alanine as found from our random sampling results. Some of the major known biological pathways of adipocytes are shown in
green boxes.
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Furthermore, we have identified new candidates for
potential therapeutic targets for obesity and their association
with the obesity has been reported in different studies. One of
the most significant results from the Reporter Metabolite
analysis for upregulated genes was androsterone and its
precursor 5alpha-androstane-3,17-dione. In obese subjects,
increased secretion of androsterone was reported in serum
concentrations using various indices calculated from urinary
steroid excretion rates (Vierhapper et al, 2004). The measure-
ment of androsterone-to-etiocholanolone ratio in urine is
commonly used as an indicator of activities of 5a- and 5b-
reductases in both male and female subjects and the ratio
increased with indexes of insulin resistance, which is an
adverse outcome of obesity (Tomlinson et al, 2008). Our
results indicated that metabolism of obese subjects around
androsterone increases and the detection of androsterone level
in plasma may represent a marker for altered metabolism
in obese subjects. 5alpha-pregnane-3,20-dione and 3alpha-
hydroxy-5alpha-pregnan-20-one obtained from Reporter
Metabolites analysis are other metabolites involved in steroid
hormone synthesis specifically in pathway of progesterone
metabolism. Several studies reported that sex steroids affect
the adipose tissue deposition through the regulation of
preadipocyte proliferation and/or differentiation as well as
lipogenesis and/or lipolysis of differentiated adipocytes
(Anderson et al, 2001). Zhang et al (2009) previously studied
the comparison of progesterone metabolite formation in
preadipocytes and lipid-storing adipocytes and they reported
that the production of progesterone metabolites was signifi-
cantly increased. Our study signified that metabolism around
these two metabolites increase in obese subjects relative to
metabolism in lean subjects.

Another high-ranking target for upregulated genes is gang-
lioside GM2 (GM2). Gangliosides, one of the major glyco-
sphingolipids in mammals, have major roles as mediators for
cell to cell or cell to matrix recognition and regulate the
transmembrane signal transducers and cell proliferation.
Gangliosides in adipose tissues are also associated with
insulin signaling mechanisms and it is reported that series of
gangliosides GM2, GM1 and GD1a are dramatically increased
in adipose tissues of obese mice (Tanabe et al, 2009). The
action of GM2 synthase also directs the metabolic flow of
a-series gangliosides toward GD1a in mouse studies.

A third prominent group among the Reporter Metabolites for
upregulated genes is the degradation products of heparan
sulfate proteoglycans (HSPG) and keratan sulfate. These
compounds are classified as glycosaminoglycans and attach
to cell surface or extracellular matrix proteins. It has been
reported that catalytically active adipose tissue LPL attaches to
HSPG at the luminal surface of vascular endothelium
(Olivecrona and Beisiegel, 1997; Lafontan, 2008) and hydro-
lyze the TAGs for uptake of FAs into the cell. The LPL moves
between individual HSPG chains within the layer and this
creates a high concentration of LPL along the surface layer of
HSPG chains (Lookene et al, 1996). In the presence of heparin,
more LPL is secreted and increased secretion was balanced by
decreased degradation of LPL. There are special mechanisms
that inhibit LPL and one mechanism is that LPL forms
complexes with FAs (Bengtsson and Olivecrona, 1980). During
the LPL hydrolysis and accumulation of FAs in the cells, the

LPL is sequestered into enzyme FA complexes, lipolysis is
reduced and eventually the binding of LPL to heparan sulfate is
broken. If a high-affinity ligand (e.g., FAs, heparin and apoCII)
is available, then the LPL detaches from the cell surface to
heparan sulfate chains and without ligand in the medium, the
LPL recycles into the cells where it is degraded. Furthermore,
several studies have reported that more sulfated polysacchar-
ide chains increase the affinity for binding of LPL (Olivecrona
and Olivecrona, 2009). Keratan sulfate, a biomarker of
proteoglycan degradation, can be expressed from stem cells
in human SATand its relevance with obesity has been reported
earlier. Messier et al (2000) studied the effect of exercise and
diet in weight loss in older obese adults with knee osteoar-
thritis and analyze the levels of total proteoglycan, keratan
sulfate and interleukin-1 beta in their synovial fluid. It is
reported that all participants of the study lost weight by
changing their diet and exercise regimens and the level of
keratan sulfate in synovial fluid decreased.

We envisage that iAdipocytes1809 is a key step to better
enable links between molecular processes and patient
phenotypes and hereby enable patient stratification through
identification of specific molecular mechanisms in adipocyte
metabolism. Here, we demonstrated this by predicting
differences in the formation of LDs and acetyl-CoA in lean
and obese subjects. Besides enabling patient stratification, this
may also lead to identification of novel therapeutic targets for
obesity through combination of our model with high
throughput patient data. iAdipocytes1809 can also be used as
a scaffold for a comprehensive whole adipocyte model that
accounts for all of the annotated gene functions identified in
adipocytes (Karr et al, 2012). Compared with the previously
described adipose model, the here presented model is
significantly larger in terms of metabolites/genes and reac-
tions and this allows for identification of metabolic biomarkers
that cannot be identified with iAB586. Furthermore, our model
has undergone a thorough validation process where 250
metabolic functions were simulated and as our model also
included a description of individual FAs and sterolesters it can
much better simulate lipid metabolism, including simulation
of lipid droplet formation. In conclusion, we demonstrated the
high quality adipocyte GEM iAdipocytes1809 is very well
suited for integration of omics data and hereby result in a
comprehensive understanding of adipocytes biology in
response to obesity.

Materials and methods

Proteome data for adipocytes

The proteomic profiling of adipocytes in breast and two different soft
tissues using immunohistochemistry was performed as previously
described (Uhlen et al, 2005). Representative formalin paraffin-
embedded material from donor blocks was punched (1 mm in
diameter) and placed in a recipient block TMA that includes 46
normal tissues, 20 types of cancer and 47 cell lines (Kampf et al, 2012).
Thereafter, 4-mm TMA sections were cut using a microtome and placed
on super frost glass slides. Breast and two different soft tissue cores
together with 708 previously prepared tissue cores were analyzed for
protein expression using IHC (Kampf et al, 2004). The variability
introduced by the individual experimental staining protocol, including
the choice of antibody dilution and antigen retrieval methods, was
addressed by the use of TMAs (Uhlen et al, 2005). Information from
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databases, for example, Uniprot, ENSEMBL, and published data from
PubMed were used as guides to establish if immunohistochemical
results represent expected protein expression of intended target protein.
In addition, other validation strategies were used to ensure antibody
validity, for example, protein arrays, western blot and immunofluores-
cence experiments. When applicable, paired antibodies raised against
separate, non-overlapping epitopes on the same target protein were
used for extended validation (Uhlen et al, 2010). IHC-stained tissues
were scanned and digitalized at � 20 magnification. Annotation of
high-resolution images was manually performed by certified patholo-
gists. Relative expression was indicated with four different color codes
ranging from strong (red), moderate (orange), weak (yellow) and no
expression (white) (Kampf et al, 2004). Localization information of
proteins was inferred from manually curated Uniprot data (Apweiler
et al, 2011) and recently generated HPA data on intracellular localization
of proteins (Lundberg and Uhlen, 2010).

Transcriptome data for SAT

Gene expression in SAT of subjects involved in SOS Sib Pair Study
which includes nuclear families with BMI–discordant sibling pairs
(BMI difference X10 kg/m2) was measured by microarray. The study
group consisted of 304 subjects (209 female and 95 male) divided into
three different groups according to their BMI: lean (18.5oBMI o25),
overweight (25p BMIo30) and obese (30pBMI) (Supplementary
Table S1). Total RNA was prepared as previously described (Carlsson
et al, 2009) and gene expression in human SAT was measured using
Affymetrix U133 Plus 2.0 microarrays (Affymetrix). Probe hybridiza-
tion intensity values were summarized using to Probe Logarithmic
Intensity Error (PLIER) and the robust quantile method was applied to
get normalized expression values. The normalization of the micro-
arrays was carried out using the Expression Console software from
Affymetrix and the quality assessment was carried out using R
Statistical and Computing language and the Bioconductor software
(Gentleman et al, 2004).

Data availability

The annotation of the presence or absence of protein targets in
adipocytes together with the high-resolution images is publically
available through the HPA (http://www.proteinatlas.org).

GEM for adipocytes, iAdipocytes1809 and HMR database is
publically available in the Systems Biology Mark-up Language (SBML)
format at Human Metabolic Atlas (http://www.metabolicatlas.org).

Gene expression from SATof subjects from the SOS Sib Pair Study is
publically available in Gene Expression Omnibus (GEO) database with
the accession number GSE27916 http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token=phadhqigowykote&acc=GSE27916.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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