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SUMMARY

This study deals with transient motions of large-volume floating
structures. If the structure/fluid system is regarded as linear,
equations valid for transient motions can be obtained making use
of frequency dependent hydrodynamic properties.

The theory associated with frequency-domain solutions is reviewed
briefly and is subsequently applied to a vertical cylinder float-
ing in water of finite depth. An analytical solution proposed by
Yeung (1981) is used to solve the radiation problem, i.e. when
the structure is moving in the absence of incident waves. Solving
the radiation problem gives the added mass coefficients and the
potential damping coefficients. The analytical solution has been
extended to include determination of amplitudes and phases of the
wave-exciting forces.

Relations between the frequency domain and the time domain are
reviewed. The frequency dependent hydrodynamic coefficients asso-
ciated with the vertical cylinder are transformed to correspond-
ing time dependent functions using Fourier transforms.

The equations of motion obtained are formulated numerically, and
the solving procedure has been implemented on a computer. A time
simulation of the motions of the cylinder is performed. In the
simulation the cylinder is tethered with pre-tensioned steel
tendons and exposed to irregular waves.
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PREFACE

During the 1970s, a project concerning wave energy utilization
was performed at the Department of Hydraulics at Chalmers Univer-
sity of Technology. Part of the project concerned calculations of
structure/fluid interaction.

When the North Sea offshore oilfields began to be exploited a new
demand for hydredynamic models for structure/fluid interaction
arose. It was natural for the Dept. of Hydraulics to participate
in the development of such models. A cooperation project, "“0ff-
shore Structures - Wave Forces and Motions", between the industry
and the Universities of Technology in Gothenburg and Stockholm
was initiated. The project has been sponsored by the National
Swedish Board of Technical Development (STU).

This thesis 1is the result of a part of the project concerning
motions of large-volume floating structures subjected to arbit-
rarily time-varying external forces. The work which has been
carried out at the Dept. of Hydraulics is submitted in partial
fulfillment of the requirements for the degree of Licentiate of
Engineering.

I wish to express my thanks to Dr. Lars Bergdahl, my tutor, who
has supported me throughout all phases of the study, Mrs. Ann-
Marie Hellgren who patiently typed the manuscript, Mrs. Alicja
Janiszewska who draw the figures and my colleagues at the Dept.
of Hydraulics among whom it has been stimulating to work.

Goteborg, December 1986

Mickey Johansson
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1 INTRODUCTION

1.1 Motions of Targe-volume floating structures

The choice of methods for calculation of the motions of marine
structures are greatly affected by the type of structure one in-
tends to analyse. For slender structures, or structures with
slender members, wave forces are ususally calculated considering
the incident wave to be unaffected by the presence of the struc-
ture. On the other hand, if the structure is large in volume the
presence of the structure will disturb the incident wave, and it -
is then more appropriate to use a diffraction theory which takes
these effects into account. In the present report the interest is
focused on motions of large-volume structures.

The methods are also affected by the type of loading considered.
For example, if the structure is exposed to the force due to a
regular wave and the structure is either free floating or at-
tached to a linear mooring system, then, if a Tinear diffraction
theory is used, the equation of motion simply becomes a linear
differential equation with constant coefficients. However, the
equation is only a frequency domain description since the coef-
ficients of the equation are dependent on the frequency of the
motion.

For some types of loading a frequency domain description is a
poor reflection of the nature of the structure/fluid interaction.
Consider for a moment a stone which is thrown into calm water.
The stone will generate disturbances at the surface. The disturb-
ances will gradually decrease in magnitude and eventually dis-
appear. Obviously, the disturbances will remain a Tong time after
the stone has left the water surface. In the same way, for load-
ing cases when the motions become transient, it might be of im-
portance to include what has happened to the structure/fluid sys-
tem in the past, i.e. to include the time history of the system.
In the field of hydrodynamics, such equations of motion valid for
transient motions, was first developed by Cummins (1962).

An important disadvantage of time-domain models compared to fre-
quency domain models is that they are far more time consuming



2

when run in a computer. But the costs for computer resources have
decreased and time-domain models have become more readily avail-
able, so they are thus more realistic tools in hydrodynamic
analysis.

The equations of motion as they were formulated by Cummins have
been used in various applications. Van Oortmerssen (1976) studied
the behaViour of a moored ship subjected to long-crested waves.
The mooring system was allowed to be non-linear and asymmetrical
and effects from a quay could be considered. Greenhow (1982)
analysed wave-energy devices with non-linear power take-off mech-
anisms. Sawaragi et al (1984) applied the same technique in order
to search for improvements of mooring systems for ships subjected
to storm waves. Mynett et al (1984) studied the behaviour of
moored vessels inside a harbour configuration.

Other areas in which it might be of interest to apply Cummins
equations are offshore structures with significantly non-linear
mooring systems, analysis of cable failure in a mooring system,
and analysis of the effects of collisions between, for example,
icebergs and offshore structures.

The reference list of application areas is not intended to be
complete.

1.2 Scope of the work

This work deals with the development of the equations of motion
for a floating rigid structure. The interest is focused on the
time-domain description first introduced by Cummins. In this
technique the properties of the frequency-domain description are
transformed and used in the time-domain. Consequently, the fre-
quency-domain description is also of dinterest and is treated
here. In Chapter 2 a short introduction to wave-loading and the
dynamics of large-volume structures is given. The matrix form of
the equation of motion in the frequency-domain is developed in
Chapter 3. The relations between the frequency-domain and two
mathematically different but physically equivalent time-domain
descriptions are reviewed in Chapter 4.



3

The objective of this study is to establish and to solve necess-
ary equations, but not to be complete in terms of loading. Hope-
fully, this will provide the basis for further studies as well as
an idea of difficulties associated with numerical -solutions in
the time-domain.

In Chapter 5 the theory has been applied to a vertical cylinder
floating in water of finite depth. In order to achieve stiffness
also for motions in the water plane, the cylinder is tethered
with pre-tensioned wire ropes. The formulation of the wave load-
ing includes regular and irregular waves but not slowly varying
drift forces.
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2 LOADING OF LARGE-VOLUME FLOATING STRUCTURES

Marine structures are subjected to large dynamic forces from the
environment. If the structures are free to move, the motions
caused by the forces must remain limited. When analysing the
motions of such structures use is made of Newton's second law,
which for a system with a single degree of freedom (SDOF) is

written:
mx(t) = f(t) (2.1)
where
x(t) = motion of the center of gravity of the structure
m = mass of the structure
f(t) = external force acting at the center of gravity.

Generally the external force contains contributions from environ-
mental forces due to waves, wind and current and from static and
dynamic reaction forces from the surrounding fluid. The mooring
system and, in polar regions, floating ice can also cause sig-
nificant loads.

Wave forces on marine structures are traditionally calculated
using one of two different methods. One of the methods, the Mori-
son method, considers the force to be composed of the linear sum
of a drag force and an inertia force. The drag force is formu-
lated as if the structure were subjected to a uniform steady flow
and is associated with flow separation. The inertia force is for-
mulated as if the structure were subjected to a uniformly accel-
erated potential flow. Thus, for a fixed structure the Morison
equation becomes

f(t) = phufulCy + pvacI (2.2)

where A is the projected area of the structure, u is the fluid
velocity and ¥ the displaced volume. Since for wave motions the
flow is both unsteady and nonuniform, empirical evaluation of the
drag coefficient, CD, and the inertia coefficient, CI, are re-
quired in order to use the Morison equation. Using a Morison ap-
proach for a floating structure changes the formulation of the
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force slightly since relative velocity and relative acceleration
ought to be used. Therefore, the equation of motion of a floating

structure becomes
mt = 3oA(u-x) Ju-x|Cy + p¥u + C_p¥(u-X) (2.3)

where the so called added mass coefficient Cm is given by
CI=1+Cm.

In the Morison approach velocities and accelerations of the inci-
dent wave are used. However, if the ratio structure dimension to
wave length increases, the incoming wave will be significantly
affected by the presence of the structure and the incoming wave
will be diffracted. Hence, for Tlarge-volume structures methods
that take these effects into account must be used. For such
structures flow separation is usually unimportant and the viscous
effects are located to the boundary layer adjacent to the struc-
ture. Consequently, the flow field can be determined independent-
1y of viscous effects and the wave forces can be calculated using
a theoretical approach assuming potential flow and introducing
boundary conditions associated with the presence of the struc-
ture. Usually viscous effects located to the boundary layer are
negligible. However, for certain situations these effects may be
of importance. One such situation occurs if the shape of the
structure is such that inertial forces become small. For example
the yaw moment of a structure with axisymmetry about the vertical
axis is entirely a consequence of shear forces. Another situation
occurs when a restrained structure reaches resonance. Then even a
small amount of viscous damping has significant effects.

In order to discuss different regimes when diffraction and other
effects become important, a dimensional analysis is performed.
Following Sarpkaya and Isaacson (1981) a time-invariant force F
on a fixed structure may be expressed in the form

F
pgHD

_c(h oD
2 - f ( L? L?® Ls Re) (2-4)

where H is the wave height, D a characteristic dimension of the
structure, h the water depth, L the wave length and Re a charac-
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teristic Reynolds number. The depth parameter h/L and the wave
steepness parameter H/L both characterize the incident wave. If
the steepness is assumed to be small, i.e. H<SL, a linear formu-
lation can be made such that the force becomes linearly dependent
on the wave height. Consequently, assuming H<<L the steepness
parameter may be omitted. Diffraction becomes important with an
increasing diffraction parameter D/L. For values D/L>0.2 diffrac-
tion should be taken into account. Since, in the diffraction re-
gion the flow separation effects become of Tess importance the
Reynolds number may be omitted. Thus, for the linear diffraction
problem one obtains

Eo=g(h D (2.5)
pgHD

or alternatively
e o-r (2 D (2.6)
pgHD

and consequently for a given structure at a given water depth the
force parameter only varies with the diffraction parameter D/L.

In the flow separation region other physical phenomena occur. The
Reynolds number may no longer be neglected and if diffraction is
negligible the diffraction parameter no longer has any physical
significance. Instead, in Eq. (2.4), it is preferable to use the

Keulegan-Carpenter number defined by K=iT/D where @i is the veloc-
ity amplitude of the flow and T the period of the flow.

In order to get an idea of when diffraction, flow separation and
nonlinear effects become important Isaacson studied a fixed ver-
tical cyVinder. He- presented a diagram, Figure 2.1, in terms of
the Keulegan-Carpenter number and the diffraction parameter. It
is seen that diffraction becomes increasingly important for in-
creasing D/L and flow separation increasingly important for in-
creasing K. For small vﬁlues of both D/L and K the force becomes
inertia dominated and for steep waves nonlinear effects become
important.
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Figure 2.1 Wave force regimes for a vertical cylinder accord-
ing to Isaacson. From Sarpkaya and Isaacson (1981).

In this work the formulation of the wave loading is based on the
linear diffraction theory. In Chapter 3 a general formulation of
the theory will be made and in Chapter 5 an analytical solution
for a vertical cylinder in finite depth water is formulated. How-
ever, in order to make a qualitative discussion we may, at pre-
sent, write the equation of motion in a schematic way analogous
to a mechanical oscillator. Hence,

(m+a(w))R(t) + blw)x(t) + cx(t) = Re {Fe'®Y}  (2.7)

where a(w) is the added mass coefficient, b(w) the potential
damping coefficient, ¢ a buoyancy coefficient and F the complex
amplitude of the wave exciting force.

However, Eq. (2.7) has to be treated with some caution. The equa-
tion is valid only if the structure oscillates sinusoidally in
time with a given frequency, w. This is a consequence of the fre-
quency dependence of the hydrodynamic coefficients.
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Figure 2.2 Example of frequency dependence of the hydrodynamic
coefficients a(w) and b(w). The graphs are valid
for a semi-immersed sphere with radius r heaving in
deep water. From Havelock (1955).

If linear diffraction theory is used for an unrestrained struc-
ture subjected to regular waves, the wave exciting force as well
as the motion become sinusoidal. Therefore it is appropriate to
use Eq. (2.7). However, if any nonlinear force is included in the
right hand side the motions do not become sinusoidal and strictly
speaking Eq. (2.7) is no longer valid. The non-linear force may
be a reaction force due to a non-linear mooring system.

If one wishes to solve the equation of motion for an arbitrarily
time varying force a convolution integral has to be used. One
approach is to use the impulse response function technique. This
technique states that, if for any linear system, the response
r(t) to a unit impulse is known, then the response of the system
to an arbitrarily time varying force f(t) is

x(t) =.Str(t-1) f(1)d (2.8)
or if f(t) = 0 for <0

x(t) =offr(t-1) f(r)d (2.9)

The idea of this convolution integral might be clearer if it is
considered as a continuous summation of impulse responses, Figure
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2.3. If the system is subjected to a unit impulse (Figure 2.3a)
and the response r(t) (Figure 2.3b) to this impulse is known then
an arbitrary force f(t) (Figure 2.3c) may be considered a sum of
impulses f(t)dt and thus the response x(t) (Figure 2.3d) as a sum
of corresponding impulse responses.

E xcitation Response
r{t)
6(t)
Excitation Response
flt) x(t)
flt)p-
/\ t 1/‘\\ . = t

R VAR S

Figure 2.3 ITTustration of the impulse response function tech-
nique.

As mentioned, Eq. (2.7) requires the system to be linear. This is
not always true for a moored structure. However, if linear dif-
fraction theory is used to calculate the hydrodynamic properties
of the structure itself then the fluid/structure system can be
regarded as linear. Non-linearities such as reaction forces from
the mooring system can be excluded from the system and be thought
of as external forces acting on the structure and can be included
in f(t).

An alternative approach is to use the equations of motion in the
time domain as they were developed by Cummins (1962). This formu-
lation is more specifically developed for floating structures and
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makes more efficient use of the relations that exist between the
hydrodynamic coefficients. The equation of motion according to
Cummins becomes

(m+a) %(t) +_[*(x) % (t-1) de + ex(t) = F(t) (2.10)

where it is noted that a, is not frequency dependent but a con-
stant. The time dependent function k(t) is referred to as the
retardation function.

These two approaches are further discussed in Chapter 4 where the
way in which the impulse response function r(t) and the retarda-
tion function k(t) are related to the hydrodynamic coefficients
a(w) and b(w) is outlined.
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3 FREQUENCY DOMAIN

A condition for the time domain analysis presented in the report
is that the structure/fluid system can be regarded as linear. For
such a system relations exist between the frequency domain and
the time domain. The hydrodynamic properties in the frequency
domain, represented by coefficients a(w) and b(w), can be trans-
formed to corresponding properties in the time domain by means of
Fourier transforms. Since the transforms are infinite integrals
over the frequency, a(w) and b(w) must, in principle, be known
for all frequencies. Moreover, if the structure is to be exposed
to irregular sea the wave-exciting force Ee(m) must also be known
in the frequency range corresponding to the sea state. In the
present chapter the structure/fluid problem is formulated in the
frequency domain, for the purpose of giving explicit expressions
of the frequency dependent functions a(w), b(w) and fe(w). Such a
formulation is made according to potential theory and is de-
veloped in a second order partial differential equation, the La-
place equation, which, together with appropriate boundary condi-
tions, gives the primary problem.

Unfortunately it is only possible to solve the Laplace eguation
analytically if the boundary conditions are sufficiently simple.
For floating structures there are analytical solutions only for a
few structures with simple geometries, such as spheres and cylin-
ders. These solutions are usually based on a series expansion in
some system of eigen functions. However, realistic floating
structures usually have more complex geometries and must there-
fore be analysed using numerical techniques.

The most commonly used techniques seem to be the sink-source and
the hybrid element techniques. The sink-source technique includes
the formulation of Green's function and has extensively been
studied, for example by Garrison (1974), Faltinsen and Michelsen
(1975) and Eatock Taylor and Waite (1978). For floating struc-
tures the fluid domain is usually large and a pure finite element
formulation requires an extremely large mesh. In a hybrid element
method the fluid domain in a region close to the structure forms
a mesh, and at the boundaries of this region analytical solutions
are applied. Such methods have been studied, for example by Chen

and Mei (1974), Bai and Yeung (1974) and Mei (1978).
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3.1 Fundamentals

To justify use of a linear diffraction theory, both small struc-
tural motions and small wave amplitudes are assumed. The fluid is
assumed to be ideal (non-viscous) and the flow to be irrota-
tional. The assumption that the flow can be considered irrota-
tional is important to the formulation of the problem. Generally,
the flow is described by the velocity vector, but when the flow
is irrotational it can be described by a single scalar, the vel-
ocity potential @(x,y,z,t). The space coordinates x, y and z re-
fer to a Cartesian coordinate system.

For dirrotational flow, also called potential flow, a velocity
potential exists such that

y = ve (3.1)
where the velocity vector 4 is given by

Y= up v
and the operator, v, by

A S
+ 45+ 9
x + 7 3y 57 &

where i, J and § are units vectors along the x, y and z axis
respectively.

If the fluid is assumed to be incompressible the continuity equa-
tion may be written

V-_\i = O (3.2)

and if Eq. (3.1) is substituted into Eq. (3.2) one obtains
V29 = 0 (3.3)

Eq. (3.3) is the well-known Laplace equation, which expresses
conservation of fluid mass for potential flow. The primary prob-
lem is to solve the Laplace equation with appropriate boundary
conditions.
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1f we proceed from the Navier-Stokes equation for a viscous fluid
the Bernoulli equation for irrotational flow can be derived. Ex-
pressed in terms of the velocity potential it becomes

Ll

&£ VoV J L.

5t t 3 Ve +gz + 8 0 (3.4)

and gives the pressure throughout the fluid domain. Since we are
interested in a linear solution the second term is neglected.

Then the Bernoulli equation becomes

99
P = -p 37 -PUZ (3.5)

where the first term represents the hydrodynamic pressure and the
second term the hydrostatic pressure. For a review of the poten-
tial theory and a derivation of the Bernoulli equation see a
textbook in hydraulics such as Daily and Harleman (1973).

From the Bernoulli equation the pressure distribution is known
throughout the fluid, and by integrating the pressure over the
wet surface of the structure, forces and moments are obtained.
Expressed in terms of a generalised force vector one can write

£=£fpﬂd5 (3.6)

where F is the generalised force vector containing both forces
and moments and n is the generalised normal vector defined by

ny = cos (ns 1)

n, = cos (0, J)

ng = cos (n, k)

ng = (y - ygng - (z - z)n, (3.7)
ng = (z - zm)n1 - (x - xm)n3

ng = (x = x.Iny = (y - y Iy

where cos (p, j) means the cosine for the angle from the x-axis
to the normal p, and (x,y,z)m is the point about which the mo-

ments are calculated. The normal p is assumed to be positive in

5

the direction towards the structure.
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The structure is assumed to be rigid, and therefore any motion of
the structure can be described by motions in six modes, i.e.
three translations and three rotations. A Cartesian coordinate
system Oxyz is defined with its origin in the free mean water
surface and its z-axis positive upwards and oriented through the
center of gravity. The vector of motion is denoted by x and con-
tains the following elements:

Xq = translation in the x-direction = surge motion
Xy = translation in the y-direction = sway motion
Xq = translation in the z-direction = heave motion
X4 = rotation about the x-axis = roll motion
Xp = rotation about the y-axis = pitch motion
Xg = rotation about the z-axis = yaw motion

z

Figure 3.1 Definition of coordinate system and modes of motion.

Let us consider a regular wave propagating in a direction towards
the structure. The incoming wave will be diffracted by the struc-
ture and will give rise to a scattered wave. In the linear theory
the incoming wave and the scattered wave are superimposed lin-
early. Together they cause a change in the dynamic pressure
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which, integrated over the wet surface of the structure, gives
the wave-exciting force fe(w). Consistent with the linear theory,
the force is calculated when the floating structure is fixed in
its equilibrium position. The problem associated with the wave
exciting force is referred to as the diffraction problem. The
wave-exciting force (or any other sinusoidal force) will force
the structure to oscillate. The oscillation creates a radiated
wave, and consequently energy is lost from the system. This in-
fluence on the system is accounted for by the hydrodynamic reac-
tion force fh(m) which is determined when the structure is forced
to oscillate in the absence of an incoming wave. The latter prob-
lem is referred to as the radiation problem. Thus, the total wave
pattern is described by three physically and mathematically dis-
tinguishable waves, i.e. the incoming, scattered and radiated
waves.

3.2 The free surface boundary condition

The free surface boundary condition is specific in as much as it
causes difficulties associated with the solving procedure when
its exact form is applied. The conventional way of treating the
problem is to linearise the boundary condition and subsequently
account for second order effects using an approximate method.

The linearised free surface boundary condition is formulated be-
low. The condition is built up of two requirements, i.e. the
derivative of the surface position must equal the velocity of the
corresponding fluid particle (kinematic condition) and the press-
ure at the free surface has to be atmospheric (dynamic condi-
tion). Following Newman (1977), the exact kinematic condition is
fulfilled if the substantial derivative of the quantity z-t van-
ishes at the free surface z=t(x,y,t). Consequently,

—————— 0 (3.8)

The exact dynamic condition is given by the Bernoulli Eq. (3.4)
which, if the atmospheric pressure is adopted as a reference
pressure, becomes
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«g-% + 1 Veevd + gz =0 (3.9)

Substituting ¢ for z into Eq. (3.9) gives the associated free-
surface elevation in terms of the velocity potential,

g=-~é(g—j§+%v¢>-v¢) (3.10)

Eq. (3.8) and (3.9) are the exact form of the boundary condition
and are seen to contain higher order terms. In the linear theory
these terms are neglected and moreover the boundary condition is
applied to z=0 instead of to the exact free surface z=r. That
this Tlatter approximation 1is consistent with the linearisation
can be seen by expanding Eq. (3.8) and Eq. (3.10) as Taylor
series about z=0 and then neglecting higher order terms. Thus,
the linear form of the equations become

®
‘;—@: %E (3.11)
and
_ 1 20
L= - B3 (3.12)

respectively. Finally, if the linear free-surface elevation is
differentiated with respect to time and substituted into the
kinematic condition, a single combined free-surface boundary
condition is obtained,

2
3" % L =
—5*tg45; =0 at z=0 (3.13)
at
3.3 The hydrodynamic reaction force

As mentioned in Section 3.1 the hydrodynamic reaction force is
determined when the structure is forced to oscillate in the ab-
sence of an incoming wave. Since the radiated wave is a conse-
guence of the motion of the structure, the velocity potential of
the radiated wave is suitably divided into components on the
basis of the modes of motion. Consequently, in the general case
with motions in six modes, the velocity potential is
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9, (3.14)

where index j refers to the mode of motion considered. Further-

more, since the velocity varies harmonically with time it is con-

venient to separate the time and space dependence according to
b, = X. ¢, (3.15)

and if the motion of the structure is given by

Re (Rj eiwt} (3.16)

>
i

then

¢,
J

Re {iw % ¢, eloty (3.17)

By substituting Eq. (3.17) into the Bernoulli Eq. (3.5) and sub-
sequently integrating the dynamic pressure over the surface of
the structure, below the still water level, the force in mode i
due to motion in mode j becomes

_ 2. iwt
Fl,ij = Re tu'8; e gj pé; ny dS) (3.18)

Conventionally, this force is written as one component in phase
with the acceleration and one component in phase with the veloc-
ity. The velocity and the acceleration may be written

ty

e
i

Re (it efoty o i (o8, ety (3.19)

and

Re {—mzij et o Ly Re (0t ety (3.20)

i

X
J

respectively. If Eqs. (3.19) and (3.20) are substitued into Eq.
(3.18), the hydrodynamic reaction force becomes

o= - X, 4+ X, N, .
Fh,13 Re {(xJ 1wa) éf pé 4N ds? (3.21)
or alternatively
F = - a, X - byaXs (3.22)

h,id 137 VAN
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if we define the added mass and damping coefficients, a5 and bij
as, respectively

ajg ~ Re {p é[ ¢5 ds} (3.23)

bij = Im {-wp gf ¢j n; ds} (3.24)

In fact the hydrodynamic coefficients in Egs. (3.23) and (3.24)
ij=aij(w) and bij=bij(m)‘
This is important and implies that the corresponding equations of
motion are only frequency domain descriptions. Moreover, the
and bij are related. If the damping

are functions of the frequency, i.e. a

hydrodynamic coefficients aij
coefficient is known for all frequencies the added mass coef-
ficient (minus its value at the infinite frequency) can be deter-
mined for all frequencies, and vice versa, by an integral trans-
form. These relations are called the Kramers-Kronig relations and
were first pointed out in this context by Kotik & Mangulis

(1962). The relations are as follows

3j3 (0) - ayy () - PVo/ by;(a) ~§99——§ (3.25)
byj (w) = - % wzpvof (a5(e) - a;5(=)) ;79%—;7 (3.26)

where PV means the Cauchy principal value of the integral. Kotik
& Lurye (1964) have also shown that

ol (a;;(w) - a;5(=) Jdw =0 (3.27)

These relations can sometimes be useful for simplifying the cal-
culations or as controls for obtained results.

Now, Tet us return to the velocity potential of the radiated wave
and express the boundary conditions it has to satisfy.

The linearised free surface boundary condition (3.13), discussed
in Section 3.2, can be expressed in terms of the space dependent
velocity potential. Thus
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L
57 T g ¢j =0 on z=0 (3.28)

Moreover, the sea bottom is usually assumed to be horizontal and
impermeable. Therefore,

‘ @
=

(3
1

(]

(3.29)

Q2
N

has to be satisfied for z=-d where d is the water depth. On the
structure's wet surface the normal velocity of the structure must
equal the normal velocity of the corresponding fluid particle.
Expressed in terms of the space-dependent velocity potential this
condition becomes

— = fun, (3.30)

Finally, to give the problem a unique solution, the Sommerfeldt
radiation condition must be applied. This condition states that
the waves at an infinite distance from the structure behave 1ike
restricted outwards propagating waves. Mathematically, this is
fulfilled if

3. 2
5?1 = (- 3r + 126) 4 when e (3.31)

To determine the velocity potential of the radiated wave for real
offshore structures, these boundary conditions imply that a nu-
merical method, such as the sink-source method must be used.

3.4 The wave exciting force

Assume a regular incoming wave with frequency w. According to the
discussion in Section 3.1 the wave-exciting force is determined
when the floating structure is fixed in its equilibrium position.
The velocity potential of the incoming wave and the velocity po-
tential of the scattered wave are linearly superimposed and con-
sequently
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2(,y,2,t) = op(x,y,2,t) + o(x,y,2,1) (3.32)

Since the velocity of the fluid varies harmonically with time,
the space and time dependence can be separated. Using complex
notation the velocity potentials can be written

‘Dl(x,y,zst) = Re{cbl(x,y,z) eluty (3.33)
and
®S(x,y,z,t) = Re{¢s(x,y,z) eimt} (3.34)

respectively. The wave exciting force is obtained by substituting
the velocity potential Eq. (3.32) into the Bernoulli Eq. (3.5)
and subsequently integrating the dynamic pressure over the wet
surface of the structure. Thus

Fo = Re (=iw [[ » (oy+4) n e'as) (3.35)

where the velocity potential of the incoming wave is easy to
determine and can, in principle, be considered as known. However,
the velocity potential of the scattered wave has to satisfy more
complicated boundary conditions. In analogy with the radiated
wave, the free surface boundary condition, the sea bottom condi-
tion and the Sommerfeldt radiation condition have to be sat-
isfied. Moreover, there is no flow across the surface of the
structure and this implies that the boundary condition

3 T
S _ I
== - (3.36)

has to be applied to the wet surface of the structure.

Although @S and QR represent different physical phenomena their
mathematical formulations are seen to be gquite similar. In fact
it can be shown that there are relations between the wave ex-
citing force and the velocity potential of the radiated wave.
These relations are known as Haskind's relations. Haskind derived
expressions for the wave exciting force on a fixed structure
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which do not require knowledge of the scattered wave, but depend
instead on the velocity potential of the radiated wave.

Haskind's relation 1is simply an application of Green's theorem
which states that if a volume Y is bounded by a closed surface )
and two potentials ¢1 and ¢2 satisfy Laplace's equation within
the volume then

3¢2 3¢1
éf (07 7= = ¢y 5) dg = 0 (3.37)

Substituting the boundary condition Eq. (3.30) into Eq. (3.35) it
follows that the wave exciting force can be written as

3¢, .
- 1 it
Fei = Re {-p éf (¢I + ¢S) 5;-.ds e } (3.38)

where the integration is made over the wet surface of the struc-
ture S. For reasons that will become clear further on we would
1ike to apply Green's theorem to the potential o5 and ¢ But, as
mentioned above, the surface must be closed, and this is not ful-
filled by S. Therefore Green's theorem must be applied not only
for the wet surface of the structure S but for a surface also
including the free surface, the bottom and a control surface at
infinity. Fortunately, ¢g satisfies the same boundary condition
as ¢j at these surfaces. Consequently, the integrals over the
free surface, the bottom and the control surface vanish, and
Green's theorem thus gives

A0g 39
é[ (0; 57~ - 9 37 ) dS = 0, i=1,2,....,6  (3.39)

Substituting this relation in Eq. (3.38) gives

Bd)s

36, .
t
Foi = Re {-psff (0 5=+ ¢ 57— ) dS e'“")  (3.40)
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Finally if the boundary condition, Eq. (3.36), is used the wave
exciting force can be written as

Y) 36, .
Fei = Re (o [f (05 550 - op 5 ) ds e®hy  (3.41)

ei n
This result is a form of Haskind's relation which, as mentioned
above, expresses the wave exciting force without making use of
the potential of the scattered wave.

Newman (1962) has further developed this idea and evaluated the
wave exciting force on a control surface at infinity. Since the
damping coefficients can be found from energy radiation at infin-
ity Newman succeeded in deriving relations between the principal
damping coefficients and the wave exciting force. Newman obtained

2 2
by;(w) = Dyf " IFy; (w,8)]ds (3.42)
where ~9
D = k/(z Bﬂngg) (3.43a)
_ kd w
Voo G * sk ) % (3.43b)

and Fe(w,B) denotes the wave exciting force for waves at an angle
of incidence B.

The discussion below follows the reasoning of Newman (1962). Eq.
(3.42) can be used to calculate the damping coefficient if the
wave exciting force is known for all angles of incidence in the
interval (0,2n). However, it is more 1ikely that one would be
interested in obtaining the wave exciting force when the damping
coefficients are known. In general this is not possible since
Fe(w,B) is a function of the angle of wave incidence, with the
exception of structures with a vertical axis of symmetry. For
such structures the heave exciting force is independent of the
angle of incidence and in the remaining modes the forces depend
Tinearly on cos B8 or sin g, e.g. in surge the wave exciting force
is given by

Fel(m,e) = Fel(m,e=0) cos B (3.44)
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Therefore, when evaluating the integral in Eq. (3.42) for struc-
tures with a vertical axis of symmetry, one finds

byy(w) = m|Fy; (w,8=0) | (3.45a)
by (6) = by (w) (3.45b)
byg(w) = 20D|F 4 (w,6=0) |° (3.45¢)
bgg(w) = byg (v) (3.45d)
bgs(w) = mD|F g (w,6=0) | (3.45¢)
b66(w) =0 (3.45F)

Consequently for bodies with a vertical axis of symmetry, the
principal damping coefficients can be found from the wave ex-
citing forces and vice versa. However, it is important to bear in
mind that information about the phases is lost in this kind of
consideration.

3.5 The equations of motion

In the present section the equations of motion are established.
Written in matrix form in the frequency domain they become

( () x+gx=F (3.46)

+a (w) X+ e

u=3
o

The matrices should be regarded as generalized. For example, X
includes both translations and rotations, F both forces and
moments and m both masses, moments of masses and moments of
inertia.

The elements in the added mass matrix and the damping matrix have
already been discussed and are defined by Egs. (3.23) and (3.24)
respectively. In Section 3.5.1 a 1linear transform between an
earth fixed system Oxyz, already defined in Section 3.1, and a
structure fixed system Oxyz is established. Subsequently, in Sec-
tion 3.5.2 the elements of the mass matrix are developed and in
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Section 3.5.3 the elements of the stiffness matrix are developed.
In order to obtain a linear stiffness matrix the linear transform
is used.

3.5.1 Coordinate system

When studying motions of floating rigid structures the geometri-
cal configuration is most easily described in a structure-fixed
coordinate system, whereas the motion of the fluid is most easily
described in an earth-fixed system. When the hydrodynamic reac-
tion force and the wave-exciting force were formulated, use was
made of an earth-fixed coordinate system Oxyz with its origin in
the free mean water surface and with its positive z-axis upwards.

Let us now introduce a structure-fixed coordinate system Oxyz
which initially, when the structure is at rest, coincides with
the earth-fixed system Oxyz.

Since the intention is to develop the equations of motion in the
earth-fixed system, we need know how to pass from one system to
the other,

Let the vector ¢ in Oxyz be given in Oxyz by successively ro-
tating first about the x-axis with an angle o, then about the
y-axis with an angle 8 and finally about the z-axis with an angle
y. Let the transformation matrices, corresponding to the three
rotations mentioned above, be denoted Bys By and R, respectively
and defined such that

[ (3.47)

+
]
10
N
=]

y

In addition to rotation, the structure-fixed system will also be
transiated. Consequently, let the translation be defined by the
vector Lo2 SO the total transformation is given by

r=r, tRy (3.48)
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where
£ o= (x.y,2) (3.49)
Lo = (fojyg,zo) (3.50)
r o= (xYy,2) _ (3.51)
and
B = [Ryy Ryp Ryg (3.52)
Ry1 Roz Ryz
R31 R3z R3z

Figure 3.2 Structure-fixed system relative to the earth-fixed
system.

The matrices corresponding to the rotations mentioned above are

R, = 1 0 0 ] (3.53a)
cos a =-sin o
0 sin o c0S o |
R, = [[cos g 0 sin g7] (3.53b)
0 1 0
|-sin 8 0 cos B _|
R, = ["cos vy -sin vy 0 (3.53c)
sin y cos vy 0
. 0 0 1
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By using Eq. (3.47) the following elements are obtained

R11 = CO0S Y cos B

R12 = -sin Y €o0s o + cos vy sin B sin a
R13 = sin y sin a + cos vy sin B cos o
R21 = sin Yy cos B

R22 = C€0S Y cos @ + sin v sin B sin a
R23 = -c0s Y sin o + sin vy sin B cos a
R31 = -sin B

R32 = ¢os B sin o

R33 = C0S o cos B

Further, assuming small rotations, we obtain

R=11 -y B (3.54)
Yy 1 -0
-8 a 1
Consequently,
x| = x|t 1 -y 8 X (3.55)
y Yo Y o1 e |y
z z, -8 a1 z

which is the linear transformation between the two systems when
the rotations are assumed to be small.

Finally, if we adopt the notation mentioned in Section 3.1 for
rigid body motions we obtain

= x|t 1 -xg xg % (3.56)
y Xo Xe 1 =Xy {
z x3 “Xg X4 1 z

3.5.2 The mass matrix

Consider an intertial system xyz fixed in space and a particle of
mass m at a distance ¢ from the origin (Figure 3.3).
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il

7y

é—-

Figure 3.3 Particle of mass, m, in an inertial system xyz.

According to the second 1aw of Newton, a particle acted upon by a
force moves so that the force vector is equal to the time rate of
change of the Tinear momentum. The Tinear momentum is defined as
the product of mass and velocity, g=mﬁ, and consequently

[=%
YO

- d AN 4
B=at (m) = g (3.57)

Furthermore, the moment of momentum, or angular momentum, of the
mass m with respect to the origin of the inertial system is de-
fined as the vector product of the spaée vector r and the linear
momentum p. If the angular momentum is denoted by L we obtain

k:ﬁxE=£xmi (3.58)

The rate of the change of angular momentum is found from

. . d .
{= fxmfepx e md) =g« G () (3.59)
But, we also know that the moment of the force F with respect to
the origin of the inertial system is defined by the vector prod-
uct of the space vector r and the force F and hence if the moment
is denoted by M we obtain
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- = d ey oo
E_KXF_EXH—E([“—Y;)_—L; (3.60)

Thus the moment with respect to the inertial system is equal to
the time rate of change of angular momentum.

The intention in this section is not to formulate the equation of
motion for a particle of mass but for a rigid structure. There-
fore, use is again made of the inertial system Oxyz and the
structure fixed system Oxyz defined in Section 3.5.1. The latter
is obtained from the former by means of three translations of the
origin and three rotations about the displaced origin (Figure
3.4).

Figure 3.4 Inertial and structure fixed systems.

Since, in a rigid structure, there is no motion of mass with re-
spect to the structure fixed system, the velocity with respect to
the inertial system of a mass point is

{3.61)

5o
[
E
‘e
%
3t

where io is the velocity of the origin of the structure fixed
system, i is the coordinate of the mass point with respect to the
structure fixed system and @ is the angular velocity vector. The
Tinear momentum of the rigid body can then be found by inte-
grating the product of mass and velocity of the structure,



29
p= Il (gt ex ) dn= g [[fdn+ g x [[[ T dn
=m(r +wxte) (3.62)

where EG is the vector to the center of gravity. The angular
momentum of a rigid body about the origin 0 is defined by

o
i
—
—
t—
et
X

s

. dm = f}’f E x (io-lﬂ_(exi) dm

Lo % JIf Edmt [[]F x (ox¢) dm

H
§
X

—~

~S 8

= gy xomi + [f] (@(EF) - TleE)) dn (3.63)

where use has been made of relations known from vector algebra.
Since we know that the force and the moment acting upon the
structure is equal to the time rate of change of linear and angu-
lar momentum respectively we can, by using Eqs. 3.62 and 3.63,
establish equations of motion for a rigid body. It is convenient
to Teave the concept of physical vectors and instead express
these equations by matrices. Thus the components of the force are
obtained as,

Fl=d [mo 0] [x]+d [0 mi, -my w
x| @ o @ | 8 e
Fy 00 m O Yo -mz, 0 mXg uy (3.64)
FZ 0 0 m z, mye =mXq 0 w,

and the components of the moments as

=
"
'

0 mze -my. X | +

b
Q_ID.
o+

Xz X
My -mz 0 mXq Yo ”Iyx Iyy 'Iyz vy (3.65)
MZ myg -MXg 0 Z, -IZX "Izy Izz Wy
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where the three elements

2 -2 22 o2
Ly = TGS =% dmy 1, = I (75 - §%) dn,

[f (7% - 32) dm

IZZ

are called moments of inertia and the six elements

I =[] yzdm

1= [/ Xydm, L If] %zdm, Iy2=I

Xy “yx zy

are called products of inertia. Observe that all inertia terms
are defined in the structure fixed coordinate system and there-
fore remain constant while the structure is in motion.

In Section 3.1 the motions of the rigid structure were described
in a Cartesian coordinate system Oxyz. In that formulation the
motion vector was not a physical vector but a generalised matrix
of motions consisting of both translations and rotations. If we
formulate the equations above using generalised matrices of
forces and moments and also adopt the coordinate systems defined
in  Section 3.1 such that (x_, y io)=(§1, iz, i3) and

. . . 0
(wx’ wy, wz)=(x4, Xgs X6) we' obtain

09

F-p

where the generalised mass matrix is given by
= > mo ]
m {" m 0 0 0 mz, -my, (3.66)

0 m 0 -mz, 0 mX

0 0 m m}G -miG 0

0 -mze My Ixx 'Ixy -IXZ
mz . 0 -mXg -IXy Iyy —Iyz
;an mXe, 0 'Ixz -Iyz Izzﬂ

Relations and equations used in the derivation of the generalised
mass matrix can, for example, be found in the book of analytical
dynamics of Meirovitch (1970).
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3.5.3 Hydrostatics

The object of this section is to formulate the hydrostatic reac-
tion force that arises when the structure is forced to move from
its equilibrium position. In the formulation use is made of the
transformation between the structure-fixed and the earth-fixed

coordinates.

For floating structures the only reaction forces due to buoyancy
occur in the heave, roll and pitch motions. In heave the reaction
force is simply the buoyancy force. In roll and pitch the reac-
tion moments are moments due to the buoyancy force. Since the
buoyancy force is proportional to the displaced volume some
volume integrals have to be evaluated. These integrals are evalu-
ated after decomposing the displaced volume into a static volume
¥ beneath the plane z=0 and a volume between the planes z=0 and

z=0,

3 N

Figure 3.5 Schematic figure showing the earth-fixed and the
structure-fixed coordinate system.

If the forces are evaluated with respect to the origin of the
structure-fixed system and second order gquantities are neglected
then the following hydrostatic forces are found

Fy = og(¥ - [] 2(2=0) dkdy (3.67a)
Aw
Fo = 09(f[] (y-x,)dV - [[ 2(Z=0)ydxdy (3.67b)
v A,
Fg = pg(-[[] (x-x;)dV - [[ 2(2=0)Xdxdy (3.67¢)
v

W
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where ¥ and Aw are the displaced volume and the waterplane area

in equilibrium respectively.

Furthermore, if use is made of the transforms Eq. (3.56) derived
in Section 3.5.1 the hydrostatic forces become

Fy = og(V - If (x5 = xgk + x,y} dxdy) (3.68a)
W
Fy = pg(/é! {xgk+y-x, 21V - Aj {xg-XgKtx,§1ydXdy) (3.68b)
W
Fg = p0(-[]] Gixgirugiay + [[ lgxgionngylidiay) - (3.68c)

W

Before these expressions are simplified some definitions will be
given.

The moments of inertia of the water plane area:

3. = [f %didy (3.69a)
Xx  j
W

2
= 3.

Jyy [f ¥°dxdy (3.69b)
W

ny = Jyx = [] xydxdy (3.69¢)

Aw
The center of gravity of the waterplane area:

e [] xdxdy (3.70a)
w A
w

y. = p— [ jdxdy (3.70b)
w Aw

The center of buoyancy:

Xg = f{j %dv (3.71a)
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yg = = Jf yav (3.71b)

25 = 4 fﬁj Fdv (3.71¢)

1f these definitions are used the hydrostatic forces become

-
}

pg(V - A W37V A WKatXe A x5) (3.72a)

yy) at xy 5+XBVX4) (3.72b)

-
t

og(yBV—yCAWXS—(zBV+J

F. = pg(-x BV+xCwa3+JyX 4 (z V+J ) 5+yBVx6) (3.72¢)
Equilibrium requires that the center of gravity and the center of
buoyancy must lie on the same vertical line. Since the z-axis is
oriented through the center of gravity the horizontal coordinates
of the center of buoyancy are given by

Xg =Yg T

We are not interested in the hydrostatic forces but in the net
reaction forces that arise when the structure is forced to move
from its equilibrium position. Therefore the gravitational force
is included in the expressions above which, if it is taken into
account that xB=yB=0, become

AF4 pg¥ - mg + pog (-wa3 Ye A gt chwXS) (3.73a)

AF4 = (mng - ngzB - pgdyy)x4 pg(- Y A x x5) (3.73b)

W 3

and

i

bFg = (mng - pg¥zy - ngxx)XS + og(chwx3 + Jyxx4) (3.73.¢)

If we define a hydrostatic stiffness matrix such that

(3.74)

‘lﬁ

then the stiffness coefficients become
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C33 = PoA,

C3q = POYA,

C35 = POXCA,

C43 = PIA,

Chg = ngzB-mng + ogJyy (3.75)
45 © —ogdxy

Cg3 = -P9XCA,

Coq = —ngxy

Cg5 = PO¥zg-mgze + pgd

and all other coefficients Cis equal zero. If the structure is
symmetrical about the xz-plane then Ye equals zero and conse-
quently C3q and 43 also equal zero. Analogously, if the yz-plane
is a plane of symmetry then C35 and Co3 equal zero.
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4 TIME-DOMAIN

In the frequency domain the motions of the structure are de-
scribed by coupled ordinary differential equations Eq. (3.46).
Since the equations are valid only for harmonic excitations they
cannot be considered as genuine differential equations. There-
fore, when analysing non-linear or transient responses, a rel-
evant time-domain description must be used. As mentioned in Sec-
tion 2.1, for a linear structure/fluid system, such a time domain
analysis contains a convolution integral. Such an integral takes
into account what has happened to the system in the past, i.e.
includes the time-history of the dynamic system. In the present
chapter two time domain models are discussed and their relations
to the frequency domain are pointed out.

4.1 Fundamentals

It is probably most straightforward to use a convolution integral
over the excitation. Using matrices the motion is then given by

x(t) = [Pe(t-1) £(r)d (4.1a)

-0

x(t) =Of°°;(T) £(t-1)de (4.1b)

where the impulse response function rij(t) is the response
(motion) in mode j due to a unit impulse, a Dirach function, at
time t=0 in mode i. The impulse response function is a real func-
tion of time which depends not only on the geometry of the struc-
ture but also on the fluid domain. Therefore the impulse response
function is not a pure structure property but is also affected by
the water depth or the distance to a vertical boundary such as a
dock, for example.

On the basis of the definition of the impulse response function
it holds that

rij(t) =0 for <0 (4.2)
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This s called the principle of causality and for such a linear
system the response is given by the value of the excitation at
present and in the past. As an initial condition it is stated
that

rij(O) =0 (4.3)

The only assumption required, aside from linearity of the struc-
ture/fluid system, is convergence of the convolution integral. A
sufficient (but not necessary) condition for convergence is that
the absolute value of the functions fi(t) and rij(t) are
integrable, i.e.

Ofmlfi(t)l dt < (4.4)

O[wlrij(t)| dt <e (4.5)

where the latter condition states that the system is stable. Con-
sequently, assuming the excitation to be restricted and inte-
grable, then the remaining question is with regard to the be-
haviour of the impulse response function rij(t)' Fontijn (1978),
who has studied the berthing ship problem, discussed convergence
of the convolution integral and the asymptotic behaviour of the
impulse response function. The discussion below follows the
reasoning of Fontijn.

If the convolution integral is formulated according to Eq. (4.1)
with the motion as the output signal then, in modes where the
stiffness coefficient Cij is zero (surge, sway and yaw if only
stiffness due to buoyancy is considered), the asymptotic value of
the impulse response function ri.(t) will increase indefinitely.
In the remaining modes (heave, roll and pitch) the impulse re-
sponse function will approach zero asymptotically and therefore
it will be integrable. Consequently, the requirements are only
fulfilled for motions out of the plane of the water surface.
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Alternatively, the convolution integral can be formulated with
the velocity of the structure as output signal.

Thus, the velocity can be written

() =_ffp(t-0) £(x) dr (4.6)

where the impulse response function pij(t) is the velocity in
mode j due to a unit impulse in mode 1.

It can be shown that, for modes with zero stiffness coefficients,
the impulse response function, pij(t)’ asymptotically reaches a
constant non-zero value. In fact such a case can be treated since

s (t) = paa(=)] ' 4.7
Of Ipy5(t) = py(=)|dt (4.7)
However, in this case the meaning of the transforms will be some-
what different. For further details see Cummins (1962) or Fontijn

(1978).

Although there is no hydrostatic restoring force in the horizon-
tal plane, in many applications the structure is connected to a
mooring system that supplies stiffness in these modes as well. If
the restoring force from the mooring system is linear it can be
directly included in the stiffness matrix ¢. If the mooring sys-
tem is non-linear then some representative Tlinear stiffness
matrix ¢ can be used when evaluating the impulse response func-
tion p(t), while the non-linear contribution can be considered as
an external force and included in the force f(t) when evaluating
the convolution integral, Eq. (4.1). Thus, for a moored struc-

ture, stable behaviour can be obtained in all modes of motion.

If the formulation with retardation function, Eq. (2.10) is used
instead of Eq. 4.1 the problems associated with non-existing
transforms are avoided. Therefore, when motions in coupled modes
both in and out of the plane of the free water surface are ana-
lysed, this latter formulation is probably a more practical tool
for solving for non-linear motions.
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In the next sections relations between the frequency-domain and
the time-domain are described for both the impulse response func-
tion and the retardation function.

4.2 The impulse response function with the motions regarded

as output signal

Generally, the response in the frequency domain is characterised
by the frequency response function matrix R(iw). If the elements
in this complex matrix are known they can be transformed to cor-
responding elements in the impulse response function matrix ;(t).

In order to develop relations between the frequency domain and
the time domain, assume the dynamic system to be exposed to a
harmonic force

Fliw) = felut (4.8)

By substituting Eq. (4.8) into the convolution integral Eq.
(4.1b) one obtains

_)f_(t) - J’“"r ( ) iei(mt-wr)dT

1)

—1wTdT £ e1wt

]
8
[
—~
~
—
]

R(iw) f elvt (4.9)

]

if the complex frequency response function R(iw) is defined

R (iw) = [r(x)e ¥Tdq (4.10a)

from which it is seen that the frequency response function is the
Fourier transform of the impulse response function. From the
theory of Fourier transforms it is known that there exists an
inverse Fourier transform



38

r(t) = 2 [R(iu) e'“tdu (4.10b)
HO =

if r(t) is piecewise differentiable and the absolute value of
r(t) is integrable. Thus, r and R together form a Fourier trans-
form pair that makes it possible to shift from the frequency
domain to the time domain or vice versa.

Alternatively, if the complex frequency response function is
separated into real and imaginary parts according to

R(iw) = R%(w) - iR*(w) (4.11)

B () = [0 cos (un) d (4.122)

r(c) = %~Ufwgc(m) cos {uwt) dw (4.12b)
and

R *(u) =0fmg(f) sin (wt) dr (4.13a)

e(t) = £ Of“gs(m) sin (ut) du (4.13b)

Furthermore, in the frequency domain the equations of motion may
be written as

(0 + alw) %(t) + blw)x(t) + cx(t) = fe'*t (4.14)

where ¢ is assumed to contain non-zero diagonal elements. If, the
motion, Eq. (4.9), and its first and second derviatives are sub-
stituted into Eq. (4.14) one obtains

({c - w(m+ alw))} + iublw)) R(iw) = E (4.15)
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where E is the unit matrix defined by having diagonal elements

equal to one and the other elements equal to zero. Solving for
the frequency response function gives

R(1w) = ({c - w’(m + a(w))} + fub(w))~? (4.16)

=]

Alternatively, the real frequency response function matrices may
be found if Eq. (4.11) s substituted into Eq. (4.15) and then
real and imaginary parts are identified. This results in two
coupled matrix equations,

=
+
o
E
=
o
)
—~
€
&
+
&
—
13
&
o
w
£
i

E (4.172)

and

o+ alw)} B®(w) + wblw) R(w) = 0 (4.17b)

respectively. In order to solve for the two real matrices let

Aw) = ¢ - W(p + a(w)) (4.18)

Q(m) = wg(w) (4.19)
The coupled matrix equations can then be written

A(w)R(w) + B(w)R*(w) = E (4.20)

A(w) B(w) - B(w)R(w) = 0 (4.21)
and by solving these one obtains

B(w) = (A(w) + B(w)A™ (w)B(w))™ (4.22)

B*(w) = A7 (w)B(w)B%(w) (4.23)

From Eq. (4.22) and (4.23) it is seen that the real frequency
response matrices can be solved explicitly. In order to evaluate
these equations two matrices have to be inverted. When either one
of the two frequency response functions is known then the impulse
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response function can be determined by using the corresponding
inverse Fourier transforms element by element, i.e. either Eq.
(4.12b) or (4.13b).

For the particular case of uncoupled equations the frequency re-
sponse function becomes

R..(iw) = 5 1 : (4.24)
Ciim T (mygtag(u))+ivb (o)

or expressed as real frequency response functions

2
R, Coy = 3177 (mygtas () (4.25)

7
() 2#(c, .- (m, +a.

2
(b3 i 1))
wb,,(w)
Ry (w) = s 5 (4.26)
(mb.‘](m)) +(C1.].=-L\) (m1.|+a.|.‘(m)))
4.3 The retardation function formulation

In order to obtain the equations of motion in the time domain the
approach of Cummins (1962) is used in the applications in this
report. The main problem is to find the reaction force of the
fluid to arbitrarily time varying motions of the structure.
Cummins assumed that the motion of the structure could be re-
garded as a sum of impulsive displacements.

Use an earth fixed system Oxyz as defined in Section 2.1. Suppose
that the structure is given an impulsive displacement in the j-th
mode. This displacement is achieved by moving the structure at
the instantaneous velocity i(T) for an infinitessimal time inter-
val dt. Then the impulsive displacement is given by

dx. = x.(t)dt (4.27)
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Figure 4.1 The instantaneous velocity gives the impulsive dis-
placements.

During the impulse the flow is characterised by a velocity poten-
tial proportional to the instantaneous velocity of the structure:

x:(1) v, (4.28)

During the impulse, the free surface will be elevated. However,
after the impulse this elevation also dissipates in a radiating
disturbance of the surface. In a linear formulation the velocity
potential of this decaying wave will be proportional to the im-
pulsive displacement. Thus, the velocity potential of the de-
caying wave can be written

o.(t)x.(1)d (4.29)

In order to find the total velocity potential for a certain time t
Eq. (4.28) and the time history integral of Eq. (4.29) are added
tinearly. The time history integration is performed considering
appropriate time lags from the instant of corresponding impulsive
displacements. Thus, the total velocity potential becomes

6 t
¢ ='£ (ijwj + -i ¢j(t-r)ij(r)dr) (4.30)

j=1
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0f course this velocity potential has to satisfy boundary condi-
tions at the free surface, at the surface of the structure and at
the bottom.

As before the linearized dynamic pressure of the fluid is given
by the Bernoulli equation:

e

"

§
i

t
(3%, +_°[° _g.f o5 (t-1) %(r)dv) (4.31)

t

p .
J

O

1

The hydrodynamic reaction force in the i-th direction is obtained
if the pressure is integrated over the wet surface of the struc-

ture:
Fio= JJ pn.ds
6 t 3. (t-1) |
= -3 (X JJ winidS + p [f n.dS [0 —d—" % (1)dt)  (4.32)
j=1 Jgn i L ot J

Finally, using matrices, the equations of motion can be written
in the form

(0 + 2,) &(t) + [* k(t-1) K(0)dv + ¢ x(t) = £(t)  (4.33)

-0

if the following respective definitions are used

39.(t)
kij= o/l —4— n,ds (4.35)

From Eq. (4.33) it is obvious that 3y 45 has the dimension of
mass and the function kij(t) may be interpreted physically as the

hydrodynamic reaction force due to a unit impulsive displacement.

So far nothing has been said about the solution of the velocity
potentials wj and ¢j' However, Ogilvie (1964) has shown how the
equations of motion in the time domain Eq. (4.33) are related to
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those in the frequency domain Eq. (3.47). By using these rela-
tions the unknowns in Eq. (4.33), i.e. 2 and k(t), may be ex-
pressed in terms of the frequency dependent hydrodynamic coef-
ficients a(w) and b(w). These relations can be found if the
Fourier transform of Eq. (4.33) is compared with the frequency
domain description. If following notation is used for the
Fouriers transform,

G(iw) =Of”g(t) e~ 10ty

the Fourier transform of Eq. (4.33) becomes

m + gk) + iok(iw) + ¢) X(iw) = F(iw) (4.36)

Separate the complex function K(iw) in real and imaginary parts
so that

k() sin(wt)dt

1)
—
8
="
—
+
~
[}
o
1%
—
€
&
~
]
.
S
="

= K(w) - 1 K%(w) (4.37)

If Eq. (4.37) is substituted into Eq. (4.36) one obtains

(¢ - wp+ (uC(0) - "g) + 10kC(u)) X(iw) = F(iw)  (4.38)

but the equations of motion in the frequency domain can be
written

(c - wzr:r_l + (—ng(w)) + jup(w)) X(fw) = F(iw) (4.39)

and if these are compared one finds the two following relations
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K(w) = -ula(w) -g,) (4.400)

KS(w) = blw) (4.40b)

In Eq. (4.37) we have already defined real Fourier transforms.
The respective corresponding inverse Fourier transforms are

k(t) = 2 [%5(u) sin (ut) du (4.41a)
0
k(t) = %bfmgc(m) cos (ut) du (4.41b)

Thus, if we substitute Eq. (4.40b) into Eq. (4.41b) the retarda-
tion function becomes

K(t) = %bf”b(m) cos (ut) dw (4.42)

and if we identify Eq. (4.40a) with the imaginary part of Eq.
(4.37) the mass coefficient becomes

3 = alw') + -t 0jmg(t) sin(w't) dt (4.43)

where w' 1is an arbitrarily chosen value of the frequency. The
meaning of Eq. {4.43) may be further examined. Since the retarda-
tion function reaches zero asymptotically for high frequencies
and (sin(wt))/w also reaches zero asymptotically it follows that

a, = g(w) (4.44)
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ak,ij =a‘~j(oo)

Figure 4.2 Schematical graph of Eq. (4.43).

Consequently, Eq. (4.42) and (4.43) make it possible to pass from
the frequency domain to the time domain if the damping coef-
ficients are known throughout the frequency domain as well as the
values of the added mass coefficients for a single frequency w'.
A similar formulation of the equations of motion in the time
domain is given by Wehausen (1971).

4.4 Experimental possibilities

Having formulated the relations between oscillatory motions in
the frequency domain and transient responses to an impulse in the
time domain we have a theoretical tool for solving motions to
arbitrarily time-varying forces. The formulation of the motions
in the time domain also suggests experimental methods for deter-
mining the frequency response function (or the added mass and
potential damping). Traditionally, the frequency response func-
tion is calculated from a series of experiments at different fre-
quencies. However, using relations between the frequency domain
and the time domain, one properly performed experiment should
give the same information. Such experiments have been made by
Smith & Cummins (1965) who studied the heave and pitch motions of
a ship. The basic ideas of such experiments are, in principle,
simple.
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As has been shown in Section 4.2 the impulse response function
can be used without being directly measured, as it is simply the
Fourier transform of the frequency response function. If the
latter is known for all frequencies, the impulse response func-
tion can be computed. But to determine the frequency response
function directly, one must measure the response to a set of fre-
quencies at suitably close intervals over the whole range of fre-
quencies in which there is a significant response. The alterna-
tive approach is to apply a known excitation and observe the re-
sponse. By analysing the respective frequency contents of the
excitation and the response, the frequency response can be com-
puted. Thus, one single experiment can replace a series of ex-
periments at different frequencies.

Although in principle the experiment is very simple, in practice
there are many difficulties to be overcome. These are discussed
by Smith & Cummins (1965).
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5 APPLICATIONS OF THE RETARDATION FUNCTION FORMULATION
ON A VERTICAL CYLINDER

5.1 General

In the preceding chapters the theory associated with the hydro-
dynamics of large-volume floating structures has been reviewed.
In the present chapter the theory is applied to a specific struc-
ture. We have seen that if the structure is forced to move in
non-harmonic oscillations the hydrodynamic reaction force can be
obtained from the hydrodynamic coefficients in the frequency
domain using a Fourier transform. In order to do this the added
mass and the potential damping must be known for a suitable num-
ber of frequencies. For a structure with a complex geometry it is
necessary to use a numerical method to solve for the added mass
and the potential damping. Such methods require large amount of
computer resources and are thus expensive to run. It is also dif-
ficult to estimate errors occurring in a numerical solution. In
order to obtain a fast solution that does not demand large of
computer resources, but still has high accuracy, an analytical
solution has been preferred. There exist only analytical solu-
tions for structures with simple geometries.

In the application in the present chapter a vertical cylinder
floating in finite depth water is chosen. Such a structure has
been extensively investigated. Garret (1970) studied the scat-
tering problem when the cylinder was subjected to a plane inci-
dent wave and solved for the near field solution of the problem
and thus obtained the wave exciting force. With a near field sol-
ution it is as well possible to solve for wave disturbances
caused by the structure. Furthermore, Yeung (1981) studied the
radiation problem of a cylinder in the absence of incident waves
and obtained the added mass and the damping coefficients. Yeung
divided the fluid domain in an interior region beneath the cylin-
der and an exterior region outside the cylinder. He treated the
conditions at the common boundary as if these were known and de-
veloped expression of the interior and exterior problems. By
matching these expressions of eigenfunctions at the common
boundary Yeung established an infinite system of equations. The
system showed to have excellent truncation characteristics and
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therefore only a small number of coupled equations had to be
solved. In this report the method and formulation suggested by
Yeung are adopted and used in order to calculate the added mass
and damping coefficients. The principal equations are given in
Section 5.3.

J__, =TT Exterior

- s o e W2 . I D

V2 Interior region  region of 2
e | of the fluid | the fluid .

- ety e

SV SIS S Y S S S S S AS SV A/ A

Figure 5.1 Definition of interior region and exterior region
of the fluid according to Yeung (1981).

The wave exciting force can, as mentioned, be found by solving
the diffraction problem according to Garret using a technique
similar to that of Yeung. However, Haskind has used Green's the-
orem to derive expressions for the wave exciting force which do
not include the solution of the diffraction problem, but instead
make use of the solution of the radiation problem. Moreover, it
can be shown that the integration does not necessarily have to be
performed over the wet surface of the structure but can, instead
be performed over a control surface at an infinite distance from
the structure. This is a consequence of Green's theorem. Thus,
for a given incident wave, the exciting force can be calculated
if the asymptotic behaviour of the radiation problem is known.
This way of treating the problem has been discussed by Newman
(1962), who derived expressions for the wave exciting force on a
submerged ellipsoid. In Section 5.4 this technique is applied and
expressions are derived for the wave exciting force on a cylin-
der.
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Wave Toading due to irregular waves is discussed in Section 5.5.
The force is given as a series of sinusoidal waves linearly
superimposed. The amplitude of each sinusoidal term is obtained
from a wave energy spectrum, and the phases are chosen arbit-
rarily.

In order to obtain more realistic motions and to supply stiffness
in the horizontal plane as well, the cylinder is tethered with
pre-tensioned wire ropes. The equations for such a system are
given in Section 5.6.

The numerical evaluation of the retardation function, Eq. (4.42)
and a numerical formulation of the equations of motion are pre-
sented in Section 5.7.

Finally, in Section 5.8 the results from the calculations are
presented and discussed. The results include the added mass and
the damping coefficients, the wave exciting forces and the phases
between the incident wave and the forces, and the retardation
functions. A simulation of the motions due to a realistic time
dependent force is outside the scope of this application, but the
equations of motion are solved for a simple type of loading in
order to check the numerical formulation.

In Figure 5.2 a principle scheme for the steps included in the
calculation is given,
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[ Equation of motion f——~——<}—————{_?3223_force % =
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Wave exciting force
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t

{ Other exciting force

A 4 <
Transient motion Mooring system Drag force
x(t)
MAV%—: B> Fmoor = r:moor(x(t)) FD = FD (;(t))
{ >
Figure 5.2 A principal scheme for calculating transient
motions using the retardation function technique.
5.2 The mass matrix and the hydrostatic stiffness matrix

For a vertical cylinder,

the elements of the matrices of the

equations of motion can be somewhat simplified. Below, all non-
zero elements of the mass matrix and the hydrostatic stiffness

matrix are given. They become
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My = Mgp = M3z =M
M5 = M5y = M2g

Mog = Myp = -Mzg
Mag = ‘xx © mri

Mep = Iyy = mrg

Mee = Izz = mr§

Cq3 = pgwa2

4
Cag = ogVZB - ngG + pg(ma’)/4
Ca4

where Pes ¥ and r are the respective radii of gyration associ-
ated with roll, pitch and yaw motions.

The elements of the added mass matrix and the potential damping
matrix are given in Section 5.3.

5.3 The hydrodynamic coefficients as determined by Yeung

As mentioned previously, when solving the radiation problem, the
formulation suggested by Yeung (1981) is adopted. His work in-
cludes the determination of the added mass and damping coef-
ficients for the heave, sway and roll motions as well as the
coupling coefficients between sway and roll. Throughout this sec-
tion the notations and conventions of Yeung are followed. Conse-
quently, a Cartesian coordinate system Oxyz as well as polar co-
ordinates (r,8) are defined. The Oxy-plane is located at the sea
bottom and the z-axis is positive upwards.



53

Figure 5.3 Definition of coordinate system and geometric
variables.

Geometric variables are non-dimensionalized by the water depth h,
e.g. the non-dimensional radius is given by a=a/h where a is the
dimensional radius.

In the present section only the equations included in the bound-
ary value problem is given, together with the necessary equations
for calculating the hydrodynamic coefficients.

5.3.1 The heave radiation problem

Consider a vertical cylinder which is assumed to heave har-
monically in finite depth water. The velocity potential for radi-
ation is conveniently separated into space and time dependence as

o= F Re {—im>‘<3¢e'1“’t} (5.1)

If the Laplace equation and the boundary conditions are expressed
in terms of the spatial velocity potential, the following equa-
tions are obtained
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3% L 130,30 _ (5.2a)
ol r ar 822

3¢ w2

N L (5.2b)
%g =1 z=d and Osrsa (5.2c)
.?i = =

= =0 z=0 (5.2d)
%% =0 r=a and dszsh (5.2e)

Yeung divided the fluid domain into an interior and an exterior
region. The velocity potentials of these regions are denoted ¢(1)
and ¢(e) respectively. The velocity potential of the interior
region becomes

. 2 o I (. r)
(i) _ 1,2 r 0, ® o'"'n
¢ (rz) =5 (255 )+ 5+ T o cos {(rz) (5.3)
w () Ee e o O
where
)\“ = %T_ (5.4)
2 4 (e)
o =g [ ¢'"’(a,z) cos (Anz) dz - o* (5.5)
2

F (2d - 32 n=0

or = n (5.6)
_?_d_—_l,%_ n21

(nm)

In Eq. (5.3) IO is the modified Bessel function of first kind and
zero order.

The velocity potential of the exterior region becomes
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¢(E)(Y92) :kifOAkRk(mkr) Zk(me) (5.7)

where Ak are unknown coefficients., The radial function Rk is
given by

R (mr) = K° N (5.8)

where Ho(l) is the Hankel function of first kind and zero order
and K0 is the modified Bessel function of second kind and zero
order. The vertical function Z is given by

cosh (moz)/Né k=0
Zk(mkz) = 3 (5.9)
cos (mkz)/Nk kz1

where the normalisation factor Nk is defined by

3(1 + sinh (2m0)/(2m0)) k=0
Nk = (5.10)
(1 + sin (2mk)/(2mk)) kzl

The eigenvalues m, are defined by

2
. W
my tanh m, = 3 h

2 (5.11)
_ w
m tanm = - —§~ﬁ

and are drawn schematically in Figure 5.4.
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Figure 5.4 The solution of Eq. (5.11) drawn schematically.

By matching the derivatives of Egs. (5.3) and (5.7) at the common
boundary r=a, Yeung derived a system of coupled equations. The
system becomes

[

n "ifp ®n3% T 9 n=0, 1, ...  (5.12)

o

where R
=) ) S (5.13)

c R
=¥ ~DE.(§5. N

= -0
k=0 M R Tk
[2(-1)" sinh(m 0}/ (m d)
7 1 k=0 (5.14)
(1+ (mod) ) NS
2 sin(m d - nm) m, d
Kk k N
(m d - nm) i kz]
LMk (mkd + nﬂ)Nk

Sy =7 Iy (2 a)/1 (A ) (5.15)



57

The primes indicate differentiation with respect to the argu-
ment. Using matrices Eq. (5.12) becomes

- - -
l-e,, -eg .- =e0n7 o 1= 9 (5.16)
€1, l—e11 een €10 aq 9

L "€ €1 - 1°enn~ Loy, L9y, 4

Once Eq. (5.16) is solved the Fourier coefficients o, are known
and the velocity potential of the inerior region is obtained from
Eq. (5.3). Furthermore, the unknown coefficients Ak are related

to e, by
*
p, - § onnktn * M (5.17)
ko =0 MR kimkai
where . sinh (mod) =0
d
A* ~ 2N 0% M (5.18
k sin(m d) -18)
-2 dk k21
ad M

The velocity potential of the exterior region then is given by
Eq. (5.7).

Finally, the hydrodynamic reaction force is obtained from the
Bernoulli equation by integrating the pressure over the bottom of
the cylinder. Expressed in terms of the added mass and the poten-
tial damping, defined in Section 3.3, this yields

dn, + b,y /0 o -
+ibyy = 23 <) L L@+ 1 (r2dE ()"

a
33 mpa n=1
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5.3.2 The sway (surge) radiation problem

For sway motion the velocity potential is conveniently written

¢ = FiRe (~iuky¢ e "% cos o (5.

The Laplace equation and the boundary conditions become

20)

2 2
30,1086 ,09¢ 9 _, (5.21a)
Brz r 3r az2 r2
0 p g 2=h (5.21b)
9z g )

%% =0 z=d and Osrs=a (5.21c)
3¢ _ -

37 o 0 z=0 (5.21d)
%% =1 r=a and dszsh (5.21e)
The only modifications compared to the solution of the heave

radiation problem are
' I.(xr)
(i) - fg r ® 1'"n
¢ (r,z) = () + nflun T3 cos Az (5.22)
o’ =0 n20 (5.23)
. . 3 -
. (sinh m, - sinh (mod))/(NOmO) k=0 (5.24)
Ak = 1
(sin m - sin (mkd))/(Nkmk) kzl
ll
iy (ma) i, ) (m ) k=0 (5.25)
Re/RY =

Kl(mka)/Ki (mka) kzl



d/4a
a1 (r,2)
2 Ilixnai

5

9

nzl

(5.26)

The hydrodynamic coefficients for the sway motion are given by

5.3.3

At

1'511/11)

L $aAR

1 mpa Z(E

-d)

~ al(d-1) k=0

k"k Tk

The roll (pitch) radiation problem

(5.27)

For roll motion the velocity potential can be written

d.

h 2 Re {-1 w 25¢

e 19 cos o

If the: rol1l motion occurs about the point (0,0,1) the boundary

value problem is now as follows:

2

anz

3¢:
9z

Q

i

o
N

(=%
e

l

=>4
N

o
3

The
radiation

only

z=h

z=d and 0srsa

z=0

r=a and d=zsh

(5.28a)

(5.28b)

{5.28c)

{5.28d)

(5.28e)

modifications compared to the solution of the sway

2
193¢ ,37°¢ ¢
+ 22+ 22 =0
r or aZ2 PZ
wzﬁ
— =0
g ¢
-r
0
-(h-z)
problem are
3 or
=l 2. oy, 0
a Gy Vi 7
1 1 ,a, 2
-ad (j-’z‘(‘g) )
2ad (-1)™1/(nn)?
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-

sinh (m d)
0 3.2 3,2
g (ga -zgdrd-
()
1 sinh(mod)
- ——E-(cosh my g - 2 cosh (mod)) k=0
m 0
(o
A= NE (5.31)
sin (md) 5 5 5 5
m, d (ga”-zd+d -
1 sin(mkd)
- ——§»(2 cos (mkd) - cosm - . ) kz1
m k
k
The hydrodynamic coefficients for the roll motion become
g + ib.o/w
. _ 55 55 _
gy 1b55 = ~—ﬂ—:~§ﬁ~?—— = (5.32)
mpa
3 I (xa)/1,(x a)
21 a de n,_o'n 1""'n”’ _2d
=g lad-gg-a) -g L (D% ?
1,2
+ ()2 AR (ma)E
a’ =0 k kM k k
where ( ( )
sinh(m d) cosh m_- cosh {(m d
(d-1) — 0+ 02 o k=0
(o m
£, = N? o (5.33)
sin (mkd) cos m - Cos (mkd)
(d-1) - kz1
m 2
M

Finally, the coupling coefficients between sway and roll become

ag, + ib../w
+ b, = 51 5177 _

1 = *(s)
51 W (-1)= EAkRkA (5.34)

2 =0 k

(s) is given by Eq. (5.24).

A*
where K
Observe that Eq. (5.31) differs from that of Yeung (1981) in
terms of a positive sign. However, the added mass and the damping
coefficients for the roll motion are in very good agreement with
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the results of Yeung and therefore it is probably only misprint
that the positive sign is not included in his calculations.

5.4 The wave exciting force

In this section the analytical solution proposed by Yeung has
been extended also to include amplitudes and phases of the wave

exciting forces.

As mentioned previously, the wave exciting force, for a given
indicent wave, may be calculated without knowledge of the veloc-
ity potential of the scattered wave. According to Newman (1962)
the wave exciting force can be expressed in terms of the velocity
potential of the radiated wave. Thus,

. 36 39
Foi = Re {-h 2iup et éf (¢I_3% - gﬁl) ds} (5.35)
if, respectively,
o = Re {H¢Ie"“’t) (5.36)
and )
o, = Re {f iwp,R.e') (5.37)

If the incident wave is propagating in the positive x-direction
the wave elevation can be written

t(t) = h 2 cos (mOx - wt) (5.38a)
or if using complex notation

z(t) = Re (R ¢ e~ 1(mx-ut), (5.38b)

The spatial potential of the incident wave is given by

_ gt cosh mo(z+h)

-im_x
%1 T % Tosh moh e o (5.39%)
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where the spatial coordinates are referred to a coordinate system
with its origin in the free surface and the z-axis positive up-
wards. Using cylindrical coordinates, Eq. (5.39a) becomes

. cosh m_(z+h) .
0 -im r cos 6

= EEETTFﬁFT—'“' e o (5.39b)

In Section 5.3.1 the heave radiation problem was treated and the

velocity potential of the exterior region was given by

b5 = g AkRk(mkr) Zk(mkz) (5.40a)

k=0
where the coefficients Ak are defined by Eq. (5.17), the radial
function by Eq. (5.8) and the vertical function by Eq. (5.9).
Observe that in Section 5.3 the z-coordinate is referred to a
coordinate system with its origin at the sea bottom and the time
dependence of the velocity potential is separated using e“‘wt.
Referred to a system with its origin':? the free surface and
Tw

separating the time dependence using e the velocity potential

of the exterior region can be written

§ R Ry (m ) Z,(mz) (5.40b)

¢ =
3 k=0

where Ak is the complex conjugate of Ak and the vertical function
is defined by

cosh m, (z+h)/N§ k=0
Zk(mkz) = s (5.41)
cos m, (z+h)/N k21
k k
Before the wave exciting force is developed Eq. (5.35) can be
further simplified. Since both ¢ and 95 satisfy the free surface
condition and the bottom condition, it is a consequence of

Green's theorem that
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8¢3 aq;I
é{s(¢1 5 - by ) dS =0 (5.42)

where S_ is a control surface at some distance from the struc-
ture. Hence, by substituting Eq. (5.42) into Eg. (5.35) one ob-
tains

3,

S 2.t i !
Fe3 = Re { h Tiwpe gf (¢I-3H - ¢3~§ﬁ ) dS } (5.43)

In Eq. (5.43) the pressure is integrated over the control surface
which is conveniently chosen as a cylinder at an infinite dis-
tance from the structure.

" h\\\§“““‘=--.__m__hA | AAM__,,_.g—~‘~""”’/

S 2

N

Figure 5.5 Control surface.
For a cylinder the wave exciting force in heave becomes

21 0 3¢3

. 36
oy = Re CF 2iw0€1mt0f{d(¢1‘3ﬁ 3 ¢§_5% ) R dzde} (5.44)
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Since we only need know the asymptotic behaviour of the velocity
potentials the radial funcion may be simplified. The radial func-
tion for large arguments is given by Abramovitz and Stegun (1972)
as

(5.45)

Since for Targe arguments the modified Bessel function of the
second kind, Ko(mkR), reaches zero the spatial potential of the
radiated wave is given by

. cosh m_(z+h)
(?r_n_]_z_R)%e'](moR'—(ﬂ/[l)) 0O
0 NO

¢3 =R (5.47)

o=

0

By substituting Eqs. (5.39) and (5.47) into Eq. (5.44) the wave
exciting force becomes

ZRmO N

int ( )E ei(moR—(ﬂ/4))PeQ2} (5.48)

_ 2. .
Fe3 = Re { R 1ogcA0e

w

where

0 coshzmo(z+h)
Q= [ — dz (5.49)
-h  cosh (moh)NO2

2n -im R cosé6
Po= [ (1 +cos8)e M de (5.50)
0

The first integral is easily solved and since h=1 one obtains

Q =0 ‘ (5.51)
¢}
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The second integral may be solved using the method of stationary
phase proposed by Newman (1962). Following Newman (1977) one ob-
tains

Py = ( §%~) b milmR-(n/4)) (5.52)
0

Finally, by substituting Eqs. (5.51) and (5.52) into Eq. (5.48)
the wave exciting force in heave becomes

1
2

N .
_ 2. . 0 iwt
Fez = Re { h “1 4pgt Ao ook moe } (5.53a)

Analogously for the sway force and the roll moment one obtains,
respectively,

1
2

N
Re 1 24 apgz L) 0 oilut=(m/2)) 4 (5 5ap)

F =
el ] cosh m,
and
1
3 (r) Mo i(ut-(w/2))
F€5 = Re { h 73 4092. AO w } (5.53C)
where AO(S) indicates coefficients from the solution of the sway

radiation problem and Ao(r) coefficients from the roll radiation
problem.

Observe that Eqs. {5.53a~c) are complex quantities from which the
amplitude and the phase can be determined. It is convenient to
write the wave exciting force in the form

Fo=t |xil cos (wt + e;) (5.54)

where IXil is the amplitude of the force due to a wave with unit
amplitude. The amplitude can be checked by using the Newman
relations, Eq. (3.45). Expressed in agreement with the notations
of Yeung they become
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2 ( 4D(1-d) b
nmoa

[X mpga (5.55a)

%51 = moga? (22— p)} (5.55b)
3 (_&
T _a

0]

Tpga (5.55¢)

_ 2
where D = tanh m, - mo(latanh mo).

5.5 Description of the sea

The sea state is usually described using one of two different
methods, the design wave method or the spectrum method. In the
design wave method the sea state is considered as characterised
by a single, regular wave with a fixed amplitude and frequency.
This method can be used when the natural frequency of the struc-
ture is far from the frequency content of the original sea state.
Then the response of the structure is received as a deterministic
quantity in the frequency domain if the system is Tinear or in
the time domain if significant non-linearities exist. However,
this regular wave does not give a realistic description of the
sea state. For most applications a stochastic description of the
sea state is more appropriate. A stochastic description of the
sea state is usually characterised by a continuous wave energy
spectrum. Again if the system is considered linear the analysis
is suitably performed in the frequency domain but if significant
non-linearities exist a time domain analysis has to be used.

Conventionally the wave elevation is considered relative to the
mean level of the free surface as a stationary Gaussian distrib-
uted stochastic process. Such a process has the advantage that if
a linear operator acts on the process the response will also be a
Gaussian distributed process. Thus, in a frequency domain analy-
sis the response spectrum is determined, via a Tlinear transfer
function, from the wave energy spectrum. Subsequently, maximum
values for the Gaussian distributed response can be statistically
evaluated, according to Cartwright and Longuet-Higgins (1956).
If, however, significant non-linearities exist in the dynamic
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system the analysis ought to be performed in the time domain. The
spectral description of the sea state, i.e. the wave energy spec-
trum, then has to be converted to the time domain. In order to
describe the wave elevation a quasi-stochastic time domain real-
isation can be created from the wave energy spectrum as a series
of sinusoidal waves. Thus the wave elevation can be written

N
o(t) =nflcn cos (wnt + en) (5.56)
where
= (25(w,) tw)?
¢, = (28(w) bw)
S(w) = wave energy spectrum
Aw = frequency step
mn = nldw
en = phase angles randomly chosen in the interval (0,2m)

Since the original wave elevation that gave the wave energy
spectrum is considered as a stationary Gaussian distributed pro-
cess the recreated wave elevation must also possess these prop-
erties. This requires N, in principle, to be set infinitely
Targe. This difficulty and other problems associated with time
realisations from wave energy spectra are beyond the scope of
this work but have been discussed, for example, by Tucker et al
(1984) and Elgar et al (1985).

The time realisation of the wave exciting force corresponding to
the wave elevation given by Eq. (5.56) is obtained from

c lxn! cos (wnt to te) (5.57)

where ani is the amplitude of the wave exciting force due to a
wave with frequency 0, and unit amplitude. The phase € is the
time-lag between the incident wave and the wave exciting force.

Since the frequency spacing Aw in Eq. (5.56) is kept constant
both the wave elevation z(t) and the wave exciting force Fe(t)
will repeat with the period T=2n/Aw,
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5.6 The mooring system

In the application in this report the structure is assumed to be
tethered with pretensioned wire ropes. Initially, when there is
no external force acting on the cylinder, the wire ropes are
assumed to be vertical and the bottom of the cylinder is assumed
to be parallel with the free surface. Below, reaction forces of
the mooring system are developed as functions of the motions of
the structure.

Again, use is made of the earth fixed system Oxyz located with
its origin in the free surface with the positive z-axis pointing
upwards. Oxyz is a structure-fixed coordinate system which in-
itially coincides with Oxyz. (62&2)1 is an earth-fixed system
with its origin located to the point where the i-th wire rope is
connected to the sea bottom.

&
z
h
A
-
S/ Y
/’\_/ ! S X x /\/
z;
Yi
VA YA AN/ - > X . <
Figure 5.6 Definition of coordinate systems associated with

the mooring system.

Since the cylinder is regarded as rigid, the body motions are de-
scribed by three translations (Xl’XZ’X3) and three rotations
(XA’XS’X6)‘ As has been discussed in Section 3.5.1 relations be-
tween Oxyz and Oxyz can be: linearised if the rotations are
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assumed to be small. Thus, if the cylinder 1is translated and
rotated the coordinates of the fairlead of the i-th wire rope,
expressed in xyz-coordinates, become

Ly = 5, +Rr, (5.58)
where
5 = xli + ng + x35 (5.59)
R=1[1 “Xg Xg (5.60)
Xg 1 X4
“Xg Xy 1
S

Displaced location
of fairlead

N

Initial location
of fairlead

777 N N ) W\,

S /A \V/ASY/ASTUA/ASS

Figure 5.7 Initial Tlocation and displaced location of the
fairlead of the i-th wire rope.

Expressed in xyz-coordinates the coordinates of the fairlead
become

ri= - (5.61)
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Loo = iii +¥id - hk (5.62)

gl =xT-1%1* 1 “Xg Xp X, (5.63b)
Yi X2 Y X Loxg || Y
Z; X3 -h "X Xy 1 z;

Hence, by using Eq. (5.63) for a given water depth and given
structure-fixed coordinates of the fairlead, we can calculate the
coordinates (;;2)1 of the fairlead when the structure is moving
rigidly.

Furthermore, the magnitude of the reaction force of the i-th wire
rope is denoted by Ti and is assumed always to act through the
origin 0.

Figure 5.8 Definition of angles.

Then we can express the reaction force as a vector quantity Ei’
defined in Figure 5.8, as
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Ei’x == | 71 [ cos (5.64a)
F].,y cos Bi
i,2 €os v,
where
;i
COS o, = - = = (5.64b)
(Bt
i i
i (5.64c)
cos B, = = = - .64c
1 ( x2 + y? + z2 )%
1 1
Ei
cos y; = - > (5.64d)

( X§ tys otz )?
It should be noted that, when establishing the mass matrix, the
angular momentum was referred to the translated origin and there-
fore the external moment should also be referred to this point.
Consequently, the moments associated with the i-th wire rope are
obtained from

M, = (REL) x E (5.64e)

+1

By adding the contributions from all wire ropes, forces and mo-
ment of the complete mooring system become

F, = ? Fi e (5.65a)
= 1 F. )

Fy ; Fiy (5.65b)

F, = ? Fi 2 (5.65¢)

M, = ? (RE;) Fy = (REQFy (5.65d)

My = % - (Rﬁi)xF1,z ( 51)2F1,x (5.65e)

M= 1 (R.).F. (RF.) F. (5.65F)

A R A A B
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Finally, we need to calculate the reaction force Ti' This may be
done by using some simple relations:

Initial Tength of wire rope: Li,o = h + Ei (5.66a)

Length of wire rope: Li = ( §§ + §§ + 2?)% (5.66b)
Extension of wire rope: ALi = (Li - Li,o) (5.66¢)
Pretension: Ti,o (5.66d)
Additional force: ATi = (ALi/Li,o)EA (5.66e)
Reaction force of wire rope: Ti = T1.,0 + ATi (5.66f)

The axial stiffness of the wire ropes, EA, is the product of the
modulus of elasticity and the cross sectional area of the wire
rope.

5.7 Numerical formulation

5.7.1 The retardation function

The retardation function kij(t) is obtained from the inverse
Fourier transform

[T b (w) cos wt du (5.67)
0

In a numerical evaluation the infinite integral has to be
truncated and a proper frequency spacing has to be chosen. Since
it is quite time consuming to evaluate the damping coefficients
it is important not to keep the frequency spacing too large, but
for Targe values of t, cos ot will vary rapidly with frequency,
which implies that the frequency spacing should be kept not too
large.
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(a)

(n-1)Aw Aw
i o+

cos wt for a small value of t
A

Aw
(b) - /

coswt for a large value of t
&

Aw

() D> T N

A 77/

Figure 5.9 Numerical evaluation of the retardation function.
The frequency spacing Aw is set small enough to
evaluate b(w) with good accuracy, Figure 5.8a. When
t is small Aw will also be small enough to evaluate
cos wt properly, Figure 5.8b, but for Targe values
of t, Aw is too large to give a proper value of the
integral over cos wt.

One practical way of overcoming the problems associated with fre-
quency spacing is to use different values of the spacing for the
damping coefficient and for cos wt. The frequency spacing Aw for
the damping coefficient is chosen so that the retardation func-
tion, for t=0, is evaluated with the desired accuracy. If the
trapezoidal method of numerical integration is used, k..(0)

1
becomes

N
k..(0) = 3:1 3 (bij((n—l)Aw) + bij(nAw))Aw (5.68)
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where N is chosen large enough not to give a significant trunca-

tion error.

When evaluating the retardation function for t>0 it is important
that a cycle of cos wt is described at a certain number of
points. If the required number of points is denoted by Nc’ then
the associated spacing of cos wt becomes

~No
=

hw, = (5.69)
2 b

=Z|

If By is chosen such that M=Aw/Aw2 is an integer and, say, Ncglo
then the retardation function is given by

it~ =

M
1{%(bij((n—1)Aw) + bij(nAw)) ézi(cos{((n-l)Am+(m-1)Am2)t} +

+ cos {{(n-1)aw + mAmz)t})AwZ} (5.70)

5.7.2 The equations of motion

The equations of motion expressed in terms of the retardation
function become

(t) (5.71)

=
I <
—
o+
—
+
Sy
I~
—
o+
[

~

—
[

() dt + ex(t) =

| =h

where

In order to solve the equations a numerical procedure must be
chosen. In the application in this report a central difference
method is used, in which the derivatives of the unknown variable
are approximated with expressions based on a quadratic approxima-
tion.
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Approximation of the
unknown function
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Figure 5.10 The central difference method based on a quadratic
approximation of the unknown variable.

1f the unknown variable is approximated locally as a parabola and
is running through the points Xn-1° *n and X+l then the approxi-
mations of the first and second derivatives with respect to time

become
X - X
_ontl - en-l
X f TR (5.72a)
X - 2 %X+ X
. —n+l - -n-1
X, = At2 (5.72b)

As an initial condition we state that §0=20=0, Before the unknown
variable can be solved, the convolution integral in Eq. (5.71)
must be approximated as a series. Using a trapezoidal method and
the same time step as before we can write

t n
[k (t-1) % (1) dr =2

k ¢ Kbt (5.73a)
0 k=0

2n-k=k

where
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%+ for k=0 and k=n

k
1 for 1sksn-1

Using the initial condition i0=0 and substituting Eq. (5.72a)
into (5.73a) gives

1

& B X)

t n

[ k(t-t) x (v)dt = ¢_3k - %, q) *t 4

oZne1™ X, (5.73b)

0

Finally, substituting Eqs. (5.72) and (5.73) into (5.71) and
solving for LIV yields

-1
1 -1 n
Xov1 = (=5 M+ c ik )" (f-12 ( - X q) -
—n+1 At2 = 0° =0 n k=1 n-k‘=k+1 —~%-1
cle-2 wmx - (LMo rk)x ) (5.74)
= Al T ptl * 0 * =0’ Zp-1 :

Eq. (5.74) s the numerical formulation of the equations of
motion in the time domain. As a starting procedure the following
relations can be used

X, =0 (5.75a)
_ 2 -1
Xy = EZAA fo (5.75b)
Then Xos X3, Xgs +-.. cCan be computed successively by using Eq.
(5.74).

Of course a drag force, as well as any other force can be in-
cluded in the right hand side of the equations of motion, as Tong
as a time relisation of the force can be found. The drag force is
usually calculated using the relative velocity between the fluid
and the structure, Usually the drag force has no significance on
the motions of the structure, but when the structure reaches re-
sonance even a small amount of damping can be of importance. In
such cases the velocity of the structure becomes much higher than
the fluid velocity and therefore it is a reasonable simplifica-
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tion to neglect the fluid velocity. Then the non-linear drag
force simply becomes a function of the velocity of the structure
and can easily be included in the calculation. The probiem of
finding a proper drag coefficient does, of course remain.

The explicit scheme described above turns out to solve the mo-
tions of the structure with sufficient accuracy to give a proper
evaluation of the hydrodynamic reaction force. However, the sys-
tem is very stiff in the axial direction of the wire ropes which
causes a significant Tocal error in the evaluation of the reac-
tion force of the mooring system. This problem can be overcome
without too much increase in processing time since all forces
except the reaction force from the mooring system are sufficient-
1y evaluated using the explicit scheme. An implicit correction
based on an estimate of the local error can be applied to the
reaction force from the mooring system. Thus the motion of struc-
ture becomes

) o (1) 4 1 gl (i-1)
K41 T Zp4l * 1 Y (Emoor,n+l -2 fmoor,n * Emoor,n-l) (5.
where éﬁi%, the starting value in the implicit correction scheme,

is given from Eq. (5.74).

5.8 Numerical calculations

In the present section numerical results associated with the sol-
ution of the motions of a vertical cylinder are given. The calcu-
Jations include a frequency domain solution as well as a time
simulation. A1l results, except those given in Tables 5.1-5.3,
refer to the cylinder defined in Figure 5.11.

76)
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Figure 5.11  Geometry of the cylinder.

5.8.1 The frequency domain

The theory associated with the frequency domain solution was re-
viewed in Sections 5.3 and 5.4. The results obtajned for the
hydrodynamic coefficients have been compared with the results
obtained by Yeung (1981) and, as far as the resolution of the
graphs of Yeung allow comparison, they are in full agreement.
The hydrodynamic coefficients associated with the cylinder de-
fined by Figure 5.11 are presented below, non-dimensionalised
according to Section 5.3.
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Figure 5.12
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The hydrodynamic coefficients for the cylinder de-
fined in Figure 5.11. The coefficients have been
non-dimensionalised according to Section 5.3.
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The wave exciting force obtained from Eqs (5.53a-c) has been com-
pared with the results of Garret (1970) who solved the diffrac-
tion problem. Again, as far as the resolution of Garret's graphs
allow comparison, the results are in full agreement. The ampli-
tudes and the phases associated with the cylinder defined by
Figure 5.11 are presented below.

F4rN [ x1 I VisN
271 Ttpgéz 31 Eyq
i1 21
Mea Mea
0 ) f :‘1} i ‘ 4 >
0 1 2 3 o] i 2 3
i. 1.0%3 €3
0. 0.51
0.08 0.25 0.50 0.75
€
o RIS 2: S
Moa
21 -1 1
Mepad
0 : N -2 1

Figure 5.13 The wave exciting force for the cylinder defined by
Figure 5.11 expressed in terms of amplitudes and
phases.



81

It should be emphazised that Garret took the option of plotting
the phases as continuous curves rather than by plotting them in
the interval (-w,n). Then the information of half a period get
lost. For example the phases associated with the horizontal force
and the torque are not always identical but could differ by

180 degrees.

As an additional reliability check, the frequency domain results
have been compared with corresponding results from the computer
program WADIF (NV1459), a program based on a Greens function
formulation and described by Faltinsen and Michelsen (1975). The
results, supplied by Gotaverken Arendal AB, have been calculated
for a cylinder approximated by rectangular elements, where the
diagonal D of each element fulfilled the requirement D<Lmin/7’
where Lmi is the shortest wave-length of the incident waves. The
radius of the cylinder is 50 m, the depth of submergence 25 m,
and the water depth 100 m.
Tables 5.2-5.3. The dimensionalisation factors,
Table 5.1, are those of WADIF with a characteristic length of
100 m. When multiplied by the non-dimensional values in Tables

The comparison is shown below in

presented in

5.2 and 5.3 they give the corresponding values expressed in SI-

units.

Table 5.1 Dimensionalisation factors associated with the
Tables 5.2-5.3.

i 3 355 bij x5

1 1 0.1964-10° 0.6150-10° 0.1926-10°

3 3 0.1964-10° 0.6150-10° 0.1926.10°

5 5 0.1964.10%3 0.6150-1012 0.1926.10%°

5 1 0.1964.10%! 0.6150.1010 -

The frequency range covered in the tables below corresponds to
wave lengths in the interval 100-700 meters. The comparison shows
satisfactory agreement. In Table 5.3 it can be noted that the
phase angles associated with the horizontal force and the torque
are either equal or they differ by 180 degrees.
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5.8.2 The time domain

In the present section a time simulation of the dynamic behaviour
of the cylinder defined in Figure 5.11 is presented. The cylinder
is tethered with a group of steel tendons running from the center
of the bottom of the cylinder to the sea bed. In the simulation
the cylinder is exposed to a constant horisontal force and a
force due to irregular waves. The constant force roughly simu-
lates contributions from wind, currents and drift forces. A time
realisation of the wave exciting force is calculated using Eg.
(5.57) in which a Pierson-Moskowitz wave energy spectrum has been
chosen. The Pierson-Moskowitz spectrum describes the sea as fully
developed and is determined by one parameter, the wind speed,
while the fetch and the duration are assumed not to limit the
development of the waves. As an alterantive to the wind speed the
significant wave height, Hs’ can be used as a parameter, see for
example Chakrabarti (1980).

The retardation functions associated with the cylinder in Figure
5.11 were calculated using the numerical formulation described in
Section 5.7.1. The results are shown in Figure 5.14.
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Figure 5.14
in Figure 5.11.

The retardation functions for the cylinder defined

Below follow input data and results for a time simulation. The

results include environmental forces, motions and tension in the

steel tendons. The environmental force in surge consists of both

the force due to irregular waves and the constant horizontal
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force. Analogously, in pitch the environmental force includes the
force due to irregular waves and the moment caused by the con-
stant horizontal force. The environmental forces were applied
Tinearly increasing from zero to full value in the interval t=0
to t=50 seconds. The numerical scheme defined in Section 5.7.2
was used in order to solve the equations of motion in the time

domain.

Input data for time simulation:

Mass of cylinder m = 110.3-106 kg
Displacement ¥y o= 125,6-103 m3
z-coordinate for the center of gravity 2o = -60.0 m
Pitch radius of gyration rp = 80.0m
Location of fairlead for the group of

tendons (x,y,z) = (0.,0.,-100)
Cross sectional area of group of tendons Awr = 1.4 m2
Modulus of elasticity E = 210 GPa
Initial Yength of tendons Lo = 200 m
Total pre-tension TD = 150.0 MN
Pierson-Moskowitz wave energy spectrum

Significant wave height HS =20.0m

Frequency spacing used in spectrum Aw = 0.02 rad/s
Constant horizontal force FH = 5,0 MN
z-coordinate of the point where FH is

applied zy, = -10.0 m

Time step At = 0.3 s
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Figure 5.15 Horizontal environmental force, fl(t), and motion,

xl(t).
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Figure 5.16  Vertical environmental force, f (t) and motion,

x(t).
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Figure 5.17  Environmental moment, f5(t), and motion, x5(t).
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Figure 5.18 Total tension of the steel tendons.

From the simulations above it can be seen that the tethered cyl-
inder is in static equilibrium with the constant horizontal force
after it has translated in the positive x-direction and negative
z-direction and rotated in a positive angle about the y-axis. A
return period of the time series can be identified. The return
period is equal to the longest period of the terms in Eq. (5.57)
which is given by T=2w/Aw=21/0.022314 seconds.
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5.9 Comments

In Chapter 5 the solution associated with a vertical cylinder
floating in water of finite depth was presented. In order to
solve the retardation function the potential damping had to be
known for a range of frequencies in which the potential damping
had a significant value. Since in Section 5.3 a fast analytical
method was used the potential damping could easily be determined
for higher frequencies. When solving the problem for a structure
with more complex geometry a numerical technique such as the
sink-source technique has to be applied. Then the surface of the
structure is divided into a mesh of elements, where the number of
elements determines the required amount of processing time. For
higher frequencies the size of the elements has to be small in
order to maintain the accuracy. Consequently, when using a nu-
merical technique it is important either to find a simplified
expression valid in the high frequency region or to use a proper
extrapolation technique. It can be noted that van Oortmerssen
(1976) has given asymptotic expressions for the potential damping
for a ship and Jefferys (1983) has discussed a technique for
interpolation and extrapolation of the hydrodynamic coefficients.

In Section 5.8.2 the time simulations were performed using some
rough estimates of environmental forces. The equations of motion
in the time domain allow analysis of responses caused by arbit-
rarily time varying forces. Thus, for example, slowly varying
drift forces, dynamic effects from the mooring system or any
other force can be included. This, of course, assumes that a
reliable time realisation of the force can be obtained,
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LIST OF SYMBOLS

SI-units are used throughout the text. It has been my aim to use
notations and symbols as consistently as possible. In Section
5.3, however, the notation of Yeung (1981) has been used for the
more major parameters.

An arrow underneath the symbol 1is used to indicate a vector
quantity. Similarly, a line is used to indicate column matrices
and two lines to indicate quadratic matrices. A circumflex placed
over a symbol indicates an amplitude value, e.g. & is the ampli-
tude of the fluid velocity.

a = a/h non-dimensional radius of cylinder

a added mass matrix

a constant added mass coefficient defined by (4.43)

335 element of a

aij non-dimensionalised added mass coefficient (Chapter 5)

alw) added mass coefficient

Aw waterline area

Ak defined by (5.17)

Ak complex conjugate of Ak

AE defined by (5.18), (5.24) and (5.31)

Aw) = ¢ - oF(n+ alv)

b damping matrix

bij element of b

Eij dimensional value of the damping coefficient (Chapter 5)

b{w) damping coefficient

B(w) = wg(w)

c hydrostatic coefficient

c hydrostatic matrix

<, Fourier coefficients associated with the time realisa-
tion of a seastate from a wave energy spectrum

€y defined by (5.73)

Chk defined by (5.14)

C drag coefficient

CI inertia coefficient

Cm added mass coefficient

d = d/h
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distance from the sea bottom to the bottom of the cylin-
der

characteristic dimension of structure

defined by (5.55)

substantial derivative

defined by (5.13)

unit matrix defined by AE=A

defined by (5.33)

time dependent force

external force at the n-th time step

generalised force vector

hydrodynamic reaction force

wave exciting force

Fourier transform of f(t)

x-component of the reaction force due to the mooring
system

y-component of the reaction force due to the mooring
system

z-component of the reaction force due to the mooring
system

amplitude of the wave exciting force in the i-th mode
acceleration due to gravity

defined by (5.13)

water depth

=1 non-dimensional water depth (Chapter 5)

water depth (Chapter 5)

wave height

Hankel function of first kind and zero order

Hankel function of first kind and first order

-(-1*

unit vector along the x-axis

modified Bessel function of first kind and zero order
modified Bessel function of first kind and first order
moment of inertia of the structure

moment of inertia of the structure

products of inertia of the structure

imaginary part of the complex quantity inside the braces
unit vector along the y-axis

moment of inertia of Aw

product of inertia of AW
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retardation function matrix

retardation function of the n-th time step
unit vector along the z-axis

=0T/D the Keulegan-Carpenter number

modified Bessel function of second kind and zero order
modified Bessel function of second kind and first order

Fourier transform of k(t)

wave length

length of the i-th wire rope

initial length of the i-th wire rope
angular momentum

mass of the structure

generalised mass matrix

eigenvalues defined by (5.11)

wave number

reaction moment about the x-axis due to the mooring

system

reaction moment about the y-axis due to the mooring

system

reaction moment about the z-axis due to the mooring

system

=0t

moment vector

generalised normal vector

physical normal vector

number of points per cycle of the function cos wt
normalisation factor associated with eigenfunctions
earth-fixed coordinate system

structure-fixed coordinate system

coordinate system associated with the i-th wire rope
pressure of the fluid

impulse response function (velocity)

linear momentum

principle value

defined by (5.50) and evaluated in (5.52)

defined by (5.51) and evaluated in (5.53)

polar coordinate

pitch radius of gyration

roll radius of gyration

yaw radius of gyration
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impulse response function (motion)

vector in the Oxyz system

vector in the Oxyz system

translation of the structure fixed coordinate system
the Reynolds number

real part of the complex quantity inside the braces

k-th term of the radial function associated with an
eigenvalue problem

= B8,
transformation matrix associated with a rotation about

R, transformation matrix

the x-axis

transformation matrix associated with a rotation about
the y-axis

transformation matrix associated with a rotation about
the z-axis

complex frequency response function

cosine frequency response function

sine frequency response function

surface of the structure below the still water level
control surface at infinite distance from the structure
wave energy spectrum

defined by (5.15)

surface enclosing the volume v

time

period

magnitude of the reaction force of the i-th wire rope
pretension of the i-th wire rope

additional reaction force of the i-th wire rope
x=-component of the fluid velocity

y-component of the fluid velocity

z-component of the fluid velocity

volume enclosed by N

group velocity of waves

displaced volume

motion of structure

generalised motion vector

x-coordinate of the center of buoyancy

x-coorcinate of the center of gravity of Aw

motion vector at the n-th time step

x-coordinate of the point to which the moments are

referred
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Fourier transform of x(t)

complex amplitude of the wave exciting force due to a
wave of unit amplitude

real amplitude of Xi

y-coordinate of the center of buoyancy

y-coordinate of the center of gravity of Aw
y-coordinate of the point to which the moment s
referred

z-coordinate at the center of buoyancy

z-coordinate of the point to which the moment s
referred

k-th term of the vertical function associated with an
eigenvalue problem

angle of rotation about the x-axis

angle defined by (5.64)

Fourier coefficients

defined by (5.6), (5.23) and (5.30)

angle of rotation about the y-axis

angle of the incident wave

angle defined by (5.64)

angle of rotation about the z-axis

angle defined by (5.64)

time step

hydrostatic reaction force

extension of the i-th wire rope

additional reaction force of the i-th wire rope
frequency step

frequency step associated with the evaluation of cos wt
phase angle between the incident wave and the wave ex-
citing force

elevation of the free water surface

eigenvalues

polar coordinate

phase angle associated with creation of an irregular sea
state from a wave energy spectrum

variable of integration of time

fluid density

space dependent velocity potential

velocity potential of the radiated wave due to motion in
mode i
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velocity potential of the incident wave

velocity potential of the diffracted and scattered wave
velocity potential of the interior region

velocity potential of the exterior region

space and time dependent velocity potential

velocity potential of the radiated wave due to motion in
mode i

velocity potential of the incident wave

velocity potential of the radiated wave

velocity potential of the diffracted and scattered wave
space dependent velocity potential associated with an
impulsive displacement

angular frequency

angular velocity vector

arbitrarily chosen angular frequency

del-operator

one dimensional integral

two dimensional integral

three dimensional integral
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