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Abstract
This thesis describes the development of an adjoint based optimization method.

The goal is to develop a robust method capable of handling multiple design variables,
whereas traditional methods have shown to be too costly for many design parameters.
The main application is for internal flow geometries within the automotive industry. The
advantage of using the adjoint method is that the simulation time becomes independent
of the number of design variables.

The continuous adjoint Navier-Stokes equations are presented and simplified for internal
flow applications. Contribution from the goal function enter only boundary conditions of
the simplified adjoint Navier-Stokes equations. A goal function to minimize total pressure
drop is implemented and used in the cases presented.

Two different optimization approaches using the adjoint method were applied. The
first one is based on surface sensitivities. The surface sensitivities give information about
how the objective function is affected by normal motion of the surface. The sensitivities
were coupled to a mesh morphing library in OpenFOAM which diffuses the motion of
the boundary nodes to the internal points of the mesh. This method was applied to an
inlet pipe with a Reynolds number of 1.9 · 105 based on the diameter at the inlet. The
resulting geometry gave a 6.5% decrease in the total pressure drop through the pipe.

In the second approach the sensitivities with respect to motion of the cell center
were derived from the Arbitrary-Lagrangian Eulerian formulation of the Navier-Stokes
equations. It was shown that the cell sensitivities can be calculated as a post processing
step using the results from the adjoint and the primal flow fields. The cell sensitivities
were compared to the surface sensitivities and the results show similar behavior for the
cells closest to the surface. A method to connect the cell sensitivities to the shape of the
geometry with different levels of smoothing is presented. Optimization was performed on
a laminar internal flow geometry using the cell sensitivities and applying two different
smoothing criteria.

Keywords: computational fluid dynamics, internal flow, optimization, sensitivities, contin-
uous adjoint method.
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Nomenclature

Latin symbols

A cell face area
I smoothing criteria for mesh motion
J goal function
L Lagrange function
~n outwards pointing unit normal vector to the surface
~R constraints in residual form
~s mesh motion
~u adjoint velocity
V cell volume
~v primal velocity
p primal pressure
q adjoint pressure

Greek symbols

~α design variable, mesh velocity in the ALE description
β surface normal displacement
δ variation
Ω domain
Γ boundary of a domain
γ adjoint mesh motion
λ Lagrange multiplier

Subscripts

n outwards pointing normal vector to the surface
t component of a vector tangential to n
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Thesis
This thesis consists of previously unpublished material in Part I and the following
appended paper:

Paper A
E. Helgason and S. Krajnović. Aerodynamic Shape Optimization
of a Pipe using the Adjoint Method. ASME 2012 International
Mechanical Engineering Congress & Exposition, 9-15 November
(2012)
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1 Introduction
Internal flow is commonly encountered in our every day life. The hot and cold water in
our houses is distributed through pipes and most of us have seen the enormous piping
systems in oil refineries. In modern vehicles internal flow plays also an important role.
Whether it is the air intake to the engine or the ventilation system of the car the design
is important. It would e.g. not be satisfactory if 80% of the ventilation air in a car
entered the cabin on the passenger side. In the limited space of the under hood of today’s
vehicles getting all the components in place can be a puzzle. In the design process for
a vehicle the location of the major components is usually decided on before the ducts
that connect those components are designed. This can lead to limited design space for
placing the internal ducts. A robust automatic design tool can help in creating efficient
designs within the often limited design space and has the potential to shorten the design
process. With the increasing use of computational fluid dynamics in the vehicle design
phase this calls for flexible and robust optimization method. In traditional optimization
methods, e.g. evolutionary algorithms [2], the computational cost is highly dependent on
the number of design parameters. Restrictions set on the number of design variables can
influence the resulting optimal geometry. A possible solution to this problem is the use of
adjoint methods, where the computational cost is independent of the number of design
parameters.

This thesis is organized in the following way. The introduction includes a description
of a typical gradient based optimization process as well as the motivation behind using
the adjoint method for optimization. This is followed by general description of the adjoint
method and derivation of the continuous adjoint Navier-Stokes equations. Specialization
of the continuous adjoint Navier-Stokes equations with respect to internal flow and a
connection to the variation on the surface of the geometry is also presented. Ongoing
work is presented in the cell sensitivities chapter. The motivation for calculating the
sensitivities in the cell center is given and motion of the cell centers is derived from the
Arbitrary Lagrangian-Eulerian description. This chapter includes preliminary results from
optimization of a laminar internal flow geometry.

1.1 Choice of Optimization Method
Two approaches to optimization in computational fluid dynamics are shape optimization
and topological optimization. Topological optimization gives probably the most freedom
to the optimization algorithm by not only modifying the boundary shape but also allowing
creation of new boundaries [3]. In topological optimization the starting point is to define
the design space, that is the maximum size of the geometry. The design space is then
meshed and the locations of inlets and outlets defined. In the optimization process
each cell acts as a design variable and can be transformed from a fluid cell to a “wall”
cell and vice versa. It can be used both when there is no initial design to start from
and only the design space is known or when modifying a readily available design. The
resulting geometry often doesn’t have a smooth surface and needs to be smoothed in
a post processing step. When combined with traditional gradient based optimization
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(a) Initial design (b) Intermediate step (c) Final design

(d) Initial design (e) Intermediate step (f) Final design

Figure 1.1: Example of topological optimization where each cell is a design parameter.
This is a 2 dimensional case where the inlet is at the bottom and the outlet on the right.
The top row shows velocity magnitude and velocity vectors and the lower row shows how
the cells are being blocked with porosity. In the beginning the flow is free to flow in the
whole domain, (d). The velocity vectors are compared to the results from a potential flow
solver. Too much deviation from the alignment of the potential flow solvers indicates a
cell that needs to be blocked.

algorithms topological optimization quickly becomes very computationally expensive.
Figure 1.1 shows an example of topological optimization of a 2 dimensional design space
with inlet in the middle at the bottom and outlet at the right. Here the angle of a primal
flow velocity vector is compared to the angle obtained from the velocity field from a
potential flow solver. Each cell is independently validated and either kept as a fluid cell
or blocked with a Darcy term in the Navier-Stokes equations, for further explanation on
the implementation see [21].

In shape optimization the modifications are done directly on the shape of the geometry
and the goal is to minimize a certain goal function while satisfying given constraints.
Shape optimization can be very effective when doing fine-tuning on an existing design.

Optimization algorithms used in computational fluid dynamics (CFD) are generally
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Simulation

Gradient
calculation

Optimization
x = x + ∆x

Figure 1.2: Flow chart for a gradient based optimization method. The most time consuming
part is usually the gradient calculations which limits the number of design variables used
to describe the geometry.

highly dependent on the number of design variables. Even with modern computers
accurate CFD simulations are computationally expensive and this does therefore often
limit the number of design parameters used to describe a geometry.

An example of a typical gradient based optimization loop can be seen in Fig. 1.2. The
optimization process begins by evaluating the goal function. This is done by performing
a flow simulation and calculating the goal function. The next step is to calculate the
gradients with respect to the design parameters. This is normally the most time consuming
part. For a numerical differential method like the forward difference,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

, (1.1)

this requires n number of flow simulations, where n is the number of design variables. The
geometry is then modified using the information obtained from the gradient calculations
and the loop starts again. The loop continues until a certain criteria is met. The total
cost of each loop is therefore n+ 1 number of simulations. The adjoint method allows for
these calculations using only two solver calls, one for the primal flow solver and one for
the adjoint solver. This makes the adjoint method a feasible option in optimization when
dealing with multiple design parameters in computationally expensive CFD simulations.

The adjoint method is a constraint optimization method related to the method of
Lagrange multipliers. In a constraint optimization the variables of the function to be
maximized or minimized are not completely independent of each other but must fulfill a
constraint equation. An example can be to find the shortest distance to the origin from
the curve R, see Fig. 1.3. The goal is to minimize J while still fulfilling the constraints, R.
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This problem can be solved using various optimization methods and one solution to this
problem is to apply method of Lagrange multipliers. This is done by creating a Lagrange
function, L = J + λR, where λ is called a Lagrange multiplier. The solution is then found
by solving ∇L = ~0.

R

J

Figure 1.3: Constraint optimization where the goal is to minimize J while fulfilling the
constraints, R.

Next chapter will focus on the adjoint method and the derivation of the continuous
adjoint Navier-Stokes equations.

1.2 Project Outline
This thesis describes a project that focuses on the development of a robust and efficient
optimization method for internal flow geometries. The focus is on investigating and
utilizing the potentials of the adjoint method to optimize designs with respect to fluid
dynamic properties. The application is within internal flow geometries in trucks which
can include everything from inlet pipes to engines, exhaust pipes or ventilation systems.
Possibilities of open source utilities and commercial solutions will be investigated as well
as developing new methods with the aim of making the optimization process as robust
and automatic as possible. The simulations presented in this thesis are done using the
open source CFD toolbox OpenFOAM[19]. OpenFOAM is a non-staggered Finite Volume
Method code written in C++ using object oriented approach.

The project is done in collaboration with Scania AB and is financially supported by
the Swedish Energy Agency (sw. Energimyndigheten).
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2 The Adjoint Method
The adjoint method recently gained popularity in the field of computational fluid dynamics
for its ability to drastically decrease the simulation time in gradient based optimization
processes when dealing with large number of design variables.

The adjoint method has a history in optimal control theory dating back to the 1950’s
and since then it has been used in various different applications ranging from optimization
in computer graphics [15] to pricing options in financial applications [1]. One of the first
appearances of the adjoint method in fluid dynamics is from 1973 when the continuous
adjoint Stokes equations where presented by Pironneau [24]. The adjoint method for
optimization gained popularity within the field of fluid dynamics following the publication
of Jameson [10] in 1988, where he applied the adjoint Euler equations to transonic
2D airfoils and a decade later optimized a 3D wing using the adjoint Navier-Stokes
equations [11].

The adjoint optimization process is generally implemented by using either the con-
tinuous or the discrete approach, see Fig. 2.1. In both of the approaches we start from
the analytical form the the primal equations. Where in the continuous approach the
primal equations are linearized, then the adjoint equations derived from the linearized
primal equations and in the end the adjoint equations discretized. The discrete method
starts with the discretization of the primal equations which are linearized and then finally
transposed.

p.d.e

discretize

linearize adjoint

discretize

linearize adjoint adjoint
code

Discrete

Continuous

Figure 2.1: The continuous vs the discrete adjoint approach. The continuous approach
starts by linearizing the equations, deriving the adjoint equations in their analytical form
and then discretizing the equations. The discrete adjoint approach on the other hand
starts with the discretization of the equations, then linearizing and finally transposing the
equations in order to end at the adjoint code.
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Both implementations converge to the same result in the limit of infinite grid resolution
while each of the two approaches has their advantages and disadvantages. One of the
advantage of the discrete approach is that it gives the exact gradient of the discretized
goal function and allows for the optimization process to converge fully. Automatic
Differentiation (AD) tools can also be used in automation of the derivation of the
source terms in the adjoint equations. Some of the advantages of the continuous adjoint
equations are generally lower memory consumption and that the adjoint equations can
be implemented in a straight forward manner in an advanced C++ framework such as
OpenFOAM R©[19, 22]. For a more detailed discussion on the differences between the
continuous and discrete implementation of the adjoint method the reader is referred to [7,
16, 23].

The next section gives a short explanation on the derivation of the continuous adjoint
method followed by the derivation of the steady state, incompressible adjoint Navier-Stokes
equations and simplifications made to the equations and boundary conditions for internal
flow application.

2.1 The Continuous Adjoint Method
Given a goal function J , the total variation of J can be expressed as the sum of the
variation with respect to the flow variables, ~w, and the design variables, ~α:

δJ = ∂J

∂ ~w
δ ~w︸ ︷︷ ︸

flow

+ ∂J

∂~α
δ~α︸ ︷︷ ︸

design

. (2.1)

The flow equations in residual form can be written as

~R(~w, ~α) = ~0 (2.2)

and expressing the total variation of ~R in the same way as the goal function, i.e. as the
sum of the variation with respect to the flow variables, ~w, and the design variables, ~α,
gives:

δ ~R = ∂ ~R

∂ ~w
δ ~w + ∂ ~R

∂~α
δ~α = ~0. (2.3)

Now we can multiply Eq. 2.3 with an arbitrary Lagrange multiplier, ~λ,

~λT δ ~R = ~λT
∂ ~R

∂ ~w
δ ~w + ~λT

∂ ~R

∂~α
δ~α = 0. (2.4)

By adding Eq. 2.4 to Eq. 2.1 the total variation of J can be expressed as

δL ≡ δJ =
[
∂J

∂ ~w
+ ~λT

∂ ~R

∂ ~w

]
δ ~w +

[
∂J

∂~α
+ ~λT

∂ ~R

∂~α

]
δ~α. (2.5)
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It can be noted that the variation of the Lagrangian, L, could also be defined by
subtracting Eq. 2.4 from Eq. 2.1. We are now free to choose the value of the Lagrange
multiplier so that the variation with respect to the flow variables vanishes, i.e.

~λT
∂ ~R

∂ ~w
δ ~w = − ∂J

∂ ~w
δ ~w. (2.6)

The adjoint operator G∗ to an operator G is defined as

< ~u,G~v >=< G∗~u,~v > (2.7)

for all ~u and ~v where < ~u,~v > is the inner product

< ~u,~v >≡
∫

Ω
~vT~udΩ. (2.8)

Integrating by parts the left hand side of Eq. 2.6 allows for the ∂ ~R/∂ ~w operator to be
moved on to the Lagrange multipliers. That process results in a system of equations, the
so called adjoint equations, and by solving that system gives the values of the adjoint
variables, the Lagrange multipliers. The total variation can then be written as

δJ = ∂J

∂~α
δ~α+ ~λT

∂ ~R

∂~α
δ~α (2.9)

where the variation is calculated using the variation of the goal function and an inner
product between variation of the flow equations with respect to the design variable ~α and
the Lagrange multipliers, the solution to the adjoint equations.

The most demanding part in the derivation of the continuous adjoint equations is the
process of moving the derivatives to the adjoint variables and choosing the appropriate
boundary conditions. Next section describes this process for the steady state, incompress-
ible Navier-Stokes equations followed by simplifications that can be made for internal flow
and implementation of the goal function for total pressure drop.

2.1.1 Derivation of the Adjoint Navier-Stokes Equations
The Navier-Stokes for an incompressible, single-phase, steady state flow consist of three
momentum equations and a continuity equation:

(R1, R2, R3)T = ρvjvi,j + p,i − (µ(vi,j + vj,i)),j ,
R4 = −vi,i,

(2.10)

presented here in residual form where vi=x,y,z is the primal flow velocity vector, p is
the primal pressure and ρ is the density. The viscosity term, µ, denotes the effective
viscosity, i.e. sum of the molecular and turbulent viscosity modeled by the eddy viscosity
turbulence models. Einstein summation notation has been used, where repeated indices
imply summation, and comma in the indical notation indicates a partial derivative with
respect to each coordinate xi, e.g. ∇~u = ∂iuj = uj,i.

9



Now we can set up an augmented goal function with the Navier-Stokes equations as
the constraints:

L = J + ~λT ~R, (2.11)

where J is the goal function we want to minimize and ~λ is vector of the adjoint variables,
~λ = (ui, q), where ui is the adjoint velocity and q is the adjoint pressure.

The total variation of L is:

δL = δ~wL︸︷︷︸
flow

+ δ~αL︸︷︷︸
design

. (2.12)

The total variation of the Navier-Stokes equations is now split up into contributions
from the flow field, ~w, and the design variables, ~α:

δ ~R = δ~w ~R︸︷︷︸
flow

+ δ~α ~R︸︷︷︸
design

. (2.13)

Focusing now on the variation with respect to the flow field, as it is the part that will
be solved in the adjoint equation system. Setting the variation of the augmented goal
function with respect to the flow variables, ~w, to zero, as shown in Eq. 2.6 gives the basis
for the adjoint equations,

δ~wL = δ~wJ +
∫

Ω
λiδ~wRi dΩ = 0. (2.14)

The variation with respect to the flow field can further be split up into variation with
respect to the primal flow field, ~v, and the primal pressure, p,

δ~wR = δ~vR+ δpR. (2.15)

The variation with respect to the flow field can now be written as:

δ~wL = δ~vJ + δpJ +
∫

Ω
(ui, q)δ~v ~R dΩ +

∫
Ω

(ui, q)δp ~R dΩ. (2.16)

Writing out the variation with respect to the primal velocity flow field, δ~v ~R, gives

δ~v(R1, R2, R3)T = ρδvjvi,j + ρvjδvi,j − (µ(δvi,j + δvj,i)),j ,
δ~vR4 = −δvi,i

(2.17)

and the variation with respect to the primal pressure, δp ~R, is

δp(R1, R2, R3)T = δp,i,

δpR4 = 0.
(2.18)

The variation of the eddy viscosity, µ, has been neglected here and this assumption is
exactly correct for laminar flow regions. This approximation is common in the derivation of
the continuous Adjoint Navier-Stokes equations, generally referred to as “frozen turbulence”
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[26, 11]. For recent development in the field of continuous adjoint turbulence models and
adjoint wall functions, see for example [30, 31]. There are varying views on the effect of
this approximation from being almost negligible in engineering applications and leading
to an error of the order of a few percent compared to the exact full adjoint based gradient
[14] to in some cases errors up to 50% [18]. The memory requirements and run time is
though undoubtedly considerably lower with the “frozen turbulence” assumption as no
adjoint turbulence equations need to be solved. For a study on the effect of common
approximations in the implementation of the adjoint method see e.g. [6].

Inserting the linearized constraints, Eq. 2.17 and Eq. 2.18, into Eq. 2.16 gives the
starting point for the derivation of the adjoint Navier-Stokes equations:

0 = δ~vJ + δpJ +
∫

Ω
(uiρδvjvi,j + uiρvjδvi,j−ui(µ(δvi,j + δvj,i)),j

+ uiδp,i − qδvi,i) dΩ.
(2.19)

Now we proceed with moving the derivatives from the primal flow variables, δvi and
δp, to the adjoint variables, ui and q, using integration by parts.

Starting from Gauss’s theorem which states that the sum of all sources minus the sum
of all sinks equals the net flow out of a region, i.e.

∫
Ω
ui,i dΩ =

∫
Γ
uini dΓ, (2.20)

where Γ is the closed boundary surface of Ω and ni is the outward normal unit vector
to Γ.

The product rule reads:

(f, g),i = f,i g + f g,i. (2.21)

The integration by parts is done by reversing the product rule, f,i g = (f, g),i − f g,i,
and applying the Gauss theorem, Eq. 2.20, on each of the terms in the integral in Eq. 2.19.

11



Assuming incompressibility we obtain the following identities:∫
Ω
uiρδvjvi,j dΩ =

∫
Γ
ρnjuiδvjvi dΓ−

∫
Ω
ρ(uiδvj),jvidΩ,

=
∫

Γ
ρnjuiδvjvi dΓ−

∫
Ω
ρui,jδvjvi dΩ−

∫
Ω
ρui��>

0
δvj,jvidΩ,

=
∫

Γ
ρniujvjδvi dΓ−

∫
Ω
ρuj,ivjδvi dΩ. (2.22a)∫

Ω
uiρvjδvi,j dΩ =

∫
Γ
ρuivjδvinj dΓ−

∫
Ω
ρ(uivj),jδvi dΩ,

=
∫

Γ
ρuivjδvinj dΓ−

∫
Ω
ρui,jvjδvi dΩ−

∫
Ω
ρui��

0
vj,jδvi dΩ,

=
∫

Γ
ρuivjnjδvi dΓ−

∫
Ω
ρui,jvjδvi dΩ. (2.22b)∫

Ω
−ui(µ(δvi,j + δvj,i)),j dΩ =−

∫
Γ
µui(δvi,j + δvj,i)nj dΓ +

∫
Ω
µ(ui,jδvi,j + ui,jδvj,i),

=−
∫

Γ
µui(δvi,j + δvj,i)nj dΓ +

∫
Γ
µ(ui,j + uj,i)njδvidΓ

−
∫

Ω
(µ(ui,j + uj,i)),jδvi dΩ. (2.22c)∫

Ω
uiδp,i dΩ =

∫
Γ
uiniδpdΓ−

∫
Ω
ui,iδpdΩ. (2.22d)∫

Ω
−qδvi,i dΩ =−

∫
Γ
qniδvi dΓ +

∫
Ω
q,iδvi dΩ. (2.22e)

The cost function can be decomposed into contributions from the interior, Ω, and the
boundary, Γ, i.e.

J =
∫

Γ
JΓ dΓ +

∫
Ω
JΩ dΩ. (2.23)

Replacing the terms in Eq. 2.19 with the terms from Eq. 2.22 and the decomposed
cost function, Eq. 2.23, results in:

0 =
∫

Ω

(
∂JΩ

∂vi
− ρuj,ivj − ρui,jvj − (µ(ui,j + uj,i)),j + q,i

)
δvi dΩ

+
∫

Γ

(
∂JΓ

∂vi
+ ρniujvj + ρuivjnj + µ(ui,j + uj,i)nj − qni

)
δvi dΓ

−
∫

Γ
µui(δvi,j + δvj,i)nj dΓ

+
∫

Ω

(
∂JΩ

∂p
− ui,i

)
δpdΩ +

∫
Γ

(
∂JΓ

∂p
+ uini

)
δpdΓ

(2.24)

Combining the terms that depend on δvi and δp and knowing that Eq. 2.24 is fulfilled
for all variation of the primal flow field that satisfies the primal Navier-Stokes equations
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implies that each of the integrals must become zero independently of each other. From
this condition on the integrals in Eq. 2.24 the adjoint Navier-Stokes equations can be
derived as:

−ρ(uj,i + ui,j)vj = −q,i + (µ(ui,j + uj,i)),j −
∂JΩ

∂vi
, (2.25a)

ui,i = ∂JΩ

∂p
. (2.25b)

With the following boundary conditions:

0 =
∫

Γ

(
∂JΓ

∂vi
+ ρniujvj + ρuivjnj + µ(ui,j + uj,i)nj − qni

)
δvi dΓ

−
∫

Γ
µui(δvi,j + δvj,i)nj dΓ, (2.26a)

0 =
∫

Γ

(
∂JΓ

∂p
+ uini

)
δpdΓ (2.26b)

The adjoint Navier-Stokes equations have some similarities with the primal Navier-
Stokes equations. The main difference is though in the contribution from the goal function
to the source terms and that the adjoint convection is upstream of the primal flow field,
the first term on the left in the adjoint momentum equations.

The adjoint equations reverse the propagation of information which has the effect
that in unsteady adjoint simulations the primal flow field needs to be calculated from
the beginning to the end, as usually, and then the adjoint flow is solved backwards in
time. At each point in time the primal flow field needs to be retrieved either by storing
all the primal flow time steps or by recalculating the primal flow field from a solution at
a previous time step. The memory requirements needed to store every time step make
this very demanding for industrial applications. To limit the memory requirements so
called check pointing method can be used where limited number of time steps, called
check points, spread around the time line are saved. The primal simulations are then
rerun and the intermediate time steps saved when the adjoint solver arrives at each of the
check points [29, 17, 28].

2.1.2 The Adjoint Navier-Stokes Equations for Internal Flow

In the continuous approach the adjoint equations and boundary conditions can be simplified
by considering the application that the adjoint method is to be applied on. This section
focuses on simplifications that assume internal flow and follows the work done by Othmer
in [20]. The adjoint Navier-Stokes equations in Eq. 2.25 accompanied by the boundary
conditions in Eq. 2.26 can be simplified with respect to application in internal flow. Goal
functions applied to internal flow simulations often include only integrals over the surface,
i.e. inlet, outlet and walls, and not the internal domain. Assuming that the goal function
is zero inside the domain eliminates the last terms in Eq. 2.25a and 2.25b. This reduces
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the adjoint momentum and continuity equations to

−ρ(uj,i + ui,j)vj = −q,i + (µ(ui,j + uj,i)),j , (2.27a)
ui,i = 0. (2.27b)

This simplifies the implementation of new goal functions into the solver as the adjoint
equations are now independent of the goal function. The goal function now only enters
the boundary conditions of the adjoint velocity and pressure fields.

We follow the simplifications made by Othmer[20] and assume that part of the viscosity
terms on the boundary can be neglected∫

Γ
µ (uj,injδvi − uiδvj,inj) dΓ ≈ 0. (2.28)

The boundary conditions that need to be fulfilled are now:

0 =
∫

Γ

(
∂JΓ

∂vi
+ ρniujvj + ρuivjnj + µui,jnj − qni

)
δvi dΓ

−
∫

Γ
µuiδvi,jnj dΓ, (2.29a)

0 =
∫

Γ

(
∂JΓ

∂p
+ uini

)
δpdΓ (2.29b)

Some of the terms in the boundary conditions for the adjoint Navier-Stokes equations
can be neglected by considering the three common boundaries in internal flow simulations,
inlet, outlet and walls.

Inlet and walls: We usually have a prescribed value for the inlet velocity and no-
slip boundary condition for the walls which results in δvi = 0 and therefore the first
integral in Eq. 2.29a is zero. For the second integral, by decomposing the δvi term
into contributions from the normal component to the surface , niδvi and the tangential
component, δ~vt = δvi−niδvi. Then applying the continuity equation, δvi,i = 0, assuming
δ~vt = ~0 at the inlet and walls the remaining term from the continuity equation becomes

nj(niδvi),j = 0. (2.30)

This decomposition of the continuity equation can be seen as

∇ · δ~v = ∂δ~vx
∂x︸ ︷︷ ︸

~n·∇(δ~v·~n)

+ ∂δ~vy
∂y

+ ∂δ~vz
∂z︸ ︷︷ ︸

∇t·δvt=0

(2.31)

in the case where the normal component to the surface, ~n, is aligned along the x-axis.
Using the same decomposition for the term in the second integral in Eq. 2.29a we get
that

njδvi,j =���
��:0

nj(niδvi),j + nj(δvt),j (2.32a)
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From this we conclude that the tangential component of the adjoint velocity needs to be
set to zero to fulfill the boundary conditions. No boundary condition is prescribed for
the adjoint pressure, q, and Neumann boundary conditions are applied, similar as for the
primal pressure.

~ut = ~0, (2.33a)

niui = −∂JΓ

∂p
, (2.33b)

niq,i = 0. (2.33c)

Outlet: For the outlet we have Neumann boundary conditions for velocity and the
second integral of Eq. 2.29a is zero. The pressure is set to zero at the outlet so δp = 0
and the integral in Eq. 2.29b is therefore zero. By splitting the first integral of Eq. 2.29a
into normal and tangential components the boundary conditions for the adjoint pressure,
q, and the tangential component of the adjoint velocity can be determined as

q = ∂JΓ

∂(vini)
+ ρujvj + ρuinivjnj + µ(niui),jnj , (2.34a)

0 = ∂JΓ

∂~vt
+ ρ~utvjnj + µ~ut,jnj . (2.34b)

The normal gradient of the normal component of the adjoint velocity, ui, is determined
from the continuity equation using the same decomposition as shown in Eq. 2.31

2.1.3 Total Pressure Drop
An important property of internal flow geometries is the total pressure drop through the
geometry. The total pressure drop is measured from the inlet to the outlet and the goal
function can written as:

J =
∫
Inlet

c(p/ρ+ 1
2v

2) dΓ−
∫
Outlet

c(p/ρ+ 1
2v

2) dΓ. (2.35)

where a constant, c = 1 ρm/s, is added to compensate for missing units.

The derivative of the goal function for total pressure drop in the boundary conditions
at the inlet and walls is:

∂JΓ

∂p
= −c/ρ,

and the outlet:
∂JΓ

∂(vini)
= −cvini,

∂JΓ

∂~vt
= −c~vt.
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This results in the adjoint Navier-Stokes equations for internal flow:

−ρ
(
∂uj
∂xi

+ ∂ui
∂xj

)
vj = − ∂q

∂xi
+ ∂

∂xj

(
µ( ∂ui
∂xj

+ ∂uj
∂xi

)
)
, (2.37a)

∂ui
∂xi

= 0. (2.37b)

with the following boundary conditions to minimize total pressure drop:

Inlet & walls:

~ut = 0, (2.38a)
niui = −1 m/s, (2.38b)

ni
∂q

∂xi
= 0. (2.38c)

Outlet:

q = −cvini + ρujvj + ρuinivjnj + µ
∂niui
∂xj

nj , (2.39a)

~0 = −c~vt + ρ~utvini + µ
∂~ut
∂xj

nj , (2.39b)

nj
∂uini
∂xj

= −∂uti
∂nti

(2.39c)

2.1.4 Shape Optimization
The adjoint equations for internal flow have been derived with the appropriate boundary
conditions to minimize total pressure drop and the next step is the connection to the
description of the geometry. In adjoint optimization we have to first choose between
topological optimization or shape optimization. When working with fine tuning of a
design direct modification of the geometry is appropriate and leads us to the surface
sensitivities.

The total variation of the Lagrangian is now described as

δL = δ~wL+ δβL (2.40)

The variation with respect to the flow variables, ~w, has already been dealt with in
sections 2.1.1 and 2.1.2. What is left is the variation with respect to normal displacement
of the surface, β,

δβL = δβJ + δβ

∫
Ω

(ui, q)Ri dΩ (2.41)

The surface sensitivities for goal functions that do not depend on the internal domain
and with fixed inlet and outlet, as is often the case for internal flow geometries, is calculated
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directly from the primal and the adjoint flow field. It has been shown, see [25, 27, 20],
that the variation with respect to normal motion of the surface can be approximated as:

∂L

∂β
≈ −Aν(~n · ∇)~ut · (~n · ∇)~vt (2.42)

where A is the face area of the surface cell.
The surface sensitivities along with the boundary conditions for total pressure drop

are applied to an internal flow geometry in paper A.
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3 Cell Sensitivity
In previous chapters two different approaches to optimize internal flow geometries have
been mentioned, topological optimization and shape optimization. The methods are
very different in how they modify the geometry and each of them has its own feasible
application in the optimization process. The topological optimization is ideal for an initial
design of the geometry. Each cell is its own design variable and the location of the cells
are fixed. There are also often no real boundary conditions present between the blocked
cells and the cells which the flow is free to go through, as the cells are commonly blocked
using porosity. This tends to give a rugged surface which is not very feasible as a final
design. The rough surface can be avoided by using immersed boundary method as shown
in [9]. The surface sensitivities allow for a direct modification on the surface and are
well-suited when fine tuning a design.

The motivation behind this chapter was to develop a method that can give larger
deformations than the surface sensitivities but does not work on the fixed cells as in
the topological optimization. The method could then work as an intermediate step in
a design chain that starts from the design space, where the draft of the design is made
using topological optimization, and end with fine tuning using the surface sensitivities.

3.1 Arbitrary Lagrangian-Eulerian
The Lagrangian description of motion is based on following an associated material particle
during motion. This can allow for easier tracking of free surfaces and interfaces between
different materials. The Eulerian description is where the computational mesh is fixed
and the continuum moves with respect to the grid which allows for large distortions in the
continuum motion. In the Arbitrary Lagrangian-Eulerian (ALE) description the nodes of
the computational domain can be moved with the continuum as is done in the Lagrangian
description, held fixed as in the Eulerian approach or moved in some arbitrary way in
between.

The ALE formulation of the Navier-Stokes equations is the following [4, 5]

ρ
∂vi
∂t

+ ρ(vj − αj)vi,j = −p,i + (µ(ui,j + uj,i)),j ,

vi,i = 0,

where ~α is the mesh velocity.
The adjoint solvers currently used in industrial applications are generally steady state.

It is possible to assume that the ALE process is steady state even though the physical
meaning is not completely clear, see e.g. [4]. The ALE formulation then reduces to

ρ(vj − αj)vi,j = −p,i + (µ(ui,j + uj,i)),j , (3.1a)
vi,i = 0. (3.1b)

This equation is equivalent to the Navier-Stokes equations except for the second term
on the left hand side in the momentum equation. By setting the mesh velocity term, ~α,
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in Eq. 3.1a to zero we end up with the general Eulerian approach commonly used for
fluids and by giving it a value we are giving a velocity to cells in the mesh(or assuming
the mesh is in motion).

The adjoint Navier-Stokes with the boundary conditions derived from the total pressure
drop have been presented, see section 2.1.3: Eq. 2.37, 2.38 and 2.39. Now we turn our
focus to the additional term which shows up in the ALE description, that is the second
term in Eq. 3.1a. In the optimization process we want to modify the mesh in a favorable
direction with respect to a specific goal function. The proposed method is to calculate the
variation with respect to the mesh motion, ~α. After the variation has been calculated the
mesh is modified accordingly while still keeping the term ~α zero between mesh updates.
The constraints now become

~R1,2,3 = ~RN-S + ~Rα = ρvjvi,j − ραjvi,j + p,i − (µ(vi,j + vj,i)),j (3.2)

where ~Rα = −ραjvi,j .
The ALE description gives an extra term in the Navier-Stokes equations and therefore

we could expect there to be also an extra term in the adjoint ALE Navier-Stokes equations
or contribution to the boundary conditions for the adjoint field. Calculating the variation
of this additional term, ~Rα, with respect to the flow velocity, ~v, gives:

δ~v ~Rα = −ραjδvi,j (3.3)

Now setting up the second term of the Lagrangian by multiplying with the adjoint velocity
and integrating over the domain and moving the derivative over to the adjoint variable
by integrating by parts results in

∫
Ω
uiδ ~Rα dΩ = −

∫
Ω
uiραjδvi,j dΩ, (3.4a)

= −
∫

Γ
njuiραjδvi dΓ +

∫
Ω
ρ(uiαj),jδvi dΩ,

= −
∫

Γ
njuiραjδvi dΓ +

∫
Ω
ρui,jαjδvi dΩ +

∫
Ω
ρuiαj,jδvi dΩ. (3.4b)

The αi term will be kept zero between mesh updates, the last two terms in Eq. 3.4b
are therefore zero and no additional contribution is in the adjoint Navier-Stokes equations.
We focus now on the boundary integral and assume boundaries commonly used in internal
flow, i.e. inlet, walls and outlet. For the boundary conditions for the inlet and walls
we have that δvi = 0 which makes the boundary integral go to zero. For the outlet we
assume the location of the outlet to be fixed and therefore normal contribution from αj
to be zero, i.e. njαj = 0. This makes the boundary integral vanish at the outlet.

Calculating the gradient with respect to ~α becomes now only a post-processing step
after solving the primal and adjoint flow. The goal function is generally independent of ~α
and leads to ∂J

∂~αi
= 0. The gradient of the Lagrangian with respect to ~αi, that is motion
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of cell i, can be written as

∂L

∂~αi
= ∂J

∂~αi
+
∫

Ω
~u · ∂R~α

∂~αi
dΩ (3.5a)

= 0−
∫

Ω
~u · ∂ρ~α · ∇~v

∂~αi
dΩ

= −ρ∇~v · ~uVi (3.5b)

where Vi is the cell volume. This shows that the variation with respect to the mesh
motion derived from the Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes
equations can be calculated as a post processing step after solving the primal and adjoint
flow field.

3.1.1 Comparison to the Surface Sensitivities
The cell sensitivities even though calculated in the cell center instead of at the surface
should give similar behavior as the surface sensitivities for the cells closest to the wall.
This section shows a comparison between the cell sensitivities and the surface sensitivities.
Starting with a 2 dimensional case, see Fig. 3.1. The inlet is at the left and outlet on the
right. The size of the domain is 1.0m x 0.1m and the Reynolds number is 5.

Figure 3.1: Simple 2 dimensional test case, the domain size is 1.0m x 0.1m.

Lower part of the domain is shown in Fig. 3.2 with results from the primal and adjoint
velocity vectors along with the sensitivity to the mesh motion in the ALE formulation,
equation 3.5b and the surfaces sensitivities introduced in section 2.1.4, Eq. 2.42.

Figure 3.2 shows that the cell sensitivities are all pointing outwards of the domain as
expected. The cell sensitivity vectors are not forced to be normal to the surface, as is the
case with the surface sensitivities. The magnitude of the cell sensitivity vectors closest to
the wall is considerably smaller than for the surface sensitivities.

The cell sensitivities in the cells closest to the surface have been compared to the
surface sensitivities from paper A, see Fig. 3.3 and Fig. 3.4. The sensitivities are not in
the same scale, the cell sensitivities in the first cell are approximately 2-3 times smaller
than the surface sensitivities. The first case is a laminar flow case with the inlet at the
left and the outlet at the right. The computational grid contains 225 000 hexahedral cells.
The inlet boundary conditions of the primal velocity is ~v = 1m/s with a Reynolds number
of 340 based on the hydraulic diameter of the pipe at the inlet.
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(a) Primal flow, ~v

(b) Adjoint flow, ~u

(c) Cell sensitivities

(d) Surface sensitivities

(e) Primal flow, ~v (f) Adjoint flow, ~u

(g) Cell sensitivities (h) Surface sensitivities

Figure 3.2: Lower half of the domain shown in Fig. 3.1 along with a figure showing the
behavior close to the wall. Velocity vectors (a) and (e), adjoint velocity (b) and (f), ∂L∂~α
(c) and (g) and the surface sensitivities (d) and (h). Figures (g) and (h) show the cell
sensitivity vectors and the surface sensitivities in the same scale close to the wall.
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(a) Cell sensitivities (b) Surface sensitivities

Figure 3.3: Comparison of the shape of the cell sensitivities with the surface sensitivities
for a laminar case. The shape is similar while the cell sensitivities are roughly 3 times
smaller than the surface sensitivities in this case.

Figure 3.4 shows only the part that was optimized of the second geometry in paper A.
The inlet velocity is 40m/s entering from the right and the Reynolds number is 1.9 · 105

based on the diameter of the pipe at the inlet. The standard k-ε turbulence model [12]
was used for the primal flow field along with standard wall functions.

(a) Cell sensitivities (b) Surface sensitivities

Figure 3.4: Comparison of the shape of the cell sensitivities with the surface sensitivities
for a turbulent case. The shape is similar while the cell sensitivities are roughly 2 times
smaller than the surface sensitivities in this case.

The behavior of the cell and surface sensitivities is very similar close to the surface,
the cell sensitivities are though considerably smaller (approximately 2-3 times). It should
also be noted that the cell sensitivities are not necessarily orthogonal to the surface as is
the case with the surfaces sensitivities.

The cell sensitivities obtained from Eq. 3.5b give a sensitivity map for the whole
domain. Directly applying those sensitivities to the motion of the mesh results in a bad
mesh quality after only a few iterations. Therefore a coupling is needed between the cell
sensitivities and the motion of the mesh that gives a smoother motion of the nodes in
the domain. In common mesh morphing methods the boundary of the mesh is modified
and the motion of the internal nodes coupled to the motion of the boundary in order to
preserve the quality of the mesh while deforming the geometry. One way to do this is to
diffuse the velocity of the boundary nodes to the internal cells by setting the motion on
the boundary as boundary conditions for the Laplace equation.
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3.2 Coupling with Mesh Motion
Mesh motion is usually controlled by some algorithm in order to minimize cell distortion.
For overview of mesh motion methods in CFD see for example [13]. In this approach
we will couple the cell sensitivities to the mesh motion using a mesh velocity smoothing
algorithm based on the Poisson equation. The mesh motion is governed by the following
diffusion equation:

∇2~s = −~f (3.6)

where ~s is the mesh motion and ~f is a source term. For the case when ~f is zero this equa-
tion becomes the Laplace’s equation, ∇2~s = ~0, which governed the mesh motion in paper A.

The idea is to calculate how variation in the source term can minimize a goal function
that is created from the sensitivity with respect to the mesh motion derived from the
ALE description, section 3.1.
The goal function to minimize is:

J =
∫

Ω
(~s− ~β)2 dΩ (3.7)

where β = δL
δ~αi

is the variation of the cells obtained from our steady ALE calculation,
Eq. 3.5b.
The Lagrangian, with ~γ as our Lagrange multiplier, reads

L =
∫

Ω
(~s− ~β)2 dΩ +

∫
Ω
~γ · (∇2~s+ ~f) dΩ. (3.8)

Total variation of the Lagrangian can be split into contributions from the mesh motion,
~s, and the source term, ~f ,

δL = δ~sL+ δ~fL. (3.9)

The variation of the Lagrangian with respect to the mesh motion, ~s, can now be
written as

δ~sL =
∫

Ω
2(~s− ~β)δ~sdΩ +

∫
Ω
~γ · ∇2δ~sdΩ. (3.10)

Integrating by parts the last term gives the identity∫
Ω
~γ · ∇2δ~sdΩ =

∫
Ω
∇2~γ · δ~sdΩ +

∫
Γ
~γ
∂δ~s

∂n
dΓ−

∫
Γ

∂~γ

∂n
δ~sdΓ (3.11)

By inserting Eq. 3.11 into Eq. 3.10 and splitting the goal function into contribution
from the boundary, Γ, and the interior, Ω, we get:

δ~sL =
∫

Ω
2(~s− ~β)δ~sdΩ +

∫
Γ

2(~s− ~β)δ~sdΓ

+
∫

Ω
∇2~γ · δ~sdΩ +

∫
Γ
~γ
∂δ~s

∂n
dΓ−

∫
Γ

∂~γ

∂n
δ~sdΓ

(3.12)
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The goal function gives only contributions on the interior of he domain, where the values
for β are calculated, and therefore the boundary contribution from the goal function is
zero.

Collecting the terms from the interior and the boundary results in

δ~sL =
∫

Ω

(
2(~s− ~β) +∇2~γ

)
· δ~sdΩ

+
∫

Γ
~γ
∂δ~s

∂n
dΓ−

∫
Γ

∂~γ

∂n
δ~sdΓ

(3.13)

Equation 3.13 should be valid for any arbitrary variation in the mesh motion, for
this condition to hold the integrals need to vanish individually. This leads to the adjoint
equations:

∇2~γ = 2(~β − ~s) (3.14)

With the following boundary conditions:

~γ
∂δ~s

∂n
= δ~s

∂~γ

∂n
(3.15)

To fulfill the boundary conditions we consider two cases, one where the boundary is
moving and second one where the boundary is fixed. This gives the following boundary
conditions:

Moving boundary:

∂~s

∂n
= ~0,

∂~γ

∂n
= ~0.

(3.16)

Fixed boundary:

~s = ~0
~γ = ~0

(3.17)

The variation with respect to the source term, ~f , can now be calculated as:

∂L

∂~fi
=
∫

Ω
~γi dΩ,

= ~γiVi.

(3.18)

where Vi denotes the volume of cell i and γi is obtained from the solution of the adjoint
equation, Eq. 3.14, with the boundary conditions from Eqs. 3.16 and 3.17. The gradient
is then added to the source term ~f in Eq. 3.6. This results in two coupled equations that
need to be solved. If we assume the small variation of the source term leads to small
variation in the solution of the primal equation 3.6, we can add the gradient directly to ~s
and solve the adjoint equation with the updated mesh motion term. This assumption has
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been compared to solving the coupled Poisson equations, Eqs. 3.6 and 3.14, for the cases
shown in Fig. 3.5b-e. The difference in the resulting mesh motion term, ~s, was negligible
while approximately 20 times more iterations were needed for the coupled equations.

The gradient with respect to the source term is now accumulated in ~s using method
of steepest decent

~snew = ~sold − cγ (3.19)

where c denotes the step size.
A condition related to the goal function is set where the optimization is considered

converged when the condition I falls below a certain criteria

I =
∫

Ω(~s− ~β)2 dΩ∫
Ω
~β2 dΩ

. (3.20)

3.2.1 Simple 2-Dimensional Case
In this simple test case the effect from different convergence criteria set on I is investigated.
The domain is the same as used when comparing the cell sensitivities to the surface
sensitivities in section 3.1.1. An artificial gradient is now added to the cell centers,
implying favorable mesh motion. The gradient resembles the gradient obtained from the
cell sensitivities, Eq. 3.5b. One gradient is 10 times larger than the others while the
others are equally large. The artificial gradients are shown in Fig. 3.5a. The adjoint
equation is now solved using Eq. 3.14 with fixed boundary conditions on the left and right
while zero gradient boundary condition is applied on the upper and lower wall. After
one loop in the optimization process the effect from the large artificial gradient on the
whole domain can be seen, Fig. 3.5b. Figures 3.5 (c)-(f) show the result for different
conditions on I. The vectors are not in the same scale, ranging from 0.2 for the largest
one in Fig. 3.5c to 8 in 3.5f. The artificial gradients have the length equal to 1 except for
the large one which has the length 10.
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(a) Artificial gradient (b) After one loop

(c) I = 0.95 (d) I = 0.9

(e) I = 0.5 (f) I = 0.1

Figure 3.5: (a) Artificial gradients are added to the domain and the resulting mesh motion
shown in (b)-(f). (b) After one loop through the mesh coupling algorithm. (c)-(f) show the
mesh motion for different criteria on I. Note that the vectors are not in the same scale.
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3.3 Optimization using Cell Sensitivities
The methods introduced in sections 3.1 and 3.2 have been tested separately. The cell
sensitivities show similarities with the surface sensitivities and the effect from different
criteria set on I was presented. The methods are now combined and the resulting flow
chart for the optimization presented in Fig. 3.6.

Flow simulation

Adjoint
simulation

Gradient
calculation

Adjoint
simulation

Gradient
calculation

Optimization
~s = ~s − c δL

δ ~fi

Modify mesh
~x = ~x + ~s

Figure 3.6: Flow chart of the optimization process. The dotted box contains the optimization
loop used for smoothing of the gradients. The cell sensitivities are used as an input to the
mesh motion. When the convergence criteria is reached the mesh motion, ~s, is directly
added to the location of the points in the mesh, denoted with ~x, and the loop starts again.

The geometry optimized here is the same as the laminar one in paper A. It consists of
three parts, inlet, outlet and walls (see Fig 3.7). The computational grid contains 225 000
hexahedral cells. The inlet boundary conditions of the primal velocity are ~v = 1m/s, and
the kinematic viscosity, ν = 1.6 · 10−4 m2/s, results in a laminar flow with a Reynolds
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number of 340 based on the hydraulic diameter of the pipe at the inlet. No slip boundary
condition is applied to the wall. For the adjoint solver, no slip and zero gradient boundary
conditions for the adjoint velocity and pressure respectively are applied at the wall. The
adjoint boundary conditions for inlet and wall are set according to Eq 2.38 and the outlet
boundary conditions according to Eq. 2.39 in order to minimize the total pressure drop
through the pipe. The whole wall section from the inlet to the outlet is selected for
optimization.

Figure 3.7: The S-bend seen from the side and below. The flow direction is from left to
right as depicted by the arrows.

The results are presented for two different criteria on I, I = 0.5 and I = 0.95. The
total pressure drop through the pipe after each mesh deformation for the two cases is
shown in Fig. 3.8.
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(b) I = 0.95

Figure 3.8: The total pressure drop compared to the original design for two different
criteria on I.

Comparison between the original geometry and the optimal design for the two cases is
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shown in Fig. 3.9. The final geometry for the case with I = 0.5 gives 52% lower total
pressure drop through the pipe. The largest modifications to the geometry are at the
lower part of the bend and also the second half of the pipe has expanded as shown in
Fig. 3.9b. For the case where I = 0.95 the total pressure drop decreased by 65%. Figure
3.9c shows that the modification is not confined to the region around the bend. In this
case the mesh motion affects a larger region which resulted in the bend moving downwards
and the whole geometry has expanded.

(a) Orginal geometry

(b) I = 0.5

(c) I = 0.95

Figure 3.9: (a) The original geometry seen from the side and top. The inlet is at the left
and the outlet ad the right. The original geometry can be compared to the final geometry
obtained using two different conditions on I, (b) and (c).

The results show the largest deformation in the region around the bend. In this
optimization the mesh morphing is directly coupled to the mesh motion, ~s. This is done
by interpolating the values from the cell centers to the points in the mesh. When the
convergence criteria set for I is decreased the mesh motion vector resembles more the cell
sensitivities and the modifications to the mesh can result in lower quality mesh. This can
explain why the lower pressure drop through the pipe was obtained in the case with higher
value for I. The results for this optimization process are promising. Larger modifications
to the geometry were made than in previous attempts using the surface sensitivities, see
Paper A. The next step will be to apply this method to a turbulent flow pipe.
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4 Conclusions and Future Work
Two strategies of using continuous adjoint method were explored. The first relies on
the existing method using surface sensitivities [27, 20]. The second approach is a newly
proposed method using the sensitivities in the cell center. The motivation behind this new
method was to design an approach that works as an intermediate step between topological
optimization and the surface sensitivities. It should allow for larger deformations than the
surface sensitivities but not work on a fixed mesh as in the case of topological optimization.

The method of surface sensitivities was applied in paper A. First to a simple laminar
flow pipe and then to a real industrial case. The method of cell sensitivities was applied
to a laminar flow pipe. The results when using the surface sensitivities connected with
the mesh motion libraries in OpenFOAM gave a fine tuning of an existing design when
used with high quality mesh. The cell sensitivities coupled with the mesh motion were
shown to give larger deformation for the laminar flow pipe than the surface sensitivities.

Future work will involve further developing the cell sensitivity method and apply
it to the second inlet pipe geometry that was described in paper A. The code works
in parallel and is quite robust, a possible bottleneck is the fixed step size used in the
optimization algorithm for the mesh motion which can in some instances be slow to
converge. Implementing a more robust optimization algorithm with variable step size is
therefore a possible solution to that problem.

It would be interesting to investigate other uses of the sensitivities in the cell center.
Having the sensitivities in the cell center gives the possibility to use the adjoint method
to fine tune a mesh, e.g. in order to minimize velocity gradients in the mesh. This could
possibly be achieved by fixing the boundaries and moving only the internal nodes.
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5 Summary of Paper A
5.1 Aerodynamic Shape Optimization of a Pipe using

the Adjoint Method
Paper A presents results from optimization of an internal flow geometry using the adjoint
method. The surface sensitivities, introduced in section 2.1.4 are connected to the mesh
motion solvers in OpenFOAM R©. The goal function is to minimize the total pressure drop
and for that purpose the appropriate boundary conditions derived in section 2.1.3 are
implemented for the adjoint flow field. An inlet pipe to the exhaust gas re-circulator cooler
of a truck engine is optimized, see Fig 5.1. The mesh contains 1.0 million hexahedral cells
and the inlet velocity is 40m/s, which is equivalent to boundary conditions at cruising
speed, resulting in a Reynolds number of 1.9 · 105. The standard k-ε turbulence model
[12] was applied and standard wall functions used for the primal flow field.
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Figure 5.1: (a) The pipe showing in green the area chosen for optimization. (b) Total
pressure drop for the whole inlet pipe. After 35 mesh updates the total pressure drop has
decreased by 6.5%.

Total simulation time was 7 hours on 16 cores in which a total of 35 mesh updates
were performed. The resulting geometry gives 6.5% lower total pressure drop compared
to the original design.
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