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Abstract

A two-dimensional fluid-dynamics model is applied to analyze seepage through
selected isothermal, saturated porous media. Confined flow domain simulations are
treated in order to predict the velocity vector for constant and varied cross-section
areas. Darcy-Brinkman and Forchheimer-Brinkman models are applied for selected
flow domains. Both the uncoupled and the fully coupled solver methods are used to
solve the system of equations for the flow field by using the fluid dynamics analysis
package FIDAP (Fluid Dynamics Analysis Package, 1996). The FIDAP 7.61 is a
computer program using a discretization method based upon the finite element
method (FEM). The numerical solution of the unconfined flow is beyond the scope of
this study. :

A new analytical solution (Sharif’s equation) with the incorporation of the nonlinear
flow equation (Forchheimer’s equation) is proposed for free surface unconfined flow
in porous medium. The solution is compared with the available analytical solutions
for free surface flow in a simple rectangular earth dam.

Seepage stability analysis of the soil particles is done in order to make a comparison
of the effects of linear and nonlinear flow equations on the formulation of the
relationship between the flow velocity and the hydraulic gradient in confined and
unconfined flow domains.

Analytical solutions are also used for the chosen flow domains in order to estimate the
accuracy of the numerical solutions. No significant differences were observed
between the analytical and numerical solutions of the Darcy and Forchheimer models.
However, a comparison of the theories of Dupuit and Polubarinova-Kochina showed
different analytical solutions for the selected unconfined flow face with phreatic
surface. The results of the proposed analytical solution (Sharif’s equation) for the free
surface were in good agreement with recent work. The effect of the nonlinear
resistance term of the proposed solution was obviously in predicting the value of the
hydraulic gradient at turbulent flow state. The resultant hydraulic gradient by the new
solution differ from that by the available analytical solutions.

For confined flow problems no differences are found between the Darcy-Brinkman
and Forchheimer- Brinkman models in numerical solutions for low flow velocities
(laminar). However, where a turbulent state dominates the flow domain, for which
Darcy’s law is not valid, significant differences are found between the linear and
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nonlinear models in both analytical and numerical solutions. Hence, the results
verified that Darcy’s law is not applicable beyond the limit of Re > 10.

Keywords: Porous medium, Seepage, Free surface, Stability analysis, Finite
element modeling
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Summary

Fluid flow in porous media is a fundamental fluid mechanics problem that is of
interest to scientists and researchers in many research fields. Nowadays there is a
growing interest in fluid flow through porous media, due to heat transfer and pollutant
transport problems (Casamitjana and Roget, 1988; Yu et al, 1991; Mendoza and
Zhou, 1992).

An accurate description of the flow field is essential to the design of earth-fill and
rock-fill dams. Filter criteria is formulated in terms of the properties of the flow
domain. The stability of the downstream slope for an earth-fill dam stipulate a
comprehensive study of the seepage flow, position of the phreatic-line and the exit
point. Knowledge of the flow field in porous media is also essential to research on
environmental problems associated with heat transfer and pollutant transport.

Many studies have been conducted to describe the flow of water through porous
media in general. The solution of an appropriate equation, recently published, makes
it possible to obtain estimates of pore-water pressure and seepage quantities in
practical circumstances.

The finite element method (FEM) has been the main and most widely used numerical
procedure in solving seepage problems in porous media, for the past ten years (Desai,
1971). Before the FEM became the most powerful method for solving such partial
differential equations, much works had been done in terms of the finite difference
method (Desai, 1971; Remson, 1971).

A two-dimensional fluid dynamic model was applied in this work to analyze seepage
through selected isothermal, saturated porous media. Confined flow domain
simulations were treated in order to predict the velocity vector for constant and varied
cross-section areas. Darcy-Brinkman and Forchheimer-Brinkman models were
applied for a selected flow domain. Both the uncoupled and the fully coupled solver
methods were applied to solve the system of equations for the flow field by using the
fluid dynamics analysis package FIDAP [Fluld Dynamic Analysis Package, (1996)].
The FIDAP 7.61 is a computer program using a discretization method based upon the
finite element method (FEM).

A new analytical solution for free surface unconfined flow in porous medium with the
incorporation of the nonlinear Forchheimer equation was proposed in this study to
predict the shape of the phreatic line and the exit hydraulic gradient.

Seepage stability analysis of the pore particles was done in order to make a
comparison of the effects of linear and nonlinear flow equations on the formulation of
the relationship between the flow velocity and the hydraulic gradient in confined and
unconfined flow domains.



The flow domain of interest is assumed to be homogeneous and isotropic. The fluid
and the solid are in thermal equilibrium. Two averaged quantities are infroduced to
derive the porous flow equations. In order to maintain consistent boundary conditions
at fluid and porous media boundaries, the equations for both the fluid and the porous
media are solved in terms of volume averaged quantities. Input files were used for
two-dimensional linear, steady-state analysis. '

Analytical solutions were formulated for the chosen flow domains in order to estimate
the accuracy of the numerical solutions. No significant differences were recognized
between the analytical solution and the numerical solution of the Darcy and
Forchheimer models.

In comparison between analytical solutions for the unconfined flow with phreatic
surface, the results differ for different theories (Dupuit and Polubarinova-Kochina
solutions). The results of the proposed solution was in good agreement with recent
work. The proposed solution (Sharif’s equation), showed obviously the effect of the
nonlinear resistance term at different flow states. The predicted exit hydraulic gradient
by the proposed solution differ from that of the available analytical solution.

No differences were found between the Darcy-Brinkman and Forchheimer- Brinkman
models in numerical solutions for low flow velocities (laminar). However, where a
turbulent state dominates the flow domain, for which Darcy’s law is not valid,
significant differences were found between the linear and nonlinear equations in both
analytical and numerical solutions. Hence, the results verified that Darcy’s law is not
applicable beyond the limit of Re > 10. The predicted exit point of the phreatic line
was also obtained in the simulation.
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List of Symbols

Roman letter

A Ccross section area

A ‘a parameter to compensate for the viscosity value in the numerical model
of the finite element method

A cross section area of the flow domain

a a constant in the Forchheimer equation

a, a parameter in the Polubarinova-Kochina solution |

a a parameter in the Polubarinova-Kochina solution and has a value

between 0-0.5

B boundary of the descritized domain

B inertia coefficient in the numerical model

b a constant in the Forchheimer equation

b height of the rectangular flow domain

b a parameter in the Polubarinova-Kochina solution and has a value
between 0-0.5

c a parameter in the Polubarinova-Kochina solution

C a constant in the cylindrical flow equations

C, a constant in the Forchheimer equation for the cylindrical flow domain
C, a constant in the Forchheimer equation for the cylindrical flow domain

G experimental coefficient in the Hazan equation

Cp packing coefficient in the Stokes equation

c, product of the packing coefficient in the Stokes equation with
experimental coefficient in the Hazan equation

c a constant in the Forchheimer equation

cy constant of the ideal gas

c a parameter in the Polubarinova-Kochina solution and has a value
between 0-1.0

c’ constant of the integration in the general Darcy law

¢ constant of the integration for the proposed nonlinear free surface flow
équation (Sharif’s equation)

D exact solution of the difference equations

Dis¢ size of the filter particles that hold the base-soil

Dis, = size of the base soil particles that filter seeping water

Dygst, size of the base soil particles that subjected to seepage force

d grain diameter ‘ ‘

d, significant particle'size in Solvik formulation for the turbulent hydraulic

© conductivity V :
dio sieve opening diameter where 10% of the tested materials would pass
dsp sieve opening diameter where 50% of the tested materials would pass

E electric potential
e void ratio
F a vector term that includes the effect of the body forces and boundary



=y

ST Q% m

conditions in the solved nonlinear algebraic equations.

total seepage force in confined saturated flow

flow function in the Engelund solution of the nonlinear equation
function in the Polubarinova-Kochina solution for a simple rectangular
earth dam

buoyancy force term in the force balance equation for unconfined flow
drag force term in the force balance equation for unconfined flow
friction force term in the force balance equation for unconfined flow
gravity force term in the force balance equation for unconfined flow
seepage force term in the force balance equation for unconfined flow
body force vector term in the numerical model

body force tensor term in the numerical model

gravitational acceleration

gravity vector term in the numerical model

specific gravity of the soil in the stability criteria, (G, = /.

total hydraulic head in the Darcy law

upstream boundary condition in the Polubarinova-Kochina solution
piezometric head in the incompressible Navier-Stokes equation for fluid
flow in porous medium

elevation above the reference level in the Solvik equation

downstream boundary condition in the Polubarinova-Kochina solution
upstream water head

downstream water head

falling head in the Darcy law for the confined flow

falling head in the Dupuit approximation for the free surface unconfined
flow :

falling head in the Forchheimer equation for the confined flow

falling head in the proposed solution at laminar state

falling head in the Polubarinova-Kochina solution for the free surface
flow in a simple rectangular earth dam

falling head in the proposed nonlinear solution for the free surface
unconfined flow

exit point elevation of the phreatic line above downstream water level in
the Polubarinova-Kochina solution 4

falling head in the proposed solution at turbulent state

imaginary root of the hodograph function in the Polubarinova-Kochina
solution ,

negative hydraulic gradient in the Darcy law

hydraulic gradient vector in the general Darcy law

current density in the flow of electricity equation in a conducting medium
negative hydraulic gradient in the Darcy solution for the confined radial
flow

negative hydraulic gradient in the Forchheimer solution for the confined
radial flow

negative hydraulic gradient in the proposed solution for the free surface
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unconfined flow at laminar state

negative hydraulic gradient in the proposed solution for the free surface
unconfined flow at turbulent state

negative hydraulic gradient in the proposed solution for the free surface
unconfined flow

negative exit gradient in the unconfined saturated flow

negative critical hydraulic gradient in the confined saturated flow

unit vertical vector in the stability criteria for the confined and
unconfined saturated flow

hydraulic conductivity or coefficient of permeability for the confined and

~ unconfined free surface flow equations

hydraulic conductivity in the x-direction

hydraulic conductivity in the y-direction

hydraulic conductivity in the z-direction

electrical conductivity in flow of electricity equation in a conducting
medium

turbulent hydraulic conductivity in the Solvik equation

matrix form of the linear part of equation system in the numerical model
matrix form of the nonlinear part of equation system in the numerical
model

complete elliptic integral of the first kind in the Polubarinova-Kochina
solution for a simple rectangular earth dam

physical or intrinsic permeability in the confined and unconfined flow
equations

intrinsic permeability in the x-direction

intrinsic permeability in the y-direction

intrinsic permeability in the z-direction

intrinsic permeability vector in the general Darcy law

intrinsic permeability tensor in the numerical model

a parameter in the Polubarinova- Kochma solution for a simple
rectangular earth dam

length of the flow domain

length of the base of the dam in the Pol ubarinova- Kochma solution
matrix form of the inertia terms in the numerical model

slope inclination ratio in the Solvik equation

power of the Forchheimer term in the numerical model

power of the quadratic resistance term in the confined and unconfined
flow equations

number of the nodes in the finite difference method

numerical solution of the dlfference equations

porosity

number of the iterations in the finite element solution

power of the nonlinear resistance term in the Missbach equation
water pressure at the inflow side of a volume sand

water pressure at the outflow side of a volume sand
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applied boundary stress at the inflow elements in the finite element
simulation for the rectilinear flow problem

applied boundary stress at the outflow elements in the finite element
simulation for the rectilinear flow problem

applied normal boundary stress at the inflow side in the finite element
simulation for the radial flow problem

applied normal boundary stress at the outflow side in the finite element
simulation for the radial flow problem »

dynamic pressure term in the Navier-Stokes equation for flow in porous
medium

upstream dynamic pressure in the Darcy equation for steady state flow
without free surface in porous medium

downstream stream dynamic pressure in the Darcy equation for steady
state flow without free surface in porous medium

dynamic pressure inside a well

boundary condition pressure at x =0

boundary condition pressure at x = L

fluid pressure tensor in the numerical model

total discharge flow through a cross sectional area of a porous medium
discharge per unit length of the well in the Engelund solution for the
nonlinear flow equation

discharge per unit width obtained from the Darcy equation for the
rectangular and cylindrical flow domain

discharge per unit width obtained from the Dupuit approximation for the
simple rectangular earth dam

discharge per unit width obtained from the Forchheimer equation for the
rectangular and cylindrical flow domains

discharge per unit width at the inflow boundary obtained from the
Polubarinova-Kochina solution for a simple rectangular earth dam
discharge per unit width at the outflow boundary obtained from the
Polubarinova-Kochina solution for a simple rectangular earth dam

discharge per unit width at the separation height obtained from the

Polubarinova-Kochina solution for a simple rectangular earth dam
discharge per unit width obtained from the proposed nonlinear solution
for the free surface unconfined flow

applied fluid flux in the steady state three-dimensional equation

specific discharge in the Solvik equation at the toe of a dam

total outflow at the toe of the dam

total discharge through vertical surface

discharge vector per unit area (flow velocity vector)

discharge per unit area (flow velocity)

discharge per unit area (flow velocity) obtained from the Darcy equation
for the rectangular and cylindrical flow domains

discharge per unit area (flow velocity) obtained from the Darcy equation
for the rectangular and cylindrical flow domains
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discharge per unit area (flow velocity) obtained from the Dupuit
approximation for the free surface unconfined flow

discharge per unit area (flow velocity) obtained from the proposed
solution for the free surface unconfined flow at laminar state

discharge per unit area (flow velocity) obtained from the Polubarinova-
Kochina solution for a simple rectangular earth dam

discharge per unit area (flow velocity) obtained from the proposed
solution for the free surface unconfined flow at turbulent state
discharge per unit area in the x-direction (flow velocity)

discharge per unit area in the x-direction (flow velocity)

discharge per unit area for a steady state flow without free surface
Reynolds number for flow in porous medium

Radial distance from a well

radius of a cylindrical well

flow domain in the finite difference method

residual vector in the finite element solution

reference vector in the finite element solution

radial distance in the cylindrical flow domain

inner radius of the cylindrical flow domain

outer radius of the cylindrical flow domain

exact solution of the differential equation in the finite difference method
distance measured in the direction of the resultant velocity

temperature

reference temperature in the numerical model of the finite element
method ‘

time

increment time step

global vector of the unknowns (velocities and pressures) in the equation
system of the finite element method '
local average seepage velocity

local average seepage velocity in the x-direction

horizontal component of the velocity in the two-dimensional numerical
model for rectangular flow domain

vertical component of the velocity in the two-dimensional numerical
model for rectangular flow domain

normal component of the velocity in the two-dimensional numerical
model for cylindrical flow domain

unknown vectors of the global matrix in the equation system of the finite
element method

complex velocity in the x-direction of the hodograph transformation
Eulerian fluid velocity components in the numerical model

volume of the soil element

volume of rigid porous with viscous incompressible fluid in the
numerical model of the finite element method

volume occupied by the fluid in the numerical model! of the finite element
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method

Vs volume occupied by the solid in the numerical model of the finite element
method

v complex velocity in the y-direction of the hodograph transformation

X horizontal coordinate of the free surface in the Polubarinova-Kochina
solution '

X coordinates of the nodal points on the free surface

X, rate of change of x; in the finite element method

x Cartesian coordinate

Z function in the Polubarinova-Kochina solution for simple rectangular
earth dam

z Cartesian coordinate

z complex number

Y vertical coordinate of the free surface in the Polubarinova-Kochina
solution

y Cartesian coordinate

Greek letters

o slope angle of rock surface in the direction of the flow in the Solvik
equation

o a parameter in the Polubarinova-Kochina solution

a; a variable postulated by Crank for the hodograph transformation

a slope angle of the downstream embankment '

B angle of the dam slope in the Solvik equation

p a parameter in the Polubarinova-Kochina solution

5o shape factor of the grain in the Solvik equation

B, Bon volume expansion coefficients in the general Navier-Stokes equation of
the numerical model

& tolerance factor of the convergence criteria in the solution of finite
element method

0} potential function

@ piezometric head

@ effective angle of friction in the Solvik equation

0) dependent variable in the finite difference method

D velocity potential

D, flow rate of electricity

% weight density of the fluid

Ve weight density of the water in the stability criteria for confined saturated
flow

Y weight of solid in the stability criteria for confined saturated flow

7 buoyancy weight in the stability criteria for confined saturated flow

Vi submerged unit weight in the stability criteria for confined saturated flow
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total weight in the stability criteria for confined saturated flow
tortuosity coefficient

dynamic viscosity for a fluid

effective dynamic viscosity

kinematic viscosity of a fluid

angle between the velocity vector ¢ and the x-axis in the Engelund
solution for the nonlinear flow equation in porous medium

angle of the curvature in the cylindrical flow domain

slope angle of the free surface in the exit gradient criteria for unconfined
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density of a fluid ,

constant density of a fluid in the general Navier-Stokes equation of the
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stream function

parameter of the integral in the Polubarinova-Kochina solution

Nabla operator

Laplace operator

parameter of the incompressible fluid

critical shear stress according to the Shields limits
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flow domain in the numerical model of the finite element method

fluid region in the numerical model of the finite element method
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1. Introduction

A good understanding of fundamental seepage and drainage principles will help
engineers avoid serious mistakes in selecting the best kinds of systems to control
seepage and groundwater. Generally, in describing fluid flow through porous media
the Newton’s law of friction together with the classical Navier-Stokes equations of
hydrodynamics, provide a basis for studying the behavior of liquids under motion in
porous media. Unfortunately the resulting equations become so complex that their
solutions are impracticable. Recognizing these problems, Darcy (1856) resorted to
experimental study of the flow of water through a sand filter and developed a semi-
empirical representation of the behavior of fluids flowing through porous media.

Traditionally, most water flow problems have been solved on the assumption of
Darcy’s linear relation between head loss and velocity

JH (1.1)
=-K—=|KJ
7 Js ] l '

in which ¢ is the vector of Darcy velocity (superficial or average seepage velocity); K
is the hydraulic conductivity or the coefficient of permeability in the s direction which
depends on properties of the fluid and the medium; H is the total fluid head; s is the
distance measured in the direction of the resultant velocity at the point under
consideration; and J is the negative vector of total head gradient (~0H / 0s). The total
head is equal to the sum of the plezomemc and velocity heads.

The tlow conditions described by Eq. (1.1) provided. the velocities are small. Darcy’s
law is usually considered applicable to what is known as creeping flows or Stokes
flow in porous media. However, since the last century (Slichter, 1898), it has been
realized that Darcy’s Law fails to hold for high flow velocities. Thus, while many of
the practical problems of flow through porous materials can be solved accurately by
the assumption of Darcy’s Law, various situations have arisen in which a more
- accurate relation between head loss and velocity must be employed to obtain realistic
solutions. Such situations include flow in the area adjacent to a pumping well in a
coarse-grained aquifer and flow through rock- fill dams and banks (Volker, 1969).

The limited validity of Darcy’s Law has led to the suggestion of relations that would
be accurate for all flow ranges encountered. Forchheimer (1901) suggested replacing
Darcy’s law by the nonlinear equation

J=aq+bqg’ (1.2)
in which a and b are constants determined by the properties of the fluid and medium.

Although Forchheimer later added a third order term, cq’, to make the equation fit the
experimental results more accurately, his original expression given as Eq. (1.2), has



become known as the Forchheimer equation, the term by which it will be referred to
here.

Many researchers have confirmed this relation on the basis of experimental evidence
(Volker, 1969). The Forchheimer equation has been derived theoretically for certain
flow conditions. Ergun and Orning (1949) derived both a hyperbolic and a parabolic
equation on the basis of the second term in Eq. (1.2) for unconfined flow. Some
solutions, e.g. the free surface flow in earth-fill and rock-fill dams, are complicated.
The problem of predicting the exit point of the phreatic line (the surface of the water
table), then the nonlinearity of the surface line itself introduces another difficulty to a
possible explicit solution for the nonlinear flow equation in unconfined aquifer.

In an isotropic homogenous porous medium, for flow satisfying Darcy’s Law, the
application of the continuity relation yields the Laplace differential equation: -

ViH =0 (1.3)

Because the velocity head is negligible, the total head H can be set to the piezometric
head 4 so that Eq. (1.3) becomes

Vih=Ah=0 (1.4)

The solution of this equation for various boundary conditions has been widely
reported in the literature. Analytic solutions are available for many simple common
problems, e.g. as outlined by Polubarinova-Kochina (1962) and Harr (1962).
Numerical finite difference solutions to various problems including free surface flows
are also well documented: (Shaw and Southwell, 1941; Thom and Apelt, 1961);
Boulton, 1954; and Jeppson, 1968). For the past ten years, the method of finite
elements has been applied to the solution of seepage problems (Zienkiewicz, Mayer
and Ceung, 1966). The advantages of the finite element method are the ability in
dealing with complex boundaries and with the properties of anisotropy and non-
homogeneity of the media. This method has also applied to the analysis of “free
surface” problems including two-dimensional flow (Finn, 1967) and axisymmetric
flow (Taylor and Brown, 1967).

Analytical solution of the free surface with the application of the nonlinear relation is
not generalized in the literature, though several numerical solutions are worked out
for simple flow case. The complex differential equations obtained from the nonlinear
flow equation have been too difficult to solve by analytical mathematics. Analysis of
such flow is, however, essential for seepage problems in practical applications.



Objective

Since ancient times, dams have been constructed to make use or to economize water
resources. Dams regulate and store water, and water head applied for hydropower
generation systems. However, a dam also constitutes a danger to downstream valley
areas. Thus, dam safety demands control of the seepage and filtration of water inside
the core of the dam and understanding of the flow methodology within the pores. Also
to prevent any erosion inside the dam or at the embankments in various flow
conditions. In most cases when the flow exceeds the laminar limit (Re > 10) and
maintain a turbulent state , the estimation of the flow discharge by the linear relation
(between the hydraulic gradient and the flow velocity) cause a deviation from the
correct solution. When accurate flow relations are taken into consideration in
predicting flow quantity and the phreatic line position, it will decrease the risks of the
loss of lives, the dam failure, and damage to property and the environment. This study
was undertaken in order to apply the nonlinear relation between the hydraulic gradient
and flow velocity in porous media (non-Darcy flow) and with the aim of making a
stability analysis of the porous material in common earth-fill and rock-fill dams
specifically the stability of the downstream side of the dams. This study is divided
into three parts:

1.An estimation of the quantity of seepage using a nonlinear relationship,

2.A formulation of governing flow domain equations (for confined and
unconfined flow), and :

3.A stability analysis related to a critical gradient (filter criteria and exit
gradient).



2. Review of literature

2.1. Description of porous media

In order to study the flow of fluids through porous media, it is essential to identify and
understand the terms denoting the two materials involved: fluids and porous media. A
porous medium has been defined in the literature as a solid body that contains pores
(this assumes that it is quite clear what the pore means). However, it is difficult to
give an exact geometrical definition to the word pore from the appearance of shape.
But to call a medium porous, the pores must be void spaces that are distributed more
or less regularly through the material of the medium. Very small voids in a solid are
often called molecular interstices, while very large ones are called caverns. Pores are
defined as void spaces intermediate in size between caverns and molecular interstices;
hence the description of their size is relative. ‘

The pores in porous systems may be interconnected or non-interconnected. Flow of
intersticial fluid is possible only if at least part of the pore space is interconnected.
The interconnected part of the pore system is known as the effective pore space of the
porous medium.

According to the preceding description, beds formed of sand, granules, porous rocks
(such as limestone, pumice, dolomite, filter paper, etc.), as well as catalytic particles
containing extremely fine micropores, are examples of porous media. Hence, the term
porous media encompasses a very wide variety of substances. Because of this, it is
desirable to classify porous media (into several classes) according to the types of pore
spaces which they contain. A porous medium, of course, is not restricted to only one
class of pore spaces and, thus may have pore spaces belonging to several classes. A
classification of pore space was devised by Manegold (1937, 1941). He divided pore
space into voids, capillaries, and force spaces: voids are characterized by the fact that
their walls have only an insignificant effect upon hydrodynamic phenomena in their
interior; in capillaries, the walls do have a significant effect upon hydrodynamic
phenomena in their interior, but do not, however, bring the molecular structure of the
fluid into evidence; in force space the molecular structure of the fluid is brought into
evidence. In addition, pore spaces have also been classified according to whether they
are ordered or disordered, and according to whether they are dispersed or connected.

Thus, a porous medium is characterized by a variety of geometrical properties. First of
all, the fraction of void to total volume is important. This fraction is commonly known
as the porosity. when the calculation of the porosity is based upon the interconnected
pore space, instead of the total pore space, the resulting value is termed effective
porosity. Second, another well-defined geometrical quantity of a porous medium is its
specific internal area. This is the ratio of internal area to bulk volume and it is
therefore expressed as a reciprocal length (Scheidegger, 1960).



It would be most desirable to be able to define a geometrical quantity that
characterizes the size of the pores in a given porous medium. Unfortunately, the pore
system of a porous body forms a very complicated surface, geometrically difficult to
describe. Theoretically, it is possible to give an analytical equation for it, however
there are practical difficulties in quantification. It is natural that one would like to
define the size of a pore; a convenient measure of the size would be diameter.
However, the term diameter makes sense geometrically only if all the pores are of
uniform spherical shape, otherwise more specifications are necessary (Muskat, 1946).

‘In an actual flow of fluids through pores, the limitation of assuming the pores to be of
uniform spherical shape only is not appropriate description, because the porosity will
not have the effect that it is supposed to have. Usually the analogy of flow in pipes is

~used to describe the geometry of the pores. The pipes supposed to be of circular cross-
section, of certain diameter. But this kind of analogy of the pores to the flow in pipes,
is definitely not correct because the pores are not in general of circular type, and that
makes the matters worse. The pores do not even have a uniform cross-section since
the walls diverge and converge irregularly. Thus, one can not speak about the largest
or the smallest diameter of the pipe‘at any one (Harr, 1983).

Actually, by employing the term porous medium, and by considerinig flow of fluids
through a porous medium, we can take a basic and important step towards defining
the concepts of flow phenomena in porous media.

Summary of the above descriptions, and definitions of a porous medium is depicted in
Figure 2.1, (Bear, Zaslavsky and Irmay 1968) and discussed below:

////// //
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Figure 2.1. Diagram showing several types of rock interstices (Bear, 1972)
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Figure 2.1a shows a portion of space occupied by heterogeneous or multiphase
matter. At least one of the phases comprising this matter is not solid. This may be a
gaseous or liquid phase. The solid phase is called the solid matrix. The space within
the porous medium domain that is not part of the solid matrix is referred to as void
space (or pore space).

Figure 2.1b shows that the solid phase should be distributed throughout the porous
medium within the domain occupied by a porous medium; solids must be present
inside each representative elementary volume. An essential characteristic of a porous
medium is that the specific surface of a solid matrix is relatively high. In many
respects, this characteristic dictates the behavior of the fluids in porous media.
Another basic feature of a porous medium is that the various openings comprising the
void space are relatively narrow.

wn



Figure 2.1c shows the at least some of the pores comprising the void space should be
interconnected. The interconnected pore space is sometimes termed the effective pore
space. As far as flow through porous media is concerned, unconnected pores may be
considered as part of the solid matrix. Certain portions of the interconnected pore
space may, in fact, also be ineffective as far as flow through the medium is concerned.
For example, pores may be of a type known as dead-end pores or blind pores, i.e.
pores or channels with only a narrow single connection to the interconnected pore
space, so that almost no flow occurs through them. Bear (1972) found another way to
define this porous medium characteristic by the requirement that any two points
within the effective pore space may be connected by a curve that lies completely
within the pore space. Moreover, except for special cases, any two such points may be
connected by curves of an arbitrary maximal distance. He also stated that for a finite
porous medium domain, this maximum distance is dictated by the dimensions of the
domain. The features described above have been concluded in the literature to be
comparative, rather than absolute.

Rideal (1958) also indicates the various characteristics of porous materials,
emphasizing the difficulty in arriving at an exact definition still sufficiently general to
be applied to the wide variety of porous media. It is this difficulty, defining a
geometry of the solid surface which acts as a boundary to the flow in the void space,
that forces us to the introduction of the continuum approach as a tool for handling
phenomena in porous media (Scott, 1969). Another characteristic that is introduced to
understand porous media, is the concept of a continuum medium, which is common to
most branches of physics.

The same difficulties are encountered, when one deals with the fluid or fluids
contained in the void space, in phenomena associated with both liquid and gas, such
as motion, mass transport, etc. The concept of the fluid itself requires some further
careful work. Actually, fluids are composed of a large number of molecules that move
about, colliding with each other and with the solid walls of the container in which
they are placed. According to theories of classical mechanics, when we can get a full
description of a given system of molecules, e.g. as given by Bear (1972), with the
initial positions of the molecules in space and their momenta, then we can predict
their future positions. Although this seems to be simple, it is difficult problem to
predict the path of the flow of even as few as three molecules. With the advent of high
speed digital computers, the many body problem (many molecules) can be attacked in
principle numerically (Landau and Lifschitz, 1958). In addition, because the number
of molecules is so large, their initial positions and momenta cannot be determined
simply by observation.

Landau and Lifschitz (1958) introduced another concept to the motion of fluids in
porous media by adopting a statistical approach in nature, in order to derive
information regarding the motion of a system composed of a many molecules.
Statistical mechanics is an analytical science by which statistical properties of a very
large number of molecules (or particles in general) may be determined from laws
governing the motion of individual molecules (Bear,1987).



Since the ultimate objective of this study is to handle phenomena in porous media, the
need for a general method of treating fluids in porous medium can be met by
averaging phenomena in the fluid continuum filling the void space. Consequently, the
~microscopic scale has been chosen for reference to the fluid continuum level, that is
one can regard the actual or molecular structure of a fluid as a continuum.
Scheidegger (1960) concluded, in his comprehensive study of the continuum of fluids,
that the concept of a particle was essential for this analysis. He stated that, although
particle size is much larger than the mean free path of a single molecule and the
particles should be sufficiently small, in comparison with molecules. In this way, a
value relevant to the description of bulk fluid properties may be obtained. These
values are then related to a-centroid. Then at every point in the domain occupied by a
fluid, there can be a particle possessing definite dynamic and kinematic properties.

In the literature there are several physical phenomena of fluids, observed on a
macroscopic scale, which are in- fact the based on the theory of molecular motion.
Among these there are. mass transport by molecular diffusion, heat transfer, and
momentum transfer which manifest themselves in the form of internal friction or
viscosity. In each of these cases, because the transfer phenomena are not treated on a
molecular level, thus by averaging the transport production of individual molecules
and passing it to a higher level, as referred to above for the fluid continuum, we can
describe various transfer phenomena. Actually rransfer coefficients are needed in-such’
studies are the molecular diffusivity, thermal diffusivity, kinematic viscosity,
hydraulic conductivity, etc.(Bear, 1972). In describing a flow in porous media, we
have a fluid continuum enclosed by a solid surface and the solid surface of the porous
medium. At any point in this fluid continuum we can define the specific physical,
dynamic and kinematic properties of a fluid particle. We need to know how we can
solve a flow problem in a porous medium at this level. From the theory of fluid
mechanics, we can derive the details of a fluid’s behavior within the void space. For
example, we can use the Navier-Stokes equations for the flow of a viscous fluid to
determine the velocity distribution of the fluid in the void space by satisfying specific
boundary conditions, such as zero velocity at all fluid-solid interfaces. However, it is
often difficult to define the boundary conditions themselves. Thus, by adopting the
continuum approach, we can reduce the difficulties; our approach can be facilitated
by averaging to the macroscopic level. This also can be seen as a continuum
approach. '

2.2. Creeping flow in porous medium (Stokes’ motion)

To obtain a full description of the motion of a Newtonian fluid in porous medium,
when the fluid is regarded as a continuum (cf. 2.1), the motion of the fluid can be
described if the position of every material point of the fluid is known at every time-
instant. There are three kinds of physical conditions which determine such motion.
The first, is the continuity condition, the second is the rheological equation of state



and the third is the classical Newton law of motion (Daily, 1966). These physical
conditions are expressed mathematically as a system of differential equations. An
additional set of initial and boundary conditions is needed to determine the problem
completely. For example, it should be specified whether or not the particular fluid
sticks to the walls of a container. Different combinations of rheological equations and
boundary conditions are needed depending on whether the fluid is a liquid or gas,
whether it is viscous or non-viscous, etc. (Scheidegger, 1960). The continuity
conditions and Newton’s law of motion are well known; for example, Lamb (1968)
expressed them in a representation suitable to the description of a continuous
medium. The rheological condition expressed here is the relation between the stresses
and the strains in the fluid (and their time derivatives). In the case of an ideal fluid, it
is assumed that there are no shear stresses applied and that the fluid is incompressible,
however generally fluids are viscous and compressible.

Finally, the initial and boundary conditions mentioned above represent the following:
first, the shape and walls of the container of the fluid; second, the external condition
such as the pressure drop; and third; the type of interaction between the fluid and
walls. When the fluid is viscous, it is generally assumed that it sticks to the walls
(Scheidegger, 1960).

The set of conditions outlined above can be combined to form various differential
equations which are applicable to different kinds of fluids. The best known of these
equations is that of Navier and Stokes (see e.g. Lamb, 1968). It is applicable to
incompressible viscous fluids. The Navier-Stokes equation has been re-stated in the
literature many times because of its fundamental importance. The compressible
Navier-Stokes equation has the following structure:

2 2.1
pg—Vp+uV2q+—§--V(V-q)=p5€-+p(q-v)44 @1

For incompressible fluids, V-g = 0 and the Navier-Stokes equation become

, d (2.2)
pg —Vp+uvig= pj:—+p(q-\7)¢

The structure of the Navier-Stokes equation and the boundary conditions make the
analytical solution of equation (2.2) very difficult. Naturally many attempts have been
done to find an approximation of this equation which would enable an easier
analytical treatment. Thus, an attempt to eliminate the inertia terms of the
incompressible Navier-Stokes equations for flow in a gravity body-force field have
led to the following simplified form:

uviq=-pg+Vp. (2.3)



The equation above must be solved together with the constant-density continuity
equation, V-¢ = 0. This has become known as the creeping motion of fluids. The
entire system of equations above must satisfy the same boundary conditions as must
be satisfied for the full Navier-Stokes equations, namely the vanishing of the normal
and tangential components of the relative velocity on the surface of the rigid
boundaries.

Stokes (1851) gave the first known solution for a case of creeping motion. He used
the approximation presented above to solve the creeping motion case of flow past a
fixed sphere and its counterpart: the case of a solid sphere falling through a highly
viscous infinite fluid. In addition to the modified Navier-Stokes equations, the
continuity equation and the usual boundary condition of vanishing relative velocity at
the surface of the sphere were satisfied.

in this study, for low Reynolds number flow through certain porous medium, such as
flow of water, oil, and other fluids through filter beds, surface soil, and porous rock,
the approximation of the creeping motion is very helpful in describing the seepage
through a porous medium.

With the Stokes approximation for the creeping motion and omitting the inertia terms
from the full Navier-Stokes equation (Daily, 1966), equation (2.3) for creeping
motion in porous media becomes:

Vip+vyh)=uvig. (2.4)

With the continuity equation V-¢ = 0, and taking the divergence of both sides of
equation (2.4), (Harr, 1968) :

V(p+7vh)=0. (2.5)

Equation (2.5) is the well-known Laplace equation and its solution for particular
boundary conditions yields the spatial distribution of (p+y h). The Laplace equation
for incompressible fluids can be satisfied by a velocity potential function (Streeter,
1978). This can be shown in many cases where laminar flow holds and where, for
zero inertia effects, the velocities and the flow rate are linearly proportional to the
gradient of (p+y h). Hence, the analogy of liquid flow in tubes in a given direction
gives a mean velocity of

const d(p+yh) (2.6)
g, == o
u ox
where the constant of proportionality depends on the flow-passage geometry.
For porous-media flow where the average discharge velocities are of interested rather
than the local velocities in pores, the Laplace equation is also applicable, i.e. for



laminar flow through small irregular pore passages. The analogy with flow through
tubes, for a liquid (or a gas under small pressure differentials so that its density does
not vary), the velocity can be written as

_ k A(p+yh) 2.7)

q. PR

where g, is the superficial or discharge velocity defined as the local flow rate
averaged over a finite area of the porous medium and %, is the intrinsic permeability
in x-direction (Daily, 1966). Thus, for a given cross-sectional area A4 of porous
material through which AQ is flowing, the superficial or discharge velocity is

_ A0 28)

T =N

For A4, finite but of the order of several pore channels, g, approaches a local- average
value. When a local-average velocity is used in the equations, the physical system is
replaced by a mathematical continuum. In the literature, the term local average
seepage velocity through the pores has been defined as

_AQ .9)
U= nAA

where n, the porosity, is the ratio of the volume of the voids to the total volume of the
porous medium and the voids. The factor k., which is called the intrinsic or physical
permeability. It has the dimension of length squared, and assumes saturated
conditions. It depends on the flow geometry, on the type of porous medium, and on
the density, shape, and arrangement of the pores. Thus it is constant if the medium is
incompressible and isotropic.

In 1856, Darcy published an relation equivalent to Eq.(2.7) based on experiments in
connection with water supplies for the fountains of the city of Dijon. He put together
the intrinsic permeability and the density of the liquid with the kinematics viscosity as
one hydraulic conductivity (coefficient of permeability):

k .
K:——}—/*. (2.10)
U

The coefficient X has the units of a velocity under saturated conditions. It is found to
be a function of the flow geometry (type of medium and pore characteristics) and also
of the fluid specific weight and viscosity. Thus, it is constant for a given fluid at a
fixed temperature if the porous medium is incompressible and isotropic. The isotropic
medium is the one that has the same hydraulic conductivity in all flow directions,
therefore the flow in three directions is (Scott, 1963)

10
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where ¢ is the vector superficial velocity. Equation (2.11) is the well-known Darcy
law in the literature. As shown above, the Darcy law is a linear relationship between
the velocity and the gradient (p + y4) used in seepage-flow equations. This
relationship holds as long as the flow remains laminar and inertia effects remain
unimportant. From many experiments with sand, a Reynolds number Re ~10 was
shown to be an upper limit for the Darcy law. This Reynolds number may be
exceeded in rock aquers and in the vicinity of well casings. The evidence from sand
beds is that for Re > 10, departure from Darcy’s law occurs due to fluid acceleration
causing mertla effects while the flow is still laminar. The transition from laminar flow
to turbulence is gradual, somewhere between Re = 60 and Re = 600. The flow
resistance seems to become independent of Reynolds number at about Re = 1000
(Daily, 1966). Hence, another form for the relation of the velocity with the gradient is
needed to cover the nonlinear flow in a porous medium.

2.3. Flow field equations (linear and nonlinear)

The steady flow of a viscous, incompressible and chemically inactive fluid through a
saturated, homogeneous, isotropic and geometrically stable porous medium, in the
absence of compressible free gases at low Reynolds numbers (Re = gd/v ) and at
constant temperature, obeys the Darcy law (Darcy, 1856; Irmay, 1946, 1947)

g=—KVh=KJ (2.12)
where H is the piezometric head and J is the negative hydraulic gradient.

Darcy’s law has been extended to non-homogeneous media (Boussinesq, 1904; Irmay,
1953), and then to non-isotropic media (Irmay, 1951). Jacob (1950) and Florin (1948)
have applied the Darcy law to unstable media; it has also been applied to unsteady
flow (Boussinesq, 1904; Irmay, 1951, Polubarinova-Kochina, 1962). Darcy’s law has
been extended to apply to compressible fluids by Muskat, (1946), and then to
unsaturated media by Richards (1931) and Irmay (1956). A detailed review of the
various theories is given in the literature (Muskat, 1946, 1949; Polubarinova-Kochina,
1951, 1962; Scheidegger, 1960; Bear, 1972).

At larger Reynolds numbers, Forchheimer (1901) suggested replacmg equation (2.12)
by the nonlinear formula which bears his name:

J=aqg+bg’. (2.13)



This formula has been suggested also by Lindquist (1933). At low Reynolds numbers
(Re < 1), the second term may be omitted, and the linear Darcy formula (2.12) is
obtained. Here a = 1/K is the hydraulic resistivity of a porous medium (see Figure
2.2).

For Reynolds numbers (Re ~1) the second term is of the same order as the first term.
This is the case for a nonlinear viscous flow (Irmay, 1958). Irmay (1956) has shown
that there is no reason in general to expect a linear solution of the fundamentally
nonlinear Navier-Stokes equations. The linear Poiseuille solution in straight tubes is
an exception caused by vanishing curvature, however, in the flow through porous
media it is clearly predicted that flow paths are strongly curved.

At larger Reynolds numbers (Re > 100) the flow becomes turbulent, as was
experimentally shown by the injection of dyes (Schneebeli, 1955). Equation (2.13)
remains valid, but with different values of @ and b. At very large Reynolds numbers a
= () (analogous with rough turbulent flow).

J

/
Re =1 Re =10 J/
i /
! /
i /
: 7
! /
1 -
-
: // PN
! / e Y
H / - \
! / o The Darcy
: / e Law
I o
-
-

2 tan a = 1/K

> q

Figure 2.2. Schematic curve representing experimental relationship between flux and
hydraulic gradient (Bear, 1972).

Missbach (1937) has suggested a different relationship:

J=aq" (1<n<2) (2.13a)

while Polubarinova-Kochina (1962) suggested the same as Forchheimer the following
form

J=aq+bg +cq. (2.13b)
It has been shown in the literature that the Forchheimer formula is the only one that
has a wide empirical basis (Irmay, 1956). Forchheimer applied the operator V to the
vectorial equation (2.12) obtaining



Vg=-V-(KVh)=0. ' (214
In homogeneous media X is constant, and

Ph 2h P h_ s

V-Vh=V'h= ,+()',+ -
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This is the well-known equation of the Laplace potential In media of non-uniform K
variable in space, equation (2.14) becomes (Boussineq, 1904):

VA(KVh)=KV’h+Vh-VK =0 (2.16)
or
Vh+Vh-VinK=0 (2.162)

which is a type of Poisson equation (Irmay, 1953). However, Scheidegger (1960)
thinks that equation (2.12) should perhaps be replaced by

q=-V(Kh) : (2.12a)
which, instead of (2.16a), gives
V(Kh)=KV*h+2Vh-VK + hV*K = 0. (2.16b)

Bear (1972) has pointed out that Eq. (2.16b) means for a domain without energy
gradient there is a flow due to the differences in K, which is not logical without a
source of energy. Accordingly, Bear (1972) found that it is important to generalize the
Darcy law in terms of the piezometric head.

Many authors have tried to derive the Darcy law by means of various ingenious
physical models and analogies. An excellent review is given by Scheidegger (1960).
The models are the capillary tube analogies (Smith, 1932; Irmay, 1951); the
hydraulic-radius theories (Terzaghi, 1925; Kozeny, 1927, Irmay, 1951); the drag
theories by Emersleben (1924, 1925); and the turbulent-flow analogy by Yuhara
(1954) and by direct derivation from the Navier-Stokes equations (Hall, 1956;
Hubbert, 1956).

Irmay (1956) drew the conclusion that the above theories have weak points: they are
mostly analogies, the applicability of which has not been proved, or they are based on
the introduction of unspecified coefficients, which are somehow ignored in later
developments. None of them lead towards Forchheimer’s formula. Irmay derived both
Darcy’s law and Forchheimer’s law easily, from the Navier-Stokes hydrodynamic
equations, for viscous flow through a homogeneous isotropic incompressible
saturated medium. ’



2.4. Analytical solutions

2.4.1. Solution of Darcy flow (linear flow)

Steady state flow without a free surface

The solutions to hydrodynamic problems concerning the flow of homogeneous fluids
in porous media are obtained by solving the differential form of the Darcy equation
(Scheidegger, 1960)

q,=Q/ A=~k /p)(p,—p +pgh)/h. 2.17)

In this form, it applies to vertical flow in a horizontal bed of finite thickness 4,

being percolated by an incompressible liquid of (constant) density p. This form of the
law has only a very restricted use. Scheidegger’s aim is therefore to express Eq. (2.17)
in differential form. It is shown in the literature (Harr, 1968; Scheidegger, 1960) that
there is are different ways of doing this. Naturally, g will become a vector ¢ which
might be called the local seepage -velocity, or superficial velocity, and the pressure
difference in Eq. (2.17) must be expressed by the pressure gradient.

A first possibility is to let 4 in Eq. (2.17) become infinitesimal,
q=—(k/ p)(Vp+pg) (2.18)
where g is a vector in the direction of gravity and of the magnitude of gravity. However, the

Darcy experiment does not tell us what would happen if the hydraulic conductivity and
viscosity are variables. Thus, the coefficients should be taken into the gradient:

q=-V(kp/p)+kpg/p. (2.19)
Scheidegger (1960) concluded that the first possible solution to equation (2.18) is

equivalent to the introduction of potential ¢ (as a definition) since the equation can be
rewritten as follows (Hubbert, 1940):

» (2.20a)
b=gz+ fdp/p(p)
q=—(kp/p)Vo (2.20b)

where z denotes the vertical coordinate. On the other hand Scheidegger (1960)
showed that Eq. (2.18) can be equivalent to the introduction of a velocity-potential
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(by definition) since as the equation can be rewritten as follows (Gardner, Collier and
Farr, 1934):

- (2.21a
(Dzkp/quj-IE—p—gdz ' )
‘ ;, M

Zu

where
g=-Vo. (2.21b)

Both representations by potentials are valid only if the integrals are univalent
(Scheidegger, 1960).

The majority of technical mathematical reports concluded that it is not possible to
distinguish between the two differential representations of Darcy’s law if the
experiments are performed using only constant viscosity fluids and porous media of
homogeneous intrinsic permeability. Hence a great uncertainty exists as to whether
the differential form of Darcy’s law given in equation (2.18) or that given in equation
(2.19) is the correct one.

Hubbert (1940)set out to show that Eq. (2.20a) would be the only correct one
because of thermodynamic considerations. This fact has been given in the literature
by using the second principle, i.e. the entropy principle, of thermodynamics; however
Hubbert’s proof does not seem to be convincing (Scheidegger, 1960). Furthermore,
even if it were to be shown that the velocity potential does not generally exist, the
corresponding differential formulation (2.19) of Darcy’s law would still be possible.

In general, the force potential form, equation (2.18); of Darcy’s law has been
preferred to equation (2.19) in the literature because it is easier to treat analytically.
There is another indication of its correctness, however, in the fact that, when it is
extended to immiscible multiple phase flow, it leads to' the relative permeability
concept. The relative permeability is actually variable through the porous medium
during a flow experiment, which means that a distinction between equations (2.18)
and (2.19) is important. The fact is that the relative permeability equations as
generalized from (2.18), not from (2.19), lead to an adequate description of a force-
potential. o

Neither differential form of Darcy’s law, (2.18) or (2.19), is sufficient to determine
the flow pattern in a porous medium for given boundary conditions, as the equations
contains three unknowns (¢, p, p). Two additional equations are therefore required for
the complete specification of a problem. One is the connection between p and p of the
fluid (Scheidegger, 1960):

pP=pp) (2.22)



while the other is the continuity conditions:

ap (2.23)

—_n=t_-v.
nat (paq)

where, as usual, n is the porosity and  is the time. With the help of these equations,
one can eliminate all of the unknowns except p which leads to either of the following
equations, according to whether a force-potential (a) or a velocity potential (b) is
assumed:

(a) n%li’ﬁv.[(pk,m(vp_pg)} (2.23a)

() nIL =V [o(V (kp u)-kpg / 1] (2235)

where g is a vector pointing downward.

In general, the differential equation in question seems to be very closely related to the
equation of diffusion and to that of heat conduction. Thus, solutions obtained with the
intention of solving the heat-conduction equation can often be taken over directly for
the hydromechanics in porous media. The treatment of the differential equation
resulting from Darcy’s law is, actually, a discipline of mathematics and has very little
to do with the physics of a problem. General methods that are applicable have been
found in appropriate mathematical texts such as that by Courant and Hilbert (1943).
Much of the mathematical material that is directly applicable to the flow in porous
media has also been accumulated by Carslaw and Jaeger (1959) in connection with
their study of heat conduction. This book is a comprehensive review of the methods
that are applicable to the solution of the differential equation; these are a part of a
study on the theory of functions and mathematical analysis. A review of physical
conditions for which solutions have been achieved is given below.

The physical conditions of the flow for which solutions might be sought are: (a)
confined steady state flow, (b) gravity flow with a free surface, and (c) unsteady state
flow (transient flow). Of these, steady state flow solutions for incompressible fluids
are the most easily obtained; they are simply represented by solving the Laplace
equation. Except for a few other special cases, Darcy’s law, however, leads to
nonlinear differential equations. The analytical methods to deal with these have been
well analyzed and specified for so long that efforts have been directed towards scaling
these phenomena and also towards experimental representation by analogous effects
(Scheidegger, 1960).

Polubarinova-Kochina (1962) gave a comprehensive review of solutions of ground
water flow, which is also included in the book by Muskat (1946).
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The steady state problem is always characterized by the vanishing of the partial time
derivatives of the physical quantities such as the density, velocity, etc. Equation (2.23)

thus reduces to
k (2.24)
V‘K%")WP“P@J:O

(note that g is a vector pointing downward, but coordinates increase upward).
If the fluid is incompressible and the porous medium homogeneous, one has

A p=0 (2.25)

‘where A denotes the Laplace operator. This is the well-known Laplace differential
equation, applicable in many instances in physics, and the general methods to which
this differential equation is amenable lead to valid solutions presented for many cases.
Thus, if two-dimensional problems are considered, methods based upon the theory of
functions of complex variables are applicable, as well as the technique of using
Green'’s function (Bear, 1988). A review of such methods has been given also in the
books of Muskat (1946) and of Polubarinova-Kochina (1962). Golubeva (1950)
discussed the utility of curvilinear coordinates in two-dimensional motion, while
Shaw and Southwell (1941) and Dykstra and Parsons (1951) applied relation methods
to the same problem. Other general methods for the treatment of steady flow have
been discussed by Polubarinova-Kochina and Falikovich (1947). Furthermore,
Polubarinova-Kochina (1951) showed how steady-state solutions for anisotropic flow
can be obtained by a simple coordinate transformation onto principal axes, and
Oroveanu (1966) published a lengthy discussion of the methods applicable to the
treatment of systems with non-homogeneous permeability.

A classic example of a steady-state solution is a two-dimensional radial flow of an
incompressible fluid into a well that completely penetrates the fluid-bearing medium.
Assuming that the well is a cylinder of radius Ry, with inside pressure po, and that the
pressure at a distance R; from the well is py, it is easy to verify that the required
solution is

_ 2k 3 (2.25a)
1 ln(R,/RO)(p] Do)

where Q is the total discharge per unit of time and unit of penetration length of the
well, £ is the intrinsic permeability of the medium and g is the viscosity of the fluid.

If the fluid in motion is compressible, then equation (2.24) does not reduce to the
Laplace equation. However, it has been pointed out by Leibenzon (1947) that in the
case of gases it does reduce to the Laplace equation if the following substitution is
made (Scheidegger, 1960):



p 2.26
x= ] pdp (2:26)
Po

which leads to
Ay-V.(p*g)=0. (2.26a)

for gases the second term is much smaller than the first and can therefore be omitted.
This also holds for horizontal flow of compressible liquids. One thus obtains

A x=0. (2.27)

The study of the steady flow of compressible fluids is thus reduced in most instances
to the discussion of the same differential equation as that encountered in the study of
the steady flow of incompressible fluids. One has, for instance, in the linear case
(coordinate x) for an ideal gas (¢, p = p)

x=(c,/2)p* =c’+bx. (2.28)
With the boundary conditions p =y = po and p(x=1)= pr, one hasv
p'=p’ +x(p'~p)/ L (2.29)
If Darcy’s law is now expressed at x = 0, one obtains |

(2.30)

G = —(-"-j(@] =k /1)(p, =)/ (2py L),
N dx )y

Considerable work has also been done on the study of seepage underneath
engineering structures, especially dams (with and without sheet-piling). Again,
Muskat (1946) and Polubarinova-Kochina (1962) gave reviews of a wide variety of
solutions that have been obtained. Such problems have also been investigated by
Girinskii (1937, 1941).

The Laplace equation (2.25) occurs in many contexts in physics. Therefore, solutions
of that equation can be obtained by performing suitable experiments which are
themselves governed by the Laplace equation. In this manner, it is often possible to
set up an analogy to certain problems of steady flow through porous media and thus
to avoid the tedious job of solving the Laplace equation analytically. A discussion of
some possible analogies has been published by Scheidegger, (1960). It can be
summarized as follows:



(a) The flow of electricity. The steady flow of electricity in a conducting medium is
governed by Laplace’s equation. - : :

Ad,=0 . , (231
with the equation for currerit

J,==-Vo, ' (232
‘where @, = K, E, E is the electric potential, K, the conductivity, and J, the current
density. ‘ o

(b) The flow of heat. The flow of heat in heat-conducting media is also governed by
the Laplace equation; unfortunately it is not generally feasible to use this fact for
constructing experimental analogies of the flow through porous matter, as it is quite
difficult to measure heat flow accurately. However, many analytical solutions of the
Laplace’s equation have been developed in connection with the study of heat flow
(Carslaw and Jaeger, 1959), and these can be applied to porous flow problems.

(¢) The distribution of stresses. It has been suggested that it might be possible to
duplicate the flow of line by stress lines in stressed materials and to examine the latter
by means of experimental stress analysis.

(d) The flow of viscous fluids. Under certain circumstances, the Navier-Stokes
equation can be reduced to a Laplace equation. It is therefore possible to use the
phenomenon of viscous flow for a representation of steady flow in porous media. An
arrangement which has attained considerable popularity is the method of modeling
two-dimensional flow in porous media by flow between two parallel plates a small
distance apart. This type of analogy is usually called the Hele-Shaw model after Hele-
Shaw (1899) who introduced it.

(e) Mechanical scaling. It is possible to represent a large-scale flow phenomenon in
porous media by a small-scale one. All that is necessary is to establish the geometrical
dimensions and then, to scale the pressure which can be scaled in any desirable way
since the Laplace equation of the pressure is zero if that of p vanishes. A series of
experiments using such scaling has been discussed in Muskat book (1946).

Steady state flow with a free surface (gravity flow).

A strange and unusual special case of the determination of steady state flow with
gravity occurs where a fluid has a "free” surface. In fact, this is a problem of multiple-
phase flow: above the “free surface” there is another fluid. Nevertheless, if that other
fluid is a gas, and the original fluid is liquid, one can disregard the motion of the gas:
with respect to that of the liquid and assume that the gas pressure is constant in its
entire domain. Thus, one can express the assumption that there is a free interface
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between the two fluids by the condition that on this free interface the liquid pressure
is constant and that any streamline having one point in common with this free surface
lies entirely within it. In truth, no such free interface actually exists, as there is always
a finite region within the porous medium where saturation drops from 100% to zero.
But one can see that sharp saturation discontinuities can exist and that the assumption
of an actual free surface could be sensible. A further peculiar phenomenon may occur
if the notion of a free surface is accepted. If this surface intersects an open boundary
of the porous medium, i.e. a boundary that is open to the gas and upon which
therefore the pressure is constant and equal to that of the gas (atmospheric pressure),
then the liquid will seep out from the boundary below the intersection with the free
surface. Such a boundary is termed “surface of seepage”. The boundary condition for
a surface of seepage is that the pressure in the fluid is constant and equal to that at the
free surface (atmospheric). In contrast to the free surface, however, a surface of
seepage need not be a streamline (Scheidegger, 1960). The physical picture of the free
seepage has been analyzed on many occasions, for instance, by Hamel (1934),
Laurent (1949), and Childs (1956).

Thus, the analytical conditions of a flow with a free surface are fully determined. To
summarize, one has to find a solution of the Laplace equation (2.25) with the
boundary conditions such that there is a “free surface™ which define a streamline and
on which the fluid pressure is constant. On open boundaries below the intersection
with the free surface, the liquid pressure must be constant and equal to that on the free
surface. On impermeable boundaries, of course, the condition is, as usual, that the
normal component of the filter velocity vanishes (Scheidegger, 1960) .

It is needless to prove that finding an analytical solution is extremely difficult and
tedious when conforming to the above boundary conditions. However, Muskat (1946)
and, in particular, Polubarinova-Kochina (1962) reviewed some methods that have
been applied successfully, notably one employing hodograph transformation. In a
medium of homogeneous permeability, the formulation using the velocity potential
may be used:

D=(k/p)(p+pgz) 2.33)
g=—V& (234)
AD=0. 235)

In two dimensions (x horizontal, y vertical coordinates), this leads to the possibility of
representing everything in terms of complex numbers with z = x + iy. The hodograph
transformation is characterized by

PY (2.36)
dx

U=
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29 (237)

dy
which can be also represented on a complex plane.

The hodograph method has the advantage that the free surface, the shape of which is
unknown in the original formulation of the probiem, is determined in the hodograph:
it is simply circles with known parameters. In addition, the surface of seepage is also
determined prior to an actual analytical solution of the problem. Thus, the “floating”
boundary condition of the original problem becomes a fixed boundary condition after
a hodograph transformation has been made (Muskat, 1946).

The use of hodograph transformations in connection with the problems of seepage
was developed chiefly by Hamel (1934). Further discussions of analytical attempts to
solve the problem are found in the literature, Muskat (1946), and Polubarinova-
Kochina (1962).

Owing to the difficulties of obtaining analytical solutions to the problem with a free
surface flow, graphical methods have been tried (Harr, 1968). In the case of radial
flow (vanishing azimuthal component of the velocity), the flow equation, using the
notation of velocity potential (cf. Eq. 2.33) reduces to

PP 100 o (2.38)
+———+—=0.
ort r dr 97° :

It is known from the theory of the Laplace equation that one can introduce a stream
function , defined by two differential equations: '

v _, 0 | (2.39)
oz ar

Ay _, 9D (2.40)
ar z

The stream function y, in turn, satisfies the differential equation

Py 1y vy (24D
___’)_.__________l______zo
ar* radr 97

(as can easily be verified). The lines @ = const. represented in the r-z plane
equipotential curves, and the lines y = const. represent streamlines. The streamlines
and the equipoteritial lines form a net of orthogonal curves. Therefore, from equations
(2.39 and 2.40) one can show that the differential of the potential can be expressed in
terms of the differential of the stream function



dy =2nr iﬁa’(b (242)
ds

where dhn is the differential along a potential line and ds is the differential along a
streamline.

Using differences (denoted by A), instead of differentials, with the postulation (Harr,
1968):

Ay=AD (2.43)
we have
As =2mr An. (2.44)

This introduced the possibility of a graphical solution which is particularly suited to
the gravity flow problem. We have to construct a net of orthogonal curves satisfying
(2.44) and the boundary conditions. This can be done by the method of trial and error.
From the above graphical method, it is only a short step to the solution of gravity flow
problems by actual numerical calculations. Such calculations have been carried out,
as reported in the literature (Stallman, 1956). '

Because of the difficulties involved in obtaining rigorous solutions conforming to the
assumptions basic to the present considerations, approximate procedures have been
developed. The best known is that by Dupuit (1863) as modified by Forchheimer
(1930). If it is assumed that, for small inclinations of the free surface of a gravity flow
system, the flow may be taken as horizontal and, furthermore, that the corresponding
velocities are proportional to the slope of the free surface, one readily arrives at the
following differential equation for the height # of the free surface above the
(horizontal) impermeable bed of the system (Muskat, 1946):

A(FE)=0 (2.45)

Unfortunately, the assumptions basic to this simple theory do not seem to be entirely
warranted, so that the entire theory has been severely questioned (Muskat, 1946). The
assumptions of the Dupuit-Forchheimer theory have also been used by Boussinesq
(1904) to construct a theory of the time variations of the free surface. The latter author
arrived at the equation

w2 KPRy hvn) (2.46)

dt 7

where the symbols have their usual meaning. This equation has been simplified for
certain cases so as to become linear. However, since it is based on the Dupuit-

22



Forchheimer assumptions and, therefore, is subject to the same criticisms, further
discussion seems unnecessary (Muskat, 1946).

It has been observed that the flux formulas obtained from the Dupuit-Forchheimer
theory give much better results than the underlying assumptions might lead one to
expect. Muskat (1946) showed that one can arrive at the Dupuit-Forchheimer flux
formulas by another approximate theory which is free of the Dupuit assumptions.

The analytical difficulties of obtaining solutions to the gravity-flow problems-have
also prompted researchers to try experimental methods. Among these methods,
electrical analogies once seemed to be helpful. However, the free surface cannot be
duplicated in electrical models as there dre no corresponding boundaries possible for
electrical currents. Thus, the procedure is one of trial and error, of shaping the
electrical model, in such a manner that its boundaries correspond to a free surface.
Muskat (1946). The principle outlined above in connection with the description of
free surface, and seepage has been applied to specific problems. Such specific
applications are simply exercises in mathematics; they are not particular interest as far
as the physical aspects of flow through porous media are concerned.

2.4.2. Solution of non-Darcy flow (nonlinear flow)

Compared with the number of solutions of the laminar (linear) equations available,
only a few solutions of the various turbulent (nonlinear) flow equations have been
investigated. In order to obtain analytical solutions for turbulent flow through porous
media, the equations which are considered as basic have to be written first in a
suitable analytical (vectorial) form. Assuming that the flow is linear (i.e. of Darcy-
type) up to a “critical” Reynolds number, and above that Reynolds number, it is the
nonlinear (i.e. of Forchheimer-type), Engelund (1953) proposed the following set of
equations :

~Vp="F(lgl)q (2.47)
where
u/k for Re< Re,,.. (2.48)
F(|q|) T la+ biq| for Re>Re, .. |

A suitable modification of (2.48) can be made to take account of gravity flow simply
by introducing the “hydraulic-head” H, instead of p, whereupon the equation above
becomes ‘ ' S -

-V H=F(g)q (2.49)

%}
(98]



where -

H=z+h=z+-2
pg

It is quite hopeless to try to obtain analytical solutions of the system (2.48) in the
general case of three-dimensional, non-steady state flow. However, a particular three-
“dimensional solution has been reported by Uchida (1952). Considering only the
steady state case in two dimensions, the following solutions have been developed by
Engelund (1953).

In two dimensions, the system (2.48) becomes (Cartesian coordinates x, y, z)

ap ap (2.50)
-5, =Fle)a, and - 5, = Fla)a,
The equation for continuity, is for the steady state,
2.9, @3
dx dy

which is automatically fulfilled by the stream-function y, introduced and defined by

y

_ Q_.V.{ (2.52)
9. = ay

‘and 9, =3

From equation (2.50) it is evident that the gradients of p and ¢ are oppositly directed
vectors. Since the gradient of p is perpendicular to the surface p = const., the same
must hold for the filter velocity vector ¢, so that the filter streamlines cross the
equipressure surface at right angles.

It is evident from equation (2.52) that the vector gradient  is perpendicular to ¢, from
which it follows that ¢ is tangent to the curves y = const. From this, it can be

concluded that these curves may be interpreted as streamlines.
Further it may be concluded from equation (2.52) that

wul=lel=¢ 2

Muskat (1946) found that the streamlines, y = const., and the contours, p = const.
form an orthogonal system, just as in linear flow. Since equations (2.50) are not
linear, they can not be solved directly; however, Engelund (1953) introduced new
variables which made it possible to linearize the equations. Thus, with a convenient
introduction of first coordinates s and n, denoting the length of the arc along curves
= const. and p = const., respectively, and next considering an infinitesimal element of
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flow confined by two neighboring streamlines and two lines of constant pressure, the
equation of continuity can then be written as

dg (2.54)

Vx[F(lql)q]=o. (2.55)

Applying Stokes’ theorem to the equation.above, Engelund (1953) expressed  this
condition by the vanishing of the circulation around any closed curve, i.e. around the
element

1 d(As) 1 (2.56)

“As om ‘7&;5;;( a)

Engelund then proceeds to introduce, as more convenient independent variables, the
flow velocity g and the angle & between the velocity vector ¢ and the x-axis. For the
angle difference between the two streamlines of the element he obtained

d6 3 __l_a(An)AS (2.57)
on As Js '
Furthermore, we have
a (___ 9) 1 (9(AS) (2.58)
ds “TAn on ni

These expressions reduce to

Lodn_ 30 1Ay 6 (2.59)
An ds  on As on  Os

Substitution into equations (2.54) and (2.55) yields
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4 2.61
0, (1,73 @61
ds qF dn F jon

where F’denotes the derivative dh/dg.

The quantities p and y can be introduced into these equations by the substitution of
o0/cn = (66/2w)(dwidn) = q(06/0y), etc., (Engelund, 1953), and thus the equations
(2.60) and (2.61) becomes:

96 _ Foq , (2.62)
dy g ap
and
v (1,23 e6)
p Flqg F )iy’

These equations can be solved for ¢ and & as functions of p and , However,
Engelund (1953) has expressed in the same way the functions p and y in terms of ¢
and 6, and substituted these into the flow equations. which then become

v _adg Coh
J0 F dp
and
2y _1(1,Fan e6
dg Flg F )06’

Furthermore, y can be eliminated from these equations by appropriate differentiation,
which leads to

mr\ 92 2.66
1(gdp), 1(1 9FNp (2.66)
g\ F dq Flq O0F )06’

Engelund arrived at a single partial differential equation for p, which describes linear
as well as nonlinear steady state flow in porous media. He showed how it can be
solved for particular cases. :

In the extreme case of high Reynolds numbers, the quadratic term in equation (2.66)
is preponderant (truly turbulent flow), and (2.66) can be reduced to

’p 2 dp (2.67)




According to the above equation, Engelund lists a set of specific solutions. As an
illustrative example, one can reproduce here Engelund s solution for the

symmetrical radial flow to a single well.

On account of symmetry, p is mdependem of fand (2.67) becomes

d%p o o : (2.68)
dq’
from which
pEegte, T 269)

in this case p is a linear function of g. To see how p depends on the distance from the
axis of the well, Scheidegger (1967) proposed

ap . dg . (270

¢ b 2.71)
=-——L . or =2nqgr—=Q—
1 br o ‘ , 1 2r Q.27r
where Q denotes the discharge per unit length of the well. Thus, p becomes
bQ Q% (2.72)
=—g+c, =——+c,.
R e

Solutions to the more general flow equation of Engelund (Eq. 2.66) are much more
tedious to obtain. Engelund listed a variety of methods and applied them to a series of
special cases which are of interest in the theory of groundwater flow into wells,
drainage tubes, etc.

2.5. Influence of seepage on soil stabilityk

One of the major concerns regarding the safety of embankment dams is the problem
of internal soil stability when particles are subjected to drag forces resulting from
reservoir seepage. This problem is particularly important when transverse cracking of
the core occurs; this cracking is caused by differential settlement or hydraulic
fracture, both of which can cause serious internal erosion resulting in catastrophic
failure of dams. Numerous cases of near failure and total failure of dams, as a result
of internal erosion, have been investigated and reported in detail in the literature
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(Sherard, 1972). These studies have covered two aspects of the design of filters to
prevent internal erosion. First, transverse cracking within the impervious core zone of
dams is common and filters must, therefore, be capable of blocking internal erosion if
such cracking should occur. Second, there has been recent recognition of the high
erodibilty of dispersive soils (Sherard, 1974 ) and the need of increased knowledge
for the design of the filters to block such erosion.

Seepage force can combine with soil weights to improve stability or worsen it,
depending on the direction in which the forces act in relation to the geometric cross
section; for example, if one considers an element where the flow acts downward, the
drag force will act in the same direction as the weight of the soil particles, and tend to
fix the particles in their positions. On the other hand, when the seepage force acts
upward, the stability will depend on the weight of the particles compared with
seepage forces (Cedergren, 1989).

The forces of seepage water often enter into calculations for the design of many
different types of civil engineering works. When the forces acting on large earth
masses are not in stable equilibrium, massive failures can take place. If the forces
acting on individual soil particles are large and these particles are not firmly held in
place, internal erosion and piping failures can take place. Dams and other important
works influenced by seepage should be designed with suitable filters and drains (Harr,
1968).

Seeping water imparts a force to individual soil grains by friction. The force, F, acting
on a given volume, ¥, of soil is equal to the volume in cubic meter multiplied by the
unit weight of water, in newton per cubic meter and the hydraulic gradient; that is

F/V=pyJ (2.73)

If the hydraulic gradient is 1.0, the seepage force per unit volume is equal to the unit
weight of the water. Figure 2.3 shows a small volume of sand confined in a tube
fitted with reservoirs on both sides. Head, 4, presses on the sand at the left, while
head, A,, does so on the right. According to hydraulics, the water pressure force [N]
on the left side of the sand is

P=y, hA (2.74)

in which A is a cross-sectional area of the sand normal to the direction of flow.
Likewise, the pressure force [N] on the right side is

P,=y hA (2.75)
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The resultant éeepage force subjeéted by the flow on the soil is

Pi=Py=y, arh - hy). ) (2.76)

Accordingly, the seepage force is proportional to the differential head and the cross-
sectional area of the soil. Hence, Seepage forces in earth Masses can easily be
determined when frictional force is expressed in relation to hydraulic gradient J, as in
equation (2.73) This expression has been derjved as follows,

The hydraulic gradient in the soi] is

1:, —_ Ahy“A . y"__A'ﬁV. (2.78)
CAL

The differential head Ah is always a measure of the loss in energy between two points,
However, pressure difference can exist without Seepage. The magnitude of the
Seepage force acting on g volume of soil must always be equal to that indicated in
equation (2.73). In practice, this may be determined by either of two methods which

require a flow net and give exactly the same resulf provided the work js carried out
accurately.

(1) Calculate directly from equation (2.73), using hydrauljc gradients
measured in flow nets (gradient method).



(2) Determine graphically, using the boundary pressure method (Cedergren, 1989).

The amount of work required for determining seepage forces by the boundary
pressure method is several times that required by the gradient method. For most
applications, the gradient method is sufficiently accurate; however, in cases in which
the gradient method can be applied only with difficulty, the boundary pressure
method can always be used with confidence as the primary or referee method.

2 5.1. Seepage force in earth dams

It is generally assumed that when filters are provided there will be no need to concern
for the magnitude of hydraulic gradients, because properly designed filters can
provide 100% protection for gradients of any magnitude in earth dams. This requires,
however, that every part of the impervious zone be protected with correctly designed
filters. However it is generally known that not every contractor building dams and
other works is aware of the difference between a properly constructed filter and one
that can lead to failure. The importance of protecting every square meter of erodible
zones cannot be overemphasized. With proper control of construction, there is no big
problem in designing a dam with high internal gradients, however designs having high
seepage gradients should offer substantial benefits. All other factors being equal,
designs that hold internal gradients to low levels are safer than those that have
exceptionally high gradients.

Under normal operating conditions, the downstream supporting embankments and the
toe of dam are not to be exposed to seepage forces; often no requirements are
specified for the drainage capacity of a dam. Some drainage capacity is, however,
essential for the safety of the dam in case overtopping or big leaks should accidentally
occur. This situation must be studied and constitutes a part of the overall risk analysis
for a dam (Sherard, 1985). '

Outflow of water at the toe of the dam is illustrated in Figure 2.4. Depending on the
run-off intensity, the quantity of water exit on the slope at a certain level above the
base can be determined by the hydraulic conductivity of the fill. The fill is subjected
to seepage forces and pore water pressures which reduce the stability along potential
sliding planes inside the fill. The overflowed part of the slope is also exposed to
surface unraveling and erosion stone by stone.
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Figure 2.4. Outflow of water at the toe of a dam.

Flow through coarse rock fills is generally turbulent, and Darcy’s law does not =
for this flow. Hence, the flow velocity is calculated as being (Solvik, 1976)

P —————

g=K J (2-

’

where g is the flow velocity, K, is the hydraulic conductivity at turbulent f
(m?/sec?), and J is the hydraulic gradient.

The turbulent 'hydrarulic conductivity may roughly be estimated from the equatior -
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where /% is the grain shape factor (£ = 3.6 for quarried rock), # is the porosity © ~ =
fill material, g is the acceleration of gravity, and 4, is the significant particle size.

In well-graded materials the significant particle size is approximated by

dy=1.7 dyo. For narrowly graded materials, d, = dsp is similarly used. The =
opening diameters dyo and dso represent the sieve openings through which 102@

50%, respectively, of the materials would pass (by weight).

The porosity, n, may be in the range of 20-30% for well graded and well compy T m—
materials, and 35-40% for narrowly graded material. The hydraulic conductivi®
(m*/sec”), would be on the order of 0.1 dyo (m) for the rock-fill supporting sho ®——————
and 0.2 dso for the cover stones in the toe and the slope protection. The hyd ¥~
conductivity of the rock-fill shoulder can easily be less than 1% of the hyd ¥
conductivity of the protective cover layer of large stones, and is substantially rec®—

with increasing content of fines. The water exits in the slope at an elevation, h, T————=
by the cross-sectional area required for the actual flow (Figure 2.4);




(2) Determine graphically, using the boundary pressure method (Cedergren, 1989).

The amount of work required for determining seepage forces by the boundary
pressure method is several times that required by the gradient method. For most
applications, the gradient method is sufficiently accurate; however, in cases in which
the gradient method can be applied only with difficulty, the boundary pressure
method can always be used with confidence as the primary or referee method.

2.5.1. Seepage force in earth dams

It is generally assumed that when filters are provided there will be no need to concern
for the magnitude of hydraulic gradients, because properly designed filters can
provide 100% protection for gradients of any magnitude in earth dams. This requires,
however, that every part of the impervious zone be protected with correctly designed
filters. However it is generally known that not every contractor building dams and
other works is aware of the difference between a properly constructed filter and one
that can lead to failure. The importance of protecting every square meter of erodible
zones cannot be overemphasized. With proper control of construction, there is no big
problem in designing a dam with high internal gradients, however designs having high
seepage gradients should offer substantial benefits. All other factors being equal,
designs that hold internal gradients to low levels are safer than those that have
exceptionally high gradients.

Under normal operating conditions, the downstream supporting embankments and the
toe of dam are not to be exposed to seepage forces; often no requirements are
specified for the drainage capacity of a dam. Some drainage capacity is, however,
essential for the safety of the dam in case overtopping or big leaks should accidentally
occur. This situation must be studied and constitutes a part of the overall risk analysis
for a dam (Sherard, 1985).

Outflow of water at the toe of the dam is illustrated in Figure 2.4. Depending on the
run-off intensity, the quantity of water exit on the slope at a certain level above the
base can be determined by the hydraulic conductivity of the fill. The fill is subjected
to seepage forces and pore water pressures which reduce the stability along potential
sliding planes inside the fill. The overflowed part of the slope is also exposed to
surface unraveling and erosion stone by stone. ~
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Figure 2.4. Outflow of water at the toe of a dam.

Flow through coarse rock fills is generally turbulent, and Darcy’s law does not hold
for this flow. Hence, the flow velocity is calculated as being (Solvik, 1976)

g=+K J (2.79)

1

where ¢ is the flow velocity, K; is the hydraulic conductivity at turbulent flow
(m*/sec?), and J is the hydraulic gradient.

The turbulent hydréulic conductivity may roughly be estimated from the equation:

3 2.80
K =a"gd, (250
)801'“”

where /% is the grain shape factor (/% = 3.6 for quarried rock), # is the porosity of the
fill material, g is the acceleration of gravity, and d, is the significant particle size.

In well-graded materials the significant particle size is approximated by

d,=1.7 dyo. For narrowly graded materials, dy = dso is similarly used. The sieve
opening diameters d,o and dso represent the sieve openings through which 10% and
50%, respectively, of the materials would pass (by weight).

The porosity, n, may be in the range of 20-30% for well graded and well compacted
materials, and 35-40% for narrowly graded material. The hydraulic conductivity, X,
(m*/sec?), would be on the order of 0.1 d) (m) for the rock-fill supporting shoulder
-and 0.2 dso for the cover stones in the toe and the slope protection. The hydraulic
conductivity of the rock-fill shoulder can easily be less than 1% of the hydraulic
conductivity of the protective cover layer of large stones, and is substantially reduced
with increasing content of fines. The water exits in the slope at an elevation, £, given
by the cross-sectional area required for the actual flow (Figure 2.4);
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For the case where o = 0, the above equation becomes

e O (2.82)
K, J

where £ is the elevation above the reference level (m); Q, is the specific flow of water
(m*/sec.m); m is the slope inclination ratio, m = tan B ; o is the slope angle of the
rock surface in the direction of the flow; and B is the angle of the dam slope.

When the surface of the dam above the tip of the toe and below elevation, £,
overflowed. The specific flow, g, has a threshold value for the stability of the slope
depending on the size and weight of the stones, the foundation inclination, «, the
effective angle of friction, ¢, and the slope inclination ratio, m. For a given total
outflow, Oy, the specific flow, Q,, is determined by the shape and width of the dam at
the toe. The specific flow may be increased dramatically by narrowing gorge effects
towards the toe.

Woérman and Olofsdotter (1991) stated in their analysis of the mechanism of
interfacial erosion, that fluid flow through soil, will cause momentum transferring
process from the fluid to the solid matrix. They found that when the exchange of
momentum per unit time and area of solid matrix is sufficiently large, some grains that
not locked in the solid matrix by inter-granular forces may become mobile. Hence,
they concluded that this phenomenon can be pronounced in the contact surface
between two materials of different grain size because the finer grains can pass through
.the pores of the coarser material. They also concluded that the transport rate depends
on the forces applied by the fluid on individual, transported grains and the weight of
the grains, which is also discussed in this study (see Section 2.5). Furthermore, they
found that the transport and filtration of particles with a diameter below 100 pm is
affected also by inter-granular forces due to electrostatic interaction between charged
particles and London-Van der Waals forces between dipole-dipole, in which such
electro-chemical forces result in cohesion within a medium, and in-adhesion (and
possibly adsorption) between the transported particles and transport medium (fluid)
(Wérman and Olofsdotter, 1991). Hence, analysis of migration of clay core material
in dams would require consideration of these phenomena. To prevent the transport of
finer materials into the coarser one and to provide at the same time a draining capacity
to reduce the possible excessive pore water pressure inside the embankments, a well-
graded filter designed and placed carefully is necessary; consequently, filter criteria
need to be taken into account in this study.
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2.5.2. Filter importance and-design criterion

For earth-fill and rock-fill dams, protective filters consisting of selected sands, gravel,
or both, are usually installed within the cross section of the dam. The filters have two
“main functions: (1) to prevent internal erosion by blocking ngratlon of particles from
impervious core zones; and (2) to facilitate internal drainage of seepage flows, thus
‘preventing excess hydrostatic pressure within the dam or foundation. In order to
prevent internal erosion, the basic requirement of a filter is two-fold. First, it must
have sufficiently small pore size to the prevent escape of core particles through the
“filter voids; second, its capacity for blocking migration of core particles must be
continuous over the entire seepage surface, with no local discontinuities (Harr, 1968).

“The current design practices for filters in earth-fill and rocks-fill dams is an outgrowth
of a well-known concept proposed by Terzaghi (1922 ). His simple empirical criteria
were: Dys¢/ Dgsp, < 4 for hydraulic stability (Dis¢ is the size of filter particles that hold;
Dy, is the size of the soil particles subjected to seepage force) and Dys¢/ Dysp > 4 to
satisfy permeability requirements (D;s, is the size of particles of soil that filter
seepage). These simple criteria do not give a unique filter gradation for a particular
base-soil. The range of the 15% filter size, D,s, that the criteria allow increases
progressively as the width of the base soil increases. For any Djsg, the void volume
and permeability decrease as the width of gradation of the filter increases, and vice
versa. Sand-gravel filter material that satisfies the Dys¢/ Dgs, ratio may be so widely
graded that its hydraulic conductivity is not significantly different from that of the
base material. This was the case at the Teton Dam (Casagrande, 1976). A widely
graded sand-gravel filter can have two other serious defects. First, if it contains a
significant percentage of fines passing the #200 sieve, then these fines, together with
any interlocking effect due to the wide gradation, may impart sufficient cohesion for
the filter to sustain a transverse crack. This would cause a discontinuity in the filter
through which core material could be easily transported. Second, a widely graded

filter material is difficult to place without segregation. This would result in
discontinuity with the same consequences as before. Cedergren (1976, 1973) has
emphasized the importance of these additional factors that should be considered in the
selection of appropriate filter gradation within the limitation of the gradations that
meet the Terzaghi criteria. Other investigators have sought to improve the Terzaghi
filter design criteria by amplifying them in such a way that they yield a more specific
gradation. In the author’s opinion, the main effect of the amplifications of the
Terzaghi criteria is that they permit the use of widely graded sand gravel mixtures as
filter materials.

However, consideration has not yet been given to the erodibilty characteristics of the
core material in the design of protective filters. Many examples of gradations of the
filter, shell and non-dispersive cohesive embankment or core material, which are
based on Terzaghi criteria and are used in different dams have failed or nearly failed.
It can be concluded that the gradation characteristics of the core fine alone do not
yield enough information to determine whether or not a certain filter is suitable.



Consequently consideration of the erodibilty characteristics of the fine is also
necessary in design of protective filters.

According to the above, it can be concluded that the idea of including deflocculated
fines, which -have a clogging tendency in core material, can give sufficient
improvement to the filter performance. In fact, it is important to decide how much
fine material is necessary to prevent the passage of eroded soil and at the same time,
to block transverse crack (Sherman, 1978, 1979).

A variety of empirical tests has been used by different investigators to identify and
classify soils with respect to their dispersion characteristics: the Crumb test (Emerson,
1954), the SCS dispersion ratio test (Decker, 1976), and the pinhole test (Sherard,
1976). These three tests are used mainly to identify dispersive clays; and even them
are not suitable for all cases. The reasons that these tests are not suitable to identify
the erosion characteristics of some soil types have been reported in the literature
(Perry, 1976). It has been shown that the system of classification used in above tests is
not able to predict piping performance. The author concludes that the reason for this
incomplete - classification is that it does not take into account important erosion
factors, such as the chemistry of the soil and the composition of pore and eroding
fluid.

2.5.3. Erodibility characteristics of soils

Soil erosion is a complex mechanism involving the soil and the nature of the
interaction between the pore and eroding fluid at the surface. Because the critical
shear stress, 1., is dependent on these factors, it can be used as a fundamental
parameter to classify erodibilty characteristics. Hence, one of the accepted approaches
for the evaluation of initiation and sustainability of particle motion or aggregation
involves the calculation of the shear stresses caused by hydraulic flow. Any critical
shear designation should indicate either: (1) a stress at which erosion begins; or (2) a
stress that would cause a particular erosion rate. The critical shear stress which would
cause a particular erosion resistance was defined by Shields (1936) as the value of the
stress for zero sediment discharge that would be obtained by extrapolating a graph-of
observed erosion rate versus shear stress. Numerous results showing the influence of
clay type and amount, pore and eroding fluid compositions, pH, temperature, and
organic matter on 1, are reported in the literature. It can be concluded, based on these
limited studies, that certain categories are proposed for the classification of core
materials with respect to their erosion resistance (Arulanandan, 1973, 1976 and
1977). These categories, defined in term of critical shear stress, are:

1. Erodible soil, t. <40 N/m?,
2. Moderately erodible fines, 40 N/m? < 1. < 90 N/m?, and
3. Erosion resistance soils, t, > 90 N/m’.



In addition to the previous requirements, there are two other considerations that are
important in the evaluation of dam’ stability. The first is the concentration of
suspended sediment and chemicals in ereding fluid (Reservoir water for existing dam
and river water for proposed dam), which can have a major effect on the erodibilty of
core material. Second, attention should be given to the permeability, crack: resistance,
and segregation characteristics of the filter material.

2.6. Field measurements

Experimental work has been done on the flow of water through different models of
fill dams with different characteristics to verify the theoretical analysis of the flow
equation. Linear and nonlinear equations have been applied to flow models found in
the literature. Bear (1972) has published a detailed discussion of the work done for
nonlinear flow equations. A comparison with a numerical finite elemem solution is
also given in his conclusion.

Volker (1969) studied. the seepage through a model of a gravel bank in an open flume.
The flow conditions were then analyzed by the finite element method and checked
against the experimental results. He used a flume 2.0 ft. wide and 2.0 fi. deep with
one clear perspex side for viewing purposes. Drilled holes were made on the steel side
to allow measurement of the piezometric heads.

No attempt was made in his experiments to model actual dam conditions, since the
purpose of the investigation was simply to determine whether the numerical solution
of the differential equations for nonlinear flow could predict accurately the position of
the free surface and the quantlty of discharge for known boundary conditions and
material properties.

Volker also used a wire screen positioned at the toe of the gravel dam to prevent scour
of material there. The flow ended in a vertical drop-off at the screen resulting in zero
tailwater depth. No analysis of the stability of the gravel bank was considered in his
applications.

His experimental work has shown that, provided the appropriate coefficients in' the
nonlinear flow equation are accurately measured and known, the finite element
solutions agree well with observations of actual flow through coarse materials on a
horizontal impervious base. Comparison of the results from two equations has shown
that an equation. of the Forchheimer type gives a small but significant improvement
over one of the exponential type when calculating the discharge through coarse
granular material. In view of the rational basis of the Forchheimer equation, one can
realize from Volker’s results that this improvement would become much more
important when considering wider variations in flow range as in prototype rock-fill
banks. He found also that there are some problems in obtaining solutions for flows
with a cut-off wall, as this introduces singularities on the impermeable boundary
which cause difficulties in the numerical analysis. Volker found that the nature of the
flow passing over the cut-off wall cannot be represented exactly by the steady
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continuous . flow assumed in a theoretical analysis. Despite this, he concluded that
discharge can be predicted to within about 10% of the observed value, which would
normally be an acceptable result for engineering purposes.

Experiments have also been done by McCorquodale (1970) for steady and unsteady
flow in rock-fill dams of rectangular section by applying non-Darcy flow equations.
He followed also the work of Engelund (1953) by solving non-Darcy free-surface
flow problems by finite-element analysis. Engelund (1953) gave the functional
equation for turbulent and transitional two-dimensional flow. Hence, the purpose of
McCorquodale’s study was to present a modification of the functional equation used
by Engelund (1953), which would be suitable for laminar, turbulent, and transitional
two-dimensional flows. The finite element method was formulated and the solutions
for non-Darcy free surface flows through the rectangular section were compared with
their corresponding experimental flow fields. His experimental data were in good
agreement with the finite-element solution.

Ching (1988) illustrated a boundary-element solution procedure which can be applied
to the analysis of both steady-state and non-steady-state unconfined seepage
problems. This analysis are performed for a laboratory model and prototype earth
dams to determine the position of the free surface in steady-state conditions, as well
as the movement of the free surface in a transient condition resulting from drawdown
of the water level in a reservoir. The applicability of his method was evaluated by the
means of comparison between the numerical solutions and measured laboratory and
field data. The principles of the continuity of flow and Darcy’s law were applied to
formulate the boundary element problem with the utility of the kinematic boundary
conditions proposed by Bear (1972). The final results showed that the boundary
element method based on the described procedure is an efficient tool for the analysis
of unconfined flow problems. He found that both steady and non-steady-state
conditions can be solved by the same numerical algorithm which permits greater
convenience.

The agreement between measured and predicted spatial variation of pore-pressure
heads within a dam under both steady and non-steady state conditions has been found
by Ching (1988) to be reasonable. He found that, under a drawdown condition, the
rate of change in pressure heads depends not only on the drawdown rate of the pool
level but also significantly on the locations where the pressure heads were measured
within the dam. On the other hand he found that pore-pressure heads in the
downstream side of the dam usually decrease at a much slower rate than those in the
upstream side of the dam.

The effects of capillarity and change of hydraulic conductivity of the soil due to the
change of soil skeleton were omitted in the formulation of the boundary element
problem, although Ching did find a satisfactory correlation between the numerical
solutions and laboratory and field observations. He has suggested that, for practical
purposes, it may not be necessary to refine the analytic method to include the effects
of capillarity and time-dependent hydraulic conductivity. He supposed that the
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solution to the seepage problem can be considered adequate for the problems under
consideration.

The author believes that the most important conclusion is about the controlling factor
for seepage quantity, which is the hydraulic conductivity of the soil. Ching concluded
that in most. cases this can only be determined approximately in the laboratory.
Therefore, there is an uncertainty in the predicted flow quantity. On the other hand, he
found that the predicted pore-pressure heads are relatively insensitive to the hydraulic
conductivity. Hence, the predicted pore pressure is more reliable, despite the degree
of uncertainty, in the estimated hydraulic conductivities.

2.7. Numerical solutions

One can find that, in many cases, the partial differential equations governing flow
through porous media cannot be solved by exact analytical methods. In certain cases,
although a general analytical solution can be obtained, say in the form of an infinite
series, it is very difficult and tedious to apply it to a specific problem. This is
especially so when the boundaries of the flow domain have an irregular shape or, for
free surface, gravity flow. In section 2.4 models and analogies are described that are
used as tools for solving such problems. In the present section, some numerical
techniques are outlined for the same purpose.

2.7.1. Method of finite differences

In most numerical methods of solving differential equations, the first step is to replace
the differential equations by algebraic finite difference equations. These are
relationships between the values of a dependent variable e.g. @, at neighboring points
of the x, y, z, ¢ space. The numerical solution of the series of simultaneous equations
thus obtained gives the values of the dependent variables at a predetermined number
of discrete points (grid points) throughout the domain investigated. For simplicity
most problems are limited mainly to two-dimensional flows.

In order to solve a problem in the xy plane, the flow domain R enclosed by a
boundary B is divided by a mesh of grid lines as shown in Figure 2.5.
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Figure 2.5. A grid for a numerical solution.

The distance between grid lines need not be constant throughout the flow domain. In
some cases, when a specific need for a variable grid spacing arises, the spacing is
often with Ax; = Ay, = constant. The grid lines then form a network of squares. For
time-dependent problems, time is divided into increments At. In general, all time
increments are chosen equal (Bear, 1979). V

The differential equations are replaced by finite difference equations written in terms
of the values of the dependent variables at the grid points. The solution of the
difference equation, or the set of difference equations, is carried out numerically, by
means of a high speed digital computer. If we denote the exact solution of the
differential equation by S, the exact solutions of the difference equations by D, and
the numerical solution of the difference equation by N, then we can call |S— D] the
truncation error, and } D—N | the numerical, or the round-off error.

Trescott et al. (1976) suggest that, to avoid large truncation errors and possible
convergence problems, one should use Ax/Ax,; < 1.5 whenever a variable grid is
employed. Also they suggest that the grid should be oriented such that a minimum
number of nodes are outside the aquifer domain considered. In an anisotropic aquifer,
it is preferable to orient the grid with its axes parallel to the principal directions.

In general, the condition for convergence of the solution is that |s — Dpl> o0
everywhere in the solution domain. The condition for stability is that everywhere in
the solution domain | D — N|— 0. The problem is to find N such that over the whole
region of interest | S— D is smaller than the chosen error criterion. As S§—N)=(S
— D) + (D — N), the total error is made up of the truncation error and the round-off
error. The truncation error, which is due to the arbitrary form selected for the finite
difference equation, is often the larger part of the total error.

The finite difference equations can be obtained in two ways. The first, mathematical,
approach is to approximate the derivatives appearing in the partial differential
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equations. The second, physical, approach is to consider the water balance of an
element of area Ax, Ay, This is actually the first step in developing any continuity
equation using the control box approach, before proceeding to the next step of letting
At and the dimensions of the control box go to zero. This approach is also discussed
in the literature in connection with a multiple-cell aquifer model (Bear, 1972).

2.7.2. Method of finite elements

Starting in the mid-1960s, a very powerful numerical technique-generally known as
the finite element method—has been applied to numerous problems of flow through
porous media, groundwater flow, multiphase flow, flow with a phreatic surface,
hydrodynamic dispersion, consolidation, and heat and mass flow through porous
media. This is a very powerful and extremely flexible method. It can handle any shape
of the boundary and any combination of boundary conditions, inhomogeneous and
anisotropic media, moving boundaries (by continuously changmg the grid), free
surface and interface, deformable media, etc.

In the finite element method, the objective is to transform the partial differential
equation into an integral equation that includes derivatives of the first order only.
Then the integration is performed numerically over elements into which the
considered domain is divided. :

The free surface in finite element solution

Boundary conditions in the form of prescribed heads and non-zero quantity of flow
can be dealt with easily in the finite element formulation. More difficult
circumstances arise when there is a free surface or under conditions of saturated-
unsaturated flow.

Free surface for steady flow is usually determined by using iterative procedures, (
Desai, 1972; Volker, 1969; Finn, 1967). The location of the free surface is first
guessed and then modified successively on the basis of the values of fluid heads
computed at each step of iteration. The boundary conditions of no ‘flow across-and of
the total head equal to the head at the free surface are checked at each step, and an
iterative procedure is carried out until the location of the free surface becomes
essentially fixed. Hence, along the free surface we have :

a0 _ (2.82)
dn

where
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¢=2z(1). (2.83)

On the other hand, the location of a transient free surface is relatively more difficult.
Many procedures have been proposed. The procedure proposed by Desai, (1970,
1972) and Taylor et al. (1971) is based on the solution of the steady state version of
the following equation,

2 99), 2y 28), 9, 29), 5,2 @84
3x£K"8x)+8y(K’9y)+82[1{:c7:j+g“n

where O is the applied fluid flux.

The equation above is based on Darcy’s law with a non-homogeneous porous
medium.

At each time interval, the movements of the free surface (nodes) are obtained from
computed values of nodal heads and velocities. The coordinates of the nodes on the
free surface are then modified as

X" =xl + ALx(1) (2.85)

where x; denotes coordinates of nodal points on the free surface, i = 1,2...N, N is the
number of the nodes on the free surface, ¢ is the time, At is the time increment, the
overdot denotes the rate of change of x;, and ¢ is between t and r+Av. In this case a
possible difference scheme would be simply to use ¢” = r which essentially yields a
forward difference integration in time. It has been shown in the literature that it is
usually necessary to use a small value of Ar in order to assure acceptable accuracy.

The foregoing scheme has been modified by Desai (1971) to include an iterative

procedure in which alternative locations for computing % can be used. Based on what
are known as Lipschitz’s conditions, the size of Ar is increased or decreased
automatically such that convergence and stability are assured at each time step.

Neuman and Witherspoon (1971) formulated the problem by using the variational
principle. The resulting set of nonlinear differential equations was integrated in time
by using the Crank-Nicolson procedure. From quantitative results, the scheme
denoted above was considered to be unconditionally stable.

McCorquodale (1970) used the concept of Lagrangian coordinates for flow governed
by a non-Darcy law (Forchheimer equation), and got a set of nonlinear equations that
were solved by using the successive overrelaxation method. The stability of the
procedure was found to depend on the size of Ar.

The concept of free surface is valid for many practical problems such as flow through
silty, sandy and granular media. For certain situations, it is useful to look at the
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problems as saturated-unsaturated flow and aim at determination of the zone of
separation of the two regimes, rather than to try to find a distinct free surface.

Unsaturated or partially saturated flow problems using the FD method have been
solved for the free surface by satisfying the conditions of zero pressure (Reisenauer,
1963; Taylor and Luthin, 1969). Desai (1970, 1971) used a procedure in which the
fluid ‘heads were computed in the entire flow domain and the free surface was located
‘by finding those points where the total head equaled their elevation heads. The exit
point on the free surface of seepage was located by an iterative procedure coupled
with another method called fragments. '

Neuman has proposed a general procedure, in which the free surface is located by
finding points where the pressure head vanishes and the surface of the seepage is
handled by a special iterative method. The advantage of these approaches is that we
can avoid the necessity of deforming the finite elements mesh as required in the
foregoing schemes. Alternative procedures based on the concept of space-time finite
elements complete discretization with the well-known Galerkin’s method (Desia,
1971; Oden, 1972; and FIDAP, 1996) have been proposed in many cases. General use
of this concept will require further studies to evaluate it in the conventional semi
discretization procedures.
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3. Analysis of the problem

3.1. Problem to be solved

The investigation of seepage mechanisms in hydraulic structures and effects of piping
problems requires a pre-study of the flow profile in various cases and for different
degrees of freedom. In order to design and provide safe embankments for earth dams,
the study presented here is based on numerical simulation of groundwater flow and
flow through porous media with a gravity effect. Numerical experiments are done for
various porous materials with incorporation of linear and nonlinear flow equations, in
order to prove the need for a nonlinear relation between hydraulic gradient and the
flow velocity

In most cases simulated with the experimental data, the analytical solutions are much
more difficult to apply in those cases of gravity flow with a free surface.
Polubarinova-Kochina (1958) and many others have proposed several transformations
of the flow geometry using the hodograph solution methods. They solved both linear
and nonlinear flow equations. However, these solutions are limited to a defined
geometry. Hence, the numerical solution offers a better chance to solve cases with
complicated flow domains.

Although mathematical solutions have been developed for particular cases of flow,
the solutions are cumbersome and often approximate. Harr (1962) presents an
interesting treatment of seepage theory, giving both rigorous and approximate
mathematical solutions to seepage under weirs and other structures. He described, by
conformal mapping, the velocity hodograph, and other special mapping techniques,
such as the Zhukovsky functions and the Schwarz-Christoffel transformations.

In the current work, two-dimensional steady flow models are proposed. Two
simulation problems of isothermal seepage through confined porous media were
selected and solved analytically, then numerically by using the computer program
(FIDAP, 1996). A problem of unconfined flow with a free surface was selected and
solved by three different analytical methods.

3.1.1. Rectilinear confined flow

The domain for the problem simulated of a rectilinear confined flow is shown in
Figure 3.1.
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Figure 3.1. Schematic diagram of the rectilinear flow problem.

The flow domain is taken to be a homogeneous and isotropic, rectangular porous
medium with a constant head difference between the upstream and downstream
boundaries. Hence, we have a case without gravity effect where the flow is forced to
be rectilinear. A case like this is expected to give an accurate solution when the Darcy
law is applied (cf. 2.2). It is a simple case in which analytical solutions can easily be
found for both linear and nonlinear relations (see Figure 2.2). Hence, an analytical
solution is applied and a comparison with the numerical results is illustrated in this
study, where linear and nonlinear relations are applied for laminar and turbulent
states.

3.1 2 Radial cohﬁned flow

The complexity of the boundary configurations limits, in general, a broad application
of exact mathematical methods for the solution of the flow in a porous medium. Some
problems involving simple but practical boundaries have been solved in a closed
form, yielding results of value both in the situation of immediate interest and in the
interpretation of more complicated conditions. Hence, in this work we will consider
the most elementary but, nevertheless, significant problem. A cylindrical flow domain
is treated in this numerical presentation. In this simulation, the same degree of
freedom as in the rectilinear case applies. The main difference between the cases is in
the boundary configuration of the flow domain, which implies some changes in the
boundary entity in order to meet the physical principle of the flow in such a domain.
The geometry of the cylindrical flow domain is shown in Figure 3.2.
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Figure 3.2. Schematic diagram of the radial flow problem

The cross-section area of the flow domain in this case varies with the radial distarice.
With this kind of geometrical shape, one can provide two directions for the flow
velocity in x and y. In principle, the flow velocity is a function of the radial distance.
The linear and nonlinear numerical models were also applied in this case, in order to
make an accurate estimation of both equations for radial flow. At the same time, two
forms of analytical solution for the radial flow were obtained and applied. A
comparison of numerical solutions with the available analytical solutions was made.
Different kinds of homogeneous isotropic porous media were specified in the
numerical simulation which in turn provided two flow regimes (laminar and
turbulent). The comparison gave a clear picture of the effect of the nonlinear term in
the flow equation.

3.1.3. Free surface unconfined flow

When flow occurs through the medium of an earth dam, we are faced with an
additional complexity: the top flow line must satisfy the requirement of being
everywhere at atmospheric pressure; in other words, the total head at every point on
the top flow line must be equal to the elevation head of the point. Although the
mathematical solution is complicated by this condition, it can still be obtained by the
methods of conformal mapping. Polubarinova-Kochina (1956) discussed the problem
and supplied solutions (obtained by various mathematical devices) for seepage to and
from a trapezoidal channel in a porous medium and seepage through an earth dam.
Once again, the analytical solutions are of little practical utility because of the
complexity inherent in the design of earth dams, which usually includes layers or
zones of different permeabilities. In this type of application, a free surface flow with a
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gravity effect is established here for a homogeneous isotropic earth-fill dam. The
geometry of the flow domain is shown in Figure 3.3.

Figure 3.3. Schematic diagram of a rectangular earth dam

As a simple free surface flow problem, the example simulated is a steady state one
and has a constant head difference between the upstream and downstream boundaries.
The constant head difference provides inflow and exit points of the phreatic line.
Therefore, the shape of the phreatic line can be found easily by applying the Dupuit-
Forchheimer discharge approximation (analytical solution). However, many analytical
solutions have been obtained for the phreatic line in a simple rectangular earth dam.
The seepage stability analysis of the embankments of an earth dam at the exit gradient
is also obtained using the gradient method (cf. sec. 3.4).

3.2. Governing equations

Numerical models

In FIDAP it is assumed that within the domain of interest, Q, there is a region, V,
containing rigid porous material saturated with a viscous incompressible fluid, as well
as a region, Qp occupied entirely by fluid. The saturating fluid in ¥ is the same as in
Q, if the two regions share a common permeable interface; otherwise, the two fluids
may be different. The porous medium is assumed to be homogeneous and isotropic,
and the fluid and the solid are in thermal equilibrium. The equations describing the
fluid motion and energy balance in the region ¥ are formulated as follows. Within V]
let ¥ be the volume occupied by the fluid and ¥ the volume occupied by the solid,
where



V="Vr+V. 3.1
The porosity of the porous medium is defined by

n=Vil V. v 3.2)
Two averaged quantities are introduced to derive the porous flow equations (Slattery,

1972; Bear, 1972). Accordingly, we have the following momentum equation to be
solved in FIDAP (omitting temperature effects):

u] o (3.3)

du, B
'B—‘J—'}'(p P,,»‘*“Huf’fﬂ”l’ﬁ

n ot ,\/_

where, p is the density of the fluid, B is the inertia coefficient, and u is the dynamic
viscosity of the fluid. Equation (3.3) is sometimes referred to as the Forchheimer-
Brinkman model for porous flow .

By an appropriate selection of the various coefficients that appear in the above
equation, different standard flow models can be derived. Thus, if # = B = 0, the
standard Darcy formulation is approached; while with B =0, z=10" Pa.s. and { =

10%°, the Darcy-Brinkman model will be approached. If both B and . are defined at
the same time to be non-zero, the Darcy-Forchheimer model is approached and the
flow equation applied will be definitely nonlinear.

In FIDAP the actual equation solved is

au A‘U ]u. ~ (34)

=—p,tHu, ;+pf

g

Thus, in terms of input data to FIDAP
w=ApW.

The term ﬁui"/j is the Brinkman term which is required to provide consistent

boundary conditions between fluid and porous domains when both are present in a
simulation. For the problem simulated here, the above mentioned models are
approached by specifying certain values of the parameters that appear in the equation
of motion, Eq. (3.4). Hence, the specified different degrees of freedom for the
simulated cases are illustrated in Table 3.1:
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Table 3.1. Specified flow domain characteristics for the numerical simulations.

Numerical k, P /I 2 n A B m
Flow case | Flow state model Intrinsic Fluid Dynamic | Gravity | Porosity | ACOFF | BCOFF | POWER
(FIDAP) | permeability | density | \iscosity | m/sec’
m’ kg/m' Pas
Darey 107 1000 10 -9.81 0.35 1" 0 1
Laminar
Forchheimer 10" -1f- 10° -1~ 0.35 1 0.55 1
Rectilinear .| | smememeeemee
flow Darcy 1™ g 102 /- 0.56 10" (1 1
Turbulent
Forchheimer 10" -I- 107 -1~ 0.56 1 0.55 1
Darcy 10" 1000 10 -9.81 0.35 10" 0 1
Laminar
Forchheimer 10" -/l- 107 ~ll- 0.35 1 0.55 1
Radial flow —————e
Darcy i -fl- 167 -l 0.56 10" 0 1
Turbulent
Forchheimer 10" -l- 107 -l 0.56 1 0.55 1
Darcy 10" 1000 10 -9.81 0.35 10%" [} 1
Laminar
Free surface Forchheimer 1" - 107 -1 . 035 1 0.55 1
flow e
Darcy 10 -/ 10 -1 0.56 10" [} 1
Turbulent
Forchheimer 1™ -I- 10°? -1l 0.56 1 0.55 1

It is necessary to mention here that in the radial flow simulation, the governing
equation is reduced to the cylindrical coordinates. Hence the analytical solution of the
radial flow requires the transformation of the flow equations to the cylindrical
coordinates system. V

3.3. The analytical solutions

3.3.1. Rectilinear flow

Applying Darcy’s law and the continuity equation in the flow domain, a simple one-
dimensional Laplace equation is yielded:
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d*h : (3.5

The boundary conditions # = h; at x = 0 and 4 = h; at x = L, and integrating twice give

h—h, (3.6)
hl)(x): hl _[ . I . )x or h/)(x): h| _(“gz};ZQL‘)X

where A4, is the cross-section area of the flow domain, and D indicates the Darcy
solution.

Equation (3.5) may be represented by two sets of curves that intersect at right angles
to form a pattern of square figures known as a flow net. One set of lines is called the
streamlines or flow lines; the othetr set is termed equipotential lines. The flow lines
represent paths along which water can flow through a cross section. The equipotential
lines are lines of equal energy level or head.

- As the specific discharge Q increases, the relationship between the specific discharge
O and the hydraulic gradient J gradually deviates from the linear relationship
expressed by Darcy’s law [in the form given in Eq.(1.1)]. Practically all evidence
indicates that Darcy’s law is valid as long as the Reynolds number does not exceed a
value between 1 and 10. In the range of validity of Darcy’s law, Re < 10, the viscous
forces are predominant. As the velocity of the flow increases, a region of gradual
transition is observed, from a laminar flow with predominant viscous forces, to
laminar flow with inertial forces governing the flow. The value of Re = 100 is often
mentioned as the upper limit of this transition region in which Darcy’s law is no
longer valid. Some authors explain the deviation from the linear law by the separation
of the flow from the solid walls of the solid matrix, caused at large Re by the inertial
forces at (microscopic) points of the pore space where the flow diverges or is curved.
At still higher values of Re (150 > Re > 300), the flow becomes fully turbulent (Bear,
1972).

There is no universally accepted nonlinear equation of motion (that is, a relationship
between J and Q) which is valid for Re > 10. Many such relationships appear in the
literature; most of them have the general form of Forchheimer equation (1901). For
the purpose of accurate predictions in comparison with the linear Darcy equation, we
apply the equation proposed by Ward (1964):

v B (3.7
J=Ygr 24
g™ gk

By substituting the total volume of the water flowing per unit of time, denoted as Q
through a defined cross-sectional area normal to the direction of the flow and B as the
inertia coefficient, the nonlinear differential equation becomes:
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on v Q B (0 " (3.8)
ax gk 4, g\/_

To make an appropriate comparison with the numerical solution, the power m has
been designated as equal to two. Thus the flow equation is of the second order.

If equation (3.7) is integrated with respect to x, the relation Of the falling head with
the distance is obtained as:

9
he(x)=h — (V Qfﬁ“f ) 3:9)

where F indicates the Forchheimer solution.

A specific experimental data is available for the values of the inertia coefficient B.
Therefore the value of the inertia coefficient can be adopted from recent works to fit
the properties of the selected porous media in this simulation.

3.3.2. Radial flow

For radial flow, Darcy’s law with the continuity equation can be reduced to the

cylindrical form
1o(.an)_, (3.10)
rar 8 r )

For the current case of radial flow, we have to modify the flow equation with the
applied boundary conditions. Thus, the linear flow equation becomes

1 dh : (3.11)
= K=
© c [ ar)
where
_ 360 hd kK =i%
2n 6 v

By integrating the above linear equation with respect to the radial distance ”»”
K" (3.12)
f Q dr = —— j dh

/1,
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and applying the boundary conditions (see Figure 3.2), the equation obtained for a
finite porous medium with a constant head difference is

n[&jr—-ﬁ(h—h) (3.13)

=

h

where r; and r, are the inflow and outflow radii of the flow domain.
Hence, by solving for O from Eq. (3.13) we obtained

K (h-h) (3.14)

9y = C ln(rz/r,)

where the sub-index, D, indicates the Darcy solution.
The falling head as a function of radius » can be written as

3.15
hn(”)=hx+£Quln(ﬁ‘) G
K r

for ry < r < ry. The flow velocity in the flow domain that follows 'di'rectly from the
continuity is

3.16
ql)(r):"Q;l')‘C- ( )

The solution of the flow by nonlinear relation (Forchheimer equation) imposes the
following modification of the flow equation in cylindrical coordinates. It has been
shown in. the rectilinear flow that the nonlinear relation takes the following form
(Ward, 1964)

dh v

_dh v +_li_ ” 3.17

ar gkq gk v
As the cross-section area varies with “r”, the differential equation in Eq.(3.17)
becomes

oh

A,

vo. B (oY (3.18)
or gk A, gk ’

where Q, as mentioned above, is a volume flow rate per unit time through a unit
cross-section area normal to the flow direction within the flow domain. Hence, by
making the same formulation as above, the integrated equation obtained becomes
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3.19
| },—dhzj(cj%+6’z—l—)dz~ | o

m
Iy

where

m

v B
C=C—¢Q and C,=C"—=¢Q
gk T gk
and C is the same és in the linear equation. The power m is related to the Forchheimer
equation and it has the limitation 1.6 < m < 2. In Eq.(3.19), for the case where m = 2,

the integration with respect to the radial distance gives the following, relation in
cylindrical coordinates:

(Clln(rz)rz—Cz)+(—C,ln(r,)rl+C2) . (G20

K i

h—h=

By solving Eq.(3.19) for the constant flow rate Q and integratin'g‘ again equatioh
(3.19), the falling head equation is obtained:

r 1 1 (3.21)
ho(r)=h, +C,1n(~r‘-)+cz P ' |

h

Hence, the flow velocity can be obtained by simplifying equation (3.19) and
substituting for the varied cross-section area in the flow equation

. 3.22
Q/.'(r):%c ‘ ( )

where the sub-index F denotes the Forchheimer solution.

3.3.3. Free surface flow (unconfined aquifer)

The free surface flow problem has been described in Section 3.1.3; here, a flow
bounded above by a phreatic surface is considered. This types of flow occurs in
phreatic aquifers encountered in ground water hydrology. In many cases it is assumed
for simplicity, that the thickness of the capillary zone above the phreatic surface is
much smaller than that of the saturated domain below the phreatic surface.

The boundary conditions of a phreatic surface can be given in different ways
depending on the governing equations: In most cases of free surface flow the main
boundary condition is that the pressure on the free surface boundary is taken to be
atmospheric, i.e., 7 = 0. In addition, the flow in the free surface is influenced by the
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capillary zone above the free surface, which seems have been overlooked in the
majority of the free surface flow simulations found in the literature.

The nonlinearity of the boundary conditions, together with the fact that the location of
this boundary is unknown in advance and is, in fact, part of the required solution,
makes an exact analytical solution of flow problems with such a boundary difficult, in
all but a very limited number of cases. Some two-dimensional steady flow problems
may be solved by the hodograph method (cf. Sec. 2.4). Numerical methods (cf. Sec.
2.7) are often employed.

A way to circumvent some of the difficulties is to derive analytically approximate
solutions based on a linearization of the boundary conditions and/or the nonlinear
continuity equations describing unconfined flows. Some of these methods are
discussed and applied to the problem considered here.

The Dupuit approximation

The Dupuit approximation is among the most powerful tools for treating unconfined
flows. In fact, it is the only simple tool available to most engineers and hydrologists
for solving such problems.

Dupuit (1863) developed a theory based on several simplifying assumptions based on
the observation that in most ground water flows the slope of the phreatic surface is
very small. In steady two-dimensional unconfined flow without percolation in the
vertical xy plane, the phreatic surface is a streamline. At every point along it, the
pressure is zero and the flow velocity ¢ is given by Darcy’s law:

q=—Kﬂ=-—KQ=—Ksin9. (3.23)
ds ds ,

As the slope 6 is very small, Dupuit suggested that sinf be replaced by the slope
tan@ = dh/dx. The assumption of small € is equivalent to assuming either that
equipotential lines are vertical (¢ = ¢ (x) is independent of y) and the flow essentially
horizontal, or there is simply a hydrostatic pressure distribution. Thus the Dupuit
assumptions lead to the flow velocity expressed by

0 =K %@ (3.24)
X

where & = h(x) and then to the total discharge through any vertical surface of width b
(see Figure 3.3)

0. =—Kbh(x)—c-1—}i. (3.25)
| dx

W
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It may be noted here that all of these assumptions can be considered as good
approximations in regions where @ is indeed small and the flow essentially horizontal.
However, the application of Dupuit approximation is not warranted when turbulent
flow dominates the flow domain. The nonlinear flow equation and the nonlinear water
table of the free surface make it more complicated to rely on Dupuit’s assumption,

The important advantage of the Dupuit assumptions is that the two independent
variables of the original problem (x, y) have been reduced to one. In Eq (3.25), y does
not appear as an independent variable. Hence, the Dupuit assumptions actually consist
of omitting the vertical flow component g,. The value of ¢, varies from g, = 0 along
the horizontal impervious boundary to g, = -K sin’ @ along the phreatic surface.

Equation (3.25) can be solved by direct integration for one-dimensional flows, as well
as for radial converging or diverging flows. If one considers the case shown in Figure
3.3, the flow per unit width between the two reservoirs (vertical faces), following the
Dupuit assumptions, the total discharge (per unit width) through a vertical cross-
section is:

‘ dh (3.26)
Q,=qh(x)=-Kh(x)—.
dx

Integrating between x = 0 and any distance x, we obtain

' vl b=ty (3.27
Q,ds==Kh(x)dh and Q, [dx=-K [h(x)dh,
x=0 h=hy
with the applied boundary conditions
2 2 2 328)
(h2=h’ , (h=h (
0,=-x—tn) 2L_) and hl,(x)yz\/hl o ) x.

The Polubarinova-Kochina solution for a simple dam.

Polubarinova-Kochina (1951) and Risenkampf (1940) applied the theory of linear
differential equations to some problems of ground water flow. A general treatment is
given by Polubarinova-Kochina (1962) and applied to the problem of a simple
rectangular dam and to other more difficult problems. The hodograph and complex
potential planes are involved in these solutions, in addition to the solution of the
hypergeometric equation. In this work attention is confine to the simple homogeneous
rectangular dam problem which is depicted in Figure 3.4a, together with the

hodograph W -plane, the complex potential {-plane, and an auxiliary &-plane, shown



in Figures 3.4b,c and d, respectively. A review of the relevant properties mentioned
by Polubarinova-Kochina for the hypergeometric equation (Crank, 1984; Bakker,
1997) is given in Appendix.
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Figure 3.4. The Polubarinova-Kochina solution for a simple dam

The formulatlon of the solution by Polubarinova-Kochina yields the followmg set of
integral equations:

_:I Ka+(l3—ot)5in2(ll’)] dy (3.29)

t-a=(B-asin’(y)]

K[B+(1-B)sin’(y )]

f dy  (3.30)
o J[B-a+(1-B)sin’(y)]

O]

Kasin’(y))-sin(y) iy (3.31)

h=C-a?-
0 J[(l —asinz(u/)) ~(ﬁ—asi_nz(l//))]

where K(&) is the complete elliptic integral of the first kind.



The terms /, H and h, denote the length of the base of the rectangular earth dam
specified with free surface ﬂow the boundary conditions at the upstream and
downstream sides.

Crank (1984) put the expressions l/(l 5) = cos* l//, a; = l-o, and f; = 1-f in the
integral for /o and obtained

& 7 K(cosz(\ll)) sin(w)cbs'fv() (332)

o \/[(1 -, sinz(v/))(l -5 sinz(‘lﬁ))]

The height of the separation point above the dam base is s, = h + hy. Cryer (1976)
pointed out errors in equations (3.30) and (3.31) from Polubarinova- Kochina (1962),
and his corrections have been included here. The equation of the free surface is found
by separating the real and it is imaginary parts of the functions mtroduced by
Pdlubarinova-Kochina. Thus itis shown '

A K[sin (u/)]-sin(l//)

X =/- C] dy (3.33)
o \/[(1 - ‘””Z(q/))-(l ~ Bsin*(y ))]
Vbt h s } K[sin’(y)|-sin(w) " (3.34)

b \/[(] —~asin2(t///)-(l ~ﬁsz’n2(l//))]

where

O<sy<

r\)'] N

The parémeters @, pand C in the above equations can be solved implicitly for the
given boundary conditions H, h and /, where the complete elliptic integral mentioned
above takes the following form:

n

K(g)= dv | (3.35)

J‘,(l—é’sm (v)

The solution of Polubarinova-Kochina is different from that obtained by the Dupuit
approximation, since the exit point of the phreatic line lies above the tail water level.
The results of Polubarinova-Kochina solution are very reasonable and in a good
agreement with the experimental results of recent work on rectangular earth dams.
Polubarinova-Kochina also treated several problems of ground water flow including
the free surface flow in earth-fill dams with inclination at up- and downstream sides;
she also found a solution for an earth dam with a filter at the dam toe.

n
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Solution of the Forchheimer equation for free surface flow

The Forchheimer equation describes a nonlinear relation between the hydraulic
gradient and the flow velocity; with the nonlinear free surface equation the partial
differential equation obtained becomes too difficult to solve in closed form. Since the
free surface position s(x,y) is not known in advance, several simplifications have to be
made to solve it. In the current analytical solution, the author solves the nonlinear
problem by applying the Dupuit approximation. For a rectangular earth dam, Figure
3.3, by using the Forchheimer equation and s as the distance along the free surface,
the gradient along the free surface is

_ﬁ,: aq-{-qu. (3.36)
ds

Furthermore, for this two-dimensional flow we introduce the Dupuit assumption that
the slope of the free surface is small (sind = tand). This is a matter of solution
accuracy which will be discussed in Section 6. However, the approximation yields the
equation:

_dh(x):a o} b 0, " 3.37
dx hi(x) h(x)

where

gk gk

while Q is a specific discharge per unit width of the dam. Since equation (3.37) is
one-dimensional function which can be easily solved for the dependent variable A(x),
the solution is

_Lhe) h(x)b Qb Infah(x)+b0,] e (3.38)
2 Qga a’ a’ :

where ¢ is the constant of integration and can be found by applying the specified
boundary conditions up- and downstream. By expanding the solution of the
differential equation (3.38) in a Taylor series to the third order, one can obtain the
following closed form for the phreatic line (Sharif’s equation):

2 : 3.39
hx(x)=h(())__Qv(a};f(()()))ijV)x_%Q\' (ah(o)‘kth(‘B))(iah(O)—szQ‘\’)x2+O(x3) (3.39)

where O(x%) is the error order in the Taylor series.
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The free surface equation (3.39) can be solved by applying again the specified
boundary conditions and then finding the corresponding specific discharge Q.
Because this equation is based on the Dupuit approximation, we do not expect to get a
separated exit point at the downstream side; this is different from the Polubarinova-
Kochina solution. On the other hand, this solution can be compared with the Dupuit
solution which is based on Darcy’s law in the case of a rectangular earth dam.

3.4. Stability analysis (seepage force)

3.4.1. Confined saturated flow

In flow in a porous medium at saturated conditions, the viscous friction exerted by the
water flowing through the soil pores, constitutes an energy transfer from the water to
the soil. A measure of this transfer is the head loss (Ah) between the points under
consideration (A/), shown in Figure 3.5.

Al

Figure 3.5. Seepage force in confined flow

The energy transfer corresponds to the seepage force. The seepage force is
responsible for the phenomenon known as quicksand (Terzaghi, 1943) and it is of
importance in the stability analysis of earth structures subject to the action of seepage.
The first rational approach to the problem was presented by Terzaghi (1922); it forms
the basis of all subsequent studies. The theory is presented in a somewhat modified
form. ’

One starts by considering all of the forces acting on a unit volume of soil through
which rectilinear seepage occurs.

1. The weight of the solid phase per unit volume is
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o= l+e

where e is the void ratio, G, is the specific gravity of the soil material, and y,, is the
unit weight of water. If we define unit vertical vector j as positively directed upwards,
we have for ¥

Gy, (3.41)
Y.;:“J“‘L o

2. The second force y, is the buoyancy, which corresponds to the weight of water per
unit volume displaced by the soil particles:

Y. (3.42)

Yr=ld l+e
The‘summation of Eq.(3.41) and Eq.(3.42),

_ (G -1 (3.43)
V==l l+e '

is called the submerged unit weight.
3. The total weight per unit volume of the soil-water mass y, is

. 1(G +e) (3.44)
e BT

The difference between Eq.(3.43) and Eq.(3.44) is simply —j %.. These results are
plotted on a vertical axis in Figure 3.6 below.
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_ V(G +e) ) B
=T —F JYw
"jY\\ Ve
)

Figure 3.6. Forces polygon in confined flow through saturated porous medium
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The forces represent the hydrostatic forces per unit volume acting within the flow
medium. For a complete analysis, one has to include the hydrodynamic forces. The
piezometric head can be written as

B =i+2. (3.45)
y\l'
" The gradient of both sides of Eq.(3.45) yields
VP ; © (3.46)

2 oV

w

where j is a unit vector, as before. Simplification of the above equatidn and replacing
the gradient of 4 by —J yields the vector form

VP =-Jy, —jy,. (3.47)

Equation (3.47) is represented by the triangle A4 B in Figure 3.8. The term Jy, (AB)
represents the seepage force per unit volume of fluid , the direction of which is
normal to the equipotential lines, while R (4"B) represents the magnitude and
direction of the resultant force (per unit volume) acting within the pore water at a
point in the soil. Hence if R = 0, it appears from Figure 3.6 that a critical condition
(quicksand) is defined by ' ’

G-1_v1 (3.48)

B

l+e 7,

critical ™

For a porous medium with K = 107 m/sec. (sandy silt soil), the typical values of the
specific gravity G, = 2.11 and void ratio ¢ = 0.538 ( see Table 3.1), we can see that the
value of the critical gradient obtained is

J

critical

=0.721

It is usual to take the value of the critical gradient as unity when information is
lacking about the specific gravity and void ratio. Equation (3.48) provides the basis
for stability determinations of the factor of safety against a quick condition (called

piping).

The procedure above requires the determination of the maximum hydraulic gradient
along the discharge boundary, called the exit gradient, which will yield the minimum
resultant force (Rmin) at this boundary. This can be done analytically or graphically by
means of a flow net. In recent work the numerical solution offers a good chance to
compute the gradient for complicated geometry and different boundary conditions.



Under quick conditions there is no intergranular pressure, the soil exhibits no shearing
strength and has the properties of a fluid with density given by the following equation
(Scatt, 1963)

l+n (3.49)
l+e' "

V=

It is of interest to note that the critical gradient from Eq.(3.48) depends only on the
specific gravity of soil grains and the void ratio of the soil, while the equation does
not says anything about the grain size of the soil. Therefore, the reaction occurs
independently of the grain size. Scatt (1963) drew the conclusion that a quick
condition is possible in all types of soil, and provided that there are no cohesive or
adhesive forces between soil grains, such forces would resist the separation of soil
particles. This implies that we can expect quick conditions in soils with grain sizes
ranging upward from that of silt. In these soils, the properties are typically such that
the right hand side of Eq. (3.48), and hence, J,.iicu, are close to unity.

There is some uncertainty about the nature of cohesive forces in very fine-grained
soils, and it is probable that a critical gradient in a cohesive soil would eventually
cause a quick condition if maintained at a critical level for a long enough time. This
behavior is related to the change of the pore pressure which, in a cohesive soil,
constitutes a transient or non steady-state flow problem because of its compressibility
and low hydraulic conductivity, and to the fact that considerable time is usually
involved in the progressive change of the pore pressures or hydraulic gradient in
cohesive materials. This means that, although a quick condition may not be
impossible in cohesive soils, it is unlikely in practice that a boundary water-pressure
condition would exist for a long enough time to give rise to a critical gradient through
an entire layer of soil ( Bear, 1972).

In soils consisting of larger grain sizes, such as gravel, the quantity of water that
would be required to maintain a critical gradient through the soil would be very large;
in practice it is extremely unlikely flows of water sufficient to maintain gravel in a
quick condition would be encountered. Hence, we have a process with a practical
limitation on both sides of the granular-size scale.

In the confined flow case we have under consideration two flow states which are
related to the stability of the boundary materials at the inflow and outflow side (sand
and coarse gravel). The linear and nonlinear flow equations are incorporated in the
estimation of the incipient motion of the porous material. However, the critical
gradient obtained from both linear and nonlinear relations is reviewed here. First, for
the linear Darcy’s law we have

VP=-J,y.—i7. (3.50)

In order to have a stable boundary material, the hydraulic gradient according to linear
Darcy flow should be less than the critical gradient maintained at quick condition.
Bear (1972) reported an empirical relation between the intrinsic permeability and the
grain diameter (Hazan equation) as
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k=654x10"d" : (3.51)
where d is the grain diameter and £ is the intrinsic permeability.

The actual gradient can then be formulated as

= qu (3.52)
P 654x107'dp g

which must be less than the critical gradient J,,.;.». Hence, the stability condition
became

; g U (3.522)
LIIIIL(II 6 54 %1 0 d p g

By solving d from Eq. (3.52a), the required grain dlameter can be obtained for the
stability condition in confined flow.

For nonlinear flow (Forchheimer) the hydrodynamlc forces in confined flow can be
written as '

VP = m‘jl’y\r - ij' (353)

By introducing the gradient in the form proposed by Ward (1964),

*J g( Vg4 055 qZ} (3.54)
F gk g\/’; 5

at critical condition, one can obtain

| (3.55)
Jcrincal 2 Y -4 g2 q + 05> qz '
g-654x107"d g-1654x107d

These equations for linear and nonlinear confined flow can be used to predict the
stability of the porous material at the discharge or exit boundary.

3.4.2. Unconfined saturated flow

Previous researchers on transport processes in porous media have treated the
magnitude and direction of the seepage force vector as independent variables.
Muniram (1996) found that the magnitude and direction of the seepage vector are
strongly related at the seepage face. Muniram also found that seepage parallel to the
slope face results in the minimum stable seepage slope. However, it is stated in the
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literature that the seepage force is independent of either the hydraulic conductivity or
the flow velocity: it depends only on the hydraulic gradient (Ghislain, 1986). Thus,
the seepage force can be the same in a medium of very low hydraulic conductivity,
where the velocity of the flow is almost negligible, and in a coarse medium, where the
velocity is very high.

For the case of unconfined flow, the seepage exit face through a simple rectangular
earth dam is studied. The destabilizing forces acting on an individual soil particle
situated at the interface, between the porous medium and the surface flow produced
by seepage at the exit point, are sketched in Figure 3.7 below.
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Figure 3.7. Flow field and forces on an individual particle at the downstream face

Bear (1972) defined destabilizing forces by applying the concept of the representative
elementary volume (REV) which distinguishes between the macroscopic scale and the
microscopic scale. However, the porosity is used as the REV in defining destabilizing
forces, where F), is the drag force due to the momentum exchanged between the
surface flow and the particle, F is the buoyancy force due to the pressure field
around the individual particle, and Fy is the seepage force of the momentum
exchanged between the individual particle and the seepage flow. Furthermore, F; is
the gravity force downward.

At quick condition, the individual particle, @ is nearly to move on the sub particle, b,
with a friction force, F. When a critical condition at the uppermost layer is incipient,
the force balance equation of a unit volume can be set to

(Fi+Fe+F,+Fy,+F;) j=0 , (3.56)

where j is a unit vector in the direction of the surface flow. The seepage force acting
on a single grain in linear laminar seepage flow may be expressed as (Rumer and
Drinker, 1966)

Fo=2puUd (3.57)
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where A is a tortuosity coefficient that takes into account the effect of neighboring
particles, y is the dynamic viscosity of the fluid, d is the grain diameter and U is local
average (seepage) velocity. The coefficient A reaches a limiting value of 37 for a
single sphere in an infinite fluid (Stokes, 1850), so that for an average particle
(Howard and Mclane, 1988)

A=C,3n (3.58)

where C, is a packing coefficient that expresses the effect of the geometry of the pore
system upon local streamline configurations around the particle.

The flow velocity that may be expressed depends on whether a linear or nonlinear
seepage flow occurs. Hence, for linear Darcy flow we have '

qg KJ kgpl (3.59)

where ¢ is the Darcy or superficial velocity, n is the porosity, K is the hydraulic
conductivity, & is the intrinsic permeability, g is the gravitational acceleration, p is the
fluid density, and J is the hydraulic gradient. The general expression to the Hazen
equation, which mentioned before (Bear, 1972) may written also here for the intrinsic
permeability, as

k=C,d° (3.60)

where C;, as mentioned before, is experimentally found to be 6.54x10™ for a limit of
grain diameter. By substituting Eqs. (3.58 — 3.60) into Eq. (3.57), we obtain the
seepage force acting on an individual grain at exit face:

- _Clrnpgld’ (3.61)

y

n

where C, = C,-C;. The critical hydraulic gradient in the direction of seepage is
expressed as a unique function of the slope angle o and the seepage exit angle &
(Howard and Mclane, 1981) as shown in Figure 3.7. The total head difference, Ak
across a particular length As causes the gradient to be at that exit point. The flow line
passing through the exit point will experience the same head difference over the
distance As, so that the hydraulic gradient is

; _Ah;',_ sino . (3.62)
@it T A 1= cos(a +6) )

For nonlinear seepage flow, the hydraulic gradient is expressed by the Forchheimer
equation as
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_J_:( v 0.55 J | (3.63)

— =g
gk g Jik
The resultant nonlinear seepage force acting on an individual grain can be written as
v
F.=C3n P(;(I +

‘9‘.‘5"5“‘{’2)613 / n (3'64)
\/7(- .

From the critical hydraulic gradient at the exit point, the required grain diameter for a
stability condition can be obtained from Eq.(3.64). It is important to note that when
there is a steep slope, the angle of internal friction is smaller than the slope of the
downstream face; hence, the maximum stable slope should be taken into account for
the current analysis. The internal friction for several types of soil, based on a stress
analysis of embankment slope, is given by Taylor (1948).

64



4. Mathematical model of the flow (numerical solution)

The solution method used in the commercial program FIDAP 7.6 is the finite element
method (FEM). In the FEM the flow region is subdivided into numerous small
regions, the finite elements. The partial differential equations of fluid mechanics
covering the flow region as a whole are replaced by ordinary differential or algebraic
equations for each element. The system of these equations is then solved by
sophisticated numerical techniques to determine the velocities, pressures and other
unknowns throughout the region.

In the finite element method the problem of continuity is discretize for space and for
time. For the time discretization, the time integration command is utilized to obtain
the solution which is in time steps. Two models for the flow through porous media are
applied in the numerical simulation: the Darcy-Brinkman model and the Forchheimer-
Brinkman model the were applied for two dimensional rectilinear and radial flow in
confined aquifers. The simulation of the free surface flow is beyond the scope of this
study.

Here the governing equations are given in vector notation:

4.1
po(%”‘;“'l‘ u - Vu) =-Vp+V.7- Po{ﬁ/'(T - To)+ Eﬁ%cn}g + pof

The form Eq.(4.1) of the momentum equation is sometimes known as the stress-
divergence form. In the case that the viscosity is constant, Eq.(4.1) it can be written as

Ju ) 4.2)
Po —a—t—+ u-Vu |=-Vp+uViu-p, ﬁT(T_T0)+Zﬂvncn g+ pf
or in tensor notation:
(4.2a)

du,
po(a_t,'*' uiu!i] = =Pty - poi:ﬁr(T - To)+ 2 ﬂc"cn:]gi + Pof;

The form Eq.(4.2) is known as the Navier-Stokes form of the momentum equation.
Since the porous flow equations are very similar in form to the equations of viscous
fluid flow with the exception that the convection terms in the momentum equation are
replaced by the Darcy-Forchheimer term in equation (4.2). Thus in case we have
isothermal flows the temperature dependence and the buoyancy term is disregarded
from the above equation and the obtained equation is Navier-Stokes equation for
porous medium flow. The equation solved in FIDAP for porous medium flow is then
obtained by replacing the convection term into the Darcy-Forchheimer as follow:

N
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4.1. Dimension of the flow domain

The governing equations are subject to the boundary conditions associated with the
computational domain shown in Figure 4.1 and Figure 4.2, rectilinear and radial flow
domain, respectively.

top-barrier

L b

a

bottomr-barrier

Figure 4.1. Confined aquifer with rectilinear flow

bottom-barrier

Figure 4.2. Confined aquifer with radial flow

The flow domain is assumed to be homogeneous and isotropic in both confined
aquifers. Since we have a two-dimensional flow in a porous medium, we need to
define the dimensions of both flow domains. The length of the rectangular flow
domain, L, in Figure 4.1, is chosen to be 20 m and the cross-section dimension, b, is 2
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m in height. For the radial flow the cylindrical domain of the inner radius, ry, is 4m
and of the outer radius, 7, is 24m, while the angle of the arch, 8is 60°.

4.2. Initial and boundary conditions

In order to perform a computer simulation of the physical flow problems defined
above, it is necessary to specify initial and boundary conditions for the simulation.
Initial conditions specify the initial state of the fluid inside the flow domain for the
confined problems or, for the free surface simulation, the initial state and the initial
position of the free surface. Thus, for a well-posed problem, -boundary conditions are
required on all boundaries of the computational domain. These boundary conditions
are either specified nodal values or specified fluxes across element boundaries for
each of the active degrees of freedom in the simulation. For the current numerical
simulations, the entity of the “element group boundaries” that is associated with each
physical boundary of the confined aquifers is used to define the initial and boundary
conditions. '

4.2 1. Rectilinear flow

For the rectilinear flow with rectangular geometry, the boundary conditions were
simple to set in terms of “plot boundary”, which means that the velocity component,
U, is the tangential velocity for the boundary element at the fop and bottom barriers,
while the velocity component, U,, is the normal velocity across the boundary. Hence,
the tangential velocity at the top and bottom boundaries is set to be “free”, that is to
be computed in the numerical solution, while the normal components of the velocity
are set to zero across these boundaries. For the corners of the rectangular flow
domain no command was needed because the physical normal is consistent with the
mathematical normal computed in the numerical solution. For the inflow and outflow
boundaries the tangential component, U,, of the velocity is set to zero while the
normal component, UL, is kept free. The initial velocity condition in the rectangular
domain is then stated as a “linear Stokes solution™ which is appropriate for steady
state flow in a linear problem. The "Stokes solution” is then applied and this solution
is subsequently used as the initial condition for all degrees of freedom (velocity and
pressure). ' : :

For incompressible flow and Newtonian fluid, the effective viscosity in the program is
set to be constant at £ = 10%° Pas (cf. Section 3.2.1) in order to reduce the
influence of the diffusion term in relation to the Darcy term in the momentum
equation. Hence, the value of the associated coefficient, 4, in the Darcy term is set to
10”7 to compensate for the simulated value of the viscosity for laminar flow as shown
in Table 3.1. For turbulent flow with the Forchheimer term, the coefficient, 4, is set to
another value to compensate for the simulated value of the viscosity, which is
changed in relation to the coefficient, B, the inertia coefficient in the Forchheimer
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term. Hence A is given the value of one for the viscosity of the 10° Pa.s, and
coefficient B is set to be 0.55 (Ward, 1964).

For of flow in saturation and a confined aquifer, there are total head boundary
conditions applied at the surfaces of the inflow and outflow sides. The total heads are
applied as “constant flux boundary stresses™ in Pascal units. At the inflow boundary
elements there is a total head of 1.5m water depth which is shown here as

Pl = p\r g hl (44)

while at the outflow boundary, the "boundary stress” is zero, hence P> = 0.

4.2.2. Radial flow

For a cylindrical domain, the boundary conditions have to be defined in a different
way. Because of the shape of the flow domain, the computed normal and tangential
components of the velocity are mathematically correct but physically inconsistent,
especially at the corner and the edge of the flow domain. Hence, a slip boundary
condition needs to be defined for all the boundary element group; then the
components of the velocity can be forced to be physically consistent by a correction
of the direction of the velocity vector made on the top- and bottom-barrier by using
the "normal direction option”. Hence, a zero velocity normal component, Uy = 0, and
a free velocity tangential component is maintained at both the top and bottom barriers,
and vice-versa on both the inflow and outflow boundaries.

Also a constant "normal boundary stress”, Py,, corresponding to 1.5m water depth, is
given in Pascal units. and defined on the inflow boundary as:

Ph=-p, gh 4.5)
while on the outflow boundary a zero “normal boundary stress”, Py, is defined. The
other defined boundary conditions are the same as in rectilinear flow, including the
initial conditions.

4.3. Discretization of the flow domain

The mesh generated for the flow in a confined porous medium for rectangular and
cylindrical domains is shown below in Figure 4.4.
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Figure 4.4. Two-dimensional FEM mesh of: a) Rectangular porous flow domain, and
b) Cylindrical porous flow domain.

The number of elements required for the simple rectangular domain was 160, while
for the cylindrical one it was 1600 elements. A map mesh was chosen for each flow
domain; first, because it offers more simplicity in solving the system of equations
obtained from the discretized domain; and second, because the nature of the geometry
is not useful with the paved mesh which is not recommended for porous medium
simulation (computational theory manual). Quadrilateral 4-node elements were used
in generating the mesh. Three degrees of freedom is calculated for each node in the
mesh (element grid system); they are the direction and the magnitude of velocity
components and the pressure (see Figure 4.6).

The procedure used in solving the discretized domain starts by choosing the
interpolation functions, then formulates the equation for each element (local system),
couples the elements in nodes and assembles the element equation into an equation
system for the whole domain (global system).
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Figure 4.6. Description of the finite element methodology.

4.4. Degree of freedom (parameter effect)

In this section the various parameters that may affect the numerical models applied
are elucidated. According to Darcy-Forchheimer terms, there is first the intrinsic
permeability, k; , also known as the physical permeability, which has the dimension of
length squared. It is assumed that %; is dominated by the saturated flow domain. This
coefficient depends on the flow geometry, on the type of porous medium, and on the
density, shape and arrangement of the pores. However, it is constant in space when
the medium is incompressible and isotropic. Typical values of k; are given in Table
4.1. The hydraulic conductivity, K , is defined by the relation

K kipw g . (4'6)

The hydraulic conductivity, K has a unit of velocity, length per time, and, again
assuming saturated condition, it is easily seen that it depends on the flow geometry
(type of medium and pore) as well as on the fluid specific weight and viscosity. It is
also constant for a given fluid at a fixed temperature when the porous medium is
incompressible and isotropic. Typical values for a few media with water and other
fluids are given in Table 4.1. When the flow occurs in an unsaturated porous medium
the values of K differ from those for saturation media; Therefor we need to know of
the values of the hydraulic conductivity in different zones or in multiphase flow.

It is reported in the literature that the resistance to flux in an unsaturated porous
matrix is greater than the resistance of the same matrix at saturated conditions. This
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has two causes: first,-a decrease in the water content causes a reduction of the cross-
sectional area available for water flow and second, seepage occurs first in larger pores
so that the flow in unsaturated conditions is mainly confined to small pores, resulting
in an increase. in the tortuosity of the flow paths (Bear, 1972). This means that the
hydraulic conductivity of a soil decreases as the water content decreases.

Table 4.1: Typical values of hydraulic conductivity for incompressible porous media
(Daily, 1966). '

Hydraulic conductivity

Medium Physical
permeability ) Fluid Fluid
ki, m’ type | temperature | K, m/sec
3.0466:107 0914
Gravel to Water 15°C to
3.0466:107 9.14-10°
3.0466-10” 9.14-10°
Sand to Water 15°C to
3.0466:107"* 9.14-10°
3.0466-107" 9.14:10°
Silt to Water 15°C to
3.0466:10™ 9.14-10™°

Randomly packed uniform
spheres (6.15-10™ d*
(d = diameter)

water 15°C 5.971-10*

Randomly packed uniform Atmosp. Air 15°C 4.0824-107
spheres 6.68-10* Glycerin 20°C 8.8351-10°
(d=3.17-10"m) Linseed oil 20°C 1.3009-10°

For saturated flow the hydraulic conductivity is constant, while for free surface flow
the hydraulic conductivity should be defined as a function of saturation. Since the
simulations are in saturated flow, X is taken as a constant. Laminar and turbulent flow
states are assembled and solved for both flow models mentioned before (Darcy and
Forchheimer). These states are obtained by changing the properties of the simulated
porous medium, represented here by the intrinsic permeability and the porosity, as
shown in Table 3.1. Recent works on seepage surface in a porous medium have
shown that the hydraulic conductivity is a function of the flow state, hence both
turbulent and laminar hydraulic conductivity have been considered in the simulations
of flow in granular porous media (Solvik, 1995).

Another parameter that could have an effect on the motion of the fluid through the
porous medium is the dynamic viscosity, g This fluid property is related to the
hydraulic conductivity and at the same time to the Brinkman term in the discretized
Navier-Stokes equation. For the current simulation with incompressible Newtonian
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fluid, the viscosity is kept constant and the values shown in Table 3.1 are used to
compensate for the value of the 4 coefficient that appears in Eq. (4.3).

For the Forchheimer-Brinkman model an additional coefficient is needed, namely the
inertia coefficient, B. The inertia coefficient has been derived from empirical relations
and is taken as a constant (Bear, 1972), as shown in Table 3.1. By solving the Navier-
Stokes equations for flow through idealized media at different Reynolds number,
Stark (1968) has shown that 4 and B remain essentially constant over a range of
Reynolds numbers, therefore and the Forchheimer equation is applicable in real flow
problems.

In the literature it can be found from experimental results that the resistance is
proportional to the velocity of the power varying between 1 and 2, however but in
most cases the power is taken equal to 2 (Volker, 1969). Hence, to approach the
Forchheimer model, the power, m, of the nonlinear term in equation (4.3) is set to one
in order to get the velocity of the power squared. This term plays a role while the flow
state is changing from laminar to turbulent flow; then the inertia force dominates the
flow and viscous the effect is negligible.

4.5. Solution method (relaxation, convergence)

The solution procedures employed in the computational program are categorized into
two groups depending on whether the steady-state or transient flow equations are to
be solved. Furthermore, the solution procedures for the transient equations are sub-
divided into two groups depending on whether an implicit or explicit time integration
technique is employed. For a steady-state problem or a transient problem employing
an implicit time integrator (Backward Euler or Trapezoid rule), a nonlinear matrix
system of equations must be solved, once for a steady-state problem or at each time
step for the transient problem. The simulation of free surface problems has been
treated recently as a moving boundary which means that an initial position of the free
surface needs to be defined. This implies a solution made in two stages: first to use a
fixed boundary steady-state condition and, then, to use a moving boundary with a
transient solution utilizing the results of the fixed boundary simulation as the initial
condition. Hence, the free surface simulation must be treated in stages if convergence
is to be achieved

The application of the Galerkin finite element procedure to the stationary Navier-
Stokes equations, or to the transient Navier-Stokes equations when an implicit time
integrator is employed, results in a set of nonlinear algebraic equations that may be
represented in matrix form as

du 4.7)
M—E;“+(K,,_F(u)+ KU =F
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where K, {u) represents the nonlinear part of equation system (Darcy-Forchheimer
term), while K, is linear part and M is the inertia terms, U is the global vector of the
unknowns (velocities, pressures) and F is a vector which includes the effect of the
body forces and boundary conditions. For the isothermal problems we have in the
current study, all temperature-dependence is absent and the energy equation is not
required. In such flows the momentum equation (4.7) is solved with the continuity
equation.

At present, in the computational program, there are two different solution
methodologies utilized for solving the nonlinear equation systems described above.
The resulting algorithms are conceptually quite different. The first approach solves all
conservation equations in a simultaneous coupled manner, while the second approach
solves each equation separately in a sequentially segregated manner,

The segregated approach is guaranteed to have substantially fewer disk storage
requirements than the fully coupled solver. In general this depends on the size of the
problem being solved and the number of iterations required to obtain convergence.
Due to its sequential and uncoupled nature, the segregated solver requires more
iterations than the coupled solver. Before more discussion of the segregated solver
chosen, two concepts, which arise repeatedly, will be explained: the radius of the
convergence and the rate of the convergence of the particular algorithm. Suppose that
an iterative procedure generates a series of iterations {u, /=1,...,n}; then the
(asymptotic) rate of convergence is an integer k such that, for sufficiently large i,

”u i+l “,‘H s C“u,- - ll,._l“k (4.8)

where C is a constant and “H is an appropriate norm. If & = 1, the rate of
convergence is linear, if £ = 2, it is quadratic, etc. When the radius of convergence is
referred to, it will usually be in conjunction with a problem parameter, such as the
Reynolds number in the current problem is; i.e., given an initial guessed vector, to
find the highest Reynolds number for which the iterative algorithm will converge and
so on.

The algorithms for the discrete equations arising from steady-state Navier-Stokes
equations with a Darcy-Forchheimer term instead of the convection term are
considered in this section. The basic structure of the discrete system to be solved is
reviewed here. The steady-state Navier-Stokes equation in matrix form is:

(Kpy(u)+ K, U =F. (4.9)

The nonlinear part, Kp.- (), is an unsymmetric matrix and represents the Darcy-
Forchheimer matrix which arises from the resistance term of porous medium flow,
while and the linear part, K, is a symmetric matrix and represents the contribution of
the diffusion, pressure and continuity terms. There are two ways to approach the
solution of the Navier-Stokes equation in FIDAP: the first one is the penalty approach
and the other is the mixed approach. If a penalty approach is used, the continuity
equation is discarded and the pressure is no longer present in the global vector system
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of unknowns, u and the matrix, K, includes the penalty matrix contribution. When the
mixed approached is specified the pressure variable is discretized and contributes as
an additional degree of freedom to the system of unknowns in the momentum
equation to be solve for. Then the momentum equation is solved with the
incorporation of the continuity equation, which is also necessarily for flow in porous
medium.

For Reynolds numbers much greater than one, the resistance Darcy-Forchheimer term
is very important, since it causes the nonlinear character of the equation to become
dominant and makes the choice of solution algorithm, its convergence and efficiency,
a key issue. The strong nonlinearity of equation (4.9) dictates the use of a type of
iterative procedure to reach an accurate solution. The search for suitable iterative
methods is complicated by the existence of a multitude of possible procedures and
their variants. However the trial solution procedure showed that the full coupled
iterative method can be recommended for convergence within a fair range of
Reynolds numbers, whereas it is not allowed in the current simulation with the Darcy-
Forchheimer resistance term. A trial was made of convergence of the solution of the
rectilinear and radial flow by applying the “fixed point iteration” procedure which is
also known as successive substitution (S.S.). No effective convergence was reached
by this iterative method. Thus, the segregated iterative method is assembled and used
in the computer program to solve the problems under consideration.

‘The segregated solution algorithm has been designed to address large-scale
simulations. It is essentially based on the implicit approach and has many features in
common with the standard implicit approach also available in the computer program
(FIDAP, 7.61). The most important difference is that it avoids the direct formation of
the global system matrix. Instead, this matrix is decomposed into smaller sub-
matrices, each of which governs the nodal unknowns associated with only one
conservation equation. These smaller sub-matrices are then solved in a sequential
manner using either direct Gaussian elimination or conjugate gradient type schemes.
An important point to realize is that owing to its sequential nature, the segregated
algorithm requires more iterations to converge. On the other hand, the computational
time required to perform one iteration in the segregated method is substantially less
than for one iteration in the fully coupled solver.

A common convergence criterion used by many FEM practitioners requires that the
absolute value of the change of solution variables at every node be less than a preset
tolerance. However in FIDAP this criterion is not recommended because it does not
take into account the values of the solution variables at the node. For example, if the
required difference of the velocities at each node between successive iterations is less
than 0.001, then if the velocity field is typically of magnitude 10™ at each node this
criterion is meaningless. Therefore, two obvious variables for use in designing
termination criteria are introduced in the computer program (FIDAP 7.61). They are
the solution vector w; (at iteration /) and the residual vector R(u,). It is naturally
desirable that the solution vector at the end of each iteration be within a certain
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tolerance, &, of the true solution vector u. Hence, a realistic convergence criterion,
based on relative error, is

| | | 4.10
L N @10
el
where “ . ” is an appropriate norm, usually the Euclidean norm. waever, u is not

known a priori and must be approximated, the obvious choice being for“u,l ]Iu” and

u, foruin Au,=u,~u,,. Although this convergence criterion is quite effective
for many algorithms (e.g., Newton-Raphson), a more suitable convergence criterion is
also introduced in FIDAP, based on the residual vector which must tend to zero as u;.
tends to u. This criterion requires that

IR ()] o (.11)

Lol g

=]

where R, is a reference vector, typically R(uy). This shows that a combination of
these two criteria provides an effective overall convergence criterion for all possible
situations, since both Aw,; and R(u,) tend to zero near the solution. For the problems
simulated in the current study, the segregated iterative method is chosen, with 50
iterations. Both velocity convergence tolerance and a residual convergence tolerance
0f 0.0001 is applied for the steady-state solutions. Note here that a relaxation factor of
0.03 is applied to the solutions; in order to accelerate the convergence rate, this
relaxation factor is lower than the default value in FIDAP.



5. Comparison of solutions

In this section analytical and numerical solutions are discussed and illustrated for
confined flow (rectilinear and radial flow) and unconfined flow (free surface flow)
with the initial and boundary conditions given in Section 4.1. Laminar and turbulent
flow states are solved and compared with available numerical solutions applying the
linear and nonlinear flow relations (Darcy and Forchheimer).

5.1. Rectilinear flow

For confined laminar flow in a rectangular domain, equations (3.6 - 3.9), obtained in
Section 3.3.1 for the linear and nonlinear relations between the hydraulic gradient and
flow velocity, are applied with given boundary conditions and illustrated below.
Linear equation (3.6), with 4, = 1.5 m, 4/, =0 m, and X = 10 m/sec, yields:

, 5.1
h,)(x)=1.5m(1——2—gr~n—) (5.1

where D denotes the Darcy solution and x varies from 0 m to 20 m.

Equation (3.9) describes the nonlinear relation which yields:

(v o 0507 ©-2)
h(x)=h, (gk P +g~\/z AL,ZJ x

where A denotes the Forchheimer solution,v is the kinematic viscosity, &, is the
intrinsic permeability for laminar flow, and Q) is the specific discharge per unit width
of the flow domain (Q = g'b; b is defined in Fig. 4.1); this can be determined
implicitly from Eq.(5.2) with the applied boundary conditions:

m? (5.22)

sec-m

0, =15-10"

By substituting O;- in Eq.(5.2) the equation of the falling head was obtained. A
comparison of the analytical solution for linear and nonlinear laminar flow is
illustrated in Figure 5.1 below
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Figure 5.1. Laminar confined flow: a) Pressure head difference, and b) Flow velocity

In a turbulent flow state the intrinsic permeability is four orders greater than in
laminar flow, which corresponds to coarse gravel as shown in Table (3.1). The
solutions of the linear and nonlinear relations in turbulent confined flow are shown in
Figure 5.2. ' ‘

77



L5 Fgr
135 ey
. Kﬁ
» 1.2 L ;
2 < B,
S 105 Moty
Shpx) g9 Mg,
§° oz : Feg, T
§ h p(x) 0.6 : ﬂgg‘! : :
27 s T,
& 0.3 Ry
. o
0.15 e
A 1‘ E
0 2 4 6 8 10 12 14 16 18 20
X
Agquifer length, m
"B~ Forchheimer solution
“X- Darcy solution
(a)
0.01
0. 00;i :
G , T : : j
%3 2'227( X-)GX-X-K KX AHHIIER KR KKK KKK KA KUK KA KAAHK X‘}( KX
% TF0.006 e 6o 0o o 60 B 6P O B0 6 070 B S B0 B O E B0 8 B0 B O E BT B
- ; :
§ 0.005| : : : : :
v 1D 0.004
e x
s 0.003|
0.001 “
0 , ,
0 2 4 6 8 10 12 14 16 18 20
X
Aquifer length, m

T Forchheimer solution
* Darcy soultion

(b)
Figure 5.2. Turbulent confined flow: a) Pressure head difference, and b) Flow velocity

The analytical solutions of the pressure difference in laminar and turbulent states are
shown to be similar, since, the hydraulic gradient is constant in both flow states. The
results of the flow velocities obtained from linear and nonlinear equations are not
similar for turbulent flow, which is reasonable if the squared term dominates the
equation.

A velocity vector plot of the FEM solutions for the confined rectilinear flow, with the
characteristics specified in Table 3.1, is shown in Figure 5.4
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Velocity vector plot of Forchheimer flow, K = 1071 m/sec
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Figure 54. Velocity vector plot of rectilinear flow

The results of the velocity vector field by FEM for linear and nonlinear solutions are
also the same in laminar flow while in a turbulent flow the velocity vector field
obtained when a linear relation is applied is higher than for a nonlinear relation,
which agrees with the analytical solutions.
Table 5.1 shows a summary of the analytical solutions and the FEM solution for

different degrees of freedom in turbulent and laminar flows.

Table 5.1. A comparison of analytical and numerical solutions for rectilinear flow.

Flow velocity Pressure head
m/sec m
Flow Flow

state model Analytical solution FEM solution | Analytical solution FEM solution
FIDAP FIDAP
inflow outflow inflow outflow inflow  outflow inflow outflow
Darcy 0.75-10¢ | 0.75-10° [ 0.736-10° | 0.736-10° 1.5 0 1.482 0.0187

Laminar
Forchheimer | 0.75-10" | 0.75-10° | 0.736-10° | 0.736-10° 1.5 0 1.482 0.0187
Darcy 0.7510° | 0.75-107 | 0.736-107 | 0.736-107 1.5 0 1.482 0.0187

Turbulent
Forchheimer | 0.6-10° | 0.6-107 | 0.562-10™ | 0.562-10° 1.5 0 1.482 0.0187

79




5.2. Radial flow

The solutions for the linear and nonlinear relations in the symmetric radial flow
shown in Figure 4.2 are obtained by a simple integration with the transformation to
the spherical coordinate. When the boundary conditions are (cf. Sec. 4.2.2), the linear
laminar flow rate per unit width with K = 10” m/sec., from Eq.(3.15), yields:

m’ (5.3)

sec.m

0, =8767-107

and the falling pressure head along the radial distance, from Eq.(3.16), becomes

5.4
h/)(")=1.5m+C~Q-Q~[n(irP_) ( )
K r

where C is defined (cf. Sec. 3.3.2) as

_360° (5.5)
2n 6

C

where = 60°. The subscript D denotes the Darcy solution for radial flow. The radial
distance, r, varies between r; =4 m and », = 24 m.

In the same way, the nonlinear laminar flow rate can be obtained from Eq.(3.21) in
which the Forchheimer power is set to m = 2 and Eq.(3.21) becomes

' 5.6
15m=C, ln(24m)+ cv(_L__.‘___) - GO
4m \4m  24m

where C, and C, are defined as

v 2
C,=C—Q, and C,=C'——0,.
1 ngl 2 g\[]_c‘ I

Solving Eq.(5.6) implicitly for O, yields

m’ (5.7

sec.m

0, =8767-107°

The resultant falling pressure head of the nonlinear flow becomes

o (5.8)

h(r)=15m+C, -1 f".T]+c7(..~__J

¥ \r 4m
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where the subscript F denotes the Forchheimer solution.

The resultant flow rate per unit width when applying the linear and nonlinear flow
equations is the same for laminar flow with K = 10” m/sec. The analytical linear and
nonlinear solutions for the pressure head difference and the flow velocity at laminar
flow are itlustrated in Figure 5.5.
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Figure 5.5. Laminar confined flow: a) Pressure head difference, and b) Flow velocity.

The resultant turbulent flow rate from Egs. (3.15 and 5.6), in which K = 107" m/sec.
(coarse gravel), see Table 3.1, is different in linear and nonlinear equations:
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There are different flow effects for the same boundary conditions where the quadratic
term in the nonlinear relation tend to dominate the flow; this is shown by the
differences in the flow velocity at the inflow boundary and by the hydraulic gradient
from both solutions. The pressure head difference and flow velocity obtained in
turbulent flow are shown in Figure 5.6 below.
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Figure 5.6. Turbulent confined flow: a) Pressure head difference, and b) Flow velocity
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It is obvious that in turbulent radial flow the nonlinear Forchheimer flow gives a
higher value of the hydraulic gradient than the linear Darcy flow, as shown in Figure

5.7.
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Figure 5.7. The hydraulic gradient in radial flow: a) Laminar flow, and b) Turbuler{t
flow

83



The numerical solution (FEM) of the velocnty vector plot for the radial flow
considered is shown in Figure 5.8.
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Figure 5.8. Velocity vector plot of radial flow

A summary of the comparison between the FEM solutions and the analytical solutions
for different degrees of freedom is illustrated in Table 5.2.

Table 5.2. A comparison of analytical and numerical solutions for radial flow.

Flow velocity Pressure head difference
m/sec m
Flow Flow
State model | Analytical solution FEM solution | Analytical solution  FEM solution
. . FIDAP ; FIDAP
inflow outflow inflow outflow | inflow  outflow inflow outflow
Darcy 0.2093-10° | 0.3488.10° | 0.20527-10° | 0.32163-10° 15 0 1.4202 | 000854
Laminar
Forchheimer | 0.2093-10° | 0.3488:10° | 0.20527-10" | 0.32163-10° 1.5 0 1.4202 | 0.00854
Darcy 0.21-10" | 03488107 | 0.20527-10" | 0.32163-107 15 0 14202 | 0.00854
Turbulent
Forchheimer | 0.178-10" | 0.3000-10% | 0.14874-10" | 0.24751-107 1.5 0 1.4202 | 0.00854
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5.3. Free surface flow

For the flow through an earth dam, we are faced with an additional complexity: the
uppermost flow line must satisfy the requirement of being everywhere at atmospheric
pressure or, in other words, its total must equal its elevation head. The analytical
solution is complicated by this condition, but can be obtained by the methods of
conformal mapping. The hodograph transformation (cf. Section 3.3.3) of a simple
rectangular earth-fill dam, which was first introduced by Polubarinova-Kochina
(1951), is applied here for the free surface flow boundary conditions specified in
Table 3.1. With the ratio I/h, and the ratio h,/h,, Given in Figure 5.9, we are seeking
the ratio ho/h, together the points coordinates (x,y) of the phreatic line. The
parameters &, 3, and C of the solutions in equations (3.30 - 3.32) are found implicitly
by the integrals, in which K in the above mentioned equations is the complete elliptic
integral of the first kind.

ay

S

=
Il
=¥V &

V S

V.. ....

Figure 5.9. Definition of the flow domain dimensions

Hence, for H=15m, h=5 m and / = 20 m, the parameters are

or = 0.840079 B =0994887 C = 0.803315. (5.10)

By solving the integral in Eq. (3.33) (see Appendix), the height of the separation is /g
= (.766 m, while the coordinate points of the phreatic line are found by the integrals
in Egs. (3.33-3.34).

The solution of Polubarinova-Kochina and the solution of the linear Dupuit
approximation for flow in a simple rectangular dam are shown in Figure 5.10 below.
It should be noted that the Dupuit approximation is sometimes called the Dupuit-
Forchheimer approximation, although it combines Darcy’s law with free surface flow.
Hence the Dupuit approximation is not applicable when there is extremely nonlinear



free surface flow. In addition, the Dupuit approximation does not give any separation
height above the tail water level of the dam. This difference is obvious in Figure 5.10.

20 20

0, Xp,x 20,
~ Polubarinova-Kochina solution
=~ Dupuit solution

Figure 5.10. Solution of the phreatic line

According to Polubarinova-Kochina solution, the flow rate above the tail water
surface at the downstream face can be determined from the following integral
formula:

K (sin® y )siny cosy dy (5.11)
— oy sin y )(1= B, sin yr)

where K is the hydraulic conductivity in m/sec, C is as defined above, and K(sin® ) is
the complete elliptic integral of the first kind while @, = 1-a and = 1-£. For K = 10
m/sec, the result is

O, =5656-10"n’ / sec- m. (5.12)

The mean flow velocity above the tail water level is:
Uy, =0, / by =1386-10°m/ sec (5.13)

where /= 0.766 m (see Appendix).
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The total inflow at the upstream face, H=A{ can be obtained from the integral formula

1
A K/ -=) ’
0,=K-a] : d (5.14)
WVEE-1(E-a)(E~b)
where ‘ . L ; ;
a=1/B, b=l/a, 11E=%—«Ja~b (5.142)
and V .
0, =4997-107 7’ / sec- m. - (5.15)

The outflow below the tail water level at the downstream face, & = h», is calculated
from the integral formula ‘

K(1-osin® w)siny 4 . (5.16)
—orsin® y)(B—asin® v) '

Q,,zKC-ﬁI\/(I

For the same case we have
0, =4431-107m" /sec-m. (5.17)

The vertical mean flow velocity in different sections of the earth dam is shown in
Figure 5.11 in comparison with the Dupuit solution.

Mean flow velocity, m see

Xl,—m,,\'
Length of dam base. m
~ Polubarinova-Kochina solution
~ Dupuit solution

Figure 5.11. Mean flow velocity in the laminar state '
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For comparison, the vertical mean of the inflow and outflow velocities at laminar and
turbulent states according to the Polubarinova-Kochina and Dupuit solutions is
illustrated in Table 5.3.

Table 5.3. Vertical mean flow velocity in a simple rectangular earth dam

Flow state Polubarinova-Kochina Dupuit/Darcy
solution ‘ . solution
mean flow velocity mean flow velocity
m/sec m/sec
inflow outflow inflow outflow
" Laminar g ' ‘
K=10" m/sec 3.331-10° 8.666-10" 3.333.10° 1.10°
Turbulent
K=10" m/sec 0.033 0.087 0.033 0.1

The linear Darcy relation between the hydraulic gradient and the flow velocity was
applied for the simple rectangular earth dam above. The analytical solution of the
Laplace equation is possible for several other complicated flow geometries. However,
for gravity flow with a free surface and nonlinear hydraulic resistance (Forchheimer
equation), the nonlinearity in the phreatic line itself and the resulting nonlinear partial
differential equation make it difficult to find an analytical solution for complicated
geometries. Nevertheless, by using the Dupuit approximation for nonlinear resistance,
we can obtain @ solution-as in Eq.(3.3 8) (cf. Section 3.3.3); thus we have

dh(x)_ v Oy , (Qs] (5.18)

= T ) AT

where Q is the specific discharge per unit width and B is the inertia coefficient which
is equal to 0.55 (Ward, 1964) obtained from experiments.

By solving the above differential equation with respect to x and expanding the
solution-in Taylor series, the obtained nonlinear equation of the phreatic line (Sharif’s
equation) be as:

1% B
Q&‘[QISITH'EJ—};Q\-} 3 O (QIS m-+— J‘QSI 15m+2-— "/—’,EQSV]XZ (5.19)

2 X .1—
(15m)y” 2 , (15m)°

hy(x)=15m

The phreatic line obtained by applying Eq. (5.19) for laminar and turbulent flows is
illustrated in Figure 5.12.
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Figure 5.12. Nonlinear flow with the Dupuit approkimation in a rectangular earth dam

( Sharif’s equation)

The Hydraulic gradient related to Eq.(5.19) is shown in Figure 5.13, for both the
laminar and turbulent states, while the flow velocity is shown in Figure 5.14.
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Figure 5.13. Nonlinear hydraulic gradient in a rectangular earth dam
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Figure 5.14. Nonlinear flow velocity in a rectangular earth dam

The comparison between the solution with Dupuit’s approximation for Forchheimer
and Darcy resistance terms is illustrated in Figure 5.15 below.
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Figure 5.15. Falling head ina simple earth dam
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The hydraulic gradient obtained by Dupuit’s approximation for Forchheimer (Sharif’s

equation) and Darcy resistance terms is illustrated in Figure 5.16 below.
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Figure 5.16. The hydraulic gradient in a simple earth dam: a) Laminar flow, and b)
Turbulent flow

For comparison, the vertical mean of the inflow and outflow velocities at laminar and
turbulent states according to Dupuit/Forchheimer resistance (Sharif’s equation) and
Dupuit/Darcy resistance solutions is illustrated in Table 5.4.
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Table 5.4. Vertical mean flow velocity in a simple rectangular earth dam

Dupuit/Forchheimer Dupuit/Darcy
solution solution
Flow state (Sharif’s-equation) (linear equation)
mean flow velocity mean flow velocity
m/sec m/sec
inflow outflow inflow outflow
Laminar
K=10" m/sec 3.956-10° 1.187-10° 3.333-10° 1107
Turbulent
K=10" m/sec 0.018 0.055 0.033 0.1
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6. General discussion

The word seepage has been used to describe water flow phenomena through porous
material. Darcy (1856) proposed a semi-empirical linear equation to describe the
relation between the flow velocity and the hydraulic gradient in a porous medium.
Accurate description of the flow conditions are obtained only in when the flow rate
under consideration is in the pre-laminar or creeping regime. For higher flow
velocities, it has been recognized since the last century that the Darcy law is not valid.
The inertial effects, neglected in Darcy’s law, must now be taken into consideration.
This inclusion of inertial effect is important in porous media with large grain size.
Thus, in a study of flow through rock-fill dams and flow in areas adjacent to a
pumping well in a coarse-grained aquifer, it would be better to use a modified version
of Darcy’s law to describe the relation between the head loss and the velocity in order
to obtain realistic solution. Accordingly, the nonlinear Forchheimer law is applied in
the current study to include the inertial effect and with the aim of obtaining accurate
estimation of seepage in confined and unconfined saturated porous media.

The linear Darcy law when coupled to mass conservation and appropriate boundary
conditions, provides an adequate mathematical model from which valuable
information may be deduced; it can often give a closed form solution. However, when
applying Forchheimer’s law, the resultant partial differential equation of the mass is
difficult to solve in closed form. Also complicated flow geometry, e.g., when we have
a free surface, made the problem too difficult to solve in simple analytical form. Thus,
numerical solutions by the finite element method were applied to solve the linear and
nonlinear flow equations using the computational flow program FIDAP 7.61 (1996).
Rectangular and cylindrical domains were selected to test the FEM solution. Then the
rectilinear and radial velocity vector fields obtained from the FEM solution were
compared with the analytical solution proposed in this study, for both linear and
nonlinear laws.

The results showed that in the regime of laminar flow, where XK= 10" m/sec, there was
no significant difference between the linear and nonlinear laws; however in flow
where a turbulent regime occurs, K= 10" m/sec, there was a deviation between the
two laws of about 25%, which is in agreement with recently published work. The
numerical results are also verified by the analytical solutions according to the two
laws, which have shown a reasonable agreement.

A numerical solution for flow with a free boundary condition was not included in this
study due to certain difficulty in obtaining such a free surface flow. However,
different analytical solutions were obtained for the linear and nonlinear laws with free
surface flow in simple rectangular dam. The Hodograph method and Dupuit
approximation were applied to solve the linear law while the nonlinear law was
solved by using the Dupuit approximation for the Forchheimer equation and
expanding the resultant integrated equation in Taylor series (Sharf’s equation).

The Hodograph solution has shown that the exit flow occurs at a separation height
above the tail water level at the downstream face, while the Dupuit solution, which is
also based on solving the linear law, gives different results by exiting the phreatic line
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at the tail water level. In the literature, experimental work has shown that a fountain
occurs where there is a free surface flow, which is in good agreement with the
hodograph solution. Hence, there is a significant difference between the two
solutions. « ‘

The nonlinear law solution proposed by the author shows different results from that of
Dupuit solution at laminar an turbulent flow states. An obvious deviation between the
solutions is obtained in turbulent flow. Hence a nonlinear effect is observed clearly in
free surface flow when nonlinear law is used.

The linear and nonlinear laws were utilized in a simple relation between the critical
gradient and the required grain diameter of the porous material, in order to satisfy a
stability condition in the flow pattern. The stability analysis was based on Terzaghi
concepts for defining the force applied on an individual grain at the exit gradient. The
obtained simple relation obtained can be used in further work for the case of an
inhomogeneous porous medium. The predicted shape of the phreatic line introduces
the possibility of obtaining the critical gradient at the downstream face where the
velocity is higher. Then a filter structure could be developed in order to reduce the
higher gradient at that critical point.

Further work

For the current study, free surface flow simulation with the finite element method in
homogenous and non-homogeneous porous media was not available. Hence, the
following tasks need to be carried out to continue this research.

1. Application of the linear and nonlinear laws for free surface flow in earth and
rock-fill dams with slope embankments should be related to unsaturated
conditions.

2. A stability analysis needs to be made of the slope embankments relating to flow
models applied in the numerical simulation.

3. A model that relates the nonlinear equation to stability of the core material of an
earth dam and the transport process of the porous material.

4. A three-dimensional numerical simulation would be more specific for free surface
flow in non-homogeneous porous medium in relation to the linear and nonlinear
laws. :

5. Experimental work is necessary to verify numerical results.
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Appendix

Hodograph transformation

A review is given here of some relevant properties also mentioned by Polubarinova-
Kochina for the hypergeometric equation ~

d’y (A-1)

z~(1~z)'d;2

+(c—(a+b+l)-z}~—4—y——a~b-Y=0
dz

and its solution in the form of hypergeometric series. Equation (A-1) has three regular
singularities at the points z = 0, I, and «. There are three kinds of solutions in the
form of power series: (i) a solution in a series of powers of z, center z = 0, and valid
within a circle of unit radius; (ii) a solution in a series of powers of 1-z, center z = 1,
and valid within a circle of unit radius; (iii) a solution in a series of powers of 1/z,
center z = 0, and valid outside a circle of unit radius.

The process of finding the complex velocity w (reviewed by Polubarinova-Kochina,
1958) as a function of  consists essentially of a conformal mapping of a circular
polygon with n apexes onto a semi-plane. Polubarinova-Kochina supposed that the
angles at the apexes, which in the {—plane become points @,5, and ¢ of the real axis,
are respectively na, np, ..., my. The angle has been taken at the apex, which becomes
the infinitely remote point:

(€ =0), be n(8-8); .+ P +.+8+8 =n-2.

Next, it is assumed that U and I are linearly independent solutions of the following
equation in the auxiliary plane:

dy dy 1 | (A-2)
&-(l—é)-zj-é—z+(1—2~é)-——;}’=0

Polubarinova-Kochina wrote the following functions:

AU+BV CU+D-V (A-3)

F= . and =
J(1=E)(E=ajE-b)) J=E)(E—a)(E-b)b

Then, about the point & = 0 the solution U is obtained by putting a = 5 =1/2,
¢ =1 into the solution of equation (A-1), as follows:

BTN FVTEY JOTIEE: SRS




Polubarinova-Kochina postulated that this solution is different from the complete
elliptic integral of the first kind only by a multiplying constant. Thus, we may write
one of the particular solutions of equation (A-2) as

Z (A-5)

H 1
U=K(¢)= 16
J "!,n\/(l——ésinz(ej)(

where & is equated to the square of the modulus k (k” = ).
Since Eq.(A-2) does not change when substituting 1-£ for &, Polubarinova-Kochina
sets £ as a solution of

V=K(1-()=K' and k> =1-¢ (A-6)

which & is regular about £ = 1 but has a logarithmic singularity about £ = 0, Thus U =
K(%) and V = K(1-£) are linearly independent solutions about & = 0.

From the third kind of solution in the form of a power series (iii) Polubarinova-
Kochina found that

[ | J ) (1) (a1
(]I =l TE I E and Wt B 0 4 Y et

VE) \¢ JE) \&

which are linearly independent solution of (A-2) convergent for | £ | > 1 and by
substituting 1-§ for £ they obtained

| 1 ) (A-8)

b’,x(ﬁj.x(ﬁ—g), and K=[J115]‘K(1—€

which converges outside a circle of unit radius, center & = 1. Polubarinova-Kochina
tried to relate these various functions to the hodograph function,

w = gx - iqy, from the hodograph flow region, shown in Figure 3.2b, which is mapped
on to the upper-half &—plane in Figure 3.2d, by the relationship

we A-K(&E+B-K(1-¢) (A-9)
C-K(&+D-K(-&)

It should be noted that on the segment (0,1), for &, we have for £ =0, w =k i (AB =
k), for
&=1,w=0,and for £ = 0.5, w = 0.5 k+(0.51)k, thus we can find that:



K(1-¢)
KE)-i-K(1-&)

) =

By using the relationships

K(&)-i K(1-£)= IJKI, Ll (A-10)
o S)”(“E’ (EJMV?FQQ” (1w5)

I E-1 I G
K(l~€)=(— K =
\/Ej (~€'} I
N—E)- — | Kl =5
(1-¢&) Kl—é lKé—l
Polubarinova-Kochina rewrote w for the segment 1< < «, as
1
K(l - %—J (A-12a)
V»’:k“—-—-‘—‘-—l———-
K| —
g
and for -0 <& <0
1 ) &)
K(__]_Z.K(m_) (A-120)
w=k-i 1-¢ 1-¢ - A

(i)

which satisfies the necessary correspondence between the w- and &- planes.
Returning to expressions (A-3) for

s, dy

_4d¢ . . dy =4
F + i dtf dﬁ

= T & and

and inserting the appropriate expressions U, V), etc. from (A-5) to (A-8) for each
segment of the real axis of the &-plane (Figure 3.2d) and by applying the local
boundary condition for the simple dam on the corresponding boundary segment in the
physical plane. Thus for I < & < a, which corresponds to the inlet face AF in Figure
3.2a, where x = 0 and ¢ is constant, we write, using (A-7),

106



. 1 ,
l-_d}i: “A'Z'K(E) (A-13a)
& \J(EE-1)(E-a)E-b))

1
k40 K| 1-— A-13b
po AV ( f?) e

S de - fEe-vE-ane-b)

By integrating (A-13a) with respect to & over the range / < £ < a, we obtain

K[—éj (A-14a)
H=4. d
) JEE-1)(E—a)E-b)) g

and similarly (A-13b) gives the flow O, where

, K{I *-é-] (A-14b)
Or=K.A-| dé
" JECE-1)(E=a)(E-b))

By proceeding similarly for the segment & < & < oo, which is BC in Figure 3.2a, we

find
1
"'(2)

h=4[ d
j” JEE-1)E-a)E-b)) :

and for @ < £ < b, i.e. the base AB in Figure 3.2.a,

3

1=a.[ d
! JEE-1)E-a)E-b)) °

the length of the seepage surface, CD in Figure 3.2a, follows by considering the
segment -o0 < £ <0, and is ‘
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1
K] v

ho=A[°
J‘\-w(1—Js)\/((ad;’/(b—é))

The following changes of variables were introduced by Polubarinova-Kochina (1962):

1 1 1 2-a
o =—, ﬁ:-—, OSO.’SﬁS], T=— C= <
b a <4 Ja-b
and
T=a+(B-o)sin’ (), a <& <b; T=[3+(1~—,B)sin3(w)‘ |<E<a;

T=owsin’(y), a<E<p

The expressions for /, H, and h become:

Z=C-j? Ko+ (B-a) sin*(y )] » (A-15)
o J(l—o = (B-a) sin*(y))

H:Cj, K[B+(1-B)-sin’(v)] » (A-16)
o (Bt (1= sin*(w )

K(a -sin?(w)sm(w (A-17)

dy

’ 2[\/(1 —o -Sinz(l//))(ﬁ —O(.Sinz(l//))

Crank (1984) put the expressions 1/(1-£) = cos’y, a; = l-a, and f; = 1-f in the
integral for A, and obtained:

K (o cos’(y))sin(y )cos(y ) v (A-18)

hy=C-
J=asin?y )1 - B, sin’(y )

O T 0 | N

where the height of the separation point above the dam base is A, = h + Ay Cryer
(1976) pointed to errors in the expressions (A-16) and (A-15) in Polubarinova-
Kochina (1962) and his corrections have been included.
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To find the equation of the free surface, we consider the segment 0 < & < 1 and
observe that:

Z~dY L dy K(€)-i-K(1-¢) (A-192)
m—— =
g dE (1-E)-(a=E)-(b=E))

_dp_ —k-AK(-¢) (A-19b)
A& J(1-8)(a=&)(b-¢)

By separating real and imaginary parts in (A-19a) and substituting & = sin’(y) we
obtain:

. “J’. sm (W))sm(!//) J (A-202)
o\/lm(x sin (l//))( ,B'Siﬂ'(l/f))

K(cosz(l// ))sin(l[/) d (A-20b)
v
—O(~Sin2(l//))(l~ﬂ-sin2(l//))

v
Y=h+h+C-|
Y

for

T
0y £ —
v 2
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