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Abstract

In order to contribute to the development of energy and cost efficient elec-
tric vehicles, a thorough analysis of two different electric converter topologies
is performed, considering different drive cycles and different control strate-
gies. In the electric vehicles available on the market today, a high voltage
(200−400 V ) battery pack composed of several battery modules is connected
to one or more inverters which create AC voltages to the electric propulsion
machines. This thesis analyses the use of a modular battery-inverter con-
cept, the cascaded multilevel inverter. Here, the battery modules have one
inverter for each battery module, the inverters are then connected in series
and controlled in order to create the AC voltages for the electric machines.

The simulation results shows that this concept lowers the inverter losses,
mainly due to the possibility to use MOSFETs instead of IGBTs. The losses
in the battery are on the other hand increased. If there was a possibility to
filter out reactive power and harmonics from the battery (using input capac-
itors for each inverter), the drive train with the multilevel inverter will have
lower losses than the two-level inverter for all the analysed driving cycles. If
such filter capacitors can not be used, it is not beneficial to use the multi-
level inverter for high speed driving cycles, such as the US06. For the more
moderate new European driving cycle, the accumulated drive cycle losses
in the battery and inverter are reduced by 25 % when using the multilevel
inverter, even without filter capacitors, compared to the two-level inverter.
Furthermore, when using infinitely large supporting capacitors in parallel
to the battery modules, the loss reduction for the inverter and the battery
becomes 72 % compared to the two-level inverter.

The multilevel inverter is able to control from which battery modules the
energy is taken from, therefore the battery capacity is no longer limited by the
weakest battery module. If one of the modules is damaged and the available
energy is lower, the inverter can be controlled to utilize the remaining energy
in the battery pack so the effect of the faulty module is not so severe. When
using the propulsion inverter as a charger, the multilevel inverter also shows
an increase in efficiency compared to the two-level inverter.

v



Keywords

Electric Vehicle (EV), Plug-in Electric Vehicle (PEV), Multilevel Inverter
(MLI), Two-level Inverter (TLI), Integrated Charger, Drive Cycle, Efficiency.

vi



Acknowledgement

The financial support from the Swedish Energy Agency is gratefully appreci-
ated. I would like thank Robert Eriksson and Urban Kristiansson at Volvo-
cars AB for interesting discussions and project leadership. I would also like
to thank Lars Johannesson from the department of Signals and Systems for
interesting inputs from a control perspective.

In the division, I would like to thank my supervisor and examiner Torb-
jörn Thiringer. The endless hours of discussions are extremely appreciated.
Thank you! I would also like to thank Sonja Lundmark and Hector Zelaya
De La Parra for their help with the project as co-supervisors and Anders
Lindskog for the introduction of the project.

Working at the division of electric power engineering is a privilege, thank
you all co-workers for making this such a nice environment to work in. I
would like to aim a special thanks to my room mates David Steen and Saeid
Haghbin. Your support and comments during the years have been extremely
helpful, and fun. Thank you!

Finally I want to thank my family. Thank you for all the help and support.
I am forever grateful!

Oskar Josefsson
Göteborg, February 2013

vii



viii



Contents

Abstract v

Acknowledgement vii

List of Nomenclatures xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose of work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Drive system topologies and loss modeling 5
2.1 Converter topologies . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Two-level inverter (TLI) . . . . . . . . . . . . . . . . . 5
2.1.2 Multilevel inverter (MLI) . . . . . . . . . . . . . . . . . 6

2.2 Power electronic components and their losses . . . . . . . . . . 7
2.2.1 IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Miscellaneous power electronic components . . . . . . . 11

2.3 Modulation strategies . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Two-level inverter . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Multilevel inverter . . . . . . . . . . . . . . . . . . . . 13

2.4 Inverter loss modeling . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Two level inverter (TLI) . . . . . . . . . . . . . . . . . 15
2.4.2 Multilevel inverter (MLI) . . . . . . . . . . . . . . . . . 19

2.5 Energy storage . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Electric machine and torque control . . . . . . . . . . . . . . . 24
2.7 Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 BMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



2.9 Boundary conditions and load/charging cycles . . . . . . . . . 27
2.9.1 Drive cycles . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9.2 Charging levels . . . . . . . . . . . . . . . . . . . . . . 29

3 Case set-up and functionality verification 31
3.1 Case specification and parameter determination . . . . . . . . 31

3.1.1 Choice of DC-voltage . . . . . . . . . . . . . . . . . . . 31
3.1.2 Component values . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Machine operation points . . . . . . . . . . . . . . . . 33

3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Experimental results 39
4.1 Output waveforms and harmonics . . . . . . . . . . . . . . . . 39
4.2 Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . 43
4.3 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Battery current . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Static loss evaluation 49
5.1 Efficiency calculations . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Total losses . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.5 Charging . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Drive cycle evaluation 65
6.1 NEDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 FTP75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 HWFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 US06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Comparison between proposed topology and classical inverter . 74

6.5.1 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusions 77

8 Future Work 79

References 81

x



List of Nomenclatures

The following list presents nomenclatures that are used throughout this the-
sis:

VCE IGBT collector emitter voltage

IC IGBT collector current

VtIGBT
IGBT fixed voltage drop

RonIGBT
IGBT resistance

VDS MOSFET drain source voltage

ID MOSFET drain current

RonMOSFET
MOSFET resistance

Ton Transistor turn on time

Toff Transistor turn off time

VAC Diode anode cathode voltage

IA Diode anode current

VtDiode
Diode fixed voltage drop

RDiode Diode resistance

Qrr Diode reverse recovery charge

Krr Diode reverse recovery equivalent loss parameter

ERR Diode reverse recovery energy

Vdrr Diode voltage at reverse recovery
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inverters
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Maximum phase voltage that can produced by the
TLI when controlled with third harmonic injection
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α1 Angle where the first H-bridge is turned on
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ϕ Phase difference of inverter output voltage and cur-
rent
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Chapter 1

Introduction

1.1 Background

The automotive manufacturers are going through a time with introduction
of many new technologies due to the increasing interest of electrified vehicles
(EVs). A very important problem the car industry experiences is to utilize
the energy in the battery in the most efficient way, but also to take care of the
losses in the battery, the power electronics and the electrical machine. The
power electronics must be designed and controlled in the most efficient way
to be able to utilize this energy to achieve the longest driving distance for a
given battery size. The importance of choosing the right power electronics in
an EV is discussed in [1] and is stated to be of high importance to make the
vehicle competitive. A problem today is that if one part of either the power
electronic system or the battery is damaged, the whole system capacity is
reduced to the capacity of this component. If one of these components fail,
the car will not be able to continue to operate.

To be able to minimize the electric losses in the drive train, accurate
models are needed. In order to adequately utilize such a model of the electric
power train, some parts of vehicle modeling must also be included. Without
finding the appropriate voltages, currents and phase angles, the losses in
an inverter can not be determined. In [2] and [3] some simulation aspects
special to EVs are shown, dealing with both the physical behaviour as well
as the electrical one. It is shown that even though it is important to analyse
the efficiency of each component, the different components determine the
operation points for each other and therefore the complete drive train must
be incorporated in the vehicle efficiency analysis.

The losses in the vehicle are not only dependent on the components chosen
for the vehicle, the control strategies are also of high importance. This is
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shown by [4] and [5] with a focus on that information about how the vehicle
is used, affects the optimal control strategies. In reference [6] it is shown
that accurate models of the losses and the operation points of the different
components are of high importance in order to achieve the correct results.
Since the electric machine in an EV runs at a large range of operating points,
instead of analysing a single or a few operating points, it is important to
consider different complete drive cycles, especially when the machine is used
in the field weakening area. It is also vital that the models are verified
against measurements and/or empirical data, other models and analytical
calculations.

To be able to compare how good an electric vehicle drive train is, test
procedures are needed. Different test procedures for EVs are explained in [7]
where it is stated that one problem for making accurate testing is to describe
equivalent fuel consumptions for an electric vehicle since other vehicles are
measured in liters of fossil fuel per kilometer. In order to compare different
electric drive trains, equivalent fuel consumption is of less importance, since
the minimization of the losses for the same drive cycle leads to the best fuel
consumption.

To make an EV competitive, the main goal is to develop a product that
is economical. To be able to make an economical model it is important
to have good price information about the components. Reference [8] shows
an economical model that predicts the price of the components in EVs to
decrease. However, they are also showing that the model is very uncertain
which makes the analysis of the economical aspects of different drive trains
problematic.

A state of the art analysis of the vehicles on the market today is needed
in order to compare different EV setups. References [9] and [10] show an
investigation of the market, and it is stated that the power electronics of
the current generation of electric vehicles utilises similar power electronic
concepts; the two-level inverter (TLI). It indicates that an increase of the
research in power electronics for EVs is expected. In [11], a general study
of the future of EVs is conducted. They expect that the power electronic
technology is to play a very large role to meet the challenge of developing
competitive EVs. In [12] and [13] the special requirements of power electron-
ics in EVs are discussed and the challenges of choosing the optimal power
electric component for an inverter to be used in EVs are explained. Different
packages, for example, give different advantages in terms of cooling. In EVs,
as mentioned before, the TLI is the far most used power electronic converter
today. It uses six power electronic switches to create the voltage needed
for an electrical machine, see Fig. 2.1. Due to the demand of a high voltage
level, IGBTs are often used. The IGBTs have relatively high losses compared
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to MOSFETs at this power level, so it would be beneficial to be able to use
the MOSFET technology. One way to be able to use MOSFETs is to divide
the battery to smaller units with lower voltage, and use one inverter for each
battery module. The outputs of the inverters are then series connected to
be able to create the voltage magnitude that the electric machine requires.
This inverter is called a cascaded multilevel inverter (MLI) and can be seen
in Fig. 2.2.

The plug-in electric vehicle, PEV, and the plug-in hybrid electric vehicle,
PHEV, must have a charger to be able to charge the battery from the grid.
In the great majority of the electrical vehicles out on the market today, the
charger is a stand-alone component. It can be either an on-board charger
that is located in the vehicle, or it can be an off-board charger located at
different locations in the infrastructure. It is advantageous if the propulsion
power electronics can be used also for charging; then the separate power
electronics in the on board charger is not needed, and space as well as cost
can be reduced. This works fine with the TLI, see [14], however, the conse-
quences when doing the same with the MLI, is not yet compared for a vehicle
application.

The advantages and benefits of using a MLI in an electrified vehicle are
discussed in [15] and in [16]. It is stated that the MLI has almost no elec-
tromagnetic interference (EMI) and therefore a safer and more accessible
choice to have in a vehicle. The efficiency is discussed in general terms, but
is calculated to be higher than the TLI.

Obviously the MLI has advantages regarding EMI and battery utilisation,
however, a traceable result of the benefits from an energy point of view to
use a MLI in electrified vehicles, and to what extent, is missing.

1.2 Purpose of work

The purpose of this work is to analyse the opportunities of using a MLI in
an electric powered vehicle. The main focus is made on the energy efficiency
when using different drive cycles and control strategies. To quantify the
electric energy benefits for various drive cycles is accordingly a vital theme.
In order to analyse the inverter, it is important to incorporate a relevant
electrical machine so that the appropriate inverter operating conditions are
met. However, the economical aspects are not dealt with.

3



1.3 Contributions

According to the author the following contributions have been made with
this thesis.

• Quantified the losses in an electric power train for the MLI, and put it
in relation to the losses in a TLI.

• Analysed the electrical losses for different driving cycles to be able to
determine when it is beneficial to use a MLI.

• Developed an analytical formula for the losses of a TLI controlled with
third harmonic injection.

• Demonstrated that the losses are very sensitive to the control angles
α1, α2 and α3 for the MLI.

• Experimentally showed the possibility to balance the battery groups.

• Experimentally verified the battery current waveforms from a MLI.
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Chapter 2

Drive system topologies and loss

modeling

This chapter derives mathematical models that describes the losses in the
electric power train as a function of how the vehicle is operated and which
control strategies that are used.

2.1 Converter topologies

Two different inverter topologies will be studied in this thesis, the cascaded
multilevel inverter (MLI) and the classical two-level inverter (TLI).

2.1.1 Two-level inverter (TLI)

The TLI is by far the most common inverter used in electrified vehicles.
It consists of six switches divided into three legs, see Fig. 2.1. An anti-
parallel diode is placed in parallel to each switch to allow current to flow in
the reverse direction as well. The battery is connected to the input of the
inverter supplying it with a voltage level of VDCTL

. The inverter can produce
eight different states depending on the control of the six switches.
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Figure 2.1: Topology of a two-level inverter (TLI)

2.1.2 Multilevel inverter (MLI)

A multilevel inverter can be built up using many different topologies. The
one analysed in this thesis is the cascaded multilevel inverter, see Fig. 2.2. It
consists of series connected H-bridges which can be controlled independently.
Every H-bridge has a separate energy storage with a voltage of VDCML

at-
tached to it and by controlling the switches in the H-bridge in different ways,
one bridge can create VDCML

, −VDCML
, 0 and open circuit, to its output.

Since many H-bridges are connected in series the total voltage can vary in
several steps. If the voltage sources are equal, the number of voltage levels,
N , becomes

N = 2n+ 1 (2.1)

where n is the number of H-bridges for each phase.
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Figure 2.2: Topology of a 7-level multilevel inverter (MLI)

2.2 Power electronic components and their losses

To be able to calculate the losses in different inverter topologies, information
about the components are needed. In the TLI, IGBTs are used due to their
high voltage blocking ability, see Fig. 2.3b, together with diodes, see Fig.
2.3c. In the MLI, MOSFETs will be used due to the lower blocking voltage
requirement in the MLI, see Fig. 2.3a. A MOSFET has a built in body diode
that sometimes is sufficient. In this thesis, this is the case, so no external
diodes will be used in this analysis.

+

VDS

-

+

VGS

-

ID

(a) MOSFET

+

VCE

-

+

VGE

-

IC

(b) IGBT

+

VAC

-

IA

(c) Diode

Figure 2.3: Power electronic components

2.2.1 IGBT

The losses in an IGBT are described in [17] when used in a bridge configura-
tion. It is often assumed that the voltage drop of the IGBT is approximated

7



0 50 100 150 200
0

50

100

150

200

250

Time (ns)

V
C

E, I
C

 

 

v
CE

I
C

0 50 100 150 200
0

10

20

30

40

Time (ns)

P lo
ss

 [k
W

]

Figure 2.4: Turn on losses for an IGBT, times approximated for a 600 V
IGBT

with two linear lines when it is turned on. The two lines are expressed as

VCE(IC) = VtIGBT
+RonIGBT

IC IC > 0

IC = 0 VCE < VtIGBT
(2.2)

where RonIGBT
is the resistance when fully turned on, VtIGBT

is the constant
voltage drop in the IGBT, IC is the current through the IGBT and VCE is
the voltage over the IGBT.

When turned off the IGBT is described as

IC = 0. (2.3)

The switching losses for an IGBT are due to that it takes time to increase
and decrease the current through and voltage on the switch. This loss can
(a bit idealized) be described as seen in Fig. 2.4.

The energy loss at turn on is then for this simplified case calculated with

Eon(VCE, IC) =

∫ Ton

0

IC(t)VCE(t) dt =
VCEICTon

2
(2.4)

where Ton is the time to fully turn on the IGBT.
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The energy loss at turn off will in the same way be equal to

Eoff (VCE, IC) =

∫ Toff

0

IC(t)VCE(t) dt =
VCEICToff

2
(2.5)

where Toff is the time to fully turn of the IGBT.

However, in reality the switching losses can not be accurately predicted
using algebraic expressions, even using more complexity. Therefore, if more
accurate results are needed, tables from the data sheets are commonly used.

Observe that in order to find the parameters that describe this loss, the
data sheet of the component is used.

2.2.2 MOSFET

The losses of a MOSFET used in bridge configuration is described in [18]. By
supplying a voltage between the gate and the source, the MOSFET transistor
turns on and is assumed to behave purely resistive. The voltage drop of a
turned on MOSFET transistor is therefore approximated with a linear line
as

VDS(IDS) = RonMOSFET
ID (2.6)

where RonMOSFET
is the resistance in the MOSFET when turned on, IDS is

the current through the MOSFET and VDS is the voltage over the MOSFET.

When no voltage is supplied to the gate, the MOSFET is turned off
and the MOSFET then blocks the current very well. Due to the physics of
the MOSFET technology there is always an antiparallel diode (body diode)
which will start to conduct when the MOSFET has a negative voltage applied
over it. When a negative current flows through the component, the current
will go through the "parasitic/inherent body diode" if no gate voltage is
supplied. By turning on the MOSFET when a negative current is flowing
in the MOSFET, the voltage drop is reduced. The current will then flow
through the channel instead of the body diode and the losses are decreased.

The switching losses for a MOSFET are due to the rise and fall time of
both the current through and the voltage over the component. This loss can
(again a bit idealized) be described as seen in Fig. 2.5. The energy loss at
turn on is then calculated by

Eon(VDS, ID) =

∫ Ton

0

ID(t)VDS(t) dt =
VDSIDTon

2
(2.7)

where Ton is the time to fully turn on the MOSFET.
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The energy loss at turn off will in the same way be equal to

Eoff (VDS, ID) =

∫ Toff

0

ID(t)VDS(t) dt =
VDSIDToff

2
(2.8)

where Toff is the time to fully turn off the MOSFET.
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Figure 2.5: Turn on losses for MOSFET, times approximated for a 100 V
IGBT

2.2.3 Diode

The losses of a diode used in a bridge configuration is discussed in both [17]
and in [18]. The voltage drop of the diode is approximated with two linear
lines as

VA(IA) = VtDiode
+RDiodeIA IA > 0

IA = 0 VA < VtDiode
(2.9)

where RDiode is the resistance in the diode, VtDiode
is the constant voltage drop

in the Diode, IAC is the current through the diode and VAC is the voltage
over the Diode.

The switching loss of a diode is assumed to be zero at turn on and turn
off, but at turn off the diode has to deplete the charges that are stored in the
junction from when it vas forward biased. This will create a current in the
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reverse direction for a short period of time and the energy that is released
becomes a loss in both the diode and the opposing switch when connected in
a leg configuration. The charge that has to be depleted is current dependent
and is for simplicity assumed to be proportional to the current that flew
in the diode at the instant right before turn off. The total energy loss can
according to [17] be written as

ERR =
QrrVdrr

4
=
Qrr(−VAC)

4
= Krr(−VAC)IA. (2.10)

where Qrr is the charge stored in the diode at the time of reverse recovery
and Krr is the loss factor. The loss factor Krr is taken from the data sheet
where the reverse recovery loss is often specified at a certain blocking voltage
and current.

Again, in reality, ERR is a complicated parameter to determine and data
sheets values with non-linear relations are typically used.

2.2.4 Miscellaneous power electronic components

Driver circuit

The driver circuit for the transistors is assumed to be lossless compared to
the energy supplied to the electrical machine and is therefore neglected.

Capacitors

The losses in the capacitors are neglected in this thesis. It is assumed that
the battery loss is much higher.
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2.3 Modulation strategies

2.3.1 Two-level inverter

PWM

When a TLI is controlled in sub-oscillating PWM-mode, three voltage ref-
erences are created. These references are compared to a triangular wave
with a frequency equal to the switching frequency. When the reference is
higher than the triangular wave, the upper side switch in that leg is acti-
vated (turned on), otherwise the lower side switch is activated. Actually,
it is possible to use something called over modulation, where the reference
wave is above the triangular wave. However, this will cause low-frequency
harmonics which are hard to filter away. In this thesis, over modulation is
not considered for simplicity and noise reasons. A margin of 10% is set on
the output voltage to guarantee controllability of the current, to provide a
minimum on and off time of the modules, and to account for the blanking
time and the losses in the inverter. The maximum phase motor voltage will
then be equal to

UphaseRMSMAX
= 0.9

VDCTL

2
√
2
. (2.11)

There are also other methods to find the switching instances such as DTC.

Third harmonic injection(THI)-PWM

When a TLI is controlled in THI-PWM-mode three voltage references are
created and compared to a triangular wave with a frequency equal to the
switching frequency in the same way as in the PWM strategy. By adding
a third harmonic, the neutral point of the machine is altered up and down.
The machine will not react to this third harmonic since it is a three phase
system without the neutral point of the machine connected to the inverter
neutral point. The advantage is that the DC-bus voltage can be utilized
to a higher extent. A margin of 10% is utilized on the output voltage to
guarantee controllability of the current. The maximum phase motor voltage,
with "low-harmonic" free voltages, will then be equal to

UphaseRMSMAXTHI
= 0.9

VDCTL√
3
√
2

(2.12)

which is about 15 % higher than the PWM strategy. This is the voltage level
that will be used in this thesis.
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In order to describe the phase voltage used, the modulation index ma

is typically utilised. For the two-level inverter the modulation index ma is
defined according to

Uphase = ma
VDCTL√
3
√
2

(2.13)

where ma can go up to 1.0 without entering over modulation.
Running the inverter with THI-PWM will give a duty cycle D (the ratio of

the active time between the upper and lower transistor in the leg) according
to

D(t) = 0.5 +
Uout(t)

VDCTL

. (2.14)

2.3.2 Multilevel inverter

The MLI will be controlled with Fundamental Selective Harmonic Elimi-
nation, FSHE, see [19], [20]. By choosing when to turn on the different
H-bridges in the MLI, the amplitude of the fundamental frequency as well
as the harmonics are controlled. For a N-level inverter the amplitude of
the fundamental frequency and N−3

2
number of harmonics can be controlled.

Since the motor acts as a phase current low pass filter, it is of importance to
minimize the lowest harmonics since these are less effectively filtered.

The waveform built up by the 7-level MLI analyzed in this thesis can be
seen in Fig. 2.6. The angles α1,α2 and α3 describe the instances when the
H-bridges should be activated.

The fourier series expansion of the signal for the different harmonics, h,
can be written as

UML(h) =
4

h π
[VDCML

cos(h α1)+VDCML
cos(h α2)+VDCML

cos(h α3)] (2.15)

according to [19] when assuming that the DC-voltages are equal for all the
H-bridges. Setting the amplitude of harmonic 5 and 7 to zero the equation
system provides the switching angles for different amplitudes of the funda-
mental frequency and can be seen in Fig. 2.7. The modulation index can
go up to 1.07 without loosing the control to eliminate the 5th and 7th har-
monic. At modulation index below 0.5, the control over the harmonics are
also lost but are minimized with a prioritization on the 5th harmonic. To
keep the battery cells balanced, the controller makes sure to use the battery
with the highest voltage as the the one controlled with α1 and the one with
the lowest voltage with α3. The maximum voltage the inverter can produce
with a margin of 10% can accordingly be expressed as

UphaseRMS MAX
= 0.9 · 1.07VDCML

· n√
2

. (2.16)
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Figure 2.6: Phase voltage from 7-level MLI

For the MLI operated with FSHE the modulation index ma is defined
according to

Uphase = ma
VDCML

· n√
2

(2.17)

where ma can go up to 1.07 without loosing control over the cancelation of
the low-frequency harmonics.

PWM

The MLI can operate in two kinds of PWM mode. One option is to create
separate triangular waves for the different H-bridges and have one reference
signal. In the other operation mode all levels are switched with the same
control signal and uses one triangular wave. This results in an output voltage
waveform identical to the TLI. The advantage of this control strategy is that
the power is taken from all the batteries and therefore minimizes the losses
in the batteries.

14



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

Modulation index

A
ng

le
 (

de
g)

 

 

α
1

α
2

α
3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

0

0.5

1

1.5

Modulation index

A
m

pl
itu

de

 

 

Fundamental
5th harmonic
7th harmonic

Figure 2.7: Switch angles and harmonics for different modulation indexes

2.4 Inverter loss modeling

2.4.1 Two level inverter (TLI)

To be able to calculate the losses in the TLI, information about the operating
points used and the control strategy used is needed. The TLI will in this
analysis be controlled with THI-PWM. The reference output voltage for the
first phase is described as

Vout(t) = Û [sin(ωt+ ϕ) + a sin(3ωt+ 3ϕ)] (2.18)

and the current as
Iout(t) = Î sin(ωt) (2.19)

where Û is the amplitude of the phase voltage, ω is the electric frequency, ϕ
is the phase difference between voltage and current and Î is the amplitude of
the phase current. The amplitude of the third harmonic component a should
be selected to 0.19 for maximum utilization of the DC-voltage, [21].

Conduction losses

The losses are calculated for one phase of the inverter and are then scaled
to be valid for three phases. During the time when the current is positive,

15



the current will go through IGBT1H and Diode1L, see Fig. 2.1. The losses
in IGBT1L and Diode1H will be the same during the time when the current
is negative. If the frequency of the sine wave is assumed to be much smaller
than the switching frequency, the current and the reference voltage can be
assumed to be constant during one switching period. The average conduction
loss in IGBT1H and Diode1L can then be expressed as

PcondIGBT1H
(Iout, D) =

∫ Tsw

0

VDS(ID)ID dt =

DIoutVtIGBT
+DRonIGBT

I2out (2.20)

and

PcondDiode1L
(Iout, D) =

∫ Tsw

0

VDS(ID)ID dt =

(1−D)IoutVtDiode
+ (1−D)RonDiode

I2out (2.21)

using (2.2) and (2.9).

To calculate the average conduction losses for one phase, one can choose
to study the positive part of the current, knowing that the current only
goes through IGBT1H and Diode1L. Knowing that the same losses will be
generated in IGBT1L and Diode1H during the negative part of the current,
the average losses of one leg can then, by combining (2.20) and (2.14), be
written as

PconductionIGBTs1
=
∫ Tf

0
PcondIGBT1H

(t) + PcondIGBT1L
(t) dt

Tf
=

∫ Tf/2

0
PcondIGBT1H

(t) dt

Tf/2
=

ÎVtIGBT
(
1

π
+
Û cosϕ

2VDCTL

) + RonIGBT
Î2(

1

4
+

4Û cosϕ

3πVDCTL

− 2a · cos(3ϕ)
15π

). (2.22)

The losses in the diode can be calculated in the same way using (2.21)
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and (2.14) which gives

PconductionDiodes1
=
∫ Tf

0
PcondDiode1H

(t) + PcondDiode1L
(t) dt

Tf
=

∫ Tf/2

0
PcondDiode1L

(t) dt

Tf/2
=

ÎVtDiode
(
1

π
− Û cosϕ

2VDCTL

) +RonDiode
Î2(

1

4
− 4Û cosϕ

3πVDCTL

+
2a · cos(3ϕ)

15π
). (2.23)

Switching losses

The switching losses for the IGBTs can be calculated with the assumption
that the fundamental frequency is much lower than the switching frequency.
If the leg would operate in DC-mode, the average switching loss for IGBT1H
can be described as

PswitchIGBT1H
(Iout) = [Eon(Iout) + Eoff (Iout)]fsw =

(Ton + Toff )VDCTL
Ioutfsw

2
. (2.24)

For the diodes, the turn on and turn off losses are neglected but the
reverse recovery can have a significant contribution to the losses. It can be
written as

PrrDiode1L
(Iout) = Err(Iout)fsw = KrrVDCTL

Ioutfsw (2.25)

using (2.10).
Operating the converter in AC mode, the switch losses for the IGBTs in

one leg can then be calculated as

PswitchIGBTs1
=

∫ Tf/2

0
2
(Ton+Toff )VDCTL

Iout(t)fsw

2
dt

Tf
=

2(Ton + Toff )VDCTL
fsw ˆIout

π
(2.26)

and the diode losses as

PrrDiodes1
=

∫ Tf/2

0
2KrrVDCTL

Iout(t)fsw dt

Tf
=

2KrrVDCTL
ˆIoutfsw

π
. (2.27)
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Total losses

The total losses for a TLI running in AC-mode then becomes the sum of the
losses in one leg times the number of legs which gives

PLossTLI
= 3(PconductionIGBTs1

+ PconductionDiodes1
+

PswitchIGBTs1
+ PrrDiodes1

) (2.28)

using (2.22), (2.23), (2.26) and (2.27).
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2.4.2 Multilevel inverter (MLI)

To be able to calculate the losses in the MLI, information about the operating
point is needed as well as the control strategy. It will be controlled with
Fundamental Selective Harmonic Elimination, FSHE. The MLI is assumed
to be operating at an output voltage expressed as

Vout(t) = Û(sin(ωt+ ϕ)) (2.29)

and the current as
Iout(t) = Î sin(ωt). (2.30)

Conduction losses

The current will always go through two transistors for each H-bridge. The
voltage drop for one MOSFET can be written according to (2.6). The total
voltage drop will therefore be equal to

Vdrop = 2nIout(t)RonMOSFET
(2.31)

independently of the current direction assuming that the MOSFET is turned
on when conducting in the reverse direction.

The conduction power loss for all three phases of the MLI can therefore
be calculated as

PconductionMLI
= 6nI2outRMS

RonMOSFET
= 3nÎ2RonMOSFET

. (2.32)

Switching losses

The switching losses can be described as a sum of the energy losses during
one cycle. When controlled with FSHE, the switching occurs very seldom, see
Fig. 2.6. During the first three switching instances, the inverter switches the
H-bridges to create a positive voltage. Depending on the current direction
this will result in either a turn on or a turn off loss. The loss for the MOSFET
and diode can therefore at the first three switching instances be written as

Eonα1,2,3
=
VdcML

I(α1,2,3)Ton
2

I(α1,2,3) ≥ 0

Eonα1,2,3
= 0 I(α1,2,3) < 0 (2.33)

Eoffα1,2,3
= 0 I(α1,2,3) ≥ 0

Eoffα1,2,3
=
VdcML

I(α1,2,3)Toff
2

I(α1,2,3) < 0 (2.34)

Errα1,2,3
= VdcML

I(α1,2,3)Krr I(α1,2,3) ≥ 0

Errα1,2,3
= 0 I(α1,2,3) < 0. (2.35)

19



For the fourth, fifth and sixth switching instances the inverter switches
to create zero volts for the inverters. This gives a loss according to

Eonα4,5,6
= 0 I(α4,5,6) ≥ 0

Eonα4,5,6
=
VdcML

I(α4,5,6)Ton
2

I(α4,5,6) < 0 (2.36)

Eoffα4,5,6
=
VdcML

I(α4,5,6)Toff
2

I(α4,5,6) ≥ 0

Eoffα4,5,6
= 0 I(α4,5,6) < 0 (2.37)

Errα4,5,6
= 0 I(α4,5,6) ≥ 0

Errα4,5,6
= VdcML

I(α4,5,6)Krr I(α4,5,6) < 0. (2.38)

During switching occasion 7 to 12 the losses will be equal to the loss
during switch 1 to 6. Therefore the losses can be calculated as

PswitchMLI
= 3 · 2 · ffund

6
∑

n=1

(Eonαn
+ Eoffαn

+ Errαn
). (2.39)

Total losses

The total losses for the multilevel inverter can be written as

PLossML
= PconductionMLI

+ PswitchMLI
(2.40)

using (2.32) and (2.39).
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2.5 Energy storage

In the literature many different models exists for describing the electrical
behaviour of a battery. In [22] and [23] evaluations for some different bat-
tery models are discussed and tested. For electric vehicles a dynamic model
described by time constants is proposed by [24]. In [25] a test model is pro-
posed to try to make a general test procedure for batteries used in electrified
vehicles to be able to make fair comparisons between different manufacturers
and sorts.

2.5.1 Battery

The battery is modelled as a fixed voltage source with an internal resistance.
When comparing the TLI and the MLI the same number of reference cells
are used to give a fair comparison. They are combined in such a way that the
two different inverters will be able to produce the same maximum voltage to
the electric machine.

For the TLI the input capacitor of the inverter is assumed large enough
to supply all the reactive power. The battery current is therefore assumed
to be a constant current during steady state operation.

For the MLI the battery current is calculated for three cases. In the first
case, no input capacitors are assumed. In the second case the inverter is
assumed to have infinity large capacitors connected to the input of the H-
bridges to smoothen out the battery current. In the third and last case the
input capacitors have a value. The battery current waveform for the battery
packs in phase one can be seen in Fig. 2.8, Fig. 2.9 and Fig. 2.10 for the
case with infinity large capacitors and without capacitors. If a capacitor of
3.6 mF , same energy amount as a 0.5 mF capacitor on the high voltage
TLI, is placed at the input and the inverter is operating at a fundamental
frequency of 400 Hz, the battery current would be filtered forming the solid
blue waveform seen in Fig. 2.11. Decreasing the current ripple decreases the
battery losses since the RMS value decreases.
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2.6 Electric machine and torque control

Many different electric machine topologies suitable for EVs exists. The
switched reluctance machine, SRM, is discussed in [26] where it is stated
that it can be a good choice for electrified vehicles, especially for high speeds.
Worries exist however that the SRM creates noice so it might not be the best
choice for EVs. The Tesla Roadster uses an asynchronous machine, AM [27].
Both the SRM and the AM are very interesting due to high magnetic prices.
The most commonly used machine is anyway the permanent magnet syn-
chronous machine, PMSM. Since it is the most common choice it will be the
one analyzed in this thesis. Electric machines used in EVs has to be able to
produce enough torque at a large speed range. To maximize the use of the
machine it is beneficial to use the machine in the constant power region as
much as possible to minimize the size, see [28].

In order to calculate the losses in the inverter, the waveforms of the cur-
rents and voltages to the electric machine are needed. The electric machine
used in this thesis is the one analyzed in [29] and [30]. It is a permanent
magnet synchronous machine, PMSM, with a different inductance in the d
and q direction. This gives the possibility to achieve a reluctance torque as
well as a magnetic torque. The PMSM machine is modeled in steady state
with the following equations when neglecting the magnetic losses.

usd = Rsisd − ωelLqisq (2.41)

usq = Rsisq + ωelLdisq + ωelψm (2.42)

Te =
3

2
p[ψmisq + (Ld − Lq)isqisd] (2.43)

UphaseRMS
=

√

u2sd + u2sq
2

(2.44)

IphaseRMS
=

√

i2sd + i2sq
2

(2.45)

ϕ = ∠~us − ∠~is (2.46)

The machine is controlled with MTPA (Maximum Torque Per Ampere)
control and with a phase voltage limitation and a current limitation. When
the voltage limit is reached, the machine is controlled with field weakening
until the maximum current is reached according to the procedure described
in [29]. The chosen current vector when using MTPA is seen in Fig. 2.12,
the field weakening is however not shown in this figure.
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2.7 Charger

In [14] different topologies for on board chargers are discussed. An advantage
with an on-bord charger is that the already existing propulsion inverter can
be used as a charger. Some topologies even use the inductances in the electric
machine as a filter component during charging operation. In [31] the demands
for a charger for an electric vehicle is discussed. It is stated that the need for
control of the power factor is needed, it is also important to make sure that
the SOC distribution in the battery is constant during charging. Reference
[32] states that the MLI has a power factor close to unity when rectifying
AC to DC during charging operation. In [33] the infrastructure perspective
of the charging of EVs are discussed. A need for bidirectional chargers is
discussed. By being able to inject active power to the grid, the grid can be
made stronger and more stable. Reference [34] and [35] propose a charger
where the components of the already existing propulsion drive line is used.
The results show that the performance of a charger made up by the already
existing components is good. The same result is shown by [36] where different
advantages of the different topologies are stated.

Using the inverter as a charger, as is done in this thesis, seems to be a
beneficial choice from many perspectives.

2.8 BMS

In [37] studies are made of series connected H-bridges to achieve an even
SOC distribution in the battery. The results show that with proper control
the SOC distribution can be held constant. Reference [32] shows that both
during charging as well as propulsion operation the MLI can act as a BMS
and control which battery module that the energy is moved from/to.
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2.9 Boundary conditions and load/charging cy-

cles

2.9.1 Drive cycles

When analyzing energy consumption of vehicles, different drive cycles are
used to compare vehicles. In this thesis, four different drive cycles are used,
see Fig. 2.13 and Table 2.1. The driving cycles are used to determine the
losses in both the battery and in the inverter to draw conclusions about the
possibilities for a multilevel inverter in electric vehicles.

The first is the New European Driving Cycle, NEDC. The NEDC driving
cycle is designed to represent the way vehicles are used in Europe and was
introduced 1990. It is made up from four repetitions of the city driving cycle
ECE15, and one high speed driving cycle, EUDC. The average speed of the
vehicle is 33 km/h and the maximum speed is 120 km/h. The driving cycle
has received much critic lately since it does not represent the way cars are
used. Modern vehicles have much more power than 20 years ago and are
driven with steeper accelerations.

The second drive cycle is the EPA Federal Test Procedure, FTP75. This
drive cycle is used in the United states to specify the fuel consumption of
an vehicle. This drive cycle has the same average speed as NEDC but the
top speed is much lower, only 91 km/h. The driving cycle has also gotten
criticism for being not aggressive enough and is therefore complimented with
the US06, described more below.

The third drive cycle analyzed is the EPA Highway Fuel Economy Cycle,
HWFET. This drive cycle aims at light duty trucks and is included in this
thesis to show the behavior of the multilevel inverter for small trucks. The
HWFET is a much less dynamic drive cycle than the ones for cars.

The last drive cycle is the US06 Supplemental Federal Test Procedure,
US06. It is a very aggressive drive cycle compared to the others; the accel-
erations are harder and the top speed goes up to 129 km/h. It is used as a
compliment to the FTP75 to show a more realistic way of the usage of the
vehicle.
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Figure 2.13: Speed profiles of the drive cycles

Table 2.1: Drive cycle parameters

Drive Speed Speed Time Distance Energy Energy
cycle avg max regen no regen

[km/h] [km/h] [s] [km] [Wh/km] [Wh/km]

NEDC 33 120 1180 10.9 54 82
FTP75 34 91 1874 17.8 44 80
HWFET 78 96 766 16.5 68 76
US06 78 129 596 12.9 83 117
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2.9.2 Charging levels

To be able to have control over the current during charging, the voltage
the inverter can produce needs to be higher than the grid voltage. In this
thesis, the voltage the inverter can produce is designed to match the electric
machine and is lower than the grid voltage, hence a transformer is needed.
The transformer is modeled as an ideal transformer without losses, see Fig.
2.14. The losses in the transformer are neglected since it is assumed that
the waveforms for both the MLI as well as the TLI are almost the same and
therefore the losses will be approximately the same.

For the three phase charging, the transformer is assumed to supply the
maximum voltage the inverter can produce, with a margin of 10 %.
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Figure 2.14: Charging transformer
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Chapter 3

Case set-up and functionality

verification

3.1 Case specification and parameter determi-

nation

3.1.1 Choice of DC-voltage

The motor analyzed in this thesis is designed for a phase voltage of maximum
106Vrms. To be able to have control over the current, the voltage that the
inverter can produce needs to be higher than the maximum voltage the motor
needs. For the MLI, (2.16) describes the needed DC voltage to be able to
produce 106 V with a margin of 10 % and is calculated to

VDCML
=
UphaseRMS MAX

√
2

0.9 · 1.07N = 51V. (3.1)

For the TLI the DC-voltage can be calculated using (2.12) and gives

VDCTL
=
UphaseRMS MAX

√
3
√
2

0.9
= 289V. (3.2)

3.1.2 Component values

The electric machine used for the analysis in this thesis is a PMSM machine
with parameters according to Tab. 3.1 and is referred to as the main ma-
chine. As a reference, a 10 pole machine will be used which has a lower
magnetization. This one is referred to as the alternative machine.

The selected IGBT and diode combination for the TLI is chosen to
SKIM909GD066HD and the MOSFET and diode combination for the MLI
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Table 3.1: Parameters of the electric machine

Parameter Main machine Alternative machine Unit

Ld 230 150 mH
Lq 500 300 mH
Rs 7.9 20 mΩ
Pole pairs 2 5
ψm 104 33 mWb
Maximum phase voltage 106 106 VRMS

Maximum phase current 212 212 ARMS

Maximum torque 112 109 Nm
Maximum power 66 49 kW

is chosen to IPB025N10N3, see Table 3.2. They are chosen to make the com-
parison fair since they have about the same relative margin to the breakdown
voltage. To make the current rating equal, the MOSFETs will be placed with
5 in parallel.

Table 3.2: Parameters of power electronic components

Parameter SKIM909GD066HD IPB025N10N3 Unit

Nr in parallel 1 5 Pcs

Rated voltage 600 100 V
Rated current 900 180 A

Vttransistor
0.7 0 V

Rontransistor
2.1 2.0 mΩ

Ton 271 58 ns
Toff 780 28 ns

VtDiode
1 Not in use V

RonDiode
0.94 Not in use mΩ

Krr 86 43 nJV −1I−1

The vehicle analyzed is a small compact car with the data given in Table
3.3.
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Table 3.3: Car parameters

Parameter Value Unit

Weight 1100 kg
A · Cd 0.45 Nv−2

Friction coefficient 0.01 N
Wheel radius 0.33 m
Gearbox ratio 11.5
Gearbox efficiency 90 %

The battery cells are assumed to have a resistance of 2mΩ with a nominal
voltage of 3.7 V and an energy content of 92.5 Wh. The battery for both
the TLI drive system and the MLI drive system consist of 108 of these cells
building up a capacity of 10 kWh.

3.1.3 Machine operation points

Operating the electrical machine at different torques and speeds gives the
operation points according to Fig. 3.1, Fig. 3.3 and Fig. 3.5 for the main
machine. In the figures, the operation points of the NEDC driving cycle
is also given as a reference of where the electric machine is typically used.
In Fig. 3.3 it can be seen that the voltage increases with speed up to the
field weakening region. When the maximum voltage is reached the machine
can continue to increase its speed by demagnetising the machine. This is
done by increasing the current in the d-direction giving an increased current
without increasing the torque. This can be seen in Fig. 3.1 where the straight
current lines bends down when entering the field weakening region. Its also
observable in Fig. 3.5 that the current leads the voltage in the field weakening
region due to that we need to use a current to demagnetize the machine.

The operating points for the alternative machine is shown in Fig. 3.2,
Fig. 3.4 and Fig. 3.6. It can be seen that the power factor is worse for low
speed operation but for high speed operation the power factor becomes much
better.
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Figure 3.1: RMS-value of the phase currents when using the main machine.
The NEDC driving cycle is marked for reference. The white line shows the
torque needed to propel the vehicle at constant speed.
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Figure 3.2: RMS-value of the phase currents when using the alternative
machine. Description as in Fig. 3.1
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Figure 3.3: RMS-value of phase voltages when using the main machine. De-
scription as in Fig. 3.1
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Figure 3.4: RMS-value of phase voltages when using the alternative machine.
Description as in Fig. 3.1
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Figure 3.5: Phase difference between voltage and current when using the
main machine. Description as in Fig. 3.1
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Figure 3.6: Phase difference between voltage and current when using the
alternative machine. Description as in Fig. 3.1
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3.2 Experimental setup

To verify the waveforms created by the MLI an experimental setup is de-
signed. The inverter will be used to verify the wave shapes used in the
analytical analysis. The experimental MLI can be seen in Fig. 3.7. In the
MLI the MOSFET IRF1324S-7PPbF is used. The on resistance (RonMOSFET

)
of this MOSFET is only maximum 1 mΩ. The voltage capabilities for this
MOSFET is only 24 V so it is only used to verify the capability to produce
the waveforms analysed.

Figure 3.7: Laboratory setup of the 7-level multilevel inverter. The 3 phases
consist of 3 levels each. The battery inputs are shown in the lower part of
the picture, the outputs are on the left side of the groups and the common
Y-connection point is shown on the right sides of the groups
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Chapter 4

Experimental results

4.1 Output waveforms and harmonics

Fig. 4.1, 4.2 and 4.3 show the output voltage from the MLI at ma = 0.5,
ma = 1.0 and ma = 1.2. It can be seen that the first harmonic in the line to
line voltage is no 11 for ma = 0.5 and ma = 1.0. When operating at ma = 1.2
the possibility to eliminate harmonic 5 and 7 is removed. In Fig. 4.4 and 4.5
the 5th and the 7th harmonic are plotted for different ma. It shows a good
match with the analytical calculations in Fig. 2.7.
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Figure 4.1: Measured voltage output and harmonic content at ma = 0.5
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Figure 4.2: Measured voltage output and harmonic content at ma = 1.0
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Figure 4.3: Measured voltage output and harmonic content at ma = 1.2
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Figure 4.4: Measured fundamental, 5th and 7th harmonic in the phase volt-
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Figure 4.5: Measured fundamental, 5th and 7th harmonic in the line to line
voltage
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4.2 Total Harmonic Distortion

The total harmonic distortion, THD, for the output voltage is both simulated
and measured for different magnitudes of the output voltage. The THD is
calculated with help of the RMS value and its definition range is therefore
very high. The simulations and the measurements can be seen in Fig. 4.6
and shows a good match. The current THD is not calculated or measured
since it is a function of the output frequency as well as the machine operating
point.
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Figure 4.6: Simulated and measured voltage THD for the MLI

It can be seen that the THD is as lowest at ma = 1, then the THD is
down to under 10 % for the line to line voltage.
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4.3 Balancing

The possibility to balance the battery cells is evaluated with the MLI test
setup. The energy sources is chosen to small super capacitors with a capaci-
tance of 10 F each. The three capacitors in one leg are charge to 1.6 V , 1.8 V
and 2.3 V . The inverter is then operated at ma = 1 to a resistive load to
to verify that the inverter will balance the cells during sine wave operation.
The control strategy is to use the inverter with the highest voltage as the
inverter controlled with α1, and the inverter with the lowest voltage as the
one controlled with α3.

In Fig. 4.7 the super capacitor voltages are plotted over time, it can been
seen that the capacitors will have the same voltage after some time. Since
the A/D-converter for this setup has a very poor resolution, the cells does
not get perfectly balanced. When the control system measures that the cells
are equal, balanced, it always uses the first H-bridge (green curve) as the one
controlled with α1, the second (red curve) with α2 and the third (blue curve)
with α3. This unfortunately causes the cells to never be totally balanced in
this setup, they will be unbalanced with the resolution of the A/D-converter.

Interesting to notice is that if ma would have been lower, the balancing
would be even more efficient since the lowest cell would never be connected
to the load.
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Figure 4.7: Measured balancing performance. The three cell voltages in one
leg converges to the same voltage level over time when operating the MLI as
a propulsion inverter or a charger
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4.4 Battery current

In Fig. 4.8 the inverter is operated at ma = 1 and ffundamental = 50 Hz. The
load consists of an RL load with R = 11 Ω and L = 36 mH . The current in
the battery groups can be seen in Fig. 4.9, 4.10 and 4.11. They match the
theoretical analysis seen in Fig. 2.8, 2.9 and 2.10.
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Figure 4.8: Measured output phase voltage and current
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Figure 4.9: Measured current in battery group 1
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Figure 4.10: Measured current in battery group 2
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Figure 4.11: Measured current in battery group 3
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Chapter 5

Static loss evaluation

5.1 Efficiency calculations

When an inverter is used to supply the electric machine in an electric vehicle,
the losses are a function of the operation points of the car. Based on the
operation points given in Fig. 3.1, Fig. 3.3 and Fig. 3.5 the losses in the
inverter and in the battery are calculated.

5.1.1 Inverter

The losses in the two different inverters are calculated assuming that the
current to the electrical machine is equal for the two cases and does not
contain any harmonics.

Two level inverter

The power loss for the TLI using IGBTs is calculated for different torques
and speeds and is shown in Fig. 5.1 for a switching frequency of 10 kHz. It
can be seen that the losses increase quite proportionally to the current and
so does also torque. The losses are not speed dependent until we reach the
field weakening region and need a current to demagnetize the machine.

The efficiency of the inverter is shown in Fig. 5.2. Since the losses and the
output power both increase proportionally to the torque, the efficiency of the
inverter is not dependant of the torque. Since the losses are not dependant on
the speed but the output power is, it can be seen that the efficiency increases
with speed. At high speeds and low torques the output power is very low,
but the inverter has a relatively high losses. These losses are due to that
the inverter needs to supply a current to demagnetise the machine in the
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Figure 5.1: Inverter power loss for the TLI. Description as in Fig. 3.1
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Figure 5.2: Inverter efficiency for the TLI. Description as in Fig. 3.1
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field weakening region, and the inverter efficiency therefore drops at at high
speeds.

Multilevel inverter

The inverter losses with the MLI at different speeds and torques produced
by the electrical machine can be seen in Fig. 5.3. The conductive losses
in the MOSFETs dominates the losses since the inverter is only switched
at the fundamental frequency, even at the maximum speed, the switching
losses never exceeds 20 W for the inverter. Since the conductive losses in a
MOSFET is proportional to the square of the current, the losses increases
with the square of the torque in the region without field weakening. In the
field weakening region the losses increases for a certain torque, since all the
extra current is needed to demagnetize the machine.

The efficiency of the MLI can be seen in Fig. 5.4. Since the power loss is
proportional to the square of the torque and the output power is proportional
to the torque, this means that at a certain speed the efficiency drops for higher
torques. When increasing the speed, the output power increases and the
losses remains fairly constant for a certain torque. This causes the efficiency
to increase at higher speeds. When entering the field weakening region the
efficiency drops since more current is needed to demagnetize the machine.
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Figure 5.3: Inverter power loss for the MLI. Description as in Fig. 3.1
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Figure 5.4: Inverter efficiency for the MLI. Description as in Fig. 3.1
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5.1.2 Battery

The battery loss for the car when using a TLI is shown in Fig. 5.5. Since
the whole battery supplies the power to the electric machine and the volt-
age in the battery is assumed to be constant, the battery current becomes
proportional to the active power supplied to the machine. The losses in the
battery then become proportional to the square of the electric machine power.
This can be seen in Fig. 5.5 for all operation points. Due to that the TLI
balances the reactive power in the separate phases already in the inverter
and also smoothens a very high frequency ripple with its DC-link capacitor,
the battery utilization becomes as good as it can be with the TLI. When
switching to a MLI the question is, how much extra losses will be added.
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Figure 5.5: Losses in the battery when using a TLI. Description as in Fig.
3.1

The battery losses when operating the vehicle with infinity large capaci-
tors to the input of a MLI can be seen in Fig. 5.6. The battery losses will be
higher when using a MLI drive system compared to a TLI, even with these
capacitors. This is due to that the current in the different groups will not be
equal when operating the inverter with FSHE, even though the current will
be pure DC.

The battery loss when operating the vehicle with a MLI without filter
capacitors on the input of the H-bridges can be seen in Fig. 5.7. One can
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Figure 5.6: Losses in the battery when using a MLI with infinity large filter
capacitances. Description as in Fig. 3.1

see that the losses are much higher now, the battery now needs to supply the
reactive power but also take care of that the battery power is not taken out
as a smooth current.

When using an input capacitor of 3.6 mF connected to each input, the
losses can be seen in Fig. 5.8. Using these capacitors, the current out of
the battery will be smoothen. The faster the machine runs, the higher the
battery current frequency will be and therefore the battery loss reduction
will be more favourable at high speeds.
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Figure 5.7: Losses in the battery when using a MLI without filter capaci-
tances. Description as in Fig. 3.1
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Figure 5.8: Losses in the battery when using a MLI with filter capacitances
of 3.6 mF. Description as in Fig. 3.1
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5.1.3 Total losses

The total losses that are analysed and that are presented below, consists of
the inverter losses and the battery losses. The machine losses are assumed
to be equal for the two inverters and are therefore excluded in this analysis.

For the TLI, the total losses of the battery and the inverter are shown in
Fig. 5.9.
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Figure 5.9: Inverter and battery losses for the TLI. Description as in Fig. 3.1

For the MLI with large capacitors in parallel to the input of the H-bridges,
the losses are shown in Fig. 5.10, and for the MLI without input capacitors
the losses are shown in Fig. 5.11. If the capacitors are chosen to 3.6 mF
the losses can be seen in Fig. 5.12. The drive system with the MLI with
capacitors shows an advantage over the TLI drive system at all operating
points. For the MLI system without capacitors, as expected, the losses be-
comes larger than for the TLI systems for high speeds and torques.
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Figure 5.10: Inverter and battery losses for the MLI with capacitors. De-
scription as in Fig. 3.1
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Figure 5.11: Inverter and battery losses for the MLI without capacitors.
Description as in Fig. 3.1
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Figure 5.12: Inverter and battery losses for the MLI with filter capacitances
of 3.6 mF. Description as in Fig. 3.1
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5.1.4 Comparison

The losses in the inverters for different speeds and a fixed torque of 10 Nm
are shown in Fig. 5.13, and for a torque of 60 Nm in Fig. 5.14. It can be
seen that the MLI has lower inverter losses for all operating points. It can
also be noticed that the inverter losses for both inverters increases a lot when
entering the field weakening region.

The losses in the battery for different speeds and a fixed torque of 10 Nm
are shown in Fig. 5.15, and for a torque of 60 Nm in Fig. 5.16. The losses
in the battery for the TLI are lowest for all speeds. This is due to that the
current out from the battery is pure DC. The battery losses for the MLI with
infinity large capacitors to the inputs of the H-bridges are a bit higher. The
batteries do not supply the reactive power but some of the battery modules
have a higher current than other ones, even though they have a pure DC
current. The losses for the MLI without capacitors are higher for all speeds,
especially when entering the field weakening region. The batteries must then
supply the reactive power needed by the electrical machine. When using an
input capacitor of 3.6 mF the battery losses are reduced a bit compared to
not having capacitors, this is most obvious for higher torques.

The total losses for the drive systems for different speeds and a fixed
torque of 10 Nm is shown in 5.17, and in Fig. 5.18 the total losses are shown
for a torque of 60 Nm. When operating the machine at low torques, the
losses for the MLI drive system are lower for low speeds. When entering
the field weakening region the battery losses increase drastically for the MLI
drive system if the reactive power can not be supplied from the capacitors
instead of the battery. For higher torques the TLI drive system shows lower
losses for almost all speeds, if one does not have the possibility to filter out
the reactive power and the harmonic content from the battery in the MLI
drive system. The electric machine will on the other hand not operate at
this high torque very often, as will be showed later on.
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Figure 5.13: Inverter power loss for T=10 Nm
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Figure 5.14: Inverter power loss for T=60 Nm
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Figure 5.15: Battery power loss for T=10 Nm
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Figure 5.16: Battery power loss for T=60 Nm
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Figure 5.17: Total loss for T=10 Nm
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Figure 5.18: Total loss for T=60 Nm
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5.1.5 Charging

The losses when using the inverter as a charger can be seen in Fig 5.19 and
in Table 5.1. For the two lower power alternatives the MLI shows a benefit
in efficiency, for higher power the battery losses increase compared to the
TLI case if the battery current is not filtered. The efficiency is shown in Fig.
5.20. It is seen that the efficiency is higher at the lowers input current and
that the MLI is the most attractive alternative, especially if the possibility to
filter the battery current exists. The efficiency during charging might on the
other hand not be such an important design criteria, it is more important to
be able to control where the losses occur.

Table 5.1: Total losses for different charging power

Charging Input Power TLI MLI MLI MLI
C = ∞ C = 0 mF C = 3.6 mF

3 Phase 10 A 6900 W 225 W 66 W 105 W 103 W
3 Phase 16 A 11040 W 419 W 169 W 268 W 264 W
3 Phase 32 A 22080 W 1150 W 676 W 1072 W 1058 W
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Figure 5.19: Total losses for different charging power
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Figure 5.20: Charger efficiency for different charging power
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Chapter 6

Drive cycle evaluation

The accumulated energy loss for the battery and the inverter are now ana-
lyzed using the NEDC, the FTP75, the HWFET and the US06 drive cycles
for the vehicle presented in Table 3.3.

6.1 NEDC

The torque and speed profile for the NEDC drive cycle are shown in Fig. 6.1
and in Fig. 6.2.

The battery and inverter losses for the four different setups are shown
in Fig. 6.3 together with the accumulated losses. One can see that the
accumulated losses for the TLI drive system becomes the worst ending up
at 65 Wh. The MLI that does not have capacitors to filter out the reactive
power and harmonic content uses 49 Wh. This is an improvement over the
TLI and as can be seen in Fig. 6.13, the inverter losses have been reduced
substantially. The battery losses are increased but the sum is reduced. When
having a large enough capacitor to the input of the H-bridges the reactive
power supply is assumed to be taken from these capacitors instead of the
battery. The losses in the battery are then reduced to only 15 Wh instead
of 46 Wh. The total losses are then reduced to 18 Wh.
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Figure 6.1: The NEDC drive cycle
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Figure 6.2: Operation points of the electric machine during NEDC
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Figure 6.3: Losses during the NEDC driving cycle
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6.2 FTP75

The torque and speed profile for the FTP75 drive cycle are shown in Fig. 6.4
and in Fig. 6.5.
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Figure 6.4: The FTP75 drive cycle

The losses for the four different setups are shown in Fig. 6.6 together
with the accumulated losses.
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Figure 6.5: Operation points of the electric machine during the FTP75 driv-
ing cycle
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Figure 6.6: Losses during the FTP75 driving cycle
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6.3 HWFET

The torque and speed profile for the HWFET drive cycle are shown in Fig.
6.7 and in Fig. 6.8.
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Figure 6.7: The HWFET drive cycle

The losses for the four different setups are shown in Fig. 6.9 together
with the accumulated losses.
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Figure 6.8: Operation points of the electric machine during the HWFET
driving cycle
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Figure 6.9: Losses during the HWFET driving cycle
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6.4 US06

The torque and speed profile for the US06 drive cycle are shown in Fig. 6.10
and in Fig. 6.11.
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Figure 6.10: The US06 drive cycle

The losses for the four different setups are shown in Fig. 6.12 together
with the accumulated losses.
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Figure 6.11: Operation points of the electric machine during the US06 driving
cycle
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Figure 6.12: Losses during the US06 driving cycle
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6.5 Comparison between proposed topology and

classical inverter

6.5.1 Propulsion

The accumulated battery and inverter losses for the four drive cycles and the
four systems are presented in Table 6.1 and Fig. 6.13 when operating the
vehicle with the main machine. It can be seen that the MLI is a beneficial
choice compared to the TLI for all drive cycles except the high speed US06.
Having filter capacitors of 3.6 mF reduces the losses somewhat compared to
not having them at all.

Table 6.1: Accumulated energy loss for inverter and battery when operating
the vehicle with the main machine

Drive cycle TLI MLI MLI MLI
C = ∞ C = 0 mF C = 3.6 mF

NEDC 65 Wh 18 Wh 49 Wh 47 Wh
FTP75 106 Wh 29 Wh 68 Wh 64 Wh
HWFET 76 Wh 20 Wh 60 Wh 59 Wh
US06 134 Wh 55 Wh 168 Wh 161 Wh

The accumulated battery and inverter losses for the four drive trains when
using the alternative machine are presented Fig. 6.14. The losses when using
the alternative machine are reduced compared to the main machine for the
high speed drive cycles US06 and HWFET. The alternative machine has
lower magnetisation so less reactive power is needed in the field weakening
region, and the high speed losses are reduced. It can also be seen that the case
with the input capacitors of 3.6 mF shows a better reduction of the losses
compared to the case without the capacitors. This improvement comes from
that the alternative machine is a 5 pole pair machine and therefore require a
higher frequency, the capacitors therefore becomes more efficient. The MLI
with input capacitors of 3.6 mF now shows a loss improvement over the TLI
for all drive cycles.
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Figure 6.13: Drive cycle losses with main machine
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Figure 6.14: Drive cycle losses with alternative machine
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Chapter 7

Conclusions

The results show that the multilevel inverter, MLI, has a large potential when
used as the propulsion inverter in EVs. It has benefits such as lower EMI,
better control over battery management and battery loss distribution. If
the possibility to place large capacitors on the input of the H-bridges exists,
the drive train losses become lower than the corresponding two-level, TLI,
setup for all the drive cycles analysed, especially if the electric machine in
the vehicle does not require a large amount of reactive power in the field
weakening region. The inverter losses are lowered for all operating points,
however the drawback of the MLI is that the battery losses are increased,
especially if the input capacitors do not exist. The battery will then supply
all the reactive power and harmonic components which is required by the
machine and produced by the inverter.

The accumulated losses shown in Table 6.1 show that it is beneficial to
use the MLI compared to the TLI. For the NEDC driving cycle the accumu-
lated losses in the battery and the inverter are reduced by 25 % if no input
capacitors are used. If on the other hand all the reactive power and harmonic
content were supplied by these capacitors the loss reduction would be 72 %.
However, these capacitors would be very expensive.

Only for the high speed driving cycle as the US06, the MLI shows a
drawback if large input capacitors are not used. The accumulated battery and
inverter losses would increase by 25 % when using a MLI without capacitors
compared to a TLI. The US06 demands more power due to its higher speeds,
and at high speeds the electric machine needs to be controlled with field
weakening which requires a lot of reactive power. This reactive power needs
to be supplied by the batteries if no input capacitors are available. If the
reactive power from the battery is filtered out, the drive system with the MLI
becomes the choice with the lowest losses, even at the demanding US06, and
shows a loss reduction of 55 %.
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Chapter 8

Future Work

This thesis analyses the efficiency perspective of using a MLI in EVs. To
be able to verify the possibility of a MLI in EVs the following topics needs
investigation.

• Analyse the physical benefits when using a MLI instead of a TLI. Here,
cooling design and packaging is a highly important aspect. For in-
stance, there is a need to investigate how beneficial it is to distribute
the inverters to the batteries.

• With a MLI the possibility to take out other voltage levels can be
made. One level can for example directly supply the 12 V system
and the MLI could still make sure that this level is balanced with the
remaining levels. The vehicle could then be made cheaper, since no
DC/DC converter would be needed. The need for galvanic insulation
could on the other hand be a problem and needs further investigation.

• Investigate how the performance of a MLI would be when using more
levels. What is the optimum for different drive cycles and car sizes?

• At low frequencies the machine can not operate with selective harmonic
elimination due to that the motor current would not be sinusoidal. In-
vestigation about when it is necessary to start using PWM is accord-
ingly needed. Since the MOSFETs has much lower switching losses, it
could be beneficial to always use PWM, without increasing the losses
very much.

• The MLI has the opportunity to control from which modules the energy
should be taken from, it can therefore also be used to control where
the losses takes place. If one inverter or battery becomes too hot the
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MLI can be controlled to use this level less. Investigation about how
this control can be made, and the benefits from it can be of interest.

• If a switch and/or in the MLI malfunctions, and is detected, the inverter
can be controlled to keep operating without using that level, making
the MLI a fault tolerant system. In vehicles this is a very important
feature and investigation about the subject is of great interest.

• Investigation about different modulation strategies is of great impor-
tance. Reference [38] and [39] for example, show that space vector
modulation is an alternative for MLI and shows good performance.

• Since the MLI can choose from which battery groups the energy should
be taken from, it could be beneficial to compose the battery storage
from different sorts of batteries and maybe even super capacitors. For
very urban drive cycles it could be beneficial to use the super capacitors
for acceleration and deceleration, and use the batteries as the average
energy supply, reducing the losses.
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