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Soft metrics and their Performance Analysis for
Optimal Data Detection in the Presence of Strong

Oscillator Phase Noise
Rajet Krishnan, Student Member, IEEE, M. Reza Khanzadi, Student Member, IEEE, Thomas Eriksson,

and Tommy Svensson, Member, IEEE

Abstract—In this paper, we address the classical problem of
maximum-likelihood (ML) detection of data in the presence of
random phase noise. We consider a system, where the random
phase noise affecting the received signal is first compensated by a
tracker/estimator. Then the phase error and its statistics are used
for deriving the ML detector. Specifically, we derive an ML detector
based on a Gaussian assumption for the phase error probability
density function (PDF). Further without making any assumptions
on the phase error PDF, we show that the actual ML detector can be
reformulated as a weighted sum of central moments of the phase
error PDF. We present a simple approximation of this new ML
rule assuming that the phase error distribution is unknown. The
ML detectors derived are also the aposteriori probabilities of the
transmitted symbols, and are referred to as soft metrics. Then, using
the detector developed based on Gaussian phase error assumption,
we derive the symbol error probability (SEP) performance and
error floor analytically for arbitrary constellations. Finally we
compare SEP performance of the various detectors/metrics in this
work and those from literature for different signal constellations,
phase noise scenarios and SNR values.

Index Terms - Maximum likelihood detection, Estimation, Phase
noise.

I. INTRODUCTION

Random time varying phase difference between the transmitter
and receiver has been one of the major impediments towards
realizing a reliable coherent communication system [1]. This
impairment, which arises from local oscillator instabilities, is
referred to as phase noise, and can result in significant perfor-
mance loss if not compensated appropriately. Given the demands
for high-rate data transmission over band-limited channels, high
order signal constellations are being considered for transmission,
where even minor phase noise impairments can incur heavy loss
in system performance.

The problem of receiver design for data detection in the
presence of a random phase noise process has been studied for
decades, e.g., refer to [1], [2] and references therein. One of the
earlier approaches to this problem was reported in [3], which
proposed simultaneous maximum-likelihood (ML) estimation of
the data sequence and phase noise. In [4], it was shown that the
simultaneous approach proposed in [3] is optimal in the high
signal-to-noise ratio (SNR) regime.

An optimum minimum SEP criterion receiver structure was
first derived by Kam et al. in [5]. Specifically, it was illus-
trated that the optimum symbol-by-symbol (SBS) receiver has
a separable estimator-detector structure, i.e., all the received
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signals (or observations) are used to first compute/estimate the
posteriori probability density function (PDF) of phase noise. The
information in this posteriori phase density function is then used
to detect a data symbol. Further the problem of computing the
posteriori PDF of phase noise given all the received signals was
demonstrated to be an intractable problem in general. However, it
was seen that the optimum receiver structure can be analytically
determined under restrictive assumptions on the phase noise
distribution.

On a related note, the idea of using a tractable phase posteriori
density for deriving the ML detector for data was reported in a
much earlier work by Foschini et al. in [6]. It was assumed that
the phase of the received signal is first tracked and compensated
using a phase-locked loop (PLL) or an estimator. Then the
posteriori phase PDF, which now is the PDF of the phase error,
can be approximated as a Tikhonov PDF [7] which was used
to derive the ML detector. In a more recent effort, an ML
detector similar to that in [6] was derived in [8] for phase noise
limited channels, and used as a soft metric for decoding in coded
systems.

In recent times, there has been great interest in understanding
the performance of coded systems in the presence of random
phase noise impairments. In these scenarios, techniques like per-
survivor processing algorithm proposed in [9], and turbo syn-
chronization methods based on expectation maximization (EM)
reported in [10]–[14] have been extensively used for joint (and it-
erative) phase estimation and data detection. In these approaches,
the phase perturbance of the transmitted signal is regarded as a
deterministic constant that is first estimated. Treating the estimate
as the true value of phase perturbance, the detector computes
aposteriori symbol probabilities (depending on the underlying
code structure) assuming that the received signal is devoid of
any phase noise. Broadly speaking, these techniques can be
considered as non-Bayesian approaches where the carrier phase
noise is considered deterministic and constant over a block of
symbols transmitted. Clearly, these techniques are inappropriate
for scenarios where the phase noise is random and time varying.

To address the problem of random phase perturbance of the
transmitted symbols, iterative Bayesian techniques based on
factor graph signal processing for data detection and phase noise
estimation were proposed in [15]–[17]. These techniques that
are based on the generic sum-product algorithm (SPA) [18]
do not employ an explicit estimator, and are used to derive
approximate Bayesian detectors based on marginalization of
phase noise. As a low complexity alternative to SPA, the work in
[19] proposed joint phase estimation and approximate Bayesian
detection based on the Variational-Bayesian (VB) framework,
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which was found to be efficient in the presence of random
phase noise. Application of Monte Carlo sampling methods for
joint phase noise estimation and data detection was investigated
in [20] for both coded and uncoded systems. Though joint
phase-data estimators have been studied extensively, it is not
well understood as to how phase error and its statistics can be
incorporated in the detector for computing aposteriori symbol
probabilities [13].

For signal constellations with equiprobable symbols, the ML
detection rule renders aposteriori symbol probabilities, which can
be used as soft metric input for performing non-data aided phase
estimation and detection [12]. Importantly, soft metrics can also
be embedded into iterative decoding schemes for coded systems
in the presence of phase noise [8], [17], [19] that can significantly
enhance SEP performance. The ML detector derived by Foschini
et al. [6] considering phase error PDF is one of the few detectors
available in literature for detection in the presence of random
phase noise. However, this detector is difficult to analyze and its
SEP performance is computable only numerically [24].

This motivates the need to derive detectors that have simpler
analytical structures, and whose performance is easier to charac-
terize analytically. Further as we shall observe in the sequel, it
is interesting to derive detectors without making any restrictive
assumption on the PDF of the phase error and analyze their
performance. These aspects form the core of this work.

A. Contributions

In this paper1, motivated by the optimal receiver structure
derived in [5] and [6], we revisit the fundamental problem of
optimal data detection in the presence of random phase noise. We
seek to minimize SEP, which is achieved by SBS detection, based
on the entire set of received signals. We derive approximate
analytical forms of the ML detector for different, but broad
assumptions on the phase error PDF. Specifically, the phase noise
is first compensated by using a tracker/estimator. The phase error
(after tracking/estimation) is considered to be independent of the
symbol transmitted and the other observations outside the current
(received) signal interval [6], and its statistics are incorporated
in deriving the ML detection rule.

The contributions of this work can be summarized as follows:
• Based on a Gaussian assumption for the phase error PDF,

we derive an ML detector that corresponds to joint ampli-
tude and phase detection of the received signals.

• Further, without making any assumptions on the PDF of
the phase error, we formulate the ML detector originally
derived in [5] as a weighted sum of the central moments of
the phase error PDF. Based on the assumption that the phase
error distribution is unknown, we present approximations of
the new ML rule, and investigate its scope and applicability.

• Using the detector based on the Gaussian PDF assumption
for phase error, we present analytical results for its SEP
performance and derive error floors for arbitrary constella-
tions. We show that the analytical SEP results can be used
to accurately determine the performance of the Gaussian
based detector for different constellations, SNR values
and phase noise scenarios. Interestingly, these results also

1The material in this paper was presented in part at the Global Telecommu-
nications Conference (GLOBECOM 2011), Houston, TX, USA

provide simple insights into designing constellations that
help minimize SEP in the presence of phase noise.

• Finally, we compare the performance of all detectors pro-
posed in this work with those existing in literature. Specif-
ically, we show that the Gaussian based detector proposed
in this work outperforms all other detectors for different
constellations, SNR values and phase noise scenarios. We
also use these detectors/metrics as soft input for non-
data aided phase estimation and their SEP performance is
studied.

Notations: Expectation operator is denoted as E[·]. [·]T denotes
transpose and [·]H denotes Hermitian of a vector. Re(·), Im(·),
| · | and arg(·) are the real, imaginary part, magnitude and angle
of a complex number respectively.

B. Organization
The remainder of the paper is organized as follows: In Section

II, the system model for detection of data in the presence of phase
noise and additive white Gaussian noise (AWGN) is presented. In
Section III, we first review the ML detectors derived in [6], [12],
[17] and [19]. Then, we derive the ML detectors for two different
assumptions on the phase error PDF. In Section IV, we derive the
SEP performance and error floor of the detector that is based on
the Gaussian assumption for phase error. We compare the SEP
performance of the various detectors for different constellations,
SNR values and phase noise scenarios in Section V. Finally, we
conclude our work and highlight key findings in Section VI.

II. SYSTEM MODEL

Consider a system with the following received signal model
in the kth time slot

r′′k = mke
jϕk + n′′

k , (1)

where r′′k is the received signal, mk is the transmitted symbol,
ϕk is the unknown phase noise, and n′′

k is complex Gaussian
noise in the kth time slot. r′′ ,

[
r′′0 , . . . , r

′′
L−1

]T
represents a

vector of L received symbols. The transmitted data are denoted
in the vector form as m , [m0, . . . ,mL−1]

T . In addition, mi, for
i = 0, . . . , L− 1 can assume any point {si, ∀ i ∈ {1, ..., C}} in
the signal constellation, where C is the size of the constellation.
Let ϕ, [ϕ0, . . . , ϕL−1]

T denote the vector of unknown phase
noise, where no assumptions are made on its PDF. It is assumed
that m and ϕ are independent of each other. The additive white
Gaussian noise (AWGN) is n′′ ,

[
n′′
0 , . . . , n

′′
L−1

]T
, i.e., it is

a vector of independent identically distributed (i.i.d.) complex
Gaussian random variables (r.v.s) with E[n′′] = [0, . . . , 0]T , and
E[n′′n′′H ] = N0I, i.e., n′′

k ∼ CN (0, N0).
We investigate the problem of symbol detection based on all

received signals, r′′, such that the SEP is minimized. It is known
that SBS detection of the kth symbol that minimizes SEP is
obtained by ML detection [21]. Thus, the optimum receiver for
the kth symbol is given by

argmax
i∈{1,...,C}

Li(k) , argmax
i∈{1,...,C}

p(r′′|mk = si). (2)

In [5], it has been shown that in the presence of phase noise,
Li(k) reduces to the following

Li(k) =

∫ π

−π

p(r′′k |mk = si, ϕk)p(ϕk|r′′k,mk = si)dϕk, (3)
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where r′′k ,
[
r′′0 , . . . , r

′′
k−1, r

′′
k+1, . . . , r

′′
L−1

]T
refers to all signals

received outside the kth time instant. The ML detector first
involves the estimation of the posteriori PDF of phase noise in a
time instant using all signals received outside it. This posteriori
PDF is then used to perform data detection using (3).

In general, deriving the ML detector in (3) is a difficult
problem. This is because it requires accurate knowledge of the
posteriori phase PDF p(ϕk|r′′k ,mk = si). The work in [5]
shows that the problem of deriving the posteriori phase PDF
is an infinite dimensional problem, and its closed-form is not
analytically tractable. However, there are scenarios where the
posteriori phase PDF will have an approximate tractable form.
Let the phase of the received signal be tracked and compensated
using a tracker/estimator as follows

rk , r′′ke
−jϕ̂k = mke

jθk + nk, (4)

θk , ϕk − ϕ̂k, nk , n′′
ke

−jϕ̂k

where θk is the phase error, and ϕ̂k is the phase estimate. Then
the optimum detector, based on the compensated received signal
is

Li(k) =

∫ π

−π

p(rk|mk = si, θk)p(θk|rk,mk = si)dθk, (5)

where p(θk|rk,mk = si) is the posteriori PDF of phase error θk,
and rk , [r0, . . . , rk−1, rk+1, . . . , rL−1]

T refers to all signals
received outside the kth time instant. The phase error PDF is
then constrained to be a known PDF [7], thereby rendering an
approximate (but tractable) ML detector as we shall see in the
sequel.

III. DETECTION METRICS AND ANALYSIS

In this section, we first review the detectors that were derived
in [6], [12], [17] and [19], and discuss their underlying assump-
tions. Then, we derive new analytical forms of the detector in (3)
and (5) for two different assumptions on the phase error PDF:

• The phase error PDF is considered to be Gaussian dis-
tributed.

• The phase error PDF is unknown, but its central moments
are known upto a certain order.

Particularly of interest are detectors that are tractable in their
exact or approximate form. The constellations considered for
transmission have equally likely symbol points, and hence the
ML detector renders aposteriori symbol probabilities based on
observations. These aposteriori symbol probabilities (equiva-
lently ML detectors) are referred to as soft metrics.

A. Metric based on Euclidean Distance Measure (EUC-D)
The detector in (3) reduces to a Euclidean distance detector

when the carrier phase recovered by a phase estimator ϕ̂k is
treated as the true value of ϕk, followed by coherent detection
of the symbols. To illustrate this, consider the posteriori PDF
of ϕk to be a distribution with variance zero or equivalently a
delta function, i.e., p(ϕk|rk′′,mk = si) = δ(ϕ − ϕ̂k). The ML
decision rule is then derived from (2) as follows

argmax
i∈{1,...,C}

Li(k) = argmax
i∈{1,...,C}

− |r′′k − sie
jϕ̂k |2, (6)

= argmax
i∈{1,...,C}

− |rk − si|2,

Thus, if the recovered ϕ̂k is treated as the true value of ϕk, the
ML decision rule in (3) becomes equivalent to the Euclidean
distance detector [12], [22]. For future reference, we denote this
detector as EUC-D.

B. Metric based on Tikhonov PDF assumption for Phase Error
(FOS-D)

As discussed in Section II, let the phase of the received signal
be tracked and compensated using a PLL, i.e., θk = ϕk−ϕ̂k, then
the posteriori PDF of θk can be approximated as a Tikhonov PDF
[7]. Note that the Tikhonov PDF is also the entropy maximizing
PDF of the circular r.v. θk. Based on this assumption, an
analytically tractable detector was derived by Foschini et al. for
high SNR scenarios in [6] by using the model in (4) and (5).
Specifically it was shown that the detector, based on a Tikhonov
assumption for the phase error PDF, has the form

argmax
i∈{1,...,C}

Li(k) = argmax
i∈{1,...,C}

− sis
∗
i

2
+ vi, (7)

vi ,

√√√√(Re{rks∗i }+
N0

σ2
p

)2

+ (Im{rks∗i })
2
,

where σ2
p is the variance of phase error θk. The variance σ2

p
from the PLL is a function of rk and mk, and is known to the
detector. We refer to this detector as FOS-D.

C. Metric based on the Factor Graph framework (COL-D)

In [17], Colavolpe et al. proposed a joint phase estimation-data
detection technique based on the factor graph framework. The
messages propagated on the graph using SPA were approximated
as a family of Tikhonov PDFs. Based on this technique, the
aposteriori symbol probabilities or equivalently the ML detector
is derived using the system model in (1) as

argmax
i∈{1,...,C}

Li(k) = argmax
i∈{1,...,C}

Pu(si), (8)

Pu(si) , exp

{
−sis

∗
i

N0

}
I0

(∣∣∣∣af,k + ab,k +
2r′′ks

∗
i

N0

∣∣∣∣) .

Here arg{af,k} and arg{ab,k} are the phase noise hypotheses
computed in the forward and backward filter recursions respec-
tively using SPA. This detector is denoted as COL-D.

D. Metric based on the VB framework (VB-D)

In [19], the VB framework was used to derive aposteriori
symbol probabilities based on the assumption that given the
observation, the transmitted symbols and phase noise are inde-
pendent of each other. If σ2

p denotes the variance of the phase
error θk (obtained after phase noise compensation), using (4) the
detector is of the form

argmax
i∈{1,...,C}

Li(k) = argmax
i∈{1,...,C}

− |rk − si|2 +
sis

∗
i

2
σ2

p . (9)

No specific assumptions are made on the posteriori phase PDF
for deriving (9), and we denote this detector as VB-D.
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(a) (b) (c)
Fig. 1: Decision regions using 16 QAM, σ2

p = 1× 10−2 rad2 for (a) GAP-D at SNR = 12 dB (b) FOS-D at SNR = 12 dB (c) Both GAP-D and FOS-D at SNR
= 30 dB

E. Metric based on Gaussian PDF Assumption for Phase Error
(GAP-D)

In the following, we derive an ML detector based on a Gaus-
sian assumption for the phase error PDF. Let p(θk|rk,mk = si)
denote the PDF of the phase error obtained after compensating
the received signal with the estimated phase ϕ̂k at time instant
k. Using a Gaussian PDF assumption for phase error, we have
p(θk|rk,mk = si) ≈ N (0, σ2

p (rk,mk)), i.e., the variance σ2
p

obtained from the tracker/estimator is a function of rk and mk,
and is known to the detector.

In order to derive the ML decision based on Gaussian phase
error PDF, we rewrite (5) as

Li(k) =

∫ π

−π

p(rk|mk = si, θk)p(θk|rk,mk = si)dθk,

(a)
=

∫ π

−π

p(rk|mk = si, θk, rk)p(θk|rk,mk = si)dθk,

=

∫ π

−π

p(rk, θk|mk = si, rk)dθk,

= p(rk|mk = si, rk),
= p(|rk|, arg{rk}||mk|, arg{mk}, rk), (10)

where in step (a), the conditioning with rk is valid because rk is
independent of rk, given mk and θk (see (4)). We now study the
amplitude and phase of the received signal rk separately. The
magnitude of the received signal can be written as follows

|rk| =
∣∣mke

jθk + nk

∣∣ (11a)

=
∣∣∣|mk| ej(θk+arg{mk}) + n′

ke
j(θk+arg{mk})

∣∣∣ (11b)

= ||mk|+ n′
k| , (11c)

=

√
(|mk|+ Re{n′

k})
2
+ (Im{n′

k})
2
, (11d)

≈ (|mk|+ Re{n′
k}) , (11e)

where (11c) results from |ejθk | = 1, n′
k , nke

−j(θk+arg{mk}),
and the simplification in (11e) arises from the high SNR approx-

imation. The phase of the received signal can be written as

arg{rk} = arg{mke
jθk + nk},

= arg{|mk| ej(θk+arg{mk}) + n′
ke

j(θk+arg{mk})},
= arg{|mk|+ n′

k}+ θk + arg{mk},

= arctan
Im{n′

k}
|mk|+ Re{n′

k}
+ θk + arg{mk},

≈ Im{n′
k}

|mk|
+ θk + arg{mk}, (12)

where, in (12), a high SNR approximation has been used. Now
the received signal can be expressed approximately in terms of
amplitude and phase r.v.s as follows

arg{rk} ≈ arg{mk}+
Im{n′

k}
|mk|

+ θk,

|rk| ≈ |mk|+ Re{n′
k}, (13)

where Im{n′
k}/ |mk|+ θk is the additive Gaussian noise in the

phase channel, and Re{n′
k} is the additive noise in the amplitude

channel. Thus the observation at the kth time instant is equiva-
lently a 2-tuple [|rk| − |mk| , arg{rk}− arg{mk}] comprising of
amplitude and phase of the received signal. The PDF of this
tuple, given mk and rk, is a bivariate Gaussian distribution.
Conditioning with respect to rk occurs because σ2

p is the variance
(from tracker/estimator) that is a function of rk. This conditional
PDF has mean

E[|rk| − |mk| , arg{rk} − arg{mk}|mk, rk]

= E[Re{n′
k},

Im{n′
k}

|mk|
+ θk] = [0 0]T ,

and covariance

E

[
|ℜ{n′

k}|2 ℜ{n′
k} (|mk|θk + ℑ{n′

ik})
ℜ{n′

k}
(

Im{n′
k}

|mk| + θk

)
| Im{n′

k}
|mk| + θk|2

|mk, rk

]

=

[
N0/2 0
0 N0

2|mk|2
+ σ2

p

]
.

Hence, the conditional PDF is written as

p(|rk| , arg{rk}|mk, rk) =
e

−1
2

 (|rk|−|mk|)2
N0
2

+
(arg{rk}−arg{mk})2

N0
2|mk|2

+σ2
p



2π

√(
N0

2

) (
N0

2|mk|2
+ σ2

p

) ,

(14)
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where σ2
p is a function of mk and rk, and is known to the

detector. Based on the joint observation of phase and amplitude
of the received signal, the ML decision rule can be expressed
using (10) as

ŝk = argmax
i∈{1,...,C}

P (|rk| , arg{rk}|si, rk)

= argmin
i∈{1,...,C}

(|rk| − |si|)2

N0/2
(15)

+
(arg{rk} − arg{si})2

σ2
p + N0

2|si|2
+ log

(
σ2

p +
N0/2

|si|2

)
,

This ML decision rule can be regarded as a joint amplitude
and phase detector that involves a weighted combination of the
amplitude and phase differences between the received signal and
all symbols in the constellation. The log(·) term in (15) may
be removed since it has negligible influence on the decision in
practical scenarios..

We denote the detector in (15) as GAP-D. Note that by
splitting the received signal rk into its amplitude and phase
components, the derivation of the ML does not involve an
explicit marginalization with respect to the phase error. In order
to visually understand the decision rule in (15), the decision
regions employing GAP-D and FOS-D are presented in Fig.
1(a), 1(b) and 1(c) for 16-QAM, a fixed phase error variance
of σ2

p = 1 × 10−2 rad2, and SNR values of 12 dB and 30 dB.
Some properties of GAP-D are as follows:

• It can be verified that GAP-D reduces to the Euclidean
distance based detector in its polar form when σ2

p → 0
in (15).

• As σ2
p → ∞ for a given SNR, signal points with equal

energy become indistinguishable, and the detector is essen-
tially an amplitude (or energy) detector. This corresponds
to the case of completely incoherent systems.

• In high SNR scenarios N0 → 0, GAP-D discards symbols
that have large amplitude difference relative to the received
signal amplitude. It only considers a smaller subset of
symbols that have relatively small amplitude difference with
respect to the received signal. The transmitted symbol is
determined from this subset based on phase difference with
respect to the received signal.

• The ML detector remains unchanged if both the signal and
noise are scaled by the same constant value for a given
phase error variance. In summary, the ratio between the
AWGN variance and phase noise σ2

p characterizes the ML
decision rule for such systems.

F. Two-Step Amplitude-Phase Detector (TS-D)

We now consider the amplitude-phase detector that was de-
rived in [25] where in signal detection is carried out in two
step. This detector maybe viewed as a sub-optimal version of
GAP-D. The first step involves an amplitude detection based on
the received signal. This renders a subset Camp of the symbol
constellation C that are closest to the received signal in terms of
its amplitude. Then based on Camp, phase detection is performed
wherein the final symbol chosen is closest to the received signal
in terms of phase. As we shall see in the sequel, this detector
has SEP performance similar to that of GAP-D at high SNR,
where amplitude ambiguity of the received signal is small and the

uncertainty primarily lies in phase. This detector does not make
any explicit assumptions on the phase error PDF. We denote this
detector as TS-D.

G. Metric as Weighted Sum of Central Moments

For the ML detector presented in (7) and (15), assumptions
are made about the PDF of the phase error obtained after
compensation of the received signal with a phase estimate
from a phase-tracker/smoother. Note that the phase error, after
compensation by a filter, is approximately Gaussian only in
some scenarios. This includes cases where the amplitudes of the
transmitted symbols are the same, when the phase estimation
is conditioned on the amplitude of the transmitted symbols or
when the estimator is locked, i.e, the estimated phase closely
follows the actual phase. In fact, an accurate derivation of the
phase error PDF for any constellation is an analytically difficult
problem. We present a brief argument for why this is the case in
general. Let P (θk) denote the PDF of the phase error θk, which
is obtained after compensating using a phase-tracker/smoother in
the kth time instant for a general non-equal energy constellation
C. Then we have

P (θk) =
∑
rk

∑
si∈C

P (θk|si, rk)P (rk|si)P (si). (16)

Upon using any practical trackers/smoothers, the posteriori PDFs
P (θk|si, rk) (16) will have statistics that depend on the instan-
taneous SNR or the magnitude of si and rk. Hence, the PDF
in (16) becomes a mixture of posteriori PDFs, which in general
may not be analytically tractable. Therefore, it is of interest to
determine an (approximate) ML decision rule without making
restrictive assumptions on the distribution of the phase error θk.

Adopting the system model in (4), consider the problem
of data detection in the kth time slot after compensating the
received signal with a phase estimate (5). Assume θk to be the
phase error that is drawn from an arbitrary probability distri-
bution. Consider the likelihood function f(θk) , p(rk|mk =
si, θk) given as

f(θk) =
e−

|rk−sie
jθk |2

2N0

(2πN0)1/2
,

Then, by performing Taylor series expansion of the likelihood
function f(θk) about θk = θ̂k ( where θ̂k the mean of θk), (5)
can be rewritten as

argmax
i∈{1,...,C}

Li(k) = argmax
i∈{1,...,C}

∫ π

−π

[
f(θ̂k)

0!
+

f{1}(θ̂k)

1!

×(θk − θ̂k) +
f{2}(θ̂k)

2!
(θk − θ̂k)

2 + . . .

]
× p(θk|mk = si, rk)dθk,

= argmax
i∈{1,...,C}

1

(2πN0)1/2

[
f(θ̂k)M0

0!
(17)

+
f{1}(θ̂k)M1

1!
. . .+

f{n}(θ̂k)Mn

n!
+ . . .

]
.

That is, the decision rule in (5) is equivalent to the maximization
of the weighted sum of Mj , j ∈ Z+ over si ∈ {1, . . . , C}.
Here, Mj is the jth central moment of the phase error PDF,
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p(θk|rk,mk = si), and f{n}(θ̂k) is the nth derivative of f(θk)
evaluated about θk = θ̂k. For the Taylor series expansion in (17)
to converge to f(θk) for all values of θk, it is required that f(θk)
be an analytic function in θk, ∀θk ∈ R. This can be easily shown
as was done in our prior work [23]. For brevity, we refrain from
reproducing the proof of analyticity here.

In deriving (17), no assumptions are made on the distribu-
tion/statistics of θk or SNR. Thus, the problem of determining the
ML detector is reduced to estimating the central moments of the
posteriori PDF of θk. In its exact form, the new detector incurs
high computational complexity on the receiver as it requires
knowledge of all central moments of the posteriori PDF. Also
computing the nth derivative of f(θ̂k) is complex when n is
large. As we shall see in the sequel, the parametric form of
the ML detection rule in (17) allows a simple approximation by
using a finite number of terms that achieves good SEP perfor-
mance relative to the ML decision rule. However, assumptions
have to be made about the SNR and the phase noise variance
when the ML detector (17) is truncated, which is investigated in
the sequel.

1) Truncation of the Sum-of-Central-Moments Metric (SOM-
D): A straightforward approach to approximating the ML deci-
sion rule is to truncate the number of terms in the Taylor series
expansion, n, and investigate the various scenarios where the
approximate decision rule achieves SEP performance close to
that of the ML decision rule. Consider the case where the Taylor
series is truncated to n = 2; i.e., only the first three terms in
the optimal decision rule in (17) are considered. This case is
particularly interesting as it corresponds to scenarios where the
posteriori distribution of θk is unknown except for its mean and
variance. We first define an approximate SBS detection rule for
data over AWGN channel for n = 2 as

argmax
i∈{1,...,C}

Ai,2(k) = argmax
i∈{1,...,C}

[
f(θ̂k)M0

0! +
f{2}(θ̂k)σ

2
p

2!

]
, (18)

where f{1}(θ̂k)
1! M1 = 0 since the first central moment of any

r.v. is zero. This detector is referred to as SOM-D. The second-
order approximate ML rule in (18) consists of two terms; the
first term is the zeroth order term from the Taylor series and is
identical to the Euclidean distance based symbol detection rule.
The second term is the variance of the posteriori PDF of θk
weighted by the second derivative of f(θk) = p(rk|mk = si, θk),
which intuitively gives a measure of its sharpness or curvature
about rk = sie

jθ̂k .
In our prior work [23], an upper bound on the error for this

approximation was derived using the Taylor remainder formula.
Here we only recall the scenarios where the approximate decision
rule would have a large error relative to the original ML decision
rule (17): (a) the error in approximation is inversely proportional
to AWGN channel noise variance, (b) the error is directly
proportional to the variance of posteriori PDF of θk. Hence
SOM-D with 2 moments as in (18) is interesting for the following
scenarios: (a) low-to-medium SNR, low-to-high phase noise, and
(b) low-to-medium phase noise, low-to-high SNR.

Finally, we remark that the SOM-D may be truncated to n
terms at the cost of computational complexity. It is also possible
to determine the minimum number of moments n required to
make the approximate SOM-D close to the original rule in (17).
This value can be arbitrarily large for high phase noise variance
and SNR. Due to space restrictions, we refrain from reproducing

those results here, and refer interested readers to [23] for a deeper
analysis of this detector.

IV. SEP ANALYSIS FOR GAP-D

In this section, we derive analytical expressions for the SEP
performance of GAP-D for arbitrary constellations. Consider a
constellation with M symbol points that are equally likely and a
received signal model as in (4), where θk denotes the phase error
as before. The symbol error probability Pe for this constellation
is upper-bounded by averaging over all pair-wise symbol error
probabilities (union bound) [22] as follows

Pe ≤
1

M

M∑
i=1

M∑
j=1,j ̸=i

P (Eij) , (19)

where P (Eij) is the probability of a pair-wise symbol error
event. This corresponds to an the event where the received
symbol is not detected as symbol i, i ∈ {1, . . . ,M}, given
symbol i has been transmitted. More precisely, based on the
ML detector derived, the probability of pair-wise symbol error
event can be expressed as follows (dropping time index k)

P (Eij) = Pr (Lj < Li|si) ,

where the pair-wise symbol error event corresponds to metric
Lj associated with symbol j being lower than that for symbol
i. Let us examine the event corresponding to (Li − Lj > 0|si)
by first evaluating the difference ηij = Li − Lj that, using (15)
is given as

ηij = log

(
σ2

p + N0

2|si|2

)
(
σ2

p + N0

2|sj |2

) +
(|r| − |si|)2

N0/2
− (|r| − |sj |)2

N0/2

+
(arg{r} − arg{si})2

σ2
p + N0

2|si|2
− (arg{r} − arg{sj})2

σ2
p + N0

2|sj |2
.

Given symbol si has been transmitted, the amplitude and phase
of the received signal r from (13) are as follows

|r| ≈ |si|+ Re{n
′
},

arg{r} ≈ Im{n′}
|si|

+ θ + arg{si}. (20)

Based on (20), given the transmitted symbol si, ηij simplifies as
follows

ηij = log

(
σ2

p + N0

2|si|2

)
(
σ2

p + N0

2|sj |2

) − 2(|si| − |sj |)Re{n′}+ (|si| − |sj |)2

N0/2︸ ︷︷ ︸
,V1

+

(
Im{n

′
}

|si| + θ

)2

σ2
p + N0

2|si|2︸ ︷︷ ︸
,V2

−

(
Im{n

′
}

|si| + θ + arg{si} − arg{sj}
)2

σ2
p + N0

2|sj |2︸ ︷︷ ︸
,V3

.

(21)

In (21), given that symbol si has been transmitted, the term
denoted as V1 is a Gaussian r.v.. Consider the term denoted as
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V2 − V3 that can simplified as

V2 − V3 =

(
Im{n

′
}

|si| + θ

)2

σ2
p + N0

2|si|2
−

(
Im{n

′
}

|si| + θ

)2

σ2
p + N0

2|sj |2

− 2

(
Im{n

′
}

|si| + θ

)
(arg{si} − arg{sj})

σ2
p + N0

2|sj |2

− (arg{si} − arg{sj})2

σ2
p + N0

2|sj |2
.

At high SNR, σ2
p +N0/2|si|2 ≈ σ2

p +N0/2|sj |2, and hence the
term consisting Im{n′}/|si| + θ dominates. As a consequence,
V2 − V3 can be approximated as a Gaussian r.v.. Hence ηij is
approximated as a Gaussian r.v. whose mean and covariances are
derived in (22). As we shall see in the simulation section, this
approximation is appropriate for a wide range of SNR values.
Hence, the probability of the error event Pr (Li − Lj > 0|si) =
Pr (ηij > 0|si) can be approximated in high SNR scenarios as

Pr (ηij > 0|si) ≈ Q

 yij − E{ηij |si}√
E
{
(ηij − E{ηij |si})2 |si

}
 . (23)

Applying the union bound in (19), the probability of error for
this detector is upper-bounded as

Pe ≤
1

M

M∑
i=1

M∑
j=1,j ̸=i

Q

 yij − E{ηij |si}√
E
{
(ηij − E{ηij |si})2 |si

}
 . (24)

The argument of the Q function in (24) can be viewed as a
normalized distance measure (analogous to Euclidean distance in
AWGN), which can be used to determine the nearest neighbors
of a given symbol in the presence of phase noise.

A. SEP at High SNR and Error Floors

In order to determine SEP at high SNR and the error floor for
a given constellation, the probability of error (24) can be sim-
plified in high SNR scenarios by evaluating lim

N0→0

(|si|−|sj |)2
N0/2

,
lim

N0→0
aij = 0 for equal-energy symbol points and letting

lim
N0→0

aij → ∞ for non-equal energy points. Hence, the value

of Pr (ηij > 0|si) in (23) tends to zero for asymptotically high
SNR for any pair of symbol points with non-equal energy since
Q(·) is a decreasing function of its argument. However, for any

pair of symbol points with equal energy, Pr (ηij > 0|si) from
(23) simplifies in high SNR as follows

lim
N0→0

Pr (ηij > 0|si) = Q


√√√√( (arg{sj} − arg{si})2

σ2
p

) . (25)

Hence, applying the union bound in (19) by considering only
those pairs of symbols with equal amplitude (energy), we obtain
the error floor as

lim
N0→0

Pe ≤
1

M

M∑
i=1

M∑
j=1,j ̸=i,
|si|=|sj |

Q


√√√√( (arg{sj} − arg{si})2

σ2
p

) .

(26)

Note that the residual phase noise variance, σ2
p, is generally a

function of SNR. Hence as SNR increases, σ2
p reduces until

it reaches a limit value, implying that the floor level depends
on the phase estimation algorithm. Additionally, we can make
some quick deductions about constellations and error floors from
(26). It can be inferred that a constellations with points that are
all at different distances from the origin (like a spiral shaped
constellation) may have a very low error floor. Further, if the
points in the constellation have the same amplitude, then they
should be separated by a large angular distance in order to avoid
an error floor.

V. SIMULATIONS

In this section, we present performance results of the proposed
detectors for uncoded data in the presence of strong phase noise
in terms of SEP versus Eb/N0 (SNR per bit), where Eb is energy
per bit. Note that the uncoded case has been considered only for
illustration purposes, and these metrics can be used for detection
in coded system as well [8]. We consider two scenarios for
evaluating the performance of the proposed detectors -

• In the first scenario, the phase error PDF is considered to
be Gaussian [6], [8], [26].

• In the second scenario, the phase noise is modeled as a
Wiener process (refer to (27)) [17], [19]. At the receiver,
an estimator is implemented followed by detection using
the metrics presented in section III.

A. Gaussian PDF Phase Error

In the first scenario, the phase error PDF is considered to
be Gaussian i.i.d. [6], [8], [26] with variance σ2

p . Two modu-
lation schemes with relatively different constellation order are
considered for study: 16−QAM and 256−QAM constellations.
For the numerical example presented in Fig. 2(a), transmitted

aij ,
(|si| − |sj |)2

N0/2
, bij , (arg{si} − arg{sj})2

σ2
p + N0

2|sj |2
, cij ,

σ2
p + N0

2|si|2

σ2
p + N0

2|sj |2
, yij , log

(
|si|2σ2

p + N0

2

)
(
|sj |2σ2

p + N0

2

)
E{ηij |si} = 1− (aij + bij + cij),

E
{
(ηij − E{ηij |si})2 |si

}
= E{L2

i |si}+ E{L2
j |si} − 2E{LiLj |si} − (E{ηij |si})2 ,

= 2 + 4aij + 2c2ij + 4bijcij − 4cij . (22)
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Fig. 2: Comparison of SEP performance between the various detectors and theoretical SEP for different constellations and σ2

p values - (a) 16 QAM and σ2
p =

10−2rad2 (b) 256 QAM and σ2
p = 0.5× 10−3rad2

symbols are drawn uniformly from a 16−QAM constellation,
and the variance of the phase error is fixed as σ2

p = 10−2rad2

[8]. For the example presented in Fig. 2(b), transmitted symbols
are drawn from a 256−QAM constellation, and the variance is
fixed as σ2

p = .5× 10−3 rad2.
Given the high variance of phase error, substantial gains can

be realized while using GAP-D and FOS-D compared to EUC-D
and VB-D for both constellations 2(a) and (b). The performance
of FOS-D and GAP-D are almost the same for all SNR and phase
noise variance values considered. This is because the Tikhonov
PDF and the Gaussian PDF are identical for phase noise variance
values of practical interest [7]. From simulating the performance
of SOM-D (with 2 moments) for 16-QAM, we observe that its
SEP performance is better than VB-D and EUC-D till about 18
dB, beyond which its performance blows up. Recall that the error
of truncation of SOM-D is large in scenarios of high SNR and
phase noise variance, and more moments have to be incorporated
in the decision rule. For the case of 256-QAM constellation with
SOM-D (with 2 moments), a similar observation is made beyond
an SNR of 34 dB. For both constellations, the performance
of the TS-D converges with that of the GAP-D and FOS-D
in the high SNR regime. This is expected since as the SNR
increases, ambiguity in the amplitude component tends to zero,
and the perturbation occurs only in the phase component. The
convergence of its performance is faster in the case of 16-QAM
compared to 256-QAM, given that the former is relatively less
dense.

In Fig. 2(a) and (b), we plot the theoretical probability of error
derived in (24), which is seen to be a tight upper bound for the
SNR values considered. Observe that in contrast to the traditional
union bound theory, the bound is also tight for high error rates,
which can be explained as follows: the contribution of the nearest
neighbors to the union bound, for a given transmitted symbol, is
significantly more dominant than the contributions from all the
other symbols, when we have both phase noise and AWGN. This
is because of the directional nature of phase noise. In general,
the bound can be seen to be tight whenever the phase noise
variance dominates the AWGN variance. From these figures, it
can also be seen that the error floor observed at high SNR can
be accurately predicted using the analytical result in (26). The

error floor arises in QAM constellations because of the presence
of symbol points that are of the same amplitude, and are not
separated by large angular distances.

B. Wiener Phase Noise Process

In the second scenario considered for simulations, the trans-
mitted symbols are assumed to be affected by Wiener phase
noise process. This type of noise typically arises from free
running oscillators at the transmitter and receiver [17], [19] and
is modeled in the kth time instant as

ϕk = ϕk−1 +∆k, (27)

where ϕk at k = 0 is a uniform r.v., and ∆k ∼ N (0, σ2
∆) is the

innovation component of the random walk process. The signal
received at a time instant is fed to an extended Kalman filter
(EKF) [19] to track its phase. The choice of EKF to be the phase
tracker is non-preferential in that we could use any algorithm
like particle filter or PLL for tracking ϕk. Note that the EKF
has structure and performance similar to that of a PLL and other
MAP estimation algorithms [27], and are approximate solvers
for the optimal nonlinear phase estimation problem [28].

Phase estimate ϕ̂k is first used to rotate the received signal
(thereby compensating for the Wiener phase noise). Then, this
estimate along with its variance (from the EKF), are used in the
detector to compute aposteriori symbol probabilities (denoted
as Papp(sk)) using the metrics: GAP-D, FOS-D, SOM-D, COL-
D, VB-D and EUC-D. Note that the variance of the phase
estimate σ2

p,k in time instant k, is a function of mk and rk,
and therefore changes with each time instant. Using aposteriori
symbol probabilities, a soft symbol ŝk is computed and fed back
to the EKF as follows

ŝk =
∑

∀sk∈C

skPapp(sk).

In the EKF, the soft symbol is treated as the true value of
transmitted symbols in order to compute the phase noise estimate
ϕ̂k and its variance. Iterations between the estimator and detector
continue till a maximum number of iterations has been reached
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(stopping criterion). After the stopping criterion is reached, the
detector computes the final hard decisions as

ŝk = argmax
sk∈C

Papp(sk).

For simulation results demonstrated in Fig. 3, data is drawn
uniformly from a 16-QAM constellation, and transmitted in form
of frames that are 10000 symbols long with 5 pilot symbols
being transmitted at the beginning of each frame. Further a pilot
symbol is transmitted every 15 data symbols resulting in an
overall pilot density of 6.5%. The variance of the innovation
component is set to σ2

∆ = 10−2rad2. For the results in Fig. 4,
data is uniformly drawn from a 256-QAM constellation, and a
pilot density of 6.5% is used. The innovation variance is set
to σ2

∆ = 0.5 × 10−3rad2. The maximum number of iterations
between the estimator and the detector in a time instant k is
fixed to 3 for both constellations.

From Figs. 3 and 4, the following observations can be made
about the performance of all detectors that work in conjunction

with an EKF: GAP-D and FOS-D perform significantly better
than all the other detectors considered as the SNR increases. In
fact, for both constellations, GAP-D outperforms FOS-D slightly
by about 1 dB at high SNR. COL-D performs better than all the
detectors in the low SNR regime owing to large sensitivity of the
EKF to decision feedback errors that are rampant at low SNRs.
However, with increase in SNR, the decision feedback errors
diminish and the gains from using GAP-D and FOS-D become
prominent. SOM-D and VB-D performs better than EUC-D at
lower SNRs, but they converge to the performance of EUC-
D at high SNRs. This is because the estimation error variance
decreases with increase in SNR, as a result of which the term
associated with the variance of the phase error in (18) and (9)
becomes significantly small.

Now, we compare the performance of GAP-D with an (ap-
proximate) optimal joint symbol-phase MAP estimator that have
been proposed based on Viterbi algorithm in [29] and the
BCJR algorithm in [30]. We implement this joint estimator
using SPA as in [17], and let the phase to assume D discrete
values: ϕk = {0, 2π/D, . . . , 2π(D − 1)/D}. Note that the
accuracy of the algorithm increases with increase in D. We set
D = 8C as in [30], where C is the size of the constellation.
For complexity reasons, we present the performance of the
optimal MAP only for 16−QAM in Fig. 5 for different values
of σ2

∆ = 10−2 rad2, 10−3 rad2. We observe that the perfor-
mance gap between GAP-D and the optimal MAP is around
1 dB for σ2

∆ = 10−3 rad2. This gap significantly increases for
σ2
∆ = 10−2 rad2 that results from the unreliable feedback from

the detector to the EKF due to high phase noise. Note that it is
possible to extend the premise of the GAP-D (with the estimator)
to the case where the phase error PDF is multi-modal.
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Fig. 5: Comparison of SEP performance between the GAP-D and optimal MAP
[29] for 16-QAM, σ2

∆ = 1× 10−3 rad2, 1× 10−2 rad2.

VI. CONCLUSIONS

In this work, we derived a joint amplitude-phase detector
(GAP-D) for detecting data in the presence of phase error that is
Gaussian distributed, which has an intuitive and simple analytical
form. We compared the SEP performance of GAP-D with other
metrics/detectors available in literature, and observed that GAP-
D and FOS-D can achieve significant SEP gains with respect to
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other existing detectors from literature such as COL-D, EUC-
D, VB-D. The GAP-D performs slightly better than FOS-D in
terms of SEP for some of the scenarios evaluated. To sum up,
significant performance gains can be achieved in terms of SEP
when the PDF of phase error is incorporated in the detector for
any constellations (especially higher order constellations).

Additionally, we showed that the ML data detector for sym-
bol by symbol detection in the presence of phase noise can
be formulated as a weighted sum of central moments of the
posteriori PDF of phase noise. We approximated the optimal
rule by truncating it to two terms (SOM-D) and observed that
this approximation renders SEP gains with respect to EUC-D
and VB-D for medium/high phase noise variance and low SNR.
Then based on GAP-D, we analytically derived SEP and error
floor for arbitrary constellations (which is not possible using
FOS-D [24]). This was shown to be a tight upper bound on the
SEP performance for all values of SNR considered. Also it was
inferred that error floor in the presence of phase noise arises due
to equal energy points in the signal constellation that are not
separated by large angular distances.

The simpler analytical form of GAP-D and its SEP character-
ization pave way for interesting research directions. Analysis of
probability of error derived helps derive constellations that are
optimal in the SEP sense, which is an ongoing research endeavor.
Using the probability of pairwise error event, we can analytically
derive the mutual information of a phase noise channel that
uses GAP-D (for e.g., codes with hard-decision decoding). The
detectors considered in this paper, which are also referred to
as soft metrics, can be used for computing branch metrics for
decoding in coded systems, which is also an ongoing effort.
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