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Nonlinear microwave imaging heavily relies on an accurate numerical electromagnetic model of the antenna system.The model is
used to simulate scattering data that is compared to its measured counterpart in order to reconstruct the image. In this paper an
antenna system immersed in water is used to image different canonical objects in order to investigate the implication of modeling
errors on the final reconstruction using a time domain-based iterative inverse reconstruction algorithm and three-dimensional
FDTD modeling. With the test objects immersed in a background of air and tap water, respectively, we have studied the impact
of antenna modeling errors, errors in the modeling of the background media, and made a comparison with a two-dimensional
version of the algorithm. In conclusion even small modeling errors in the antennas can significantly alter the reconstructed image.
Since the image reconstruction procedure is highly nonlinear general conclusions are very difficult to make. In our case it means
that with the antenna system immersed in water and using our present FDTD-based electromagnetic model the imaging results
are improved if refraining from modeling the water-wall-air interface and instead just use a homogeneous background of water in
the model.

1. Introduction

Microwave imaging has received significant attention in the
research community during the last couple of decades as a
modality that potentially could improve the diagnostics of,
for example, breast cancer tumors. Recent progress in the
field has been reviewed in [1] and [2]. Today the research has
come to the stage where early clinical trials have been and
are being performed, [3–6].The results from the clinical work
are promising, but further development of the measurement
systems as well as of the image reconstruction algorithms
remains before the technique can be considered for daily
clinical practice.

When performing microwave tomography the aim is to
quantitatively reconstruct the dielectric parameters in the
region under test. This involves solving a computationally
challenging nonlinear and ill-posed optimization problem.

The image reconstruction algorithm utilizes measured data
that are compared against a corresponding numerical sim-
ulation of the system, and the dielectric profile is iteratively
updated based on the difference between the simulation and
the measurement. Even though this comparison requires a
realistic numerical model for the best accuracy, most of the
publishedworks have used 2Dmodels togetherwith a calibra-
tion procedure to enable the comparison with experimental
data. Largely, this can be attributed to a significant increase
in the computational load when moving from 2D to three-
dimensional (3D) modeling. However the electromagnetic
scattering and consequently the reconstruction problems
are inherently a 3D problem. Furthermore it is usually not
possible to create realistic antenna models in 2D, except for
line source antennas. By using a 2Dmodel to solve the inverse
scattering problem inaccuracies will therefore inevitably be
introduced in the reconstructed image. This problem has
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been identified by the research community, and, with the
ever increasing computational resources available these days,
the focus is now more and more turning to solving the full
3D problem. Recent works using 3D algorithm have been
reported in [7–11].

In this paper we show several examples where images
have been reconstructed from scattering data in order to
discuss and illustrate the need for accurate modeling of the
antenna system and its geometry to enable robust image
reconstruction. The aim is also to get an understanding of
what accuracy we could realistically expect in the recon-
struction and how it is affected by various modeling errors.
Examples of targets placed in a surrounding of air are studied,
and in an effort to approach more biologically relevant
settings we have studied examples where the antenna system
was entirely immersed in water. The examples studied in this
paper are entirely based on experimental measurement data.
Our reconstruction algorithm, described in [12], is based on
FDTDmodeling to solve the forward scattering problem and
the adjoint Maxwell’s equations to compute gradients used in
an iterative optimization procedure.

The paper is organized as follows. In Section 2, the theo-
retical background of our work is described including FDTD
methods with theminimization procedure.The experimental
prototype is described in Section 3. In Section 4, the forward
modeling is investigated, and the corresponding imaging
results originating from experimental data are presented and
discussed. And finally the conclusions are drawn in Section 5.

2. Theoretical Background

An iterative electromagnetic time-domain inversion algo-
rithm has been used and applied in estimating the dielectric
parameters of different test objects. The foundation of the
algorithm is an electromagnetic solver based on the FDTD
method, [13], is used to numerically model the antennas and
to simulate the field propagation inside the system.The same
solver is used to compute the adjointMaxwell problemwhich
is required for the gradient computation in the optimization
algorithm. The adjoint field is used extensively elsewhere in
various types of inverse problems see, for example, [14, 15].
The algoithm used here is described in [12]. A correspoding
2D version has also been described in detail in [16, 17].

Our basic idea for solving the inverse electromagnetic
problem is to use scattering measurements of wideband
pulses for several transmitter/receiver combinations sur-
rounding a region of interest and thereafter to compare the
measured data in the time domain with a corresponding
numerical simulation of the system. In the first iteration one
starts with comparing the measurement with a simulation of
an empty antenna system. Thus there is a difference between
the measured and the simulated data, and this difference is
used to update the dielectric properties inside the region of
interest. In this way the dielectric distribution is iteratively
refined until the desired agreement between the simulated
and measured signals has been achieved. The underlying
assumption for this approach is that as the difference between

the simulated and measured data is decreasing, the recon-
struction is also converging. In other words, the aim of
the reconstruction procedure is to minimize the objective
functional, 𝐹, defined as

𝐹 (𝜖,𝜎) = ∫
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where E
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(𝜖, 𝜎, 𝑡) is the calculated field from the computa-

tional model and E𝑚
𝑚𝑛
(𝑡) is the corresponding measured data

when antenna number 𝑚 has been used as transmitter and
antenna 𝑛 as receiver.𝑀 is the number of transmitters, 𝑁 is
the number of receivers, and 𝑇 is the duration of the pulse. In
a 2DTM-mode formulation only one spatial field component
is used in (1), but for the 3D formulation it is necessary to
include all three spatial components.

In search for the minimum of the objective functional it
is differentiated with respect to the dielectric components by
a first order perturbation analysis. In this way the Fréchet
derivatives with respect to the conductivity and the permit-
tivity of the functional are used to define gradients, in every
grid point, inside the region. The gradients are used with
the conjugate-gradient method together with the successive
parabolic interpolation line search to minimize the objective
functional. The reconstruction procedure is then iterated
with the objective functional as a measure to monitor the
convergence and to determine when the reconstruction is
completed. Usually the minimization procedure converges
within 10–20 iterations.

In the 2D simulations it is not possible to construct a
realistic antenna model, but the transmitter is only modeled
with a hard point source, in which the field strength is
prescribed at the source position. At the receiver locations
the field values are sampled directly from the corresponding
E-field component in the grid. By contrast, the 3D algorithm
allows for realistic antenna models. We are using the thin-
wire approximation to model the monopoles, [18], and the
RVS with 50Ω impedance to model the feed at the transmit-
ting, receiving, and inactive antennas, [19, 20]. Furthermore
the ground plane in our experimental system is modeled as
a perfect electric conductor; that is, the corresponding field
components in the FDTD grid are set to zero. The walls
of the tank have dielectric properties close to those of air
and are therefore neglected in the numerical model. Outside
the antenna system the computational grid is truncated by
the CPML absorbing boundary condition implying that the
region outside the antenna array is treated as open empty
space. In the case where the tank is filled with a liquid it
has been modeled as a cubic volume with side lengths equal
to the inner measures of the tank and a height equal to the
level of the liquid. Even in this case we have not modeled the
tankmaterial but instead treated everything outside as empty
space and terminated the computation domain with CPML.
A more detailed discussion and validation of the FDTD
antenna arraymodel with a comparison against experimental
data measured with the antennas in air can be found in our
previous work [21].

As alreadymentioned the solution of the inverse problem
heavily relies on the comparison between the measured and



International Journal of Biomedical Imaging 3

the simulated scattering data. To compensate for systematic
modeling errors a calibration procedure of themeasured data
is used such that

𝐸
𝑚

cal (𝑓) =
𝑆
𝑚

scat (𝑓)

𝑆
𝑚

ref (𝑓)
𝐸
𝑠

ref (𝑓) . (2)

𝑆
𝑚

scat is the measured reflection and transmission coefficients
of the test object, 𝑆𝑚ref(𝑓) is a reference measurement of
an empty system, and 𝐸𝑠ref(𝑓) is a corresponding reference
simulation. Finally 𝐸𝑚cal(𝑓) is the calibrated data used for
comparing the FDTD simulations in the reconstruction
process. This calibration procedure has been applied to the
measured data for both the 2D and the 3D imaging examples
in this paper.

In our experimental prototype the antennas are posi-
tioned in a plane. The possibility to accurately reconstruct
out-of-plane objects is thus very limited: to do so it would
be necessary also to make additional measurements outside
the antenna plane. To allow imaging with the 3D algorithm
of a test object with finite height, we implemented a heuristic
pseudo-3D technique that assumed constant properties of the
test object as a function of height, 𝑧, above the ground plane.
The gradients computed in the grid cell plane immediately
above the ground plane were copied upwards to the height
of the test object. This method needs a priori information
about the height of the reconstructed target. Since the
reconstruction problem is both nonlinear and ill-posed, the
resulting image strongly depends on the adopted regulariza-
tion technique, the initialization of the reconstruction, and
also the spectral content of the pulse. Here we used the same
techniques as described in [12] to overcome these challenges.

3. Experimental Setup

Themeasurement strategy is to measure the multistatic scat-
tering matrix at a large number of frequencies and to use that
data to generate a time-domain pulse via an inverse Fourier
transformation. In the experimental system 20 monopole
antennas, each of length 19.5mm and diameter 0.8mm, are
arranged evenly distributed on a circle with radius 100mm.
The circle of antennas is centered on a square ground plane
with side length 250mm mounted at the bottom of a tank,
made of 1 cm thick perspex sheets with inner measures 350 ×
350mm2. To measure the multistatic matrix each antenna is
operated as a transmitter as well as a receiver.Themicrowave
measurements aremadewith network analyzerAgilent E8362
B PNA which is a two-port network analyzer. To fully
control the experiment a 2:32 switch multiplexer module,
Cytec CXM/128-S-W, is used to automatically connect and
disconnect the different combinations of antenna pairs to the
network analyzer. Figure 1 shows a photograph of the antenna
array.

4. Results and Discussion

In our previous publication, [21], a detailed studywasmade of
the FDTDmodeling compared to measured data of an empty
system, and the accuracy of the modeling was verified. One

(a) The measurement system

(b) The antenna array

Figure 1: (a)The system consists of a VNA, a switch, and an antenna
array. (b) Closeup of the antenna array placed inside a tank. The
monopoles are seen mounted in a circle over the ground plane. The
entire antenna system is mounted inside a tank made of perspex
sheets.

of the aims of the present paper is to study how errors in
the antenna model, for example, the monopole length, of the
FDTD model impact the reconstruction. To do so we study
the antenna modeling and image reconstruction both when
the tank is empty and when it is filled with water. The reason
why it is interesting to study the antenna system immersed in
water is that water is a good model for the matching medium
that has to be used when applying microwave tomography to
imaging the interior of the human body. Without a matching
medium the majority of the irradiated energy would be
reflected from the skin, thereby never penetrating into the
body and producing useful data.

To enable a quantitative evaluation of the accuracy of the
reconstructed images we have adopted the relative squared
error of the image, and for the permittivity image it is
defined in (3), and analogously for the conductivity image.
The integration of the relative squared error is made over the
reconstruction domainΩ where 𝑟 < 𝑅rd,

𝛿 =

∫
Ω


𝜖original − 𝜖reconstructed



2

𝑑𝑆

∫
Ω


𝜖original − 𝜖background



2

𝑑𝑆

. (3)

4.1. Reconstruction of a Single Dielectric Target in Air. With
the purpose to study how the reconstructed image is affected
by errors in the length of the monopole antenna model, we
first studied a single dielectric target in an otherwise empty
antenna array. The imaging situation was the same as in our
previous publication, [12], that is, a single target made of
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sunflower oil surrounded by air. The dielectric properties of
the target were 𝜖

𝑟
= 2.7 and 𝜎 = 0.015 S/m at 2.3 GHz. It

was shaped like a cylinder with diameter 56mm and height
20mm and was placed at 14mm offset in the y direction from
the center of the antenna array. It had constant properties
along its height in the z direction, and thus it is only necessary
to show a cross-sectional slice of the dielectric profile. The
FDTD model data is summarized in Table 1. A cylindrical
volume of height 20mm and radius 𝑅rd = 90mm centered
in the antenna array was used as the reconstruction domain
together with the pseudo-3D approach described earlier. To
investigate the accuracy of the reconstructed image with
respect to the modeling, different lengths of the monopoles
were used in the numerical electromagnetic model. The
length of the monopoles in the antenna system is 19.5mm,
but images were reconstructed modeling the length as 16, 18,
20, 22, and 24mm, respectively. This resulted in a change
in the computed resonance frequency and the associated
signal strength. The reconstruction results together with an
illustration of the original dielectric distribution are shown in
Figure 2. The results obtained with 20mm monopole length
in Figures 2(d) and 2(j) are identical to what was published
earlier [12] and represent a scenario where the numerical
modeling at the given grid size is as close as possible to the
experimental system. As a measure of reconstruction accu-
racy the relative error as defined in (3) has been calculated
for each reconstructed image, and it is shown in the figure
below the respective reconstruction.The reconstructed object
permittivities are on average about 𝜖

𝑟
= 2.1, 2.2, 2.4, 2.7, 3.0,

respectively, for the variousmonopole lengths.Theminimum
value is 12.5% smaller and the maximum value is 25% larger
than what was obtained for the 20mmmonopole length.The
recontructions of the conductivity are, however, not accurate,
but it is clearly evident that the artifacts increase the more the
monopole lengths deviate from the real value.The reasonwhy
the reconstruction is less accurate is that the difference in the
imaginary part of the complex dielectric permittivity between
the object and background is only a fraction in comparison
with the difference in the real part. Reconstruction errors in
the real part therefore overwhelm attempts to reconstruct the
imaginary part, and consequently the accuracy is reduced.
Compared to the original dielectric profile, however, themost
accurate reconstruction of the permittivity is obtained for the
18mmmonopole. This reflects the deviaton of half a grid cell
between the 20mm antenna model and the precise length of
the monopole with the real length being 19.5mm. But also
there is a tolerance in the cutting of the monopoles of about
0.5mm. Numerical uncertainties in the FDTD solution and
errors in the dielectric measurement of the sunflower oil are
other reasons.

In Figure 3 the functional values of the reconstructions
have been plotted. In all cases the starting values have been
normalized to one. Firstly these plots illustrate the conver-
gence of the reconstruction process, but it also shows that the
lowest functional value was obtained for the reconstruction
with the 20mm monopole. A nice illustration of the ill-
posedness of the problem is that the difference between
the 20mm and the 22mm case is on the verge of being
negligible even if the difference in the reconstructed image

Table 1: Specifications of the 3D FDTD modeling and reconstruc-
tion parameters for the sun flower oil target in an otherwise empty
antenna system.

FDTD grid 149 × 149 × 38
Grid size length 2mm
CPML 7 layers
Pulse center frequency 2.3 GHz
Pulse FWHM bandwidth 2.3 GHz
Water level No water in tank
Background properties 𝜖

𝑟
= 1.0, 𝜎 = 0.0 S/m

Antenna model Thin wire
Feed model 50Ω RVS

is certainly not. Another conclusion from this result is that
a model error in the antenna length of only one grid cell
resulted in a considerable change in the reconstructed image.
In summary these results clearly show the need of using an
accurate antenna length in order to maximize the accuracy
of the reconstructed image.

4.2. Evaluation of the Forward Simulation with the Antenna
Array Immersed in Water. In this section we study the
situation when the antenna array tank was filled with
tap water, having dielectric properties 𝜖

𝑟
= 77.5, 𝜎 =

0.05 S/m at 0.5GHz. We also present a comparison between
measured data and corresponding computed reflection and
transmission coefficients. By replacing the air in the tank
with water we further approach biologically relevant imaging
scenarios. With the aim to study how modeling errors affect
the reconstructed images we first studied how the forward
modeling of the antenna system was affected by different
antenna modeling errors.

4.2.1. Full 3D Model. The experimental situation was such
that the tank was filled with ordinary tap water up to a
level of 50mm above the ground plane. In the FDTD model
measured dielectric values of the water at 0.5 GHz were used
as this was in the center of the frequency spectrum used
for the imaging. In the FDTD modeling care was also taken
to represent the physical reality as accurately as possible,
and the corresponding settings are summarized in Table 2.
Modeling errors were introduced by varying some of the
parameters in this table. Unfortunately it is not viable to
show scattering data for all antenna combinations, but instead
only a few representative cases are shown. Measured and
simulated reflection and transmission coefficients between
two adjacent antennas using the model parameters from
Table 2 are shown in Figure 4. As can be seen, the agreement
between the calculated and the measured data is very close.
The calculated resonant frequency is 0.70GHz compared
with the measured resonant frequency of 0.67GHz. There
are ripples with approximately the same magnitude both
in calculated and measured data and where some ripples
agree with each other and some do not. The details about
these ripples are further discussed in the following sections.
The measured transmission coefficients are on average below
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Figure 2: Reconstructed images of the sunflower oil target using monopole lengths 16, 18, 20, 22, and 24mm, respectively. Both permittivity
and conductivity images are shown, and in (a) and (g) the original dielectric distribution has been illustrated.The original target had 𝜖

𝑟
= 2.7

and 𝜎 = 0.015 S/m at 2.3 GHz and had diameter 56mm.

−15 dB compared to the calculated transmission coefficient
below −12 dB.

4.2.2. Hard Source FeedModel. Due to its simplicity, the hard
source model is very appealing to use in FDTD simulations.
However, it is not as accurate as the RVS when modeling

the monopole feed. To quantify the errors associated with
a hard source we investigate its applicability to model the
monopole feed. In the first example, we replaced the RVS
feed model with a hard source. In the second example, we
used the hard source and completely removed the modeling
of the rest of the monopole. The use of a hard source also
implied that we could not use the transmitting antenna in the
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Figure 3: Normalized functional values as a function of the iteration
number for the reconstructions of the sunflower target.

Table 2: Specifications of the 3D FDTDmodeling when the antenna
system was filled with water.

FDTD grid 179 × 179 × 35
Grid size length 2mm
CPML 7 layers
Pulse center frequency 0.5GHz
Pulse FWHM bandwidth 0.5GHz
Water level in tank 50mm
Water properties 𝜖

𝑟
= 77.5, 𝜎 = 0.05 S/m

Background properties 𝜖
𝑟
= 1.0, 𝜎 = 0.0 S/m

Antenna model Thin wire
Feed model 50Ω RVS

gradient computation as we do not calculate the reflection
coefficient with the hard source model. Calculation of the
reflection coefficient requires knowledge of the reflected
wave, but since the E-field is directly set in the source cell,
no update of the field will be made due to reflected waves.
Instead we used only transmission data for the following
reconstructions. As an illustration of the impact of the hard
source on the simulated scattering data 𝑆

21
for adjacent

antennas has been plotted in Figure 5. For convenience the
same measured and simulated data for the full 3D model as
in Figure 4 has also been replotted in the same graph. As can
be seen, in the first example, the RVS feed model improves
the transmission coefficient data over the hard source model,
and, in the second example, the system becomes very lossy
due to the inaccuratemodel, and therefore the deviation from
the measured data increases.

4.2.3. Open Water Model. Solving the reconstruction prob-
lem is a computationally very demanding problem, and one
strategy to reduce the simulation time is to reduce the size
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Figure 4: Comparison between measured and simulated reflection
(𝑆
11
) and transmission (𝑆

21
) coefficients over the frequency range of

interest for the imaging examples.

of the computational domain.Therefore we have investigated
the need for modeling the exact volume of the water in the
tank and instead modeled the water as a background directly
terminated by CPML. The CPML is absorbing any outgoing
wave and the result inside the computation domain is the
same as if the simulation was made in an infinitely large
space. In this FDTD simulation the entire computational
grid was therefore assigned the properties of water, and as
there were no need to model the water-air interface in the
computational domain, the CPML could be moved closer to
the antennas and thus the computational domain reduced. In
Figure 6 the corresponding reflection, 𝑆

11
, and transmission,

𝑆
21
, coefficients have been plotted. For comparison the figures

also contain the measured data and the data simulated with
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Figure 5: Measurement and simulations of the transmission coeffi-
cients 𝑆

21
between two adjacent antennas. For ease of comparison

the transmission data from Figure 4 has been kept and plotted
together with the case when (1) The RVS has been replaced by a
hard source and (2) the wire model has been removed and only a
hard source has been used as transmitter.

the full 3D FDTD model from Figure 4. The 𝑆
11

data show
how the computed resonance frequency has increased about
0.5GHz, and we can also see how the fast varying ripple due
to the water-air interface reflections has vanished. Similar
changes can also be seen in the 𝑆

21
data.

4.2.4. 2D Model. We have also made a comparison with a
2D computational model.The reason is that the computation
time is significantly reduced compared to the 3D case.
Therefore a good understanding is desired of when the 2D
approximation is applicable for imaging. In this section we
show computed transmission data obtained with a 2Dmodel,
and also here two examples are considered. The first is the
modeling of the volume of water in the tank as a 350×350mm
square in the 2D FDTD grid. In Table 3 the corresponding
FDTD model parameters are summarized. In analogy with
the 3D open water background model the second example
was a 2D homogeneous background of water terminatedwith
CPML. In Figure 7 transmission data is plotted for these
two cases and again the measured data and the full 3D
model data are shown. For the simulation data with the 2D
square tank model the deviation from the measured data
is of similar magnitude as for the case as with the hard
source feed in Figure 5, at least around the center frequency
0.5GHz. However, the amplitude of the ripple is larger and
the deviation ismuchmore significant.The fast varying ripple
is clearly seen and is primarily due to the reflections from
the water-air interface in the model. For the simulation in the
homogeneous background this ripple is vanished, but in this
case the computed data do not showmuch resemblance at all
to the measured data.
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Figure 6: (a) Reflection coefficients with the antennas modeled in
an infinite water background. For comparison the originalmeasured
and simulated data is shown. (b) Corresponding transmission
coefficients for two adjacent antennas.

4.3. Reconstruction of Targets Immersed in Water. In the
following section, we show the reconstructed images from
experimental scattering data. Two different target models
were used and reconstructed using the various antenna
array models discussed above. The aim was to investigate
the impact on the reconstruction caused by the different
modeling introduced in Section 4.2.

We have performed image reconstruction of targets
immersed into ordinary tap water. In comparison to air a
FDTD simulation of water ismore time consuming due to the
higher permittivity and the corresponding need for shorter
time stepping in the FDTD algorithm. To save some com-
putation time the reconstructions were therefore made using
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Table 3: Specifications of the 2D FDTDmodeling when the antenna
system was filled with water.

FDTD grid 179 × 179
Grid size length 2mm
CPML 7 layers
Pulse center frequency 0.5GHz
Pulse FWHM bandwidth 0.5GHz
Water properties 𝜖

𝑟
= 77.5, 𝜎 = 0.05 S/m

Background properties 𝜖
𝑟
= 1.0, 𝜎 = 0.0 S/m

Transmitting antenna model Hard source
Receiving antenna model Field is sampled

0.2 0.4 0.6 0.8 1
Frequency (GHz)
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Simulation, full 3D model

2D simulation with tank model
2D simulation, open water model
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Figure 7: Transmission coefficients for the 2D FDTD model with
the tankmodel andwith the homogeneous background of water. For
ease of comparison both the measured data and the simulation with
the full 3D model are also shown.

a multigrid technique where 10 iterations where performed
on a (90 × 90 × 16) computational domain with grid size
length 4mm. The final reconstruction of the 10th iteration
was then taken as a starting point for 10 additional iterations
on a (179 × 179 × 31) domain with grid size length 2mm.
The electromagnetic pulse had center frequency 0.5GHz and
FWHM bandwidth 0.5GHz. The same pseudo-3D approach
as previously described was used in a reconstruction domain
of height 50mm and radius 𝑅rd = 80mm. Two different
targets were used in the reconstructions. The first was made
of a mixture of deionized water and ethanol resulting in
permittivity 𝜖

𝑟
= 57 and conductivity 𝜎 = 0.11 S/m at

the frequency 0.5GHz. The mixture was filled up to height
50mm in a thin-walled plastic cup with diameter 42mm
and immersed into the water for the measurement. The
second target was a plastic rod with permittivity 𝜖

𝑟
≈ 2.5,

conductivity 𝜎 ≈ 0 S/m, and diameter 15mm.

4.3.1. Full 3D Model. Two different scenarios were recon-
structed, the first with the center of the water/ethanol target

positioned 39mm from the center point of the antenna array.
In Figure 8 an illustration of the original target is shown
together with the reconstructed images.

The second scenario that was reconstructed included
both targets, the water/ethanol mixture and the plastic target,
and these results are shown in Figure 9. In both cases we see
that in the permittivity both size and position of the targets
have been accurately reconstructed.The relative error for this
second example with the two targets was computed to be
𝛿 = 0.42. In the conductivitywe can perhaps see an indication
of a target in the appropriate positions, but the image region
is also cluttered with other artifacts, and comparison with
the relative error is notmeaningful. Furthermore the absolute
values of the permittivity are not in total agreement with the
original values, especially not for the small plastic target.With
the same arguments as for the previous object in air where
the conductivity also was badly reconstructed, it is not to
expect anything else in this case. The difference between the
background and the target made of water/ethanol mixture is
about R{Δ𝜖∗

𝑟
} = 20 in the real part but for the imaginary

part only I{Δ𝜖∗
𝑟
} = 2. For the plastic rod the difference is

R{Δ𝜖∗
𝑟
} = 75 andI{Δ𝜖∗

𝑟
} = 2.

4.3.2. Hard Source Feed Model. To assess the question of how
the reconstructed image is affected by inaccuracies in the
forward modeling we have taken the example with the two
targets, the plastic rod, and the water/ethanol mixture and
performed reconstructions with distorted electromagnetic
models.

Using the two altered antenna models with hard source
feed new images of the original targets from Figures 9(a)
and 9(b) have been reconstructed and shown in Figure 10.
In (a) and (b) in this figure the RVS was replaced with
the hard source feed, and in (c) and (d) the model of the
monopole wire was completely removed and only the hard
source was used as transmitter model. The relative errors in
the permittivity imageswere computed to be 𝛿 = 0.54 and 𝛿 =
0.58, respectively. One can clearly see that, for the case where
only the hard source was used to model the transmitter, the
distortions of the reconstructed images are also the largest.
This also corresponds to the case where the S-parameter data
deviate the most from the measured data in Figure 5. How-
ever one should not believe that there exists a simple relation
between the deviation between the measured and simulated
data on one hand and the errors in the reconstructed images
on the other hand. It is instead a highly nonlinear relation
and a balance between the measurement, the reconstruction
algorithm, the regularization, themodeling accuracy, and the
calibration procedure. To summarize, so far the results shown
indicate that the accuracy of the reconstructed image is highly
influenced by the details in the antenna models and in the
propagation model. So far we have also modeled the volume
of water according to measurements of the level in the tank.

4.3.3. Open Water Model. We have investigated the need of
actually modeling the exact extent of the water volume in
the tank. For this experiment we used the RVS feed thin-
wire monopole model, and the algorithmic settings were
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Figure 8: (a and b) Original configuration of the water/ethanol target immersed in water. (c and d) Reconstructions using the 3D algorithm.

otherwise identical to the previous examples but with the
dielectric properties of water assigned to all the grid cells
in the computational domain which was then terminated
by seven layers of CPML. The reconstruction can be seen
in Figure 11. Interestingly the results are improved over the
reconstructions made with the tank model, and, for example,
the absolute values of the objects are better estimated with
the 3D algorithm. The improvement is confirmed by the
relative error which was calculated to be 𝛿 = 0.36 for
the permittivity image, a decrease of about 14% compared
to the reconstruction with the full 3D model in Figure 9.
These results might be a bit surprising and contradictory to
the idea that the better the forward model the better the
reconstruction. However, we do not believe that it is the case.
If we examine the scattering data in Figure 6 carefully, we
see that even if the data simulated with the numerical tank
model contains a similar ripple of the same magnitude as the
measured data, the agreement in the details is not perfect.
On average one can however approximately estimate the
modeling errors in the two cases to be of similarmagnitude in
comparison to the measured data. Even if we have carefully

created the model, the numerical grid is ultimately limiting
the resolution and causing simulation errors. A refined grid
should improve the modeling accuracy but that would also
imply that the problem size increases beyond what can be
practically handled by our computer cluster due to memory
and simulation time requirements. These results suggest that
we in this situation are better off by using the simpler
open water model and relying on the calibration to resolve
the remaining discrepancy between the simulated and the
measured data. This is not a result that is obvious to predict
but instead a result of the nonlinear property of the problem.
In practice the optimal numerical model would thus have
to be determined from case to case in different imaging
situations and with different imaging systems.

4.3.4. 2D Model. For comparison we have also performed
image reconstruction of the same targets using a 2D version
of the algorithm. The first reconstruction made with the
water tank modeled as a square of the single target as
shown in Figures 8(a) and 8(b), and the reconstructed images
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Figure 9: (a and b) Original configuration of the water/ethanol and plastic targets immersed in water. (c and d) Reconstructions using the
3D algorithm.

are shown in Figures 12(a) and 12(b). The corresponding
reconstruction of the scenario with two objects as shown
in Figures 9(a) and 9(b) is shown in Figures 12(c) and
12(d). In these reconstructions we hardly see any object at
all. Previous reconstructions made in air of sunflower oil
targets with the 2D algorithm published in [12] showed a
serious distortion of the size and dielectric values of the
targets but a qualitatively correct image could usually be
obtained. The reason for the distortion of the reconstructed
objects could be attributed to 2D approximation errors as the
targets only had the same height as the monopoles. It is a
bit surprising that the reconstructed images shown in this
paper of targets immersed in water hardly shows anything
at all as the electromagnetic waves now in fact should be
better confined inside the layer constituted by the water
and therefore better conforming to the 2D approximation.
Enclosure is provided by the ground plane on the bottom and
the impedance step in the water-air interface. However these
images are representative for our results showing that robust

image reconstruction is not possible to achieve in water using
this 2D algorithm. The situation can be somewhat improved
by employing the open water modeling also in 2D; that is, we
replace the square water tank model in the background of air
with a modeling of a homogeneous background of water to
simulate an open domain.The corresponding reconstruction
is plotted in Figure 13. In this reconstruction we clearly see
the two objects appearing, where the large object contains
a spurious hole and the dielectric values are not quite close
to the original values. Even if the situation is improved, this
reconstruction cannot be considered satisfactory. A similar
spurious hole in the reconstruction can be seen also in the
reconstructions from shortmonopole lengths in Figure 2 and
arises due to themodeling errors of the antenna. Furthermore
associated with every target object is an optimal spectral
content that will produce an optimal image [17], and holes
usually appear when the spectral content is moved towards
higher frequencies. With these two causes for the inaccuracy
in the image we have not been able to improve the outcome
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Figure 10: Reconstructions of the two target model from Figures 9(a) and 9(b). Here (a) and (b) show the reconstructed result when replacing
the RVS feed of the monopole with a hard source. In (c) and (d) the results when removing the wire model of the antenna and using only a
hard source as the transmitter model, and on the receiver side the field was directly sampled in the corresponding grid point.
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Figure 11: For an open space of water (a) and (b) show the dielectric distribution reconstructed with the 3D model.
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Figure 12: Reconstructed images using the 2Dmodel.The water tank was modeled as a square in a background medium consisting of air. (a)
and (b). Reconstruction of the original target from Figures 8(a), 8(b), 8(c), and 8(d). Reconstruction of the original target from Figures 9(a)
and 9(b).

any further by tuning the parameters in the reconstruction
algorithm.

5. Conclusion

We have shown successful reconstruction of single and
multiple targets immersed in water using a FDTD-based 3D
reconstruction algorithm. By investigating various imaging
scenarios we have also assessed the question of how the
accuracy in the numerical forward model affects the recon-
structed image. The results show that a realistic model of the
antennas is necessary to achieve robust and reliable imaging.
The same results also indicate that small modeling errors,
such as in the length of the monopole, can have a clearly
evident impact on the resulting image. For a simple antenna
such as a monopole the modeling is very simple, and it is not
difficult to produce a reasonably accurate numerical model
using the thin-wire approximation and the RVS. However

there is always an inherent limitation due to the finite grid
size, and, when moving to more advanced antennas, such
as patch antennas, modeling accuracy will become a more
challenging task. Accurate antenna modeling requires a fine
FDTD grid, but at the same time we must keep the grid as
coarse as possible to lower the simulation time and memory
requirement. Furthermore we have seen that when filling
the tank containing the antenna system with normal tap
water, the water-air interface causes significant reflections
that are clearly identified in the scattering data. Despite this
effect the accuracy of the reconstructed results is in fact
improved when we instead use an open water model. This
result shows that an apparent improvement in the antenna
modeling and the corresponding computed scattering data
is in fact not beneficial when it comes to imaging. One
possible explanation could be that when comparing different
models with similar modeling errors the nonlinearity of the
reconstruction problem makes it impossible to predict the
outcome. Instead the result will be strongly case dependent
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Figure 13: Reconstructed images using the open water 2Dmodel.Thewater tank wasmodeled as a homogeneous background of water where
the computation domain was terminated by CPML to model an open domain. (a) and (b) Reconstruction of the original target from Figures
9(a) and 9(b).

and to fully predict the result one would have to perform
detailed studies of the particular imaging scenario.
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