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Figure 3.3: Statistically significant effects of driving experience on reaction times
and collisions in the unexpected scenario. Error bars show 95 % confidence inter-
vals.

actly the same initial situation, the variations in response were, as illustrated
in Fig. 3.2, large enough to recreate all three typical behaviors observed in
the six scenario variants of the pilot study: braking only and colliding, brak-
ing and applying early safe steering, and braking and applying late and more
aggressive steering. In total, nine drivers (19 %) applied ESC-relevant
maneuvering, defined as maneuvering that triggered ESC interventions, or
would have triggered interventions, had ESC been active in the truck.

Thus, the effective sample of ESC-relevant behavior in the unexpected
scenario was small, and possibly for this reason, no statistically significant
effects of ESC on scenario outcome were found. Instead, the main findings in
the unexpected scenario were those illustrated in Fig. 3.3, showing that the
variations in initial collision avoidance response could to a large extent be
attributed to differences in driving experience. As could be expected based
on previous literature [12,78], the experienced drivers exhibited faster brake
reactions, and here this difference was present also in the steering reaction
times. This, in turn, led to a notable (and statistically significant) difference
in collision frequency: 80 % of the novice drivers collided with the lead
vehicle, but only 32 % of the experienced drivers. In Paper I, it is proposed
that the faster steering reactions of experienced drivers could be attributed
to prior exposure, during normal driving, to rear-end conflicts where steering
was a suitable maneuver. Such exposure could increase the expectancy for
and experience of steering avoidance, and make this type of response a more
readily available option in the scenario studied here.

In total, eleven drivers (23 %) did not attempt evasive steering at all,
a phenomenon that is well documented from previous experiments and ac-
cident reconstructions [2, 49]. A relevant question is whether these drivers
would never apply steering in this type of situation. Here, a further analysis,
illustrated in Fig. 3.4 suggested that this may not be the case. It is known
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Figure 3.4: Least-squares fit of log-normal distributions to cumulative steering
reaction times, in the unexpected scenario. The shaded region shows the range of
times after lead vehicle brake light onset within which all collisions occurred.

that reaction times are often lognormally distributed [88], but Fig. 3.4 shows
that not only the reaction times to steering, but also the fractions of the
drivers who attempted steering at all (70 % and 82 %, for novice and expe-
rienced drivers, respectively) could be well explained by the same lognormal
distributions. In other words, the collected data were compatible with the
hypothesis that the drivers who did not steer simply had reaction times that
were so long that the collision occurred before steering initiation.

3.2 Results for the repeated scenario

In the unexpected scenario there were thus clear effects of driving experi-
ence, but not of ESC. For the repeated scenario, the opposite occurred. As
shown in Fig. 3.1, the repeated scenario frequently had drivers initiate steer-
ing avoidance from a position close to the lead vehicle (time to collision
between two and three seconds), giving a 76 % frequency of ESC-relevant
maneuvering1, and under these circumstances ESC was found to reliably im-
prove truck stability. Fig. 3.5 illustrates the observed statistically significant
improvements, in terms of maximum body slip angle (i.e. skidding; see
Fig. 3.2 for an illustration) and frequency of full control loss (departure
beyond a road shoulder, or a truck heading perpendicular to the road or
worse). There were no indications that these ESC benefits were due to learn-
ing effects (see Paper I for details). Interestingly, when analyzing the two

1The totality of ESC-relevant steering behaviors is shown on the cover of this thesis.
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Figure 3.5: Statistically significant effects of ESC on truck stability in the re-
peated scenario. Error bars show 95 % confidence intervals, which are here only
approximate, due to the data being non-normally distributed. The applied statisti-
cal tests, however, did not assume normality (see Paper I for details).

experience groups separately2, three out of four effects discernible in Fig. 3.5
remained statistically significant, but not the body slip angle effect for ex-
perienced drivers, thus suggesting a smaller benefit of ESC for these drivers.
Exactly why this occurred is not clear, but one possibility is that the control
strategies of the experienced drivers were less consistent with the built-in as-
sumptions of the ESC system. This could be due to the experienced drivers
having some very advanced steering strategies, but just as well to a tendency
of overly aggressive countersteering during skidding.

3.3 Comparing behavior between scenarios

Even if the reductions of skidding with ESC were smaller for experienced
drivers, ESC still reduced control loss significantly for both experience groups
separately. Why were none of these effects observed in the unexpected sce-
nario? If one wishes to prove the value of truck ESC systems, such observa-
tions would seem more useful, since the unexpected scenario is, arguably, a
better approximation of a near-crash situation in real traffic.

It may be that the lack of statistically significant effects was simply due
to the small effective sample of ESC-relevant behavior; an experiment with
hundreds of subjects may show significant stability improvements with the
system. However, there is another possibility that cannot be immediately
rejected: Driver behavior may have differed in some way between the two
scenarios, such that the ESC system was less capable of providing its intended
assistance in the unexpected scenario. Indeed, some authors have argued
that, in unexpected or unusual situations, behavior will shift to qualitatively

2Per-group analysis was carried out rather than testing for interactions, since ANOVA
assumptions were violated, necessitating the use of non-parametric tests.
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Figure 3.6: The top left panel shows the division of the observed steering behavior
into segments. I3 is the initial leftward evasive maneuver, and I4 is the subsequent
rightward alignment with the left lane (see Paper II for full details). The other
three panels show comparisons between unexpected avoidance (UA) and repeated
avoidance (RA), as well as the effect of repetition (RA 1-6), for the following
measurements: rate of 5◦ steering wheel reversals in I3 (top right), steering wheel
angle at t4 (bottom left), and maximum steering wheel angle rate in I4 (bottom
right). Error bars show 95 % confidence intervals for the mean.

different control modes, from the planned application of previously learnt
procedures, to more opportunistic or even random responses to the unfolding
situation [35].

This line of reasoning leads to the idea of comparing behavior between the
two scenarios. If it can be shown that unexpected and repeated scenario be-
havior is similar, it would seem likely that ESC benefits should be observed in
a larger study of unexpected maneuvering. Within the context of this thesis,
indications of behavioral similarity would also be valuable from another per-
spective: They would suggest that driver behavior models developed based
on the (much larger) set of repeated scenario data can be used to make pre-
dictions about unexpected situations. Additional statistical analyses were
therefore carried out. In order to ensure a meaningful between-scenario com-
parison, a selection process (described in detail in Paper II) was applied to
the recorded scenarios, leaving a rather small set of only eight drivers with
useful data from both scenarios.

Braking behavior in this data set was, as anticipated (see Section 2.3),
clearly different between the scenarios, with repeated scenario braking being
significantly earlier and harder. However, steering behavior was less affected.



3.3. Comparing behavior between scenarios 21

Figure 3.7: Individual steering behavior, retained between unexpected avoidance
(UA) and repeated avoidance (RA), for maximum steering wheel rate in segment
I4 (left panel), but not for steering wheel reversal rate in I3 (right panel).

As illustrated schematically in the top left panel of Fig. 3.6, there were some
typical features of the truck drivers’ steering responses, allowing a structured
quantitative description of the first evasion to the left, and the subsequent
rightward steering to align with the left lane. In this part of the maneuver, no
statistically significant differences were found between the two scenarios, in
terms of maximum steering wheel angles, maximum rates of steering wheel
movement, or steering wheel reversal rates (the frequency of steering
wheel corrections [61]). Also, there were no clear indications of learning with
repetition3. Fig. 3.6 shows a subset of the tests carried out.

Another relevant question is whether individual differences in steering
behavior were preserved in the shift from unexpected to repeated steering.
As exemplified in the left panel of Fig. 3.7, this was the case for maximum
steering wheel angles and rates: Most notably, the two drivers who applied
aggressive steering wheel movements in the unexpected scenario, did so to
similar extents also in the repeated scenario. However, as seen in the right
panel of the same figure, steering wheel reversal rates in the repeated scenario
were lower for most drivers. A decrease in reversal rate can be interpreted
as more smooth steering, providing a possible link to the concept of con-
trol modes, and to the idea of experience and expectancy leading to control
behavior which is more open-loop and smooth in nature [20,35].

3Statistical hypothesis testing of learning effects was not performed, but correlation
with repetition was |r| < 0.2 for all examined variables.
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3.4 Limitations of the statistical analysis

The analyses presented above provide partial answers to the research ques-
tions formulated in Chapter 1: ESC has been shown to enhance truck stabil-
ity in a repeated rear-end scenario, for novice and experienced drivers, but
slightly less for the latter group. Furthermore, there seems to be more sim-
ilarities than differences between behavior in the repeated and unexpected
scenarios, suggesting that it may be possible to generalize between the two
experimental settings. However, some clear limitations remain.

First, the division of the subjects into two groups, based on driving expe-
rience, is rather crude. Even if ESC provides support to the average novice or
experienced driver, this does not show that ESC is equally helpful for every
single individual. Indeed, for seven (29 %) of the twenty-four drivers in the
ESC experiment, average skidding increased slightly with ESC. Here, how-
ever, one runs into a problem of too little data. Six measurements with ESC
and six without is not enough to show a statistically significant effect of ESC
even for the driver where the difference between ESC off and ESC on was
the greatest. Currently, data are too scarce to clarify statistically whether
the observed between-driver differences in ESC performance were due to
any interesting differences in driver control strategies, or whether they were
just random occurrences caused by the natural variability inherent in hu-
man behavior. For example, the drivers concerned may just have happened
to initiate steering slightly later, on average, in the repetitions with ESC,
making the stabilization task faced in these repetitions more difficult. Given
such limitations in repeatability, it may be virtually impossible to study the
benefit of ESC for individual drivers using statistical analysis alone.

Second, one thing that statistical hypothesis tests can definitely not be
used for, is to demonstrate the absence of an effect4. Thus, the fact that no
statistically significant behavioral differences were found between the unex-
pected and repeated scenarios does not prove that there were no such differ-
ences. The value of the comparative analyses is further constrained by the
necessary limitations in the number of included drivers, and the exclusion of
the later, stabilization-oriented phases of steering, where behavior was more
diverse and less easy to quantify on a high level, such as in Fig. 3.6.

The remainder of this thesis will be devoted to showing how driver behav-
ior models can (a) be used to provide more positive and complete evidence
of behavioral similarity, and (b) allow a more detailed study of individual
driver behavior in relation to an active safety system such as ESC.

4In the terminology of statistical analysis: One can fail to reject the null hypothesis,
but one cannot prove it.



Chapter 4
Analysis of driver behavior using
models

In science, the term model generally refers to “a simplified description of a
system or process” [1]. In this sense, science often consists of constructing
and testing models, describing some specific systems or processes of inter-
est, either in terms of their internal functioning or their observable outcomes
(or both). The aim of driver behavior modeling is to provide such descrip-
tions of the systems and processes relevant to human vehicle driving. The
conceptual framework of Ljung Aust and Engström outlined in Chapter 1
clearly shares this aim, and could therefore be referred to as a conceptual
driver behavior model. Statistical descriptions of driver behavior phe-
nomena, such as those provided in Chapter 3, could be termed statistical
driver behavior models, and descriptions at a level of detail sufficient for
computer simulation will here be referred to as simulation-ready driver
behavior models1.

The first section of this chapter provides an overview of currently avail-
able simulation-ready models, summarizing the literature review in Paper III,
but with an emphasis on models of steering. The subsequent sections present
previously unpublished work, demonstrating the ability of an existing driver
model to reproduce the steering behavior observed in the ESC experiment
presented in the previous chapters. A final section then provides mathemat-
ical derivations relating this model to vehicle dynamics.

1Developers of active safety systems sometimes use the term driver model for referring
to a real-time estimate of a driver’s current state or intentions [41]. While such an estimate
is, in a sense, also a “description of systems or processes” related to the driver, this use of
the term is not adopted here.

23
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4.1 Existing models of near-accident driver

behavior

At the outset of this research project, it was clear that a wealth of driver
behavior models was already in existence. However, it was less clear how
many of these existing models had been tested in simulation of near-accident
situations, and, even more importantly, how many of them had been verified
to reproduce near-accident behavior of human drivers. Therefore, a system-
atic review of recent literature (publication year 2000 or later) was carried
out. Over 5000 database search hits were considered, and after a structured
filtering process, in which the scope was limited to models of behavior in
near-collision situations, around 100 relevant models remained. These mod-
els, describing driver braking or steering control behavior (sometimes both)
in reaction to a collision threat, were summarized and discussed in Paper III.

A rather surprising finding from the review was that, despite the large
number of existing models, actual simulation-based comparisons of models
have been very rare in the literature. Therefore, in Paper III, such com-
parisons were carried out between some of the reviewed models, in selected
traffic scenarios. These comparisons indicated that models may sometimes
be more similar to each other than what the model equations could be taken
to suggest. The most striking example concerns the timing of deceleration
initiation by a driver who is catching up with a slower or stationary lead
vehicle: The left panel of Fig. 4.1 shows how three models, mathematically
very different from each other, predict the same general pattern of how decel-
eration timing is affected by vehicle speed. As a further example, the right
panel of the same figure suggests that, in a simulated single lane change
scenario, all tested models of steering would have been equally successful at
avoiding collision with an obstacle at 40 m longitudinal position.

However, on a more detailed level, the steering behaviors illustrated in
the right panel of Fig. 4.1 clearly differ considerably from each other. All
of the models in the figure apply concepts from control theory [40] in or-
der to have the vehicle follow a predefined desired path, but they do so
in different ways. The Guo et al. [32] model uses a simple internal vehi-
cle model to calculate the steering that will remove the deviation between
predicted and desired paths at a single preview point ahead of the vehicle.
The MacAdam [57] model instead takes an optimal control approach, and
minimizes the predicted average path deviation in an entire preview inter-
val. The Sharp et al. [79] and Chatzikomis and Spentzas [10] models do not
use internal vehicle models, but instead measure the deviation between the
current forward direction of the vehicle and the desired path, and calculate
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Figure 4.1: Left: Timing of deceleration initiation as a function of speed, as
predicted by three models of braking in scenarios with a stationary or slower moving
lead vehicle (LVS and LVM, respectively). Right: Vehicle trajectories and steering
wheel angles predicted by four models of steering, in a single lane change scenario.

their steering wheel angles as weighted sums of errors in lateral position or
heading, at multiple preview points along this forward direction.

In terms of model validation, only very few of the braking models, and
none of the steering models, were found to have been compared to actual hu-
man behavior in unexpected critical situations. Some of the steering models
have been tuned to reproduce human steering in test track maneuvers such
as double lane changes but, as discussed in Chapter 1, it is not clear to what
extent such behavior is a valid approximation of real near-accident behavior.

4.2 The Salvucci and Gray model of steering

A model of steering that has not previously been tested in simulation of near-
collision situations, and was therefore not reviewed in Paper III, is that of
Salvucci and Gray [77]. This model is mathematically similar to the above-
mentioned models by Sharp et al. [79] and Chatzikomis and Spentzas [10], in
that it calculates its steering command as a linear combination of a number
of error terms. As illustrated in Fig. 4.2, the model uses the visual angles θn
and θf from the vehicle’s forward direction to one near point and one far
point, and applies a rate of change δ̇ of the steering wheel angle, aiming to
reduce the near point angle to zero and to keep the angles to both the near
and the far point constant over time:

δ̇ = knIθn + knPθ̇n + kf θ̇f (4.1)
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Figure 4.2: An illustration of the input quantitites used by the two-point visual
control model of steering, proposed by Salvucci and Gray [77]. Instead of defining
the sight point angles based on the lateral center of the truck, one could equally
well use the driver’s lateral head position, but then the target lane position would
also have to be a target position for the driver’s head, and not for the truck. The
model behavior is the same in both cases.

Compared to the other models mentioned above, this model is to a greater
extent based on prior knowledge regarding the types of visual information
that drivers use when steering, and how: There is empirical support both for
the choice of having visual input separated into near and far information [48],
and the choice of predicting the rate of change of the steering wheel angle [96],
rather than predicting the steering wheel angle directly.

4.3 Fitting the model to repeated scenario

behavior

Is the Salvucci and Gray model capable of exhibiting the type of steering
behavior observed in the ESC experiment described in Chapter 2? In order
to answer this question, optimization of the model’s parameters was carried
out, using a genetic algorithm (GA) [34,93], combined with least-squares
curve fitting. The aim of this parameter optimization was to have the model’s
steering match the human repeated-scenario steering as closely as possible
in the stabilization phase, defined here to begin at the moment when
the truck driver initiated the rightward steering movement to align with the
left lane (roughly corresponding to t3 in Fig. 3.6), and to end at whichever
occurred first of (a) the truck traveling 250 m after reaching the lead vehicle
(b) full control loss, or (c) truck speed falling below 5 km/h.

The optimized parameters were those mentioned in the previous section
(the distances Dn and Df to the near and far points, and the linear control
gains knI, knP, and kf), as well as a neuromuscular delay time parameter
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TR, from visual input to control output2. Additionally, two parameters were
included allowing for differences in the target lateral position Y in the left
lane (some drivers seemed to consistently steer further to the left than others)
and the distance X, after passing the lead vehicle, at which the target lateral
position was shifted to the middle of the right lane to initiate a lane change.

Optimization was carried out per driver, using the approach of hold-
out validation, whereby the repeated-scenario data for each driver were
randomly divided into one training set and one validation set, with six
repetitions of the scenario in each. In each driver-specific optimization, an
initial set of 50 parameter settings (in GA terminology, a population of 50
individuals) were selected at random, including values for all parameters
except the three linear control gains. For each of the 50 GA individuals, the
inputs to the model (θn, θ̇n, and θ̇f) were calculated, and linear least-squares
fitting was applied to find optimal values of knI, knP, and kf for the training
set. Next, the success of this model fitting was calculated for each individual,
in terms of the quantity R2, signifying the amount of variance in the data
explained by the model [23]. Values of R2 were computed separately for the
training and validation set. The values computed for the training set were
used as the fitness measure (the quantity to be maximized) for the GA.
Using tournament selection, individuals with high training fitness (high
values of R2 on the training set) were selected for inclusion in the next 50-
individual generation, and crossover between pairs of individuals (yielding
an offspring individual with some of the parameter values from one of the
parents, and the rest from the other), as well as small random mutations
were used to introduce variations. Optimization by this approach can, de-
pending on the flexibility of the model being fitted, lead to arbitrarily close
fits of the training set. To prevent overfitting, the final parameter setting
was therefore selected by finding the individual with the highest observed
fitness on the validation set. For full details on the methods mentioned in
this paragraph, see [93].

Preliminary optimization tests indicated that the exact values of Dn and
Df did not make a major difference for the model’s ability to fit the data.
Therefore, to reduce the number of free parameters, Dn and Df were fixed at
the median values of those obtained in tests where these parameters were not
fixed: 1.5 m and 82.5 m, respectively. Final optimization of the resulting six-
parameter model (knI, knP, kf , TR, X, Y ) resulted in an average R2 = 0.69 for
the validation set (R2 = 0.77 for the training set). Fig. 4.3 provides examples

2Salvucci and Gray [77] only indirectly discuss such a delay, and it is not clear whether
one was included in their model. However, the optimization here allowed TR = 0, i.e. no
delay, to occur.
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Figure 4.3: Comparison of stabilization steering behavior between human drivers
and the Salvucci and Gray model, in six example instances of the repeated scenario.
The specific scenario instances shown (with and without ESC) are selected to give
an impression of the average performance of the model. The dashed vertical lines
indicate the beginning and end of the stabilization phase, and β denotes maximum
body slip angle.

of the match between human and model steering, suggesting that the model
was able to reproduce the overall steering strategies, and that the two main
sources of variability that the model was not able to capture were (a) high-
frequency variations in the rate of steering wheel angle movement, and (b)
situations where drivers reduced steering wheel speed in the second or two
before full control loss (top left panel of Fig. 4.3), something which could be
interpreted as resignation in the face of obvious stabilization failure [44].

4.4 Testing the model on unexpected scenario

behavior

One question left open by the statistical analyses of Chapter 3 was to what
extent driver stabilization behavior was similar between the repeated and un-
expected scenarios. Here, the driver model was used to investigate this mat-
ter: For each of the 16 drivers who applied evasive steering in the unexpected
scenario of the ESC experiment, the model’s prediction of this steering was
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Figure 4.4: Comparison of stabilization steering behavior between human drivers
and the Salvucci and Gray model, in the unexpected scenarios experienced by the
same drivers as visualized in Fig. 4.3. Note the moderate maneuvering in the
middle panel, due to the early initiation of steering avoidance (cf. Fig. 3.2). The
dashed vertical lines indicate the beginning and end of the stabilization phase, and
β denotes maximum body slip angle.

calculated, using the model parameter values optimized for the same driver’s
repeated scenario behavior. Fig. 4.4 provides examples of the obtained model
outputs.

When taking all 16 drivers into account, the average R2 for the unex-
pected scenario was 0.34. This reduced average model performance seemed
to be due mainly to scenario instances such as that shown in the middle
panel of Fig. 4.4, where steering was moderate and almost no skidding oc-
curred. However, when including in the analysis only drivers reaching some
minimum body slip angle β in the unexpected scenario, the average model
fit increased, to R2 = 0.44 for β > 1◦ (13 drivers), to R2 = 0.59 for β > 2◦

(6 drivers), and to R2 = 0.63 for β > 3◦ (4 drivers).
These R2 values, together with the qualitative impression of the fit in

the leftmost and rightmost panels of Fig. 4.4 (note the possible signs of
steering resignation in the leftmost panel) can be taken to suggest that when
skidding occurred, drivers handled this in the same way in the unexpected
and repeated scenarios.

4.5 Relating the model to vehicle dynamics

While the Salvucci and Gray model has a relatively solid foundation in psy-
chology, compared to the models reviewed in Section 4.2, it may seem less
impressive from an applied engineering perspective. Most notably, in con-
trast with the Guo et al. [32] and MacAdam [57] models, it does not include
an internal vehicle model. It is known that drivers adapt to the dynamics of
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Figure 4.5: Illustration of the mathematical quantities used in Section 4.5.

their vehicle, such that externally measured vehicle behavior remains roughly
constant across vehicles for a given driver [58], and an important benefit of
internal vehicle models is that they allow modelers a cost-efficient means of
accounting for this phenomenon: Instead of collecting new human behavior
data for every vehicle, something which seems especially undesirable in a
truck context, where the variety of vehicle combinations is so large, one can
simply measure the dynamic properties of a given new vehicle and feed these
to an existing driver model. Here, a first sketch will be provided of how the
Salvucci and Gray model can possibly be extended in this direction.

Consider a situation where a vehicle is initially (time t = 0) at the driver’s
target lane position y = 0, with a heading ψ = 0 along a straight road,
but with a non-zero steering wheel angle δerr. The resulting yaw rate of the
vehicle can be approximated by the steady-state response of a linear bicycle
model [39]:

ψ̇ =
Gvxδerr

L(1 +Kv2x)
(4.2)

Conversely, the steering wheel adjustment that the driver should apply in
order to correct the vehicle’s rotary motion can be written:

∆δ = −δerr = −L(1 +Kv2x)

Gvx
ψ̇ (4.3)

In these expressions, vx is the longitudinal speed, G is the steering gear
ratio (how much the front wheels rotate for a given rotation of the steering
wheel), L the wheel base (for a two-axle vehicle, the distance between front
and rear axle; see [97] for the equivalent wheel base for a three-axle truck
such as in the data collection experiment in Paper I), and K the understeer
gradient (quantifying how much the driver needs to increase the steering
wheel angle, after a speed increase, to maintain the same turning radius). The
non-zero yaw rate in Eq. (4.2) causes the vehicle’s lateral speed, relative to
the target lane position, to increase over time, and for small t the movement
can be written as ẏ = ψ̇vxt.
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What does this do to the movement of a sight point, such as the near or
far points of the Salvucci and Gray model? The angle to a sight point at
distance D ahead of the vehicle can be written θ = −ψ − arctan(y/D), and
differentiation yields:

θ̇ = −ψ̇ − Dẏ

D2 + y2
= −ψ̇ − Dψ̇vxt

D2 + y2
= −ψ̇

(
1 +

Dvxt

D2 + y2

)
(4.4)

Now, for the far point of the Salvucci and Gray model, where D ≫ y, this
reduces to θ̇ ≈ −ψ̇ (1 + vxt/D), and initially, while t is small enough for
vxt≪ D, the movement of the far point can thus be written simply as:

θ̇f ≈ −ψ̇ (4.5)

Insertion of this equation into Eq. (4.3) gives a new expression for the required
steering wheel correction:

∆δ =
L(1 +Kv2x)

Gvx
θ̇f (4.6)

If a driver wishes to achieve this correction in a steering wheel movement of
duration ∆t, his or her average rate of steering wheel rotation should be:

δ̇ =
∆δ

∆t
=
L(1 +Kv2x)

Gvx∆t
θ̇f (4.7)

This is now recognizable as the far point control law of the Salvucci and Gray
model, with kf = L(1 +Kv2x)/Gvx∆t.

The above analysis is basic3, but it nevertheless shows that the far point
control of the Salvucci and Gray model can be reasonable also from a vehicle
dynamics perspective. Not the least, Eq. (4.7) provides a prediction of how
driver adaptation to a new vehicle may be reflected in the kf parameter,
something which could be tested empirically.

Another possible prediction that could be made based on Eq. (4.7) con-
cerns the (1+Kv2x)/vx factor, suggesting that it would also make sense, from
a vehicle dynamics perspective, for kf to vary with vehicle speed. However,
there is of course no guarantee that drivers are this sensible in reality, and
it could be argued that it seems easier to learn a control behavior which is
speed-independent4. Again, this a matter for empirical testing.

3Perhaps especially in that it does not let the driver correct for his or her own neuro-
muscular delays.

4At least at high speeds, where (1+Kv2x)/vx will, for typical values of K [39,97], vary
considerably less than at low speeds.
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A final point worth noting is that, as a model parameter, ∆t has a much
clearer interpretation than kf , another benefit of a formulation such as in
Eq. (4.7). Furthermore, it does not seem unreasonable that the same ∆t
could be reused in a similar reformulation of near point control, thus possibly
allowing the replacement of also knI and knP with expressions based on ∆t
and vehicle properties.

However, there may be room for improvement of the Salvucci and Gray
model’s near point control also in other respects, and this will be one of the
topics of discussion in the next chapter.



Chapter 5
Discussion

This chapter begins with a discussion on the topic of how to model driver
steering behavior, with emphasis on the previously unpublished work pre-
sented in Chapter 4. Next, the most important empirical results of the thesis
are summarized, with one section on driver behavior in unexpected criti-
cal situations, and one on the impact of ESC in such situations. Two final
sections address issues related to driver behavior models in general: the dif-
ferent ways in which they can be put to use, and how to know when their
performance is acceptable for the intended purposes.

5.1 Modeling steering behavior

The results reported in Chapter 4 show that the Salvucci and Gray [77]
model was able to account for a considerable fraction of the variance in the
steering behavior of human drivers, in both repeated and unexpected stabi-
lization maneuvering. Specifically, the model seemed capable of capturing the
overall strategy of steering control during yaw instability, and the variance
left unexplained appears mainly to have consisted of high-frequency varia-
tions in steering wheel rate, possibly attributable to neuromuscular motor
noise [26]. In any case, these high-frequency variations are to a large extent
averaged out in the resulting steering wheel angle signal, and may thus be
less important in the context of vehicle stability and ESC evaluation.

In the literature, steering models have frequently been parameter-fitted
to reproduce driver behavior as measured on cone tracks and the like, but
to the author’s knowledge, this is the first time that a steering model has
been shown to reproduce human behavior in an unexpected critical situation.
Furthermore, considering also the previous work based on test track data,
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this may be the first time that a model has been fitted to behavior during
severe yaw instability.

In the literature review presented in Paper III, it was noted that there
seem to be two main perspectives on driver behavior modeling: Some re-
searchers take an applied, engineering approach, and are mainly interested
in models as cost-efficient, multi-purpose tools, which should provide ade-
quate approximations of behavior in as many different traffic scenarios as
possible. Other researchers are more interested in elucidating the psycholog-
ical mechanisms underlying observed behavior, and the Salvucci and Gray
model comes from this type of research context. Neither perspective is in-
herently superior to the other, but this author would argue that there are
at least two good reasons, also from an applied perspective, to aim for mod-
els which are psychologically plausible: (a) A model based on appropriate
underlying mechanisms may generalize better beyond the specific data set
to which it is fitted. (b) As exemplified by the Salvucci and Gray model,
insights on what perceptual information humans are using in their control
behavior may allow formulation of rather simple yet effective control laws1,
considerably less complex than many of the models reviewed in Paper III.

Thus, the two perspectives are by no means incompatible by definition,
and the mathematical derivations in Section 4.5 show how they could even be
completely aligned for the far point control of the Salvucci and Gray model.
However, conflicts do exist. For example, an internal vehicle model provides
a simulation engineer with an immediate prediction of how a driver could
be expected to behave in a new vehicle. However, a driver with such an
internal model of vehicle dynamics should arguably be able to successfully
perform brief maneuvers, such as lane changes, even without feedback from
the surroundings, but experiments have shown that humans are not capable
of such feats [11]. Furthermore, a desired path provides a simulation engineer
with a very flexible means of defining an arbitrary traffic scenario, but recent
neurobiological models of sensorimotor control (so far of much simpler tasks
than driving) seem to move away from this type of construct, instead placing
emphasis on more discretely defined goal states, and how humans are able
to reach these states with sufficient precision and minimal effort [26,86].

This latter idea, of good enough task performance with minimal effort,
was referred to as satisficing in Chapter 1, and it may be noted that the
Salvucci and Gray model does not include such a concept. This seems like a
limitation, especially when it concerns the knIθ control term, which suggests

1In the words of Neisser: “If we do not have a good account of the information that
perceivers are actually using, our hypothetical models of their ’information processing’ are
almost sure to be wrong. If we do have an account, however, such models may turn out
to be almost unnecessary.” [68] (quoted in [25])
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that drivers will react with steering as soon as the vehicle is not exactly at
the target lane position. Here, other models reviewed in Paper III may be
capable of more credible behavior [9,28,102]. This limitation of the Salvucci
and Gray model could be an important factor in explaining the inability
of the model, when fitted to scenarios with skidding, to reproduce well the
behavior in less critical steering (such as in the middle panel of Fig. 4.4); as
discussed in Chapter 1, satisficing should be expected to be more pronounced
farther away from the safety zone boundary.

5.2 Driver behavior in critical situations

If the inability of the Salvucci and Gray model to fit both severe and moder-
ate steering with the same parameterization could be remedied, for example
by inclusion of satisificing concepts, this would be an important finding, since
it would provide an indication that drivers’ control strategies may stay the
same in the transition from normal driving to critical maneuvering. The
analyses presented here do not allow such a conclusion, but they do accom-
modate the idea of behavioral constancy in another, partly related transition,
namely from unexpected critical maneuvering to expected critical maneuver-
ing. Considering the statistical tests in Paper II and the model-based anal-
yses in Chapter 4, the only clear indication of a change in control behavior
between the unexpected and the repeated scenario is the reduction in steering
wheel reversal rate during the initial leftward evasive maneuver (Fig. 3.7).
This suggests that if a change in control mode occurred, it did not affect the
overall control strategies, only the drivers’ performance in effectuating these
strategies, for example in the form of steering becoming more open-loop in
nature.

This is an important result in general, since it implies that premeditated
severe steering behavior may be a valid approximation of unexpected severe
steering. In this sense, the results presented here actually provide some sup-
port for the use of test tracks as an evaluation tool. Typical cone tracks
may still constrain driver decision-making more than many naturalistic sit-
uations, and avoiding collision with a cone may still be emotionally different
from avoiding collision with another road user. However, barring these limita-
tions, test track steering behavior (at least that of normal drivers, as opposed
to professional test drivers) may be similar to steering in unexpected critical
situations in real traffic. A method of addressing the mentioned limitations of
cone tracks could be to adopt repeated avoidance paradigms for the driving
simulator, such as the paradigm introduced in Paper I, developed according
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to the process outlined in Chapter 2 of this thesis2.

The statistical analyses in Paper I also confirmed some previous results
regarding decreases in reaction time with increases in expectancy or driving
experience [12, 30, 78]. However, the interpretation of non-steering reactions
as slow steering reactions (Fig. 3.4) may be a novel contribution.

An interesting question is how the concept of reaction times, which seems
valid close to the safety zone boundary, can be reconciled with the concept
of satisficing, as assumed to occur in the comfort zone. It may be that
some existing neurobiological models, describing response selection as noisy
integration of sensory evidence over time [71, 80], could account for the lack
of immediate reactions, typical for satisficing behavior, as very slow (or,
equivalently, improbable) reactions to low-intensity stimuli.

5.3 Benefits of ESC in unexpected critical

situations

Within the context of this thesis, the indications that drivers’ stabilization
control strategies were preserved between unexpected and repeated scenarios
also have a more specific implication, in allowing a more complete answer to
research question (A) from Chapter 1: Does heavy truck ESC provide a safety
benefit to normal drivers in realistic near-crash scenarios?

In Paper I (see also Chapter 3 above), the possibility could not be ex-
cluded of a qualitative change in behavior between repeated and unexpected
critical maneuvering. For this reason, the existence of stability improve-
ments with ESC could only be proven for the repeated scenario. However,
given the analyses in Paper II and Chapter 4, it now seems very likely that
these benefits should be present also during unexpected critical maneuver-
ing. Since there have been no naturalistic evaluations of heavy truck ESC3

(to the author’s knowledge), and previous demonstrations of ESC benefits
for heavy trucks have been based on test track tests or equivalent computer
simulations [47, 84, 98], this thesis may provide the first evidence of benefits
of heavy truck ESC for normal drivers in unexpected yaw instability.

2Interestingly, with regards to the emotional aspects of collision avoidance, the video
logs from the data collection experiment show some rather strong emotional responses to
the unexpected scenario, despite the lead vehicle being entirely fictitious.

3Current market penetration rates may still be too low for accident statistics stud-
ies [98].
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5.4 Applications for driver behavior models

The discussion above highlights one way in which simulation-ready driver
models can be useful, namely in the comparison of behavior between slightly
different contexts. Consider, for example, the two measurements for Subject
21 visualized in Fig. 4.3. It would have been difficult to compare these two
measurements in any meaningful way using metrics of the type adopted in
Paper II (see also Section 3.3 above). However, the fit of the driver behavior
model also seen in the figure rather convincingly demonstrates that the same
overall control strategy was at play in both cases.

Another important feature of models, in general, is their ability to provide
predictions about novel situations, either as interpolation between previ-
ously observed situations, or as extrapolation beyond them. Exactly how
well a given model will generalize to a new situation is of course difficult to
know beforehand, but this thesis provides one specific illustration of success-
ful prediction of previously unobserved behavior: The simple driver-vehicle
model described in Paper I and Section 2.3 above was able to predict average
steering initiation timing in the two simulated scenarios, something that was
crucial for successful scenario tuning. A less successful generalization was
seen in Chapter 4, where it was found that the Salvucci and Gray model pa-
rameterized for severe yaw instabilities did not extrapolate well to less severe
steering.

However, it seems to be the case that the Salvucci and Gray model,
parameterized as in Chapter 4, could provide useful interpolations, as in
predictions of behavior in severe yaw instabilities, similar to those observed
in the experiment. Thus, given another main strength of model-based testing,
the virtually unlimited repeatability, it would now appear possible to revisit
also research question (B) from Chapter 1: Is ESC more useful for some
drivers than for others? As noted in Chapter 3, the collected data set of
human behavior was too small, despite the repeated scenario paradigm, for
a conventional statistical analysis at the individual level. An even more
concrete illustration of this limitation is provided by again considering the
two measurements from Subject 21 in Fig. 4.3, and noting that the period
of oscillatory instability lasted longer with the ESC system than without
it. Was this finding due to some undesired effect of the system, or to other
factors, such as a higher initial speed or a later collision avoidance?

Fig. 5.1 provides a preliminary idea of how driver models can be used to
answer this type of question. Here, the model parameterization obtained for
Subject 21 has been used in a closed-loop simulation, with the same truck
model as in the data collection experiment, and it is clear that also in this
simulation there are considerable oscillations with the ESC system turned
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Figure 5.1: Example results of closed-loop simulation with the Salvucci and Gray
steering model, with parameters optimized using the behavior data from Subject
21 of the data collection experiment. This figure serves mainly to illustrate the
potential of simulation-based evaluation methods; full details are not provided here.

on. However, since it is possible to simulate exactly the same initial situation
both with and without ESC, it can be shown that these oscillations become
even larger without the system, giving a clear indication of the benefit of the
system in this specific situation. With this type of approach, it is possible to
study in detail how beneficial ESC is for different modeled drivers, something
that will be explored in forthcoming publications.

Finally, an increased knowledge about driver behavior in the form of a
quantitative model can also guide system development in itself. Here, the
good fit of the Salvucci and Gray model can be taken to suggest that even
if today’s ESC systems provide reliable improvements of vehicle stability,
there is still room for further improvement. Current ESC systems typically
assume that drivers make use of an internal vehicle model to translate a
desired vehicle motion into steering wheel angles [84, 91]. The Salvucci and
Gray model, on the other hand, suggests that drivers do not at all care about
exact steering wheel angles, but instead keep rotating the steering wheel as
long as the vehicle is not moving as desired. Such behavior can in some
circumstances clearly lead to overcompensation and oscillatory instability, as
seen in Figs. 4.3 and 5.1. An ESC system incorporating this type of model
could potentially achieve a better understanding of the driver’s intentions,
and could actively damp any overcompensatory driver behavior. Simulation
results for such a modified ESC system show promise (see Fig. 5.1), but
further investigation is needed in order to prove this concept in real driving.
More details are available in the corresponding patent application [60].
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5.5 Validating driver behavior models

An interesting question is whether the results discussed above constitute a
validation of the Salvucci and Gray model. As mentioned in Paper III,
this is another area where there may be a distinction between an applied
perspective and a more psychology-oriented one. From the point of view of
the simulation engineer, the good model fits obtained here, on the training
and validation sets, and on the previously unseen set of unexpected maneu-
vering4, can constitute a sufficient validation in the sense that the obtained
model parameterizations seem to provide a useful approximation of driver
behavior in situations with severe yaw instability. Other models could pro-
vide even better fits, in wider ranges of scenarios, and if it can be shown, as
here, that such a better fit does not seem to be due to overfitting, then these
models should be the tools of choice for the application at hand.

However, the Salvucci and Gray model can also be understood as making
some claims about underlying mechanisms, and it is important to note that
the model fits reported in Chapter 4 do not prove, for example, that human
drivers really use something like near and far points in their steering control.
Had the Salvucci and Gray model been utterly unable to fit the data, one
could have rejected the model, but anything else may simply be a result of the
model being flexible enough to achieve the fit [76]. In this sense, descriptive
science cannot prove models to be fundamentally true, only maintain a list
of models that have not yet been disproven5, and the concept of validation
is thus mainly relevant from an applied perspective.

If one wishes to study underlying assumptions, such as those of the
Salvucci and Gray model, in more detail, two important approaches would
be to: (a) compare the data-fitting abilities of the model to that of other
models, based on other underlying assumptions, while at the same time con-
trolling for the relative flexibilities of the various models [23,67]; (b) use the
model to make specific, and preferably somewhat unexpected, predictions,
and collect data which could refute these predictions [76].

As discussed in Paper III, regardless of perspective, testing and compar-
ison of simulation-ready models has so far been very rare within the field of
driver behavior, and surprisingly few modelers have even used such simple
concepts as R2 to quantify model performance. Thus, this appears to be an
area where much valuable progress could be made with relatively little effort.

4In this sense, the unexpected scenario data can be regarded as a type of test set [93].
5This argument is analogous to that made in Section 3.4, regarding the limitations of

statistical hypothesis testing.





Chapter 6
Conclusions and future work

The main results of this thesis concern the benefits of heavy truck ESC.
In a simulator study with professional truck drivers, it was found that an
on-market implementation of such a system reliably reduced skidding and
control loss. Conventional methods for statistical analysis proved these effects
in a novel instruction-based paradigm for repeated critical collision avoidance.
Additional analyses, involving both statistical testing and driver modeling,
provided indications that drivers’ control strategies for vehicle stabilization
in the repeated scenario were the same as in an unexpected critical scenario.
This result has important implications in the area of active safety evaluation;
replicating the study using experiments with larger number of drivers appears
recommendable. Here, the result has been used to argue that the observed
benefits of heavy truck ESC should be present also in unexpected critical
situations, a hypothesis for which this thesis may thus provide the strongest
evidence to date.

Variations in behavior between drivers has been another object of study.
The simulator study confirmed previous findings of decreasing reaction times
to hazardous events with increasing driving experience. A possibly novel con-
tribution was the demonstration that drivers who collided instead of applying
steering avoidance (something which has been observed also in previous re-
search) may have done so because of very long reaction times to steering,
rather than because of a complete inability of exhibiting critical steering col-
lision avoidance. Continuing with the theme of behavioral variability, the
question of whether ESC is equally useful for all drivers has also been ad-
dressed to some extent. The statistical analyses suggested that, at a group
level, novice drivers had a larger benefit of ESC than experienced drivers.
Preliminary illustrations have been provided regarding how closed-loop sim-
ulation with driver models can be used to investigate such effects in more
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detail, even at the level of individual drivers.
Another central part of this thesis has been an extensive literature review

of driver models applicable in such simulation-based research. An important
insight from the review was that even though there exists a very large number
of competing and seemingly different models, actual behavior may not always
vary as much between models as the model equations may appear to suggest
at a first glance. Furthermore, it was found that the ability of existing driver
models to reproduce the behavior of human drivers in the relevant crash
scenarios has only been investigated for very few models. Therefore, increased
efforts regarding model validation and comparison can be recommended.

Here, in what may be the first successful parameter-fitting of a driver
model to unexpected critical steering behavior, some validation has been pro-
vided of the two-point visual control model of steering, originally proposed
by Salvucci and Gray [77]. However, the fitted models failed to generalize to
situations with less severe steering. Extending the Salvucci and Gray model
with satisficing capabilities is suggested as a possible means of improving
its generality. Other possible directions of future work include comparison
of the model’s performance with that of other models, as well as empirical
work with the potential of disproving the model’s underlying assumptions.
Also, mathematical derivations have been provided that link the model’s far
point control behavior to vehicle dynamics, leading to some specific predic-
tions of how this control behavior may be affected by vehicle properties and
vehicle speed. These predictions could be tested experimentally, and similar
mathematical derivations could also be attempted for the near point control
behavior of the model.

Finally, another important future challenge is to verify that the stabiliza-
tion steering behavior observed here is not specific to the driving simulator
context. If drivers can be shown to exhibit this type of behavior also in re-
sponse to yaw instabilities of a real vehicle, this would provide even stronger
evidence for the benefits of heavy truck ESC. It would also provide further
support for the idea presented here, that it may be possible to improve cur-
rent ESC systems by replacing their driver models with something more
similar to the Salvucci and Gray model.

This possible potential for improvement could not easily have been iden-
tified on the test track, at least not with the methods typically used today.
In that sense, this thesis has also provided an illustration of the importance,
for developers and testers of active safety systems, of properly studying the
behavior of real drivers, in the near-accident situations being targeted.



Bibliography

[1] Oxford dictionaries online.
Accessed 2013-03-07: http://oxforddictionaries.com.

[2] L. D. Adams, Review of the literature on obstacle avoidance maneu-
vers: braking versus steering, Tech. Report UMTRI-94-19, The Uni-
versity of Michigan Transportation Research Institute, 1994.
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