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——— ENERGY TAKXE-OUT FROM A WAVE ENERGY DEVICE

SUMMARY

A method for calculating the energy take-out from a single wave energy
converter is presented. The converter consists of a buoy connected via a hose
pump to a submerged plate. The equations of motion of the buoy and plate are
solved linearly in the frequency domain, which shows that frequency dependent
hydrodynamic properties can be used.

The hose pump is treated as a complex spring, the real part corresponding to a
spring and the imaginary part corresponding to a time independent damping
factor. The damping factor multiplied by the amplitude of the hose pump is a
measure of the work done by the pump.

The drag force is linearized by setting the energy dissipation for a period equal
in both the non-linear and the linear cases.

The emphasis in this report is placed on the calculation of the frequency
dependent hydrodynamic properties, such as the wave excited forces and the
hydrodynamic coefficients. The structure is considered to be large in comparison
with the wave length and, therefore, the diffraction theory has been used. A
method of calculating the forces that act on the bodies is presented, as well as
the interaction between the bodies. This two-body problem is solved analytically.
The present solution is compared with a numerical one and an analytical one, the
latter, however, treats simply a single buoy riding in the waves.

The calculated energy take-out of the present model is compared with a time
domain dependent model, and reasonable agreement has been found.
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1. INTRODUCTION

One of the first attempts to use wave-power as a source of emergy was
docurnented in 18935, in the form of a patent for a self-propelled boat (See Fig.
1.1).

Figure 1.1 Outline drawing of a self-propelled boat, the Autonaut.

The boat was equipped with a fin located at the the stern. Due to the heave
motion of the boat, the fin will bend up- and downwards propelling the boat
forward. The boat could reach a velocity of 4 knots when moving against the
waves. (The Naval Architect, 1979)

Since then a large number of patents has been granted for different ways of
using wave power as a source of energy, but almost none of these patents have
become of commercial interest. However, research in the field of wave energy
increased after the oil crisis in 1973. The most active countries were Japan,
Great Britain and Norway. It was also during this time that Gotaverken
developed the hose-pump concept, and in the beginning of the 1980s the concept
was tested at Vinga, on the Swedish West Coast. A hose pump module is
composed of a buoy, riding on the waves, connected to a submerged plate by an
elastomeric hose. The submerged plate is, in its turn, flexibly moored to the sea
floor in order to keep the module on station.
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According to Hagerman (Hagerman, 1988), the function of the module is
described as follows. During the passage of a wave crest, the buoy heaves up
stretching the hose. The helical patiern of steel reinforcing wires in the hose
causes it to constrict as it is stretched, thereby reducing its internal volume. This .
forces sea water out of the hose pump, through a check valve, and into a
collecting hose to a turbine. Afier the wave crest has passed, the buoy drops
down into the succeeding trough and the hose pump returns to its original length,
restoring its diameter to its unswretched value. This increase in internal volume
draws water into the hose through another check valve which opens to the sea.
(See Fig. 1.2)

| Vale oppend

Figure 1.2 Sketch of two wave energy modules.

The test plant at Vinga consisted of three wave-energy modules that were
connected to a turbine with a generator. The buoys had a diameter of 5 m, and
the length of the hoses was around 10 m. From the hose pump the water was
pumped into a connecting hose to a pelton turbine on shore. A hose-pump
demonstration plant would consist of a considerable number of wave-energy
modules, connecting hoses and a submerged turbine with a generator

(See Fig. 1.3).
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Figure 1.3 Artist's impression of the hose-pump concept

The wave-energy modules would exiract some of the wave-energy from the
incident waves by pumping water from these modules via the connecting hoses
to the submerged turbine. The layout of the wave-energy modules depends on
the direction of the incident waves. If, for instance, the main direction of the
incident waves varies during the year, the modules can be arranged in a
star-shaped pattern around the turbine for the most efficient energy take-out (See
Fig. 1.4).

Wave epergy converter @

Connecting hose Turbine and

/ generator

G — GGG
Figure 1.4 The wave energy modcules arranged in a star shaped
pattern around the turbine.

N~ Blectric cable
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2 THE SCOPE OF THE WORK

The present work treats the mechanics of a single wave-energy module. The aim
is to find a way to calculate the energy take-out from a single wave-energy
module for different sea states. The major part of the work concerns the
hydrodynamics of the buoy and the submerged plate. When calculating the
forces of the incident waves that act on the buoy and submerged plate, the
potential theory is used. The drag forces are not included. The problems are
solved in the frequency-domain for a first order system. The calculations of the
forces are described in detail in Appendices A and B. Appendix B is a
conference article that describes a way to calculate the wave excited forces on
the buoy and plate. Some minor corrections to the original presentation, in Japan
1991, have been made in the present article . Appendix A is an article which
will be published soon in Applied Ocean Research. The article deals with the
hydrodynamic coefficients of the buoy and plate.

The present work is divided into the following six major sections:

1. Formulation of the equations of motion for the buoy and the

submerged plate;

2. Calculation of the characteristics of the hose-pump;

3 Calculation of the drag forces on the buoy and the submerged plate;

4 Calculation of the hydrodynamic coefficients such as added mass and
potential damping;

5 Calculation of the wave-excited forces due to the incident waves; and

6. Soludon of the equations of motion. This will give the

amplitude and the phase angles of the buoy and the submerged plate
so that the energy take-out by the module can be calculated.
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3 THE EQUATIONS OF MOTION

The mathematical model consists of a buoy, a submerged plate, a hose-pump and
a mooring system. The hose-pump is modelled as a complex spring and and the
mooring cable as a real linear spring. Only the vertical motions are modelled.
With nomenclature according to Fig. 3.1, the equations of motion of the buoy
and the submerged plate can be written:

{ myzy + kio(1 + jP(z1-22) + Car(z1 - 1) + Cgzy = Fy (3.1)
myz; + kio(1 + jP(z2-21) + Cap(za - 1) + kozg = Fy (3.2)

with:
m; = the mass of body i
z; = the motion of body i
ki = the spring stiffness of the hose pump
Y = the imaginary part of the complex spring stiffness
C4 = the linearized drag coefficient of body i
7; = the motion of the water at body i
C; = the buoyancy of the buoy = paR2g
k, = the spring stiffness of the mooring system
F; = the forces on body i, due to the incident waves
io=Ja
Index: 1 = buoy
2 = plate
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bz

!

d,

hy

Figure 3.1 Model of a single energy converter

The incident waves are assumed to be of the form 1 = ] coswt, however
complex notation is used, i.e. the motion, velocity and acceleration are the real
parts of the complex expressions. The motion, velocity and acceleration for the

incident wave can then be expressed as :

" @3
T = J'mfhe)_wt €X)
7y = -a2fed (3.5)

for the buoy at the surface, i =1 and
fly = H/ 2 = wave amplitude; (3.6)
at the level of the submerged plate, i = 2 and

_H sinh(k(h; + (g1 + €3)/2)) (3.7
2 sinh(kh;)

=

2

where k is the wave number, f); the amplitude of the water particle at body i, and

@ the angular frequency.
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In a similar way one finds for the buoy and plate:

7= 2@ @ (3.8)
7 = jand @ ®) 39
7 = -z @ B (3.10)

where z; denotes the amplitude of body i and ¢, the phase angles between the
body in question and the incident waves.

The forces on the buoy and plate due to the incident waves (omitting the drag
forces) can be expressed as :

F; = gF; - 1F; (311
where
aF; = wave excited force on the body i = 4f;7j
and
5 = reaction forces, which are expressed as a set of
hydrodynamic coefficients that are multiplied by the
acceleration and the velocity of the buoy and plate.

A way to calculate the net force, F;, that acts on the body i is as follows:

1) Keep the buoy and plate in fixed positions and let the bodies be
exposed to incident waves. The wave excited forces can then be
calculated by solving the diffraction problem. The way that this is
carried out is described in detail in Appendix A.

2) The incident waves set the buoy and plate in motion, and the two
bodies start to radiate waves in the fluid domain, which causes

reaction forces on both bodies. These reaction forces are calculated in
two steps by solving the radiation problem. When solving the radiation
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problem there are no incident waves and the buoy and the plate, one at
the time, are given a forced harmonic motion in the heave direction.
The reaction forces are expressed in terms of hydrodynamic
coefficients such as added mass and potential damping. The added
mass indicates the part of the reaction force proportional to the
acceleration of the body, and the potential damping indicates the part
of the reaction force proportional to the velocity of the body.

ik; + Bl (3.12)

iz i
Fi=A"z,+Bz;+ A
with

A‘ik = added mass on body i as a result of the motion of body k, and
Blk = potential damping on body i as a result of the motion of body k

The calculation of added mass and potential damping is described in Appendix
A.

When Egs. 3.3 to 3.10 are substituted into Eqs. 3.1 and 3.2, one gets after
division with &/":

{ (ag + )21 P + (a3 + jag) a0 P = asl; (3.13)

(ag + j29)21' P! + (ag + jan)2pe! P2 = a1y (3.14)

where :
ay =-(my + All)a? + C; + ki (3.15 a)
ap = (B + Caw + kypy (3.15 b)
az = -(A1202 + kq9) (3.15¢)
ag = B2w- kypy (3.15d)
as = gfy + jCa1 (3.15 ¢)
ag = -(my + A22)a? + kyp + ko (3.15%)
a7 = (B22 + Cg)w + kyoy (3.15g)
ag = -(A21@? + kyy) (3.15h)
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ag= Bim-kyoy
ajo= gfz +jCar0

Finally, the equation system can be rewritten in the form:
AZ =B
with

A { (a; +jap) (as + jag) }
(ag + jag) (ag + jag)

, [ 7, 5,689
) %} ) Lzﬁj%}
as

ajosinh(k(h; - (e; + €) / 2))
sinh(kh;)

and the complex amplitudes Z; can be calculated.

(3.15 i)
(3.15 )

(3.16)

(3.17)

(3.18)

(3.19)

Nothing has been said so far about the linearized drag forces and the complex

spring stiffness. In order to calculate the values of these variables, the amplitude

and phase angle for the buoy, as well as the plate have to be known.

Accordingly, in the first iteration one has to guess the amplitudes and phase

angles, and then calculate the linearized drag coefficient (See Section 4) and the

complex spring stiffness (See Section 5). The amplitudes and the phase angles
can thereafter be calculated. If the differences between the calculated and
guessed values of the amplitude and phase angles differ too much, new iterations

have to be performed until the differences are acceptable.
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4. THE DRAG FORCES
The drag forces on the plate and buoy are linearized as already noted, and are
given as:

Fy Jin, = Cai(zi - 1) CRY;

According to Morison et al., however, the drag forces are non-linear and can be

expressed as:

Fy, = Cp,pAilzi - T - 1) / 2 4.2)
with:
Cp, = drag coefficient
1
p = the density of the ambient fluid
A; = the cross sectional area of body i perpendicular to the relative

motion of body i.

If the linearized and the non-linearized forces shall be equal, this would require
that:

Cp,pAilzi - ] = Ca (43)
which is impossible if Cy; is to be constant.
Instead, the value of Cgy; is often adjusted so that the same amount of energy is

dissipated as would be dissipated due to the non-linear drag force for one wave
period. The energy that is dissipated can be calculated as:

10
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5™ T+t,
E= f Fds (4.4)
= E= Fvdt
So
tO
ds = wvdt
with:
T = the wave period
s = the distance travelled during one period length
v = the relative velocity for the body

The calculations are done for the linearized as well as the non-linearized forces,

and the results are set to be equal, i.e.:

Elin,i = Enon«lin,i (4.5)
When Egs. 4.1 to 4.4 are substituted into Eq 4.5 one gets:
T+t, T+t,
1 . C . .2 . .2
f 2PCp Ailzi - Ml (z - M) dv = f Cy lzi - ) dt
to to
and C 4 can be expressed as:
1
T4ty
. .2
. f lzi - m|(z; - m)dt
= 5 L0
Ca; = 2D AP Tagg 4.6)
.2
f (z; - 1) dt
to

11
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When solving Eq. 4.6 a problem arises, due to which the absolute value of the
relative motion must be rewritten. A way to overcome this is to apply Simpson's
rule to solve the upper integral in Eq. 4.6:

T+t

. . . .2
J épCDiAiiZi - Tl (z - 1) dt =
to

énpcDAi [£0k0) + 4£0x1) + 26(x9) + .. + 260x39) + 418Kpn 1) + f(xZn):i +Rp @7

with:
h= oo @.9)
X = 1o + 5=(T + tg) (4.10)
f(xg) = -8 | 2@+ B _ g @) [; i@nc+ ) g J(0m)]2 @11
Ry = o 198, o< £< T 41 (4.12)

12
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5 THE HOSE PUMP

The hose pump was originally intended for use in the developing countries, as a
simple hand pump for pumping water from deep drilled wells. Then Gotaverken
(Hagerman, 1988) proposed that the hose pump also be used for extracting
energy from the sea.

The hose-pump consists of a rubber hose which is reinforced with a helical
shaped wire (See Figure 5.1). A critical parameter of the hose pump
characteristics is the slope angle of the wires. When the hose is stretched and the
cross sectional area of the hose decreases, the internal volume of the hose will
also decrease if, and only if, the slope angle exceeds a certain value. For smaller
values of the slope angle, the volume will remain constant during the pump
cycle. '

\\ﬁ‘?_’_’/w— Slope angle
L

Rubber

)

Steel wire

Figure 5.1 Outline diagram of the hose
A mathematical model of the hose-pump, for calculating the energy take-out,

was developed by Technocean in the beginning of the 1980s (Forsberg, 1991).
As the

13
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model is non-linear, the equations are described in the time domain and,
therefore, cannot be used here. However, from this time-model Technocean has
derived a new, simplified, linear model which describes the characteristics of the
hose pump in the frequency domain (Technocean, 1991). The new model is
calibrated to the old model which in turn is calibrated according to the results of
the field test that was performed at Vinga.

In the new model, approximations are made for the most important pump
characteristics. All algorithms are continuous within a limited stretching range
which allows a Maclaurin expansion of the first order for the most important
pump characteristics such as the pressure force and the elastic force. The
Maclaurin expansion is developed around the average value of the
non-dimensionalized stretching, 1 + e,. In the frequency model, the physical
behaviour of the pump is taken into consideration and two conditions are stated
concerning the pressure:

1) When the pressure present in the pump exceeds the system pressure,
water is pumped into the connecting hose.

2) When the pressure present is below the system pressure, water is
pumped into the pump from the surrounding fluid.

It is beyond the scope of this work to derive the formulae of the pump
characteristics from the time domain to the frequency domain and, therefore, the
model will be treated as a "black box". Input data to the black box are the hose
length (Lpose), hose-diameter (@hose), the modulus of elasticity (Epgse), System
pressure (Prose) and the strain (nose) and the relative motion of the hose pump.
The output from the model is the complex spring stiffness, kj5(1 + j7). The real
part, ky,, corresponds to the real spring stiffness, and the imaginary part, ki27,
corresponds to a velocity independent damping constant from which the energy
take-out can be calculated.

14
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6 COMPARISON BETWEEN THE PRESENT SOLUTION AND A
SOLUTION BASED ON THE INTEGRAL EQUATION METHOD

In Appendices A and B a comparison is made, between the present solution and
a solution for a single floating cylinder (Johansson, 1986), of the wave excited
forces and the hydrodynamic coefficients. In the case of the single cylinder the
same method of maiched eigenfunction expansion was used. In order to avoid
influencing the results, the plate was kept close to the sea-floor. The wave
excited force and the hydrodynamic coefficients for the plate have not, so far,
been compared with the results from any other program. In this section,
therefore, a comparison is made between the present solution and a numerical
one (Lei & Bergdahl, 1992). The numerical solution is based on the integral
equation method, also known as the panel method.

When calculating the wave excited force, the following geometrical properties
were chosen (See Fig. 3.1):

R/h =0.2 hy /hy = 0.3
dy /by =0.1 hs /hy =0.5
d2/h1 = 0.1

The wave excited forces on the plate and the buoy are non-dimensionalized by
dividing by the factor mpgHR? / 2. From Fig 6.1, it can be seen that for
frequencies approaching zero, the dimensionalized force that acts on the buoy
approaches the lift force of a cylinder of radius R and draught H / 2, i.e. the
wave excited force is equal to pgHR2 / 2, and then, for increasing frequencies,
the wave excited force decreases to zero. The wave excited force on the plate
approaches zero for frequencies approaching zero. Then, for increasing
frequencies, the wave excited force on the plate first increases until it reaches a
maximum value, a value that is less than mpgHR?2/2, and thereafter it decreases
and approaches zero.

15
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. Present Method
. +++++ Lei & Bergdahl (1992)
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Figure 6.1 Non-dimensional wave excited forces for the buoy and plate as

a function of kR, with k = the wave number and R = the radius.

When comparing the hydrodynamic coefficients, added mass and potential
damping, the same geometrical properties were chosen. The added mass was
non-dimensionalized by dividing by the mass of a hemisphere, 2zpR3 / 3 and the
potential damping was also non-dimensionalized by dividing by the mass of a
hemisphere multiplied by the present frequency, 2zpR3w / 3. From Figs. 6.2 and
6.3, it can be seen that the damping of the buoy is greater than that of the plate,
i.e. the buoy radiates more energy to the fluid domain than the plate. From the
figures it can also be seen that the added mass of the plate is larger than that of
the buoy, due to the fact that the plate is surrounded by fluid whereas the buoy is
free on one side. From Figs. 6.4 and 6.5, it can be seen that the hydrodynamic

coefficients, as a result of the motion of the other body, are equal.

16
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Hgure 6.2 Added mass and potential damping of the buoy, as a

consequence of the motion of the buoy. kR = the wave number
multiplied by the radius of the buoy.
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Figure 6.3 Added mass and potential damping of the plate, as a

consequence of the motion of the plate. kR = the wave number
multiplied by the radius of the buoy.
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The agreement between the present method and the numerical one is acceptable
for both the wave excited forces and the hydrodynamic coefficients.

The present solutions of the wave excited forces and hydroedynamic coefficients
are analytically derived and are obtained in the form of infinite series. Therefore,
when the values are evaluated on the computer, the series have to be truncated
and the accuracy of the answers depend on the number of terms, N, in the series.
It is desirable to keep the number of terms as low as possible and still obtain an
answer that satisfies the required accuracy. The time consuming part of the
program is the solution of an equation system of the form: AX = B with A as a
(3N x 3N) matrix and B a 3N vector. In Table 6.1, an example is given for the
convergence for increasing N.

Table 6.1

Truncation characteristics for the wave excited forces and the
hydrodynamic coefficients (d1/h; = 0.25, R/hy = 0.50, hy/h; = 0.74,
hs/hy = 0.01, dy/hy = 0.0, and kR = 0.821)

10
20
30
40
50

all bl a22 p22 F, F,
1.16 0.291 1.16 0.518¢-5  0.960 0.405e-2
1.17 0.291 1.22 0.528¢-5  0.960 0.409¢-2
1.18 0.291 1.27 0.571e-5  0.960 0.426¢-2
1.18 0.291 1.28 0.583e-5  0.960 0.430e-2
1.18 0.291 1.29 0.591e-5  0.9€0 0.433¢-2
1.18 0.291 1.30 0.595¢-5  0.960 0.434e-2
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7. RESULTS

In this section the amplitudes and phase angles of the buoy and the plate are
calculated. This is done in two steps. First the amplitudes and phase angles are
calculated, for a system without any drag forces and with the spring stiffness of
the hose pump and mooring cable equal to zero. The equations of motion are
then reduced to:

mlil + CgZI =F 1.1
m2£2 + = Fz (1.2)

In the second step the amplitudes and the phase angles of the buoy and the plate
are obtained, by solving Egs. 3.1 and 3.2. In the examples presented here, the
characteristics of the buoy and the plate are not changed and the following
numerical values are chosen:

R = 7.5m h, =38.93 m

d; = 034 m hs =20.64 m

ds = 0.09 m my =325 103 kg
hy = 60 m my =30.0 - 103 kg
CD,buoy =059 CD,plate =19

When the wave excited forces and the hydrodynamic coefficients are calculated,
the truncation term, N, is set to 20.

The characteristics yielded for the hose pump are:

Liose = 22m = length of the hose

Prose = 0.6 m = the diameter of the hose pump
Phose = 1.05MPa = the system pressure

€hose = 0.05 = the main strain of the hose

For the purpose of including the drag terms, the wave steepness is set to 0.03,
that is, the wave height becomes:
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H=0031=006r/k
with A = wave length and k = wave number.

In Figures 7.1 - 7.2 the wave excited forces and the hydrodynamic forces are
presented, and they are non-dimensionalized by the same factors as in Section 6.
From Figure 7.1 it is seen that the wave excited force on the plate is
comparatively small. In figure 7.2 the hydrodynamic coefficients, a(u) R b(ll)

and a(22) are shown. The potential damping of the plate, b(z 2), and the cross

terms, a(m), 3(12), b(21) and b(12 ) are very small, due to the relatively great

distances between the buoy and the plate and between the plate and the bottom,
and, therefore, are not presented.

1.00 —
P,
0.80
3 wws+ss Wave Excited Force on the Buoy
. —— Wave Excited Force on the Plate
0.60 —
0.40 —
0.20 —
N T T T ¥ i T ¥ 1 1 T 1
0'000.00 T T T 1 i i T T I4‘°!0 T T 1 T I L 1 IB.([)O 12.00
kR
Figure 7.1 The non-dimensionalized wave excited forces on the

buoy and plate.
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1.60 —E]
* e
. 211)
. ettt b

1.20 -

0.80

0.40 —

0~00 {II!illl\lllillllllll|lll|||l||ll|I||\||l
0.00 1.00 2.00 3.00 4.00

kR
Figure 7.2 The hydrodynamic coefficients of the buoy,-a(“) and

b(n), and added mass of the plate a(22).

In Figure 7.3 the amplitudes of the buoy and the plate are presented. When
comparing the amplitudes of the buoy for the two cases, it can be seen that they
are equal to the wave amplitude for small frequencies, i.e. @ = 0. The resonance
peak is almost damped out and is moved towards a frequency lower for the
second case than for the first case. The plate for the second case also has an
amplitude that is equal to the wave amplitude for small frequencies. It can be
shown that for small frequencies the plate will always have an amplitude equal
to the wave amplitude, as long as the spring stiffness is greater than zero. It
should be pointed out that the numerical model of the hose pump is a good
approximation only when the relative amplitude of the hose pump is within
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certain limits. The relative motion is normalized by the length of the hose:

({31 cos(er) - 75 cos(en))? + (55 cos(er) - 51 costen))?)E
Ap = .1

Lhose

To get a correct value for the spring stiffness of the hose pump, the relative
motion must be less than 5% and more than 1%. For motions more than 5% or
less than 1%, the spring stiffness can be given the constant values that are
yielded for the 5% and 1% motions, respectively. When the relative motion is
between 5% and 1%, it can be seen that the plate will have an almost constant
value for amplitude. For the case without a hose pump, case one, the plate will
have an amplitude equal to the amplitude at the corresponding depth.

1.20 —
——— Buoy, Cp = 0, kj2 = 0
7 s Buoy, Cp > 0, ki > 0
1.00 — — Plate, Cp = 0, k;p = 0
3 » =« » Plate, Cp > 0, ks > O
0 =l
E 3
=080 4 T
29 |
£ q
3 ]
T
* 0.60 '
~ b
o 40
3 ]
B
E 040
~
4\
E AN
0.20 ; \ \’_*—4‘.‘\*
2N ~ .
7 AN Tt — -
] ~ o=
0-00 IIIQI|Il\|{|?|||llII{I!!‘!I!]I!!!{I1|!||]
0.00 1.00 2.00 3.00 4.00
kR
Figure 7.3 Non-dimensionalized amplitudes of the buoy and the
plate. ’
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Figure 7.4 shows that the phase angles of both the plate and the buoy are in
phase with the incident waves for low frequencies. The phase angles for the
buoy and the plate in the first case are almost identical, but for the second case
the difference between the phase angles increases for increasing frequencies until
it reaches a constant value.

8.00 —
] ——— Buoy, Cy = 0, kj = 0
] +=++ss Buoy, Cp > 0, kyz > 0
~ - - Plate, CD = ’ k{g = 0
] » =<+ Plate, CD > 0, ki > 0
6.00
§ J
5 4.00 —
£ ]
2.00
0'00M!IlllI|l¥|1i|l!!lIl[ll!\!l(l\ll)|llf1ll]
0.00 1.00 2.00 3.00 4.00
kR
Figure 7.4 Phase angles for the buoy and the plate

Figure 7.5 shows the relative motion of the hose pump, i.e. Eq. 7.3, and also
shows that the hose pump behaves as one might expect. For low frequencies the
motion is zero, then it increases to a maximur, the resonance peak, followed by
a decrease to zero.
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When the hose pump was linearized, one of the conditions was that the work
done by the hose pump should be independent of the duration of a pump cycle.
The different phases of one pump cycle, building up the pressure, pumping water
into the connecting hose, and refilling the hose pump, are diagrammed as a
distorted thombus (Fig. 7.5) in the time domain model, however, in the present
model the pump cycle is simplified to an ellipse. The area of this ellipse
corresponds to the work done by the hose pump and can be calculated as:

W = ma2kyo4T (71.4)
where

an = Ap-Lyose

0.16 —
. Hose Amplitude / Hose Length
0.10 —
0.06 —
~0 ‘llllll“|l|l|\l||l"‘l‘lll‘l‘lllll‘l‘
“oe0 1.00 2.00 3.00 4.00
kR
Figure 7.5 The non-dimensionalized amplitude of the hose
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In the first phase, 1, the pressure is built up and all valves are closed. In the
second phase, 2, the pressure continues to grow due to the elastic force in the
hose and water is also pumped from the hose into the connecting hose. In the
third phase, 3, the pressure decreases and the volume increases, all valves are.
closed. In the fourth phase, 4, the pressure is below the system pressure, a valve
is opened and the pump is filled with water.

2

Figure 7.6 The different pump phases for the hose pump. The
longer radius corresponds to the amplitude of the hose
pump and the shorter radius corresponds to the
imaginary part of the complex spring stiffness.

One way to calculate the efficiency (Bergdahl, 1979) is to calculate the work
done by the hose pump divided by the power of the incident waves that pass
through a width equal to the buoy diameter. This efficiency number is called the
capture-width ratio.

The power in the incident waves can be calculated by
Py, = EuCg2R (1.5)
with

pgH?
= energy / square unit (7.6)

w =
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C; = nC = group celerity 1.7
C = A/ T = wave celerity (7.8)
47h,
el (7.9)
Asinh(47th, / A)
A = wave length.

Substituting Egs. (7.6) to (7.9) into Eq. (7.5) yields

pgH2AR 47h,
P, = {1+ ) (7.10)
8T Asinh(47h; / A)

and finally, the capture-width ratio can be calculated as

87(A 1 L ose) k17 sinh(4nh; / A)
0= A } (7.11)
pgH2R 47hy + Asinh(4rmhy / A)

Figure 7.7 shows the capture-width ratio as a function of kR. One can see two
maxima, of which the first corresponds to the case when the relative motion of
the hose is over 5% and the spring stiffness is given a constant value. When the
relative motion is below 5% the spring stiffness will alter for each frequency,
and one can see that this will increase the capture-width ratio. The capture-width
ratio then grows to a second peak value which is close to 40%, after which it
decreases to zero.
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0.40 —
] ——— Capture—-Width Ratio
0.30 —
0.20
0.10
0.00 LIS T A O A T I N N A A O SO A |
0.00 1.00 2.00 3.00 4.00
kR
Figure 7.8 Capture-width ratio as function of the

non-dimensionalized wave number.

Finally, a comparison is shown between the present model and the time domain
model that was developed by Technocean. While the time domain model
describes the hose pump more accurately, the present model, on the other hand,
describes the hydrodynamic coefficients and the wave excited forces more
accurately. The geometric properties are identical to the input data presented in
the beginning of this section. The comparison is made for two cases.

Input Data: m; = 30-103 kg = the mass of the buoy
my = 35-103 kg = the mass of the plate
Case 1 H=228m = wave height
o = 1.047 rad/s = the angular frequence
Case 2 H=1.52 = wave height
o= 1.257 rad/s = the angular frequence
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Output Data:

Case 1 Case 2

TDM PM. TDM PM
Added Mass, a1 0716  0.871 0716 0.763
Added Mass, 1% 0.0 -0.30- 10-2 00  -0.23-102
Added Mass, @D 00  -030-10-2 00  -0.23-10-2
Added Mass, 222 2046 121 2046 121
Pot. Damp., b{11) 0466  0.459 0466 0424
Pot. Damp., b12) 0.0 -0.10- 10-1 00  -0.49-102
Pot. Damp., b?1) 0.0 -0.10- 10-1 00  -0.49-102
Pot. Damp., b2 0.0 -0.23-10-3 00  0.56-104
Ay 62%  4.8% 3.6% 2.45%
n 19%  17% 35%  27%
with:

T.D.M = Time Domain Model and
P.M = Present Model

Although the efficiency calculated for the two models agrees, further comparisons are
necessary to validate the model proposed here.
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8 CONCLUSIONS

This study concerns the energy take-out from a wave energy module consisting of a buoy
connected via a hose pump to a submerged plate. To calculate the energy take-out the
stretching of the hose pump has to be estimated from the motions of the buoy and the plate.
The equations of motion for the buoy and plate therefore have to be solved. The equations
of motion are solved in the frequency domain and contain the mass of the buoy and plate
(physical and added mass), damping of the buoy and plate (potential damping and damping
due to drag force), the wave excited force on the buoy and plate and finally the behaviour of
the hose pump.

The emphasis in this report is placed on the calculation of wave excited force (the
diffraction problem), and the added mass and the potential damping (the radiation problem).
Both the diffraction problem and the radiation problem are solved analytically. When
solving the radiation problem the cross terms are also solved, i.e. the added mass and the
potential damping on body i caused by an oscillation of body j. It is concluded that, for the
tested realistic geometry, the cross terms are less than a few percent of the added mass and
the potential damping on body i caused by its own motion. As mentioned above the
problems are solved analytically which, when run on a computer, requires much less
CPU-time than numerical solutions. The results have been tested against other solutions, one
analytical solution (Johansson, 1987) and one numerical one (Lei & Bergdahl, 1992) and the

agreement is satisfactory.

The energy take-out calculated from the present model agrees acceptably with that from a
specially tailored time domain model. For two cases, the capture-width ratios calculated
from the present model are 17% and 27% and from the time domain model 19% and 35%
respectively.

A suggestion for future work is the development of an optimization method for a single
energy converter in a given wave climate. In connection with this model, tests would be
valuable. It would also be of interest to study the interaction between several converters in
order to see if it is possible to model theoretically a complete wave energy-plant by the
method of matched eigenfunctions.
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Appendix A

Hydrodynamic coefficients of a wave energy device
consisting of a buoy and a submerged plate.

LARRY BERGGREN and MICKEY JOHANSSON
Dept. of Hydraulics, Chalmers University of Technology,
412 96 Goteborg, Sweden.

Hydrodynamic coefficients of a wave energy device, consisting of a buoy
connected to a submerged plate, are presented. Both the buoy and the
plate are idealized as vertical cylinders. For this two-body system, the
case with the buoy oscillating vertically and the case with the submerged
plate oscillating vertically are treated. The coefficients are solved by the
method of matched eigenfunction expansions. Numerical results showing
the plate's influence on the hydrodynamic coefficients of the buoy and
vice versa are presented.

Key Words: Wave power, radiation problem, two-body system,
hydrodynamic coefficients

1. INTRODUCTION

A buoy riding in waves, connected to a submerged plate by an elastomeric hose,
has been proposed as a device for extraction of energy from waves.! The
elastomeric hose acts as a pump that is driven by the relative motion between
the buoy and the submerged plate. The submerged plate is moored to the sea
floor. The concepts is according to Hagerman described below.! During the
passage of a wave crest, the buoy heaves up, stretching the hose. The helical
pattern of steel reinforcing wires in the hose causes it to constrict as it is
stretched, thereby reducing its internal volume. This forces sea water out of the
hose pump, through a check valve, and into a collecting line to a turbine. After
the wave crest has passed, the the buoy drops down into the succeeding trough
and the hose pump returns to its original length, restoring its diameter to its
unstretched value. This increase in internal volume draws water into the hose
through another check valve, which is open to the sea. (See Fig. 1)

In order to analyze the dynamics of the wave energy device, properties such as
hydrodynamic coefficients have to be calculated. The problem is formulated
linearly here which means that the coefficients associated with the harmonic
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motion of one of the bodies are calculated assuming the other body as fixed. The
radiated waves associated with the body in motion cause dynamic pressure. In a
two-body system, this pressure will not only be experienced by the body in
motion but also by the fixed body. This will give an added mass and damping
coefficient for the body in motion as well as cross-terms for added mass and
damping of the fixed body. In this paper added mass and potential damping'
including cross-terms are calculated for the cases with vertical motions of each

of the two bodies.

The nomenclature of added mass and
potential damping is retained throughout
the report also for the cross-terms, which

should be kept in mind to avoid con-
fusion. The added mass of both the fixed
and moving bodies is then defined as a
quantity that, multiplied with the accele-

ration of the moving body, gives part of

the hydrodynamic force on the body

-~ Hose Pump which is in phase with the acceleration of
/ the moving body. In a similar way, the
potential damping is defined as a quantity,

that, multiplied by the velocity of the

moving body, gives that part of the hydro-

~ Valves dynamic force on the body which is in
N Connecting Hose phase with the velocity of the moving
aamns \ R body. The wave energy device is idealized

as two vertical cylinders of equal dia-
meter. For such a geometry, the problem

is suitably solved by the method of matc-
T Mooring hed eigenfunction expansions, a technique

in which the fluid domain is divided into

/= Damping Plate

sub domains. In each subdomain an eigen-
function expansion of the velocity

Figure 1 The hose pump concept. potential is constructed. The technique has
Elastomeric hose acts as a been used for both two-dimensional
pump, that is driven by the problems (see 2,3,4) and and axisymmetric
relative heaving motion between three-dimensional problems (see 5,6)

buoy and submerged plate.
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2. FORMULATION OF THE PROBLEM

The geometrical properties of the idealized wave energy device are defined in
Figure 2. A cartesian coordinate system, Oxyz, as well as a cylindrical
coordinate system , Orfz, is defined with the origin in the undisturbed free
surface and the z-axis positive upwards. The buoy occupies the space defined as
r<R,0<6<2x, z 2-d; and the submerged plate occupies the space defined as r
<R, 056<2n ey<z5 €.

AY
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Q\
6 X
-
o
A
X /
> A
&
I X A
COTIT N -
' ! [aVIE (i3]
, e 'o* %
h ' R /
, H ™
pL II ; @
V : 2
Figure 2 Geomemcal propemes ot the wave energy dcvxce

and definition of fluid sub domains.

Small oscillating vertical motions are assumed. The flow is considered
irrotational and the fluid incompressible. If the amplitude of the vertical motion
of the buoy is denoted {, then the flow is suitably described by the velocity
potential Re{-iwl@(r,z)exp(-iwt)} (i= -1, ® = angular frequency and t = time)
where the spatial part of the velocity potential ¢, is governed by the following
boundary-value problem:
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(z = -hy)

(Z = 'dl, T <R)

(z=-e,T<R)

(z=-e5,T<R

(-dy<z<0,r=R)

(-ep<z<-e, r=R)

lim F(g‘z—ikcp]z()when(r—m)
T

3

“

)

6

(7

®

©

where k is the wave number. In the case for which the plate oscillates the

boundary value problem will be changed only slightly. The changes appear in
boundary conditions (4), (5) and (6). They become

9%_o
oz
Qgﬁ), =1
oz
9 _
Jz
3. SOLUTION

(Z=-d1,I‘<R)

(z=-e,T<R)

(z=-€T<R)

(10

1mn

12)

In the solution procedure, the fluid domain is divided into three sub domains as

indicated in Figure 2. The method of separation of variables is applied in each

sub domain in order to obtain expressions for the unknown function, i.e. the

velocity potential. Expressions valid in each sub domain are obtained as infinite

series of orthogonal functions. These expressions are developed to satisfy all
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boundary conditions except at the boundaries joining the sub domains, ie. at
r=R. It then remains to determine the unknown coefficients in the series. This is
done by imposing the condition of continuity of pressure and normal velocity at
r=R. Mathematically, this is fulfilled by matching the potentials and the normal
derivatives of the potentials, respectively.

The formulation starts from the potentials developed independently in each sub
domain.
Applying the method of separation of variables gives the spatial potentials in
each region expressed in terms of orthogonal series. In region I, the potential
becomes

o = 2 A, coshy(z+hy) RaaT) (13)
Ly Ro(AR)

where the eigenvalues are
A =-ik  where k is the wave number
k tanh khy = @%/g -1
An tan Ashy = -007/g n=23.. (14)

and the radial function R, is

Ry(hr) = D) = B gy n=1
Ry(Aqr) = K(A51) n=2,3.. (15)

where H((,l) is the Hankel function of first kind and zeroth order and K, is the
modified Bessel function of second kind and zeroth order.

In region II, the potential and corresponding eigenvalues become:

o L(Br)
0 = O3+ B, cos By(z+e;) (16)
P ; " LBR)
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Ba = m-1)7/hy an

where I, is the modified Bessel function of first kind and zeroth order. The
superscript (i) of the particular solution is used to identify which one of the two
bodies oscillates. The superscript 1 refers to the case when the buoy oscillates
and 2 refers to the case when the plate oscillates. The particular solution

becomes
) (z+~el)2 - r2/2 i=1
1 Zhy a8
P @rdp? - P -
2hy
In region III, the potential and corresponding eigenvalues become
0 < LGhr)
¢3=dzp+ ) Cucosyy(zhy) <1072 (19)
= Lo(kR)
Yo = (n-1)7t/h3 20)
where the particular solution is given by
@) 0 i=1
t3p = @n

(z+h))? - P22
2K3

The potentials given above describe the flow in each region and satisfy all
boundary conditions except those at r = R. For example, in region I the potential
satisfies the linear free surface boundary condition, the impermeable bottom
condition and the radiation condition when r - .

The remaining problem is mainly to determine the three sets of unknown
coefficients {(A;, Bp, Cp), n=1,2,...}. The three sets are found by imposing the
boundary conditions at r = R. The requirements of continuity of pressure and
normal velocity give the following conditions:
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$1=0,, €15z -44 22)

4)1 = ¢3 s 'hl <z<-e (23)
0 -d; < z< 0

a0 3%2 -ey < z< -d;

5:” = 0 -€p <Z< -€y 24)

993
T -hy <z<-e

The boundary conditions above are satisfied over the z interval in a least square
sense by multiplying each side of the boundary condition by a proper set of
eigenfunctions and then by integrating them over the interval in question.
Matching at r = R is achieved by the integrals following below, where the index
k=1,2,.....

Boundary condition 1, Eq. (22):

‘dl 'dl
f 91(R,2){cosB(z+e,)}dz = f %R ,2){cosPy(z+e ) }dz (25)

-€ -€

Boundary condition 2, Eqg. (23):

) =€
f $ (R,z){cosy(z+hy)}dz = f $»R,2){cosp(z+hy)}dz (26)
-hy -h,

Boundary condition 3,Eq. (24):

0 50, 194,
f —— {cos Pi(z+hy)}dz = f — {cos A(z+h))}dz +
ar or
'hl -€1
f — {cos Be(z+h)}dz 27
T

-hy
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Introduce the following integral functions

Zy
E(t Be by, b p 2122 = f cosoy(z+h ,)cosBy(z+h ﬁ)dz
Z]
Z
N i 21, 2) = [ (009 e + b))z

zZy

(28)

29)

where {0, n = 1, 2,..} and (B, k = 1, 2,..} are two different sets of
eigenvalues. Now, rewrite the boundary conditions, Egs. (25) to (27), and
introduce the integral functions (28) and (29). The following three sets of

equations are then obtained:

Boundary condition 1:

o

zAn E(An,Bioh1,e;,-e1,-d1) = Pry + By N(By.e.-e1,-d1)
n=1

(30)

where the component associated with the particular solution is given by

-dy
Puc= | 98P R.2) cos fi(zey) dz
- el
Boundary condition 2:

©0

zAn E(An Tiohy,hy,-hy,-€9) = Poy + C N(fohy, hy,e2)
n=1

where

3D

(32)
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_62

Py = f ¢;§Ii))(R,z) cos Y(z+hy) dz 33)
-hy

Boundary condition 3:

A Dy Nl 1.0) = Pag +" B B B BB a1y 1) +
2L BR)

+3 1 o LR gy Ahyhy,hy e (34)
T R

where the component associated with the particular solution is given by

-dy =€
(i) (i)
Py = f Q%E cos Ay(z+h;) dz + f Qg%lll cos A (z+hy) dz (35)
-6 -h;

and

{k D arym{Dar) k=1
D, = (36)

AKo(R) /Ko (IR) k=23,

In order to find a solution, we must truncate the infinite series of orthogonal
functions. Assume that N is the number of orthogonal functions considered. We
then get a system of 3N complex equations and an equal number of unknown
coefficients. Organizing the equations in matrices gives

likn

X=F 37

where
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i T
X=- E)E(A Agorsipp B1BosByp €1.CsCp)

1’ Zr-’

Let the elements in the system matrix be denoted by Sj; and the elements in the

right hand side matrix by Fj, where i, j = 1, 2,..., 3N. The elements in the two

matrices are given by the boundary conditions as follows below, with local

indicesn, k=1, 2, N.
Boundary condition 1:

Skn = E(A«n,ﬁk,hl,c:h'el,“dl)
Sk(N+k) = “N(&luel:'el’-dl)

k=F

1k
Boundary condition 2:

S(N+k)n = E(a’n;yk’hlvhlv'hb"ez)
S(N+k)(2N+k) = - N(%hy,-hy,-€2)

Fona = Pox

Boundary condition 3:

= “ﬁn “Io—(w E(ﬁmlkvcl’hli'e’ls'dl)

S
(2N+k)(N+n) L(B.R)

S(2N+k)(2N+n) =T M‘Z{%—) E(Yn,Ah1hy,-hy,-€0)

L(1R)

SN0k = P N(bohy,-hy,0)

(38a)

(38b)

(38c)

(38d)

(38e)

(38)

(38g)

(38h)

(381)
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Foneg = Pak (38))

Solving the complex system of equations gives the unknown coefficients in the
orthogonal series and, thereby, also the potentials valid in each region.

The forces caused by the motion of the structure are calculated by integration of
the dynamic pressure given by the Bernoulli equation. In order to be consistent
with the linear formulation, the pressure is given by

p=-p 9% =inpg tV (39)

where CO) is the motion of the oscillating body. The force at body j, caused by
an oscillation of body i, can be written as one part proportional to the
acceleration of body i and one part proportional to the velocity, as follows:

F) - AGDAD _ g )

The quantities introduced, A(lj) and B(U), are the added mass and potential
damping respectively. The integration of the pressure over each body yields the
following expressions for the hydrodynamic coefficients:

. (11) 2,2 n-1
an_ 3D rn2r?rYs (1) RI,(/inR)
Al B 27rp[——==—-=—-==4 ZB T ] 41)
a2 , 812 . O™ R 1, (4R)
A T =am[ 3 G («/nR)“
n=1

B, angm-ll( R) 42)
(21

N
n-1
+1B =2fcp[23n -1 RIl(ﬁnR)
n=1

@1)
A FTBR  Ten ]

43)
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22)
@ B2 CD"RT(GR) p R LG
A znp[zcn n O(Yn ) B i n

2 p2
R ooy & R ] “4)
4hy 4hy

The hydrodynamic quantities given by the expressions above are the main results
and will be presented in the next section.

4. NUMERICAL RESULTS

As an initial check of the result, a comparison is made between the present
solution and a solution for a single buoy 7. The solution for the single buoy is
based on an approach’ similar to that used in this paper. In the comparison the
draught of the buoy to the water depth ratio d; / hy = 0.25, and the radius to the
water depth ratio

R / h; = 0.5. In the solution given here the plate was kept close to the sea
bottom

(dy / hy =0 and hs / hy = 0.01) in order to avoid influencing the added mass and
damping of the oscillating buoy. The comparison is shown in Figure 3a- b. In the
following figures and tables, the added mass is non-dimensionalized by the mass
of the water displaced by a semi immersed sphere with the radius R, and the
potential damping is non-dimensionalized by the same factor multiplied by the
angular velocity o, i.e.

a(ij) _ 3A(1‘])
2nR"p

(46)

b(ij)= 3A(ij )
2rR"pw

47

For the added mass the maximum relative deviation, between the present method
and the single buoy is less than 1.5%. The agreement is even better when
comparing the potential damping.

In Yeung® an approximative low frequency solution is presented. The
approximation, which is reported to give reasonably accurate predictions
when R/hy > 1, is:
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ADgRr L 0)=3 R ____R. )

DR 20 =2 [y | (7 n2 mR)] @)
1

b DGR 5 0) = %g‘li [ 1 +(kR)2(§- y+1n2 - InkR)] (48)

where 7y is the Euler constant (y = 0.5772). Hence, it can be seen that the added
mass at low frequency becomes logarithmic singular, while the damping
approaches a constant value. In the range when the approximation is valid, the
present method gives results in reasonable agreement with Egs. (47) and (48)
(See Table I).

Table 1 Comparison between the present method and Yeungs
approximation for low frequency. R/hy = 2, di/hy =0,
dy/hy =0, hg/hy = 0.01

Yeung Present Method.
kR Ne 1 b(ll) .11 pD
3.2e-4 12.62 2.356 12.84 2.356
3.2e-3 9.169 2.356 9.393 2.356
3.2e-2 5.715 2.344 5.929 2.347
3.1e-1 2.255 1.826 2.395 1.982

The truncation characteristics of the present solution are reasonable. Typically,
in a wide frequency range, an increase from 10 terms in the series solutions to
50 terms gives a maximum relative deviation for a(ll) of 11.2%. An increase
from 20 to 50 terms yields a maximum relative deviation of 3.9%. Finally, an
increase from 30 to 50 terms gives a maximum relative deviation of 0.5%.
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Present method
i 1
Method according to Yeung

6.0 0,5 1,0 1.5 2,0 2,5 3,0
kR

Figure 3a Coefficients of added mass for the buoy associated with vertical

motion (di/h; = 0.25, R/hy = 0.50, hy/hy = 0.74, dy/h; = 0 and
N=50). Comparison with the solution of a single floating cylinder.

0,5 \
\ o= Present method

0,4 .
\ ®  Method according to Yeung

0,1 \\
\
\%
0,0 rreryr . S b,
0,0 0,5 1,0 1,6 2,0 2,5 3,0
kR

Figure 3b Coefficients of potential damping for the buoy associated with
vertical motion (d;/h; = 0.25, R/hy = 0.50, hy/h; = 0.74, dy/h; =0
and N = 50). Comparison with the solution of a single floating
cylinder.
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The magnitude of the hydrodynamic coefficients of both the buoy and the plate,
as a consequence of the motions of each one are shown in Figure 4a-d. The
different curves show the different distances between the two bodies. The
geometric configuration is dy / hy= 0.1, R / hy= 0.2 and dy / hy= 0.1. The
distance between the two bodies varied as hy / hy= 0.15, 0.3 and 0.6.

It appears from Figure 4a and 4c that the added mass of the plate is greater than
that of the buoy i.e. a(ll) < a(?’z). This is due to the fact that the plate is
surrounded by the fluid while the buoy only has fluid on its under side. On the
other hand, potential damping of the buoy is greater than that of the plate ie.
(D, (22

waves than the buoy. This was investigated numerically by integrating the

, which is due to the fact that the submerged plate radiates fewer

pressure in phase with the velocity on the top face and bottom face of the plate.
These integrated forces were found to be of the same magnitude but with
opposite signs.

In the diagram it can also be seen that the added mass approaches a constant
value when kR grows to infinity and the potential damping approaches zero. The
asymptotic value of the added mass in infinitely deep water is given simply by
a(n)(kR - ) = —72—[, sece Miles8. Due to the presence of the sea bottom and the

submerged plate, the asymptotic added mass exceeds the infinitely deep water
value.

Furthermore, from the numerical result it appears that a(ij) = aﬁi) and bGi)=
b(lj), respectively. That these relations are valid can be shown with Green’s
theorem by applying it on the surfaces that surround the fluid domain (the wet
surfaces of the buoy, the free surface of the water, the sea floor, and a surface
that joins the free surface and the bottom surface) and the surface of the plated.
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Figure 4a Added mass of the buoy and the plate as a consequence of the
motion of the buoy.

bi1, h2/hi = 0.150
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——O—  p11, h2/M1 = 0.600

: bi2, h2/mi= 0.600
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Figure 4b Potential damping of the buoy and the plate as a consequence of
the motion of the buoy.
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Figure 4c Added mass of the buoy and plate as a consequence of the motion
of the plate.
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Figure 4d Potential damping of the buoy and the plate as a consequence of
the motion of the plate.
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If the plate oscillates close to the buoy or close to the sea floor, the added mass
will grow to infinity as the distances h; and/or hy approach zero. This is also in
agreement with the potential theory (the potential theory, however is simply a
proper model for real conditions as long as h; / 6 > 1 withi =2, 3 and § = the
thickness of Stokes' boundary layer!0).

It should be pointed out that some care must been taken when calculating the
hydrodynamic coefficients for small values of hy and/or h;. As hy and/or hs
approach zero, the eigenvalues f, and ¥, grow to infinity. If we calculate the
coefficients in Eq.(25) we get:

-y Mn{sinh(hl—dl) - sinh(hrel)} n=1
f $1(R,2){cos Pi(z+e;)}dz ~ (49)
h? n>1
“es 2
-d; h n=1
Jﬁ SHOM(R 2y (cos By(zre))dz = 2 (50)
“eq %Z{Sir’;Z;a_l(n—l) + 1} a1
a4 R%/4 +h2/6n=1
f 92 " R2){cos flzredz={ (51)
ha(-1) n>1
€1 (n-1)

If we solve the matrices (37) for small values of hy, the terms B, will approach

- R2/4h2 n=1
B (52)

n
~h2 n>1

and terms of higher order than I can be omitted for small values of hy. If we
substitute this relation into Eq.(41) and calculate the added mass we get:

252 o4 4 4
A0D [hzk _R" R }ﬁysz (53)
= WPLlA Teh, 3K, TR,
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In a similar way we get:

4
412 _ PR (54)
~ 8h,

2
4

@1) _ pR
AT =g

2

(55)

4
L0 _ ™R [ 1y 1 ] (56)
=5 LW,

When either hy or hy approach zero, one gets the same result as in Bergdahl et
al.ll

Where the added mass was estimated by calculating directly the kinetic energy
of the fluid in the narrow space between the bottom of a circular platform and
the sea floor under the assumption of uniform, radial flow. A comparison was
made between the general formulation (Egs. 41 - 44) and the narrow spaced
approximation

(Egs. 53 - 56) for decreasing value of the ratio hy / hy.

Table O
Added mass as a consequence of diminishing hy/h; where
R/hy = 0.2, dy/hy = dofhy = 0.2, N = 30 and kR = 3.19 107

ho/hy a(1 D a(lz) a(22) 3(21) 3R/ 16h2
0.01000 5.3656 -4.5863 -4.2563 5.3499 3.7500
0.00100 39.099 -38.291 -38.291 39.081 37.500
0.00010 376.60 -375.79 -375.79 376.59 375.00
0.00001 3751.6 -3750.8 -3750.8 3751.6 3750.0

The difference between a(ll) and a(lz) when hy / hy = 0.01 is mainly caused by

the contribution from the potential ¢3 to the added mass a(lz). If we separate the
added mass, a(lz), into two parts, one for the upper side and one for the lower
side of the submerged plate we get:
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(12)

dupper side = -5.3292 with hy / hy = 0.01
(12) _ i e
aupper side ~ -3751.6 with hy / hy= 0.00001

. ST ) an, _,.(12)
The calculations indicates that when hy/hy - 0 then |a'™ /| = Iaupper sid e"

5. CONCLUSIONS

This study treats the radiation problem of a two-body system, where one of the
bodies is submerged and the other is floating. The problem is solved by using
the method of eigenfunction expansions. There is reasonable agreement with
existing solutions for a single cylinder. The present solution converges
acceptably when including 30 terms in the eigenfunction expansions (in the
cases tested the relative deviation is less than 0.5% between a solution truncated
at 30 terms and one truncated at 50 terms).

A narrow space analysis is performed. The formulas derived are in agreement
with formulas derived directly from energy relations. ’
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Forces on a wave-energy module

LARRY BERGGREN and LLARS BERGDAHL
Dept. of Hydraulics, Chalmers University of Technology
412 96 Goteborg, Sweden

Mathematical models for the calculation of wave forces added mass and radiation damping
of a wave-energy module are developed in order to assess the energy take-out. The module
consists

If a buoy connected to a submerged plate by a hose pump.

In the models presented the buoy and the submerged plate are idealized as two cylinders of
equal radius.The method presented is founded on matched eigenfunction expansion.
Comparisons with other solutions are presented and the agreement is shown to be
satisfactory. The models developed are computer efficient and will be used in an

optimization procedure for a wave climate.

1 INTRODUCTION

One of the wave-energy conversion devices tested in Sweden is the hose pump concept
developed by Gotaverken Energy [1, 2]. The concept consists of a buoy, riding in the waves,
connected to a submerged plate by an elastomeric hose. The submerged plate is moored to the
sea floor. The elastomeric hose acts as a pump that is driven by the relative heaving motion
between the buoy and the submerged plate. (See Fig 1)

During the passage of a wave crest, the buoy heaves up, stretching the hose. The helical
pattern of steel reinforcing wires in the hose wall causes it to constrict as it is stretched,
thereby reducing its internal volume. This forces seawater out of the hose pump, through a
check valve, and into a collecting line to a turbine. After the wave crest has passed and the
buoy drops down into the succeeding trough, the hose returns to its original length, restoring its
diameter to its unstretched value. This increase in internal volume draws water into the the
hose through another check valve, which is open to the sea.
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Figure 1 OQutline drawing of two Wave-Energy modules.

In this paper a hydrodynamic model for such a wave energy module is presented. In the model
presented the buoy and the submerged plate are idealized as two cylinders of equal radius, the
hose pump as a linear spring and damper in parallel, and the mooring as a weak linear spring.
The ambient fluid is regarded as incompressible, irrotational and nonviscous. For this particular
case, the wave forces and hydrodynamic properties of the device can be solved by the method
of matched eigenfunction expansion.
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2 EQUATIONS OF MOTION OF THE WAVE ENERGY MODULE
With nomenclature according to Fig. 2 the equations of motion of the buoy and the submerged
plate can be written

{mbib + cl(ib‘ip) + kl(zb'zp) + dzy, =Fy )

myZ, + C1(Zp2) + ky(zy-2p) + Koz =Fp

with b = buoy
p = plate
m; = the mass of body i
¢; = the damping coefficient
k; = the spring stiffness for spring i
F; = the forces on body i caused by the incident waves

To solve this problem, we first have to calculate the forces that act upon the two bodies,
Fy, and F,. One way to determine Fy, and F;, is to separate the problem into two parts, a
diffraction problem and a radiation problem. In the diffraction problem, we calculate
the wave exciting forces, 4F, and gF,, with the buoy and the plate kept in a fixed
position. The forces set the buoy and the plate into motion, which results in radiated
waves and reaction forces from the water. The reaction forces are solved in the
radiation problem. When solving the radiation problem, we give the buoy and the plate,
one at the time, a forced harmonic vertical motion and calculate the hydrodynamic
coefficients, i.e. added mass, ali, and potential damping, bi. This means that we will get
two sets of values of added mass and potential damping on each body. When the buoy
is given a forced motion while the plate is kept in a fixed position, a reaction force acts
not only on the buoy but on the plate as well, i.e. we calculate added mass and potential
damping, as a consequence of the motion of the buoy on both the buoy and the plate.
When this is done we make the same calculation again but now the plate is given a
forced motion and the buoy is kept in a fixed position. The force at body j caused by an
oscillation of body i can be written as one part proportional to the acceleration and one
part to the velocity as follows:
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Figure 2 Geometrical properties of the wave energy module
and definition of fluid subdomains.

Fi = -aijz; - biiz

€3
and the total forces that act on the buoy and plate due to the radiation are
(Fy = -(all zy + bl zy + al2 z, + bl2 z) -
Fn= -(a2? Zp + b22 ip + a2l ib + b2l Zb)
and when the wave exciting forces are included we get
b = dFp - (all gb + bll ib + al? ip + bl2 Zp)
. . - . 4
Fr = dFp - (22 z;, + b22 2, + a2l 2y, + b1 z;)



If the forces and the motions varies periodically with the time we get
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Z; ei®
jo Z; eI
-@2Z; ei™t

of; eion

where

j =1, © = angular frequency and t = time

®

The only problems that remain to be solved are the wave exciting forces, the added

mass and the potential damping.

3 CALCULATIONS OF THE WAVE EXCITING FORCES

If the amplitude of the incident wave is denoted 7, then the flow is suitably described by the

velocity potential Re{-j @ 1 ¢(r, z)e'Jwt} where the spatial part of the velocity potential ¢ is

governed by the following boundary-value problem:

2,
oz
% _g
oz
9 _
oz
9% _ g
oz
9% _o
oz

1 Q_ @ ?ﬂ) =0 (everywhere)
ror or
(z = -hy)
(z=-d;,T<R)
(z=-e;,T<R)

(z=-e5, T<R)

©

0

®)

&)

(10
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QQ:() (-dy <z<0,r=R)
or
% _ i (r - o)
or 2r
_aﬁ::(} (-€2<Z<-€1,r=R)
or
3 o
-2 9=0 (z=0,1r22)
oz g
9(6) = ¢(-0)

where k is the wave number. The potential of the incident wave is expressed as

¢ = ¢, ej(kxm)t) _ ighy cosh k(z+hl)e jlkx-ot)
1T 2@ cosh kh;

If x = rcos® we can use a well known expression:

kreosd _ Y & in Jy(krycosno
n=0
Then Eq. (16) becomes:

¢ = %2) g‘%m )Z &, j» I(kr)cosné
n=0

where I, is the Bessel function of the first kind and order n, &, = {

an

(12)

(13)

(14)

(15)

(16)

amn

(18)

In the solution procedure the fluid domain is divided into three sub domains as

indicated in Figure 2. The method of separation of variables is applied in each sub

domain in order to obtain expressions for the unknown function, ie. the velocity

potential. Expressions valid in each sub domain are obtained as infinite series of
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orthogonal functions. These expressions are developed to satisfy all boundary conditions
except at the boundaries joining the sub domains, i.e. at r = R. The next step is to
determine a number of unknown coefficients in the series. This is done by imposing the
condition of continuity of pressure and normal velocity at r = R. Mathematically this is
fulfilled by matching the potentials and the normal derivatives of the potentials
respectively.

The formulation starts from the potentials developed independently in each sub domain.

Applying the method of separation of variables gives the spatial potentials in each sub
domain expressed in terms of orthogonal series. In sub domain 1 the potential is

e Ry(yr)
¢ = Apm COSAp(z-+hy) =pAm_2 (19)
1 E,E?O ¥ RauR)

where the eigenvalues are given by

Ay =-ik  where k is the wave number

k tanh kh, = ’/g m =0 (20 a)

Ay, tan Aghy = -07/g m=1,2. 20 b)
and the radial function R, is given by

Ry (o) = H{Ddidgn) = H D) m=0 21 a)

Rpy(Ant) = Kn(Ant) m=1,2. (21 b)
where H,(,I) is the Hankel function of first kind and n:th order, and K, is the modified
Bessel function of second kind and n:th order.

In sub domains 2 and 3 the potential and corresponding eigenvalues are
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0 = Z Z Brm cos Br(z+e;) 5Pat) cosng P = ma/hy (22)
v e I(BaR)

Pz = 2 Z Cam €08 Yn(z+e1) LGt cosng Y = 07/ (23)
n=0 m=0 B C1aR)

The remaining problem is to determine the unknown coefficients Apy, By and Gy We
now use the three boundary conditions which state, r = R, continuity of pressure and
normal velocity, mathematically:

& + $1a = $a; €1 <z <-dy (24)
¢ + 910 = 934, hy<z<-e (25)
0 "d1<2<0
s +1a) ~ ar d -ey<z<-d;
or |0 -£9<z<-€; (26)
I3
ar -hy<z<-e,

The boundary conditions above are satisfied in a least square sense by multiplying each
side of the boundary condition with a proper set of eigenfunctions and then integrating
over the interval in question. The matching at r = R is achieved by the integrals
following below, with k = 1, 2.. and ¢, = ¢ + ¢14.

Boundary condition 1, Eq. (24), becomes

-dy -dy
f 90(R, 2){cos B(z + ¢,)}dz = f $2(R, 2){c0s B(z+e;)}dz @7

-€1 -€1
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and boundary condition 2, Eq. (25),

=€ ~-€9
f #o(R, z){cos J(z + hy)}dz = f $a(R, z){cos Ji(z+h)}dz (28)
-y -hy

and finally, boundary 3, Eq. (26), becomes

0 a¢o '523¢zd

f — {cos A (z + hy)}dz = f —— {cos Ay(z + hy)}dz +
or or

'hl ~€1

2034
f — {cos A(z + hy)}dz (29)

or

-h,

Next the following integral functions are introduced

Z
E(Gim o hp by 21, 22) = f 08 Oz + h ) €S y(z+h )z 30)
Z
Zy
N iy 1072) = [ (c08 e + ) (31
Zy

where {0, m =1, 2,...} and {1y, k = 1, 2,...} are two different sets of eigenvalues for

Ao B OF Y

In order to find a numerical expression we have to truncate the series (19), (22) and
(23). The eigenvalues Ay, By, and ¥, are truncated at M, and cos n@ at N. This means
that for each truncation term of n we have two different sets eigenvalues, oy, and py.
Now, rewriting the boundary conditions, Eqgs. (27) to (29), introducing the functions
(30) and (31) and organizing all functions in matrices for each n gives

i

X =.F _ (32)

n
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where

2% = (A

X a1 B

B B .nC

T
aMBn1BavrCarConp)

The boundary condition can be rewritten and put into matrices:
for boundary condition 1

nS(m, m) = E(y, Py, hy, €1, dy, €1)
aS(m, M + m) = N(B,, e, -dy, -e1)
nF(m) = Jj(AR)GE(y, By, hy, €1,-d1,-€1)
for boundary condition 2
2SM + m, m) = E(Ap, % h1, hy, -€, -hy)
2SMM + m, 2M + m) = N(¥p, hy, -€9, -hy)
2F(M + m) = J;(AoR)6E(Ar Yo B1, hys-€,on1)
for boundary condition
2SCM + m, m) = 1(A) N(A4y, hy, 0, -hy)
nSCM + m, M + m) = 1(B) E(By, A, €1, hy, -dy, -€1)
2SCM + m, 2M + m) = 1) E(Ym A by, hy, -€3, -hy)

oFCM +m) = 5n(-303n-1(loR)+f% Jn(AR)) E(Ag, Ay, by, €4, dy, €1)

jghy -
5, = wcosh Aghy n=0
. (n+1) hy

——lml n=1,2.

10

(33)

(34a)

(34b)

(34c)

(35a)

(35b)

(35¢)

(36a)

(36b)

(36c)

(36d)

(37
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“A'OHrll—l (AgR) . n

1nA) = H;f(loR) R (38)
'AmKn«l (Z\;ggi) +n
Kn(AR) R

m=1,2,
n(p) = Bupnmp (Pul) . 2 (39)

nep = pr ) 1 & (40)

The unknown coefficients can now be calculated and also finally, the wave exciting forces.
This is done by integrating the the potential over the surface:

aFs = -ipo [ n,yds @1)
S
where S is the surface and n, the normal pointing out from the body:

M
oFp = -jznpwz Bom cos(ﬁmhz>% 1 (BR) (42)

m=0

In a similar way the forces on the plate is calculated :

M
oFp = —jznpwﬁég [ Comcostrihs) R LOGR) - Bon R L(AR) ] (43)

4 CALCULATION OF THE HYDRODYNAMIC COEFFICIENTS
When calculating the added mass and potential damping the solution procedures are very much

alike those presented in the previous chapter, but there are some changes in the boundary

condition, namely:

W1 (z=d;, 1<R) (44)
oz
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9% _g (z=-e1, I<R)
% _ o (z=-¢;, I<R)
.0 (z=d;, 1<R)
9% _ (z=-¢;, r<R)

9¢ = (z=-e9, T<R)

Appendix B

(45)

(46)

(47

(48)

(49)

The equations (44) - (46) concern the case when the buoy is forced into motion and
equations (47) - (49) the case when the plate is forced into motion. Since this problem

is two-dimensional is radially symmetric boundary condition (15) is unnecessary.

Boundary condition (24)-(26) at r=R will also change to:

Pir =, €1 S2<-dy

Gir=3,-hy S22 -6

0
a‘plr g%}_r
Yo

o3,

a’r_"

or

-dy <z <0
-€1 <z <'d1
-€9 <Z <-€4

-hy <z <-¢9

(50)

(D

(52)

due to the fact that there is no any incident wave. The F vector will instead be replaced

by the particular solution we get when solving the inhomogeneous part of the boundary
conditions (44) and (48), (49) respectively. The procedure is more elaborately described
in [3]. After calculating the unknown coefficients in the same way as above we can

calculate the hydrodynamic coefficients as

12
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all-}-il?_l,i-—*Zn' [M.;. MB ('l)mRII(BmR)] (53)
w p 4h2 Z m [ijo(ﬁmR)
ms=
ib12 - CD®RI; (%R) » RI;(BR) . RY
at2 + = = 2mp| OCm 7 ALY 'Bmﬁ'ﬂﬁ%o 2 15w 4
m:
ib21 Y (D®R I, (BR), R*
2+ B = 2w 3 B R 16h] 53)
m=0 2
22 M m B
ib22 _ CD™RI, (3%R) » RI(BR)
a”+-a->—~2np[200m L ) B TR B+
n=
2 2 2
R R® R
hy+hg-— - =) (56)
st 4h3]

5 RESULTS

When validating the program a comparison is made between the present solution and two
different solutions of a single buoy. One of the solutions of the single buoy is based on a
similar approach as in this paper [4]. The second one is based on a sink-source solution,
Wadif,[5]. In the comparison the water depth is h; = 100m, the draught of the buoy d; = 25m,
and the radius R = 50m. In the comparison the submerged plate in the present solution was
kept close to the sea-bottom in order not to influence the diffraction force, the added mass and
the potential damping of the buoy. The comparison is shown in figure 3a-d. The values given
in the figures are non-dimensionalized, the diffraction force by the buoyancy force, the added
mass by the mass of half a sphere of radius R and the radiation damping by this half sphere
times the angular frequency o.

The maximum relative deviation, for the diffraction force is less than 5.5% for the amplitude
and 3.3% for the phase angles. In the radiation case, the maximum relative deviation for added
mass is less than 4.5% (kR = 3.2) and a comparison between the present method and a single
body gives a deviation less than 1.5%. The agreement is even better when comparing the
potential damping, except when the comparison is made between the present solution and

13
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Wadif for kR = 3.2 wich gives a relative deviation of 14%. The absolute deviation, however, is

small.

One can also see in figure 3a that the 4F, is approaching 1, as expected, when the angular
frequency is approaching zero ie. the force will be equal to the buoyancy force. It is also
evident that the force on the plate is approaching zero, as it should, when the angular

frequency is approaching zero.

1,0
0,9
0] \ ———= Present Methed, Force on the buoy
! —¢——  Present Method, Force on.the plate
8ingle Cylinder, Force on the Buoy
0.7 I\ ° Wadif, Force on the Buoy
0.6 \
0,5 \
0,4 B\
0,3 A
0,2 \
0,1
bl
T
0,0 " R ——
0,0 05 1,0 15 2,0 25 8,0 35 4,0 45 5.0
kR
Figure 3a Amplitudes of the wave exciting forces for the buoy and

submerged plate (hy = 110.0, d; = 25.0, R = 50.0, h, = 100.0,
ds = 0.0 ). Comparison with the solution of a single floating cylinder.
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Figure 3b

Figure 3¢
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270

Aﬁesem Method
225 ° Single Cylinder
8 wadif

/|
-

45 P},
]

00 05 10 15 20 25 30 35 40 45 5,0
kR

Phase angles (deg) of the wave exciting forces for the buoy and the
submerged plate (hy = 110.0, d; = 25.0, R = 50.0, hy = 100.0, d;y = 0.0).
Comparison with the solution of a single floating cylinder.

2,0
1,8
Present Method
1,6 ® Single Cylinder
a Wadit
1,4 \
1.2 \
1.0 \
sl .
\W,_s//
0.6 :

H .
60 05 t0 15 20 25 30 35 40 45 50
kR

Coefficients of added mass for the buoy associated with vertical
motion (h; = 100.0, d; = 25.0, R = 50.0, hy = 74.0, d; = 0.0 and N=50).
Comparison with the solution of a single floating cylinder.
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Figure 3d
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050 Present Method
' \ o Single Cylinder
045 4\ s wadif

0,20 !\\3

0,15

0,10 \\

0,05 &.\‘\k

c0 05 10 15 2,0 25 30 35 40 45 5.0
KR

Coefficients of potential damping for the buoy associated with
vertical motion (hy = 100.0, d; = 25.0, R = 50.0, hy = 74.0, d3 = 0.0 and
N = 50). Comparison with the solution of a single floating cylinder.
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