Constructing
a Prototype Spoken Dialogue System
for World Wide Named Places

Providing Spoken Dialogue Control of an In-Vehicle Infotainment
System

Master’s Thesis in Intelligent Systems Design
ROBIN PERSSON

Department of Computer Science & Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2012

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Constructing a Prototype Spoken Dialogue System for World Wide Named Places
Providing Spoken Dialogue Control of an In-Vehicle Infotainment System

Master’s Thesis in Intelligent Systems Design
ROBIN PERSSON

(© ROBIN PERSSON, 2012.

Examiner: PETER LJUNGLOF

Department of Computer Science & Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 1000

COVER:

The picture shows a car interior with an in-vehicle infotainment system. There is often
a touch screen, located in the dashboard between the driver and passenger, allowing
user interaction. There may also be a screen behind the wheel as well as a heads-up
display shown on the windscreen, to display information to the driver. The picture is
used on page 8.

Goteborg, Sweden 2012

Abstract

Named places, such as named restaurants and gas stations, are usually not supported
in spoken dialogue systems used in vehicles. They usually support navigation in an in-
vehicle infotainment system in the vehicle, but the user cannot mention named places.

This thesis attempts to construct a prototype dialogue system using an issue-based
dialogue manager. The idea is to support named places across the world, in the context
of driving a vehicle. The dialogue system is integrated with an in-vehicle infotainment
system to enable spoken dialogue control of navigation and weather use cases.

The spoken dialogue system is grammar based and all the places used are loaded
on startup. To enable world wide named places, new places are loaded dynamically at
run-time, fetched from the cloud. This solution however introduces shortcomings, for
example a long delay when waiting for the speech recognition grammar to compile. This
problem also showed during user tests, being pointed out as one of the biggest problems
with the prototype. Users also compared it to world-leading competition and pointed
out the differences. The most important differences, on a conceptual level, can be solved
by switching the grammar based speech recognizer for a freeform one. This solution
would be interesting future work.

Keywords: spoken dialogue, infotainment, in-vehicle infotainment, speech, speech recog-
nition, speech synthesis, grammar, navigation

ii

Acknowledgements

I wrote this thesis in the spring, summer and fall of 2012 at Pelagicore AB in G&teborg.
I would like to thank them for inviting me into their office, assisting me and providing
me with the tools I needed. In particular, I want to thank my Pelagicore supervisor
Richard Rojfors and his occasional stand-in Jimmy Adler. I also want to thank the rest
of the co-workers for providing valuable input during testing.

When writing my application for the Talkamatic Dialogue Manager I faced an un-
documented work process. I had to tread where noone had treaded for a long time,
discovering limitations and requirements along the way. The application, and this thesis
along with it, would not have reached its final level of quality without the help of Talka-
matic themselves. I extend my thanks, primarily to my Talkamatic supervisor Alexander
Berman but also to his colleague, Fredrik Kronlid.

Finally, I would also like to thank my academic supervisor, Peter Ljunglof, for guid-
ing me with my early work as well as with this report.

Robin Persson, Géteborg 2012-11-23

iii

v

Contents

Introduction 1
1.1 Purpose e e 2
1.2 Scope & Limitations o 2
1.3 Outline e 2
Technical Background 3
2.1 Spoken Dialogue Systems 3
2.2 Dialogue Management o 5
2.3 Evaluation of Dialogue Systems 6
2.4 In-Vehicle Infotainment Systems 7
Review of Existing Components 10
3.1 Talkamatic Dialogue Manager 10
3.2 D-bus e 17
3.3 Pelagicore Resource Framework 17
3.4 Pelagicore HMI 19
First Prototype — Static Demonstrator 22
4.1 Components e 22
4.2 TDM Application e 26
4.3 Shortcomings 30
Second Prototype — Dynamic Demonstrator 33
5.1 New functionality 33
5.2 Components e e 35
5.3 TDM Application 39
5.4 Shortcomings 45
System Evaluation 49
6.1 User Tests e e 49
6.2 Discussion 50

CONTENTS

7 Conclusions

7.1 Accomplishments
7.2 Significant Shortcomings
7.3 Future Work

References
Appendix A TDM Device Protocol

Appendix B Spoken Dialogue Adapter API

B.1 The Service API
B.2 The Resource API

Appendix C Weather API

C.1 The Service API
C.2 The Resource API

Appendix D Named Entities Database API

D.1 The Service API
D.2 The Resource API

Appendix E Places

E.1 UseCase Tasks
E.2 Named Entity Categories

Appendix F System Evaluation Tasks

vi

Introduction

ELAGICORE! develops a resource framework (ResFW) for In-Vehicle Infotainment
P (IVI) systems, used in modern cars. They attempt to connect the varying resources
normally available in an IVI system today, such as radio-, music- and movie playback,
navigation, telephone integration, et cetera. Pelagicore also provides a human-machine
interface (HMI), so that the user can interact with the IVI system.

Historically, TVI systems have been using physical means of interaction, such as
buttons and knobs. However, recent days have provided them with touch screens and
some kinds of speech control. Certain speech controlled systems principally lets the user
navigate the IVI menu system by speaking menu labels out loud. Other IVI systems have
a spoken dialogue (SD) component though, more oriented toward dialogue and allowing
more natural utterances. However, to my knowledge, no speech controlled systems allow
the user to mention places by name, for example specific restaurants or gas stations.

As pointed out by Chen et al. (2010), a spoken dialogue system is required to be
highly natural, robust, seamless and highly intuitive and easy-to-use. It is hard to define
if a spoken dialogue system is highly natural or highly intuitive, but one aspect to look
at is place names. There are systems that allow places to be specified, it is however done
either by narrowing down its category or specifying its address.

Another company, Talkamatic?, develops a dialogue manager (TDM) for implement-
ing flexible dialogue systems. It can be integrated with external systems, allowing devel-
opment of dialogue control for them. It further models dialogue in a natural way, trying
to imitate human-to-human dialogue in aspects relevant for SD systems.

'Pelagicore website: http://www.pelagicore.com/ [Accessed June 12th, 2012]
2Talkamatic website: http://talkamatic.se/ [Accessed June 12th, 2012]

http://www.pelagicore.com/
http://talkamatic.se/

1.1. PURPOSE CHAPTER 1. INTRODUCTION

1.1 Purpose

The purpose of this thesis is to allow users to control their car IVI system by speaking
to it in natural dialogue, being able to name places.

A prototype demonstrator will be implemented, focusing on two use cases: navigation
and weather. Both use cases are relevant to the context of driving a vehicle. The
implementation will be introduced as a component of ResFW with TDM for dialogue
management. Along with this, the goal is to also support world-wide named places, in
context of the use cases. The use cases should both use named places so that the TDM
naturalness can be demonstrated.

To provide an example, consider the use case of navigation. The user wants to
navigate to a certain place, perhaps a specific restaurant in a city nearby. She requests
navigation to the restaurant, mentioning its name while also mentioning the city name.
TDM notices that the user is requesting navigation to some place in the nearby city.
It tells the IVI to start navigation there. Next, the user asks what the weather will be
like. TDM understands that she wants to know the weather for the destination she just
mentioned. A weather forecast for the same place is shown in the IVI system.

1.2 Scope & Limitations

This thesis covers how TDM can be used to develop prototype dialogue control for an
IVI system. Specifically, navigation and weather views of the HMI will be controlled in
this way. There will be no spoken instructions from them though, they will look just
like they do without spoken dialogue control.

Some user tests will be carried out on the prototype demonstrator to catch its major
shortcomings.

While the system is an IVI system it will not be considered for a real automotive
environment. In this thesis, a stable desktop environment will be used. For example, an
Internet connection in a car is usually not constantly available, since the car can move
across large areas, perhaps some with low Internet coverage. This is neglected in the
thesis. Instead high speed Internet is considered constantly connected. Audible noise is
usually common in cars, but in this thesis it will be considered non-existent, both from
the environment and from passengers.

1.3 Outline

A prestudy of IVI and SD systems will be given in chapter 2. It should give proper under-
standing of the domains of the thesis. Chapter 3 will describe the existing components
for IVI and SD systems that will be used in the prototype demonstrator. The demon-
strator itself and the construction thereof will be described in two different versions in
chapters 4 and 5 along with known shortcomings and discussions of them. An evalua-
tion of the final demonstrator will then be described, including results and discussions
in chapter 6. Finally, conclusions will be given in chapter 7.

Technical Background

O GET A BETTER UNDERSTANDING of the domain of this thesis, some background
T of both spoken dialogue (SD) systems and in-vehicle infotainment (IVI) systems
is needed. Both are described below but the part about SD systems focuses more on
how such a system works, its components, et cetera. The part about in-vehicle infotain-
ment systems focuses more on what such systems are capable of today, especially when
integrated with a spoken-dialogue system of some sort.

2.1 Spoken Dialogue Systems

An SD system does not only interpret speech and speak back to the user. It can
also keep track of the conversation, in contrast to more limited systems such as pure
question-answer systems, where only the most recent question is considered and an-
swered (McTear, 2002, p. 128).

Dialogue

Management
Speech — T Speech

Recognition / \ Output

Language Response

Understanding External Generation
Systems

Figure 2.1: An SD system consists of six parts. Usually, dialogue management is central,
controlling the other parts.

2.1. SPOKEN DIALOGUE SYSTEMS CHAPTER 2. BACKGROUND

As described by McTear (2002, p. 113), a dialogue system mainly consists of six
parts. Commonly, a dialogue manager (in the "Dialogue management” node) is central,
controlling the other parts of the system, as can be seen in figure 2.1.

The automatic speech recognizer (ASR, in the "Speech Recognition” node of the
figure) transcribes recorded user speech to text. The transcribed speech is semantically
interpreted in the "Language understanding” node and external systems may be queried
after this, if needed. "External systems” can be for example a multimedia player or
a navigational system with GPS connectivity. A response is generated as text in the
"Response Generation” node. The response can then be spoken, possibly by a speech
synthesizer, in the "Speech Output” node.

I will describe speech recognition, speech synthesis and dialogue management below.

2.1.1 Speech Recognition

Speech recognition is important in SD systems. As stated by Kang et al. (2009), the
speech recognition performance accounts for the biggest part of the overall SD system
performance.

An ASR consists of models, trying to model speech from the real world. In addition,
there is a speech engine which contains all the computational logic, making use of the
speech models to transcribe speech into text. Two different models are needed for speech.
Firstly, there is the low level acoustic model, modelling how words sound. Secondly, there
is the language model, modelling how words build language.

2.1.1.1 Acoustic Models

An acoustic model represents how words sound. It is commonly created by recording
speech with text transcriptions, so that the speech and text can be matched. Statistical
representations of how the words sound can then be computed. This means that the
acoustic model is sensitive to the environment, such as noise and voice characteristics.

To achieve good speech recognition results, the acoustic model must be based on
enough audio data, both regarding the amount of words and sounds spoken and the
amount of speakers.

How speech can be modelled acoustically is described by for example Fant (2005,
pp. 145-161).

2.1.1.2 Language Models
Several approaches to language models for ASR systems exist. There are mainly two
types, the grammar based model and the statistical model.

Grammar Based Language Models

Grammar based language models describe the domain language, trying to cover all po-
tential utterances that a user may wish to speak. Utterances are not ranked in any way.

2.2. DIALOGUE MANAGEMENT CHAPTER 2. BACKGROUND

The ones that are finally recognized by the ASR are chosen entirely based on how well
they match the acoustic model.

Statistical Language Models

Statistical language models (SLM) are usually based on probabilities of word sequences.
Probabilities are calculated by counting occurances of words and word sequences in a
corpus, a collection of text. For example, a new word can be predicted based on the
previous word; or it can be predicted based on the two previous words. Using any
number of words is viable but using one or two is the most common.

Grammar Based vs Statistical Language Models

A user may speak utterances that are not covered in a grammar based model. This
usually means that grammar based models have a larger error than statistical language
models, at least with naive users. However, if the user speaks an utterance supported
by the grammar, the accuracy should be significantly higher for a grammar based model
than an SLM since there are fewer potentially matching utterances to choose from.

Since SLMs can help the ASR recognize any utterance, not just those specified in a
grammar, they are considered more robust than grammar based models. Of course, the
SLM corpus must be large enough to include such an utterance and the domain needs
to be considered when selecting the corpus. For example, a corpus based on news reader
transcripts may not be the best for recognizing navigation requests in an automotive
setting.

2.1.2 Speech Synthesis

A speech synthesizer, or text-to-speech (TTS) system, turns text into speech. Usually it
will speak just by supplying it with plain text. This can be done by developing speech
models, modelling how speech sounds based on transcribed recordings (Acapela, 2012a).

As further described by software synthesizer company Acapela (2012b), the most
important qualities of a speech synthesizer is naturalness and intelligibility. Naturalness
measures how natural the speech synthesizer sounds, how close to a real human being
it is. Intelligibility on the other hand measures how well the user understands what
the speech synthesizer has said. A good speech synthesizer must be both natural and
intelligible.

2.2 Dialogue Management

A dialogue manager interprets the user’s input in the context of the dialogue, keeping
track of what has been said and deciding what to say next. The dialogue manager simply
controls the behaviour of the dialogue system. There are several approaches to dialogue
management. Some are well-tested, some are newer. I will describe two well-tested

2.3. EVALUATION OF DIALOGUE SYSTEMS CHAPTER 2. BACKGROUND

approaches, one based on finite states and one based on frames. Among the recent ones,
I will describe one based on issues.

2.2.1 Finite State Based Dialogue Management

In a finite state based dialogue manager, the dialogue moves between states. Certain
answers need to be provided for the system to reach its goals, each answer bringing the
dialogue to a new state towards the goal. A state reflects what information that have
been provided and all possible answers that will move the dialogue to new states. The
downside with this approach is that the state machine easily becomes complex and hard
to handle when trying to model natural dialogue. The upside however, is that speech
recognition results are rather accurate since potential answers are heavily restricted in
individual states. (McTear, 2002, pp. 92-93)

An example of the finite state approach is the CSLU toolkit by Sutton and Cole
(1997).

2.2.2 Frame Based Dialogue Management

In a frame based, or form-filling, dialogue manager; dialogue is modelled as a form, with
a set of fields that need to be filled. The system requests the remaining fields until
they are all filled. In light of this, the form filling model is better suited for mixed
initiative dialogue, where both the user and the system can drive the dialogue. The
user can answer more questions than one at a time, and the order of the answers is not
important. (McTear, 2002, pp. 93-94)

An example of the frame based approach is VoiceXML (VoiceXML Forum, 2000), a
markup language used to describe frame based dialogue.

2.2.3 Issue Based Dialogue Management

In an issue based dialogue manager, issues (or questions) arise in the dialogue and need
to be resolved (answered). They may be both raised and answered by either the user or
the system. Dialogue is flexible as well. The user may for example start the dialogue by
answering an issue (rather than raising it) and, if there are several issues that accepts
the answer, it will ask which one she means.

An example of an issue based dialogue manager is GoDiS, by Larsson et al. (2000).
A spinoff of the GoDiS dialogue manager is used in the thesis and will be discussed in
section 3.1.

2.3 Evaluation of Dialogue Systems

Several evaluation methodologies for SD systems have been suggested in literature. I
will describe one method, PARADISE, by Walker et al. (1997). In the paper, Walker
et al. mention some evalution measures that seem to be useful estimators in SD system

2.4. IN-VEHICLE INFOTAINMENT SYSTEMS CHAPTER 2. BACKGROUND

evaluation. Among them, task completion rate and concept accuracy, which will also be
described below.

The final prototype demonstrator (chapter 5) will be evaluated briefly in chapter 6,
using both task completion rate and concept accuracy. PARADISE itself, will not be
used in the thesis.

2.3.1 PARADISE

User tests usually require much time and effort, associated with high costs. Because of
this, methods to make user testing cheaper have been researched. One resulting method
is PARADISE by Walker et al. (1997). They suggest extensive user tests initially, using
an algorithm to correlate user satisfaction (which they consider the overall priority of
a SD system) with a small set of the data gathered during testing. This way, user
satisfaction can be estimated cheaply during later tests, as there are fewer parameters
that needs to be tested.

2.3.2 Task Completion Rate

Task completion rate can be described as how efficiently a user completes a task. In this
case how many utterances that are required to solve a certain task. The completion rate
can be calculated individually for each task as well as for the system as a whole.

2.3.3 Concept Accuracy

To determine what concept accuracy is, the meaning of concept must first be established.
Consider an utterance such as:

I want to navigate to New York.

There are two concepts in it. The first is to start a navigation. The second is the name
of the destination, New York. Note that concepts are determined by the domain they
are used in, as well as how they are used in the dialogue manager. In the thesis, concepts
work as described here.

As described by Boros et al. (1996), concept accuracy (CA) refers to how big share
of concepts that the system interprets correctly out of those given by the user.

2.4 In-Vehicle Infotainment Systems

This section covers In-Vehicle Infotainment (IVI) systems and their functionality, espe-
cially focusing on speech interaction. I have no insight in how an IVI system is normally
designed, but I have studied some functionality. In particular, I have studied three ex-
isting IVI systems. Two of them were ordinary IVI systems (Volvo Sensus and Cadillac
Cue), while one was a SD component (Ford Sync) that was part of an IVI system.

2.4. IN-VEHICLE INFOTAINMENT SYSTEMS CHAPTER 2. BACKGROUND

Figure 2.2: This is an example of what is usually associated with an in-vehicle infotainment
system. There is normally a touch screen, located in the dashboard between the driver and
passenger, allowing user interaction. There may also be a screen behind the wheel as well
as a heads-up display shown on the windscreen, to display information to the driver.

2.4.1 Volvo Sensus

The Volvo Sensus' provides for example control of many Volvo safety systems, but
also multimedia playback, bluetooth support and navigation. The navigation system is
interesting. Volvo claims it has voice recognition? but there is no information of how it
works. In a review though (Fung, 2011), it turns out that navigation destinations cannot
be entered by voice at all, unless the user creates some kind of tags in advance, one for
each destination.

2.4.2 Cadillac Cue

The Cadillac Cue? provides similar features, for example voice recognition for music,
phone and navigation. A review by Howard (2012) compares the Cue with the Ford
Sync (see section 2.4.3) and determines that both of them are limited because their
commands are processed locally, within the car, rather than on a server in the cloud.
The car computer is not as powerful as a server solution in the cloud, which restricts
both systems. The reviewer uses an example of a named place as something none of
them can handle. This strongly suggests that both of them use static grammars rather
than SLMs or dynamic grammars.

!American Volvo website, Sensus: http://wuw.volvocars.com/us/sales-services/sales/
soundandnavigation/pages/volvo-sensus.aspx [Accessed Oct 10th, 2012]

2American Volvo website, navigation system: http://www.volvocars.com/us/sales-services/
sales/soundandnavigation/VolvoNavigationSystems/Pages/Built-In-Navigation-System.aspx
[Accessed Oct 10th, 2012]

3Cadillac Cue website: http://www.cadillac.com/cadillac_cue.html [Accessed Oct 10th, 2012]

4Cadillac Cue website, cue facts: http://www.cadillac.com/cadillac_cue.html#nav_tablay_item_
c1_1_1 [Accessed Oct 10th, 2012]

http://www.volvocars.com/us/sales-services/sales/soundandnavigation/pages/volvo-sensus.aspx
http://www.volvocars.com/us/sales-services/sales/soundandnavigation/pages/volvo-sensus.aspx
http://www.volvocars.com/us/sales-services/sales/soundandnavigation/VolvoNavigationSystems/Pages/Built-In-Navigation-System.aspx
http://www.volvocars.com/us/sales-services/sales/soundandnavigation/VolvoNavigationSystems/Pages/Built-In-Navigation-System.aspx
http://www.cadillac.com/cadillac_cue.html
http://www.cadillac.com/cadillac_cue.html#nav_tablay_item_c1_1_1
http://www.cadillac.com/cadillac_cue.html#nav_tablay_item_c1_1_1

2.4. IN-VEHICLE INFOTAINMENT SYSTEMS CHAPTER 2. BACKGROUND

2.4.3 Ford Sync

Ford Sync® is not an IVI system by itself, rather a SD component. The Sync enables
users to ask about anything from weather and navigation to music artists, gasoline prices
and phone text messages®.

I have never tested Sync myself, but judging from available information, it seems to
use a static grammar. For instance, a review of the Ford Sync (Howard, 2012) determines
that it is impossible to start a navigation to named places, using their names. There
is a way to find specific named places, but the user needs to specify them correctly,
without using their names. An utterance example that works with Sync is "find an

organic restaurant”, mentioned on the websiteS.

®Ford Sync website: http://www.ford.com/technology/sync/ [Accessed Oct 10th, 2012]
SFord Sync website, showing available commands: http://www.ford.com/technology/sync/sync-
commands/ [Accessed Oct 10th, 2012]

http://www.ford.com/technology/sync/
http://www.ford.com/technology/sync/sync-commands/
http://www.ford.com/technology/sync/sync-commands/

Review of Existing Components

LL COMPONENTS that were used in the thesis but were not developed as part of it are

described in this chapter. The purpose of the chapter is not to review components

of the same sort, but merely to review the components used in the thesis prototype

demonstrators. Specifically, the Talkamatic Dialogue Manager (TDM), Grammatical

Framework (GF), D-Bus, the Pelagicore Resource Framework (ResFW) and the Pelagi-

core human-machine interface (HMI) are described herein. The final prototype, using
these components, will be described in chapters 4 and 5.

3.1 Talkamatic Dialogue Manager

Talkamatic Dialogue Manager (TDM) is an issue based dialogue manager, as described
in section 2.2.3. It is written in Python', being developed at Talkamatic?, a spinoff
company from the University of Gothenburg, where a TDM predecessor started off under
the name of GoDiS (Larsson et al., 2000).

TDM has existing connections to ASR and TTS as seen in figure 3.1. The PTT
adapter shown in the figure can be connected to an external system to enable a push-
to-talk (PTT) button. Components of TDM that are relevant for the thesis and central
in issue based dialogue management will be described in section 3.1.1.

To make dialogue flexible, TDM supports the concepts of accommodation (section
3.1.2) and grounding (section 3.1.3). Accommodation enables the user to suddenly raise
a new issue in the dialogue. The system will handle the new issue before moving back to
the previous one. Grounding, on the other hand, is a way of giving feedback to the user,
to make sure the system and the user both know what has been said in the dialogue.

There are also TDM applications, which a dialogue system developer needs to create

'TDM works with Python v2.7.3. See the documentation: http://docs.python.org/ [Accessed Aug
7th, 2012]
*Talkamatic website: http://talkamatic.se/ [Accessed June 12th, 2012]

10

http://docs.python.org/
http://talkamatic.se/

3.1. TDM CHAPTER 3. COMPONENT REVIEW

a8 N

Talkamatic
Dialogue
Manager

Speech
Synthesis

Speech
Recognition

N

.

Application

[Domain][Grammar]

\ Device J \

P SN J

PTT
dapter

//socket——//

Application

-

Figure 3.1: TDM wraps the ASR and TTS systems. The engine here means the func-
tionality related dialogue management while the application and PTT adapter are shown to
visualize the entry points for external communication.

11

3.1. TDM CHAPTER 3. COMPONENT REVIEW

in order to construct a dialogue system. In an application, he can specify actual language
and what it means, as well as communicate with external systems. TDM applications
will be described in section 3.1.4.

Larsson (2002) describes a variant of GoDiS, called IBiS, providing much of the same
functionality. Both IBiS and GoDiS are written in Prolog (Larsson, 2002, sect. A.3),
whereas TDM is written in Python. The thesis by Larsson is the best formal documen-
tation there is for TDM, with the implication that it is not entirely accurate. TDM
itself is documented through some basic tutorials on how to write applications as well as
through its Python code, which is supposed to be self-explanatory. There is no more doc-
umentation because TDM is an ongoing development project yet to be released. When
IBiS and TDM differ I will use my personal experience to describe TDM as well as I
can. Where it however can be backed by the thesis of Larsson, so will be noted.

3.1.1 Components

There are many central components of TDM (Larsson, 2002, sect. 2.7.1), components
that are also central for issue based dialogue managers in general. The components
that are relevant for the thesis are dialogue moves that describe semantics, issues that
correspond to questions, plans that describe which plan items that are needed to resolve
an issue and then the plan items themselves. All are described shortly below. For
information about the remaining components, please refer to the PhD thesis by Larsson
(2002).

3.1.1.1 Dialogue Moves

A dialogue move describes the semantics of an utterance. It corresponds to the concept
mentioned in section 2.3.1. In the thesis, dialogue moves and concepts are exactly the
same.

In TDM, there are several types of dialogue moves, for example the request, ask and
answer moves. The request move indicates that the user initiates an action (Larsson,
2002, sect. 5.3.2). This will lead to TDM trying to execute a plan for that action. The
ask move indicates that a question is raised and the answer move indicates an answer
to such a question (Larsson, 2002, sect. 2.5).

Regardless of type, the contents of dialogue moves are represented as a simplified
predicate logic. They consist of a predicate and a constant. The predicate describes
the constant in context of the domain, while the constant contains the actual contents
(Larsson, 2002, sect. 2.4.2). Constants of questions however, are unknown and need to
be answered. In this case, the constant is replaced by a variable, which is represented
by an x. There are three types of questions (Larsson, 2002, sect. 2.4.3).

e y/n-questions — Represented by a question mark in the semantics. For example

?destination(new_york)
Do you want to navigate to New York

12

3.1. TDM CHAPTER 3. COMPONENT REVIEW

destination is the predicate, New York the constant.

e wh-questions — Represented by a question mark and a variable x. For example

7x.destination(x)
Where do you want to navigate

Again, destination is the predicate.

e Alternative questions — they are sets of y/n-questions. For example

{?destination(new_york), ?destination(new_jersey)}
Do you want to go to New York or New Jersey

How the different types of dialogue moves are commonly used in dialogue can be
visualized by examples. Consider that the user wants to navigate to New York.

Firstly, the user asks the dialogue system to navigate to a location, interpreted as a
request-move.

U> I want to navigate
request (action(startnav))

Secondly, if the dialogue system does not know the destination location, it will ask for
it. It turns an ask-move into speech.

ask(?x.destination(x))
S> Where do you want to navigate?

Thirdly, the user responds with the destination, interpreted as an answer-move.

U> New York
answer (new_york)

A request as the one above can also be given in one go. If so, the utterance is interpreted
as several dialogue moves.

U> I want to navigate to New York
request (action(startnav)), answer(new_york)

3.1.1.2 Issues and Plans

Issues are raised during the dialogue, by the system or the user. An issue can be raised
by requesting an action or providing an answer that is part of the plan of the issue.

Once an issue is raised, it needs to be resolved. This is done by completing its plan
(Larsson, 2002, sect. 2.5). Two examples of issues with their corresponding plans are
shown in figures 3.2 and 3.3. They will be used in the examples below.

TDM needs to infer which issue that the user is talking about when she provides a
dialogue move. If the user starts the dialogue with an answer-move for example, TDM
might not know which issue that is being answered.

13

3.1. TDM CHAPTER 3. COMPONENT REVIEW

ISSUE : startnav
PLAN:
findout (?x.nav_destination(x))
dev_perform(?x.startnav(x))
POSTPLAN:
findout (?x.domain(x))
change_domain(?x.domain(x))

Figure 3.2: This is an example of a plan to start navigation to a location. The user
destination is required, specified as a findout plan item. When the destination is known, the
dev_perform plan item makes sure an actual navigation is started for the user to see. The
change_domain plan item loads the TDM application given by the preceding findout.

ISSUE : weather

PLAN:
findout (?x.weather_location(x))
dev_perform(weather))

POSTPLAN:
findout (?x.domain(x))
change_domain(domain)

Figure 3.3: This is an example of a plan to check the weather at a location. The location is
required, specified as a findout plan item. When the location is known, the dev_perform plan
item makes sure a weather forecast is fetched and shown to the user. The change_domain
plan item loads the TDM application given by the preceding findout.

U> New York
answer (new_york)

TDM will go through all issues, looking for those that need the given answer. If there are
more than one matching issue, TDM will ask the user which issue she actually means.

ask({?action(startnav), 7action(weather)})
S> Do you want to start navigation or show the weather?

Plans contain sets of plan item. Most common are the findout and dev_perform
items, but there is also the change_domain item that will be relevant for the thesis.
There is also a postplan that can be declared with a plan. The postplan is always
executed after the plan has been completed.

All items of the plan, as well as of the postplan, need to be executed before the issue
behind the plan itself can be considered resolved.

findout plan items

If a question needs to be answered, this is specified with the findout plan item (Larsson,
2002, sect. 2.6.2). Questions can be answered by either the user or other systems.

14

3.1. TDM CHAPTER 3. COMPONENT REVIEW

1. Check if the answer is already known.

2. Ask all available device resources of the application (see section 3.1.4) if any of
them knows the answer to the question.

3. As the last resort, ask the user a direct question to find the answer.

dev_perform plan items

Another type of plan item is the dev_perform. It executes a device action, specified in
the device resource of the application (see section 3.1.4). A device action can commu-
nicate with an external system, for example when the user wants to start a navigation
somewhere. The actual navigation is carried out by a navigation system, likely showing
a map and route in a graphical user interface. For example, when the dev_perform item
in figure 3.2 is executed, TDM will tell the navigation system to start a navigation.

change_domain plan items

The final type of plan item is the change_domain. It loads a new application into TDM,
removing the currently loaded one. This means that everything previously learned for
the domain is forgotten.

3.1.2 Accommodation

Accommodation is the concept of addressing unexpected dialogue moves by the user.
It occurrs for example when the user provides an answer to an issue that has not yet
been raised (Larsson, 2002, sect. 4.9). TDM will try to find which issue the user means,
if there are more than one that needs the answer. If there is only one matching issue,
TDM needs to make sure that the user is really talking about this issue. This is one
example that distinguishes TDM from frame based dialogue managers (section 2.2.2).
They require a frame (or issue, when comparing to TDM) to be resolved before raising
a new one. An example of accommodation in TDM is the example in section 3.1.1.2.
Another example is this:

U> New York

S> Do you want to navigate or show the weather?
U> Navigate

S> Started navigation to New York

3.1.3 Grounding

Grounding is the concept of making sure that all dialogue participants share the same
knowledge of what has been said, establishing it as part of common ground. Grounding
is done through spoken feedback to the user, on several levels. There is for example pes-
simistic as well as optimistic feedback (Larsson, 2002, sect. 3.6.1). Pessisimistic feedback
explicitly asks the user if what it heard was correct. For example:

15

3.1. TDM CHAPTER 3. COMPONENT REVIEW

U> I want to navigate to New York
S> You want to navigate to New York. Is that correct?

Optimistic feedback on the other hand, implicitly verifies that it heard correctly. The
user does not need to reply, unless TDM misheard her. For example:

U> I want to navigate to New York
S> Started navigation to New York

The type of feedback TDM gives depends on how certain it is of what it heard. Usually,
an ASR gives a score of recognition accuracy along with its results. The score is used to
determine the feedback type to use for TDM. If TDM is really certain of what it heard,
it may be enough with a simple Okay. If less sure, it may give optimistic feedback while
pessimistic feedback is needed if unsure. If the score is really low or there are no results
at all from the ASR, TDM will tell the user that it did not hear the utterance.

3.1.4 Applications

A TDM application is not part of TDM, but constructed by a developer for a specific
project and domain. I have for example built a TDM application as part of the thesis.
Applications are written in Python, just like TDM.

To use an application with TDM, it must first be compiled by the TDM compiler.
The compiler compiles the application on two levels, one for TDM and one for the ASR.

The application itself contains four resources, shown in figure 3.1. The ontology
resource is the core. It is used to declare predicates, constants and actions so they can be
used in plans and in TDM. The grammar resource maps semantics to a specific language
while the domain resource specifies plans. The device resource handles communication
with external systems. For further details, see the corresponding sections below.

3.1.4.1 Ontology Resource

The ontology resource is used to declare predicates, constants and device actions for use
in TDM, for example in the grammar, domain and device resources. If not declared in
the ontology resource, they cannot be used in TDM.

3.1.4.2 Grammar Resource

The grammar resource specifies how predicates, constants and device actions from the
ontology resource are expected in user speech. The grammar resource also specifies how
the system will speak back to the user. For example, how questions are formulated is
specified here.

One could say that the grammar provides a mapping between speech and dialogue
moves (Larsson, 2002, sect. 2.5).

3.1.4.3 Domain Resource

The domain resource in TDM is used to declare all the plans needed in the application.

16

3.2. D-BUS CHAPTER 3. COMPONENT REVIEW

3.1.4.4 Device Resource

The device resource is used to declare device actions and provide answers to questions.
If a dev_perform plan item is executed, a corresponding device action in the device
resource will be executed. Similarily, if a findout plan item is executed (a question
needs to be answered) the device resource can provide an answer, it will do so before the
question is asked to the user. Thanks to being written in Python, the device resource
can interact with external systems as far as Python allows.

3.2 D-bus

D-bus? is a message bus system for interprocess communication. It allows applications
to communicate with other applications, running in separate processes. It also allows
applications to send broadcast messages, accessible to any interested listener.

There are bindings to many frameworks and languages, for example Qt, GLib, Java,
C#, Python, et cetera. It is widely spread in the UNIX world and may soon have support
for Windows as well.

3.3 Pelagicore Resource Framework

The Pelagicore Resource Framework (ResFW), developed by Gothenburg based Pelagi-
core?, is a framework to connect resources in an IVI system. Approaching ResFW
top-down, you can see in figure 3.4 that the HMI is separated from ResFW, communi-
cating with it over D-bus. The idea behind ResF'W itself is that any HMI can connect to
arbitrary automotive resources through a common interface in ResFW. Resource imple-
mentations can be replaced or updated without the user noticing. For example, Resk'W
currently supports two different bluetooth stacks, Bluez and BlueGo. They can both be
used although just one at a time, without the user knowing which one. As another ex-
ample, ResFW currently supports music playback from both Spotify and Pandora. They
can be joined together seamlessly, providing music playback without the user knowing
from which source.

ResFW is written in Python® and communication with the resources is usually done
over D-bus. The infrastructure in ResFW allows it to keep track of resources as they
become available or unavailable. Even if a resource is available, it may not be running.
But as soon as the HMI requests it, it will be started by ResF'W.

Declaring a resource means declaring it in two parts. One is the interface toward
the HMI, specific for a certain resource type. This can for example be media, providing
an abstract interface regardless of the actual media source beneath. The second part
is the integration of the actual resources. In the media source example, both Spotify

3See the wiki at: http://dbus.freedesktop.org/ [Accessed June 12th, 2012]

“Pelagicore website: http://www.pelagicore.com/ [Accessed June 12th, 2012]

"ResFW works with Python v2.7.3. See the documentation at: http://docs.python.org/ [Accessed
Aug Tth, 2012]

17

http://dbus.freedesktop.org/
http://www.pelagicore.com/
http://docs.python.org/

3.3. RESOURCE FRAMEWORK CHAPTER 3. COMPONENT REVIEW

H M I NAVIT-GUI
_
> NAVIT

Qt

=)

dbus

Resource
Framework

Adapter resources

Bluez

Pandora
BlueGo } Spotify

Figure 3.4: ResFW connects all kinds of resources, especially several of the same kind,
providing a common interface toward the HMI. Open-source navigation system Navit was
used as a navigation resource in ResFW but was not implemented as a real resource. Instead,
it could be accessed directly by anyone across D-bus.

18

3.4. PELAGICORE HMI CHAPTER 3. COMPONENT REVIEW

and Pandora are integrated with ResFW. Adding a new media source only requires
integration with ResFW, since the abstract interface toward the HMI is already provided
and possibly used by existing HMIs.

3.3.1 The navigation system Navit

At the time of writing there is a resource in ResFW for navigation, the open-source
project Navit®, slightly modified for the needs of Pelagicore. It is treated in a special
way however — it is not a resource in ResF'W. Instead, it can be accessed by anyone over
D-bus.

Navit allows navigation to locations specified by longitude and latitude coordinates.
It also has the possibility to set and get the user destination, as well as set (but not get)
the user position when simulating driving to a destination. Some interesting features
such as showing specific points of interest or adding via-locations to a navigation, are
not supported in the Pelagicore version of Navit. All points of interest are shown on
the display constantly, but without any functionality. The only way to use a point of
interest is to spot it when driving and then try to navigate there manually.

Communication with Navit is done over D-bus, providing an interface to most of the
functionality of Navit. Plain navigation can be started by providing a destination in
longitude and latitude coordinates.

For the user, Navit shows a map, names of places and some icons for place cate-
gories (see figure 3.5). All of this information, along with the map data, such as roads
and streets, buildings, forests, et cetera, are taken directly from the Navit database.
Navit can be configured for several different databases but the Pelagicore version uses
OpenStreetMap”.

3.4 Pelagicore HMI

Pelagicore have a reference human-machine interface (HMI, see figure 3.6) connected to
ResFW, used to demonstrate its abilities. Normally, the HMI is developed by a customer,
designing their own look and feel but using an existing API to resources — ResFW. In
the thesis, the Pelagicore reference HMI will be used. It is basically a graphical user
interface, commonly used with touch screens and some physical buttons to provide input.

To enable HMI developers to easily implement their graphical design, fast and across
platforms, the C4++ framework Qt® is used to interface ResFW. The graphical HMI
design is specified in the Qt markup language (QML), connecting to a layer of Qt C++
code beneath, that in turn communicates with ResF'W over D-bus. The HMI can set up

SNavit is a car navigation system with routing engine. See the website at: http://www.navit-
project.org [Accessed July 9th, 2012]

"OpenStreetMap is a database with open-source map data. See the wiki at: http://wiki.
openstreetmap.org [Accessed July 9th, 2012]

8Qt is a development framework to create applications and graphical user interfaces for desktop,
embedded and mobile platforms. See their website at: http://qt.digia.com/ [Accessed Oct 25th,
2012]

19

http://www.navit-project.org
http://www.navit-project.org
http://wiki.openstreetmap.org
http://wiki.openstreetmap.org
http://qt.digia.com/

3.4. PELAGICORE HMI CHAPTER 3. COMPONENT REVIEW

& 240° 09:41am

Figure 3.5: Navit displays its map in the Pelagicore HMI. The map shows streets, buildings,
forests, names of places and some icons for place categories.

& 24.0° 09:34AmM NA

Figure 3.6: This is the Pelagicore reference HMI, showing the start view. Swiping upwards
on the touch screen brings up the Navit map.

20

3.4. PELAGICORE HMI CHAPTER 3. COMPONENT REVIEW

subscriptions for D-bus messages and directly send D-bus messages to request resource
data. Thus, the HMI can access any resources without ResFW ever knowing about the
existance of the HMI. ResFW just sends data blindly as it is requested.

21

First Prototype — Static
Demonstrator

HE STATIC DEMONSTRATOR is the first functional version of the Pelagicore In-Vehicle
Infotainment system with spoken dialogue control. It integrates the Pelagicore
ResFW and HMI with Talkamatic Dialogue Manager (TDM) for spoken dialogue (SD)
control and Navit for navigation. The grammar is written specifically for navigation and
weather, focusing on named places. In the static demonstrator, around twenty named
places are supported. The idea is to support any place around the world, but the static
demonstrator cannot look up new ones. Of course, this critically limits the usefulness of
the system but this is again the first prototype. Support for places across the world will
come with the second prototype, the dynamic demonstrator, which will be discussed in
chapter 5.
In the static demonstrator, places are instead hard-coded in grammar. Using these
places though, one can both navigate and request weather forecasts. See section 4.2.3
for some useful dialogue examples.

4.1 Components

As seen in figure 4.1, the spoken dialogue adapter is the heart of the static demonstrator,
connecting major components such as ResEW (section 3.3), TDM (section 3.1) and
Navit (section 3.3.1). The spoken dialogue adapter and its connections are described
in section 4.1.1. There is also a stand-alone weather service, fetching weather forecasts
upon requests through ResFW. Its details are described in section 4.1.2 below.

22

4.1. COMPONENTS CHAPTER 4. STATIC DEMONSTRATOR

Talkamatic
Dialogue
Manager

Speech
; - Synthesis
\ Speech
¢ Recognition

e \
HMI NAvIT-GUb ENGINE
o
e B e

Pelagicore PTT
dbus Application Adapter
\ _/
Resource socket
Framework socket

/NN

Other m Spoken

dbus .
Spoken Dialogue

Adapter

resources Dialogue

Weather

Figure 4.1: The static demonstrator integrates Talkamatic Dialogue Manager (TDM),
Pelagicore Resource Framework (ResFW) and Navit navigation with the Pelagicore human
machine interface (HMI) through the Spoken Dialogue Adapter class, communicating over
both D-bus and sockets.

23

4.1. COMPONENTS CHAPTER 4. STATIC DEMONSTRATOR

4.1.1 Spoken Dialogue Adapter

As mentioned above, the static demonstrator integrates ResF'W with an HMI and with
TDM and Navit. This is not a trivial task and is done through an adapter class, the
Spoken Dialogue Adapter. In figure 4.1, the structure of the solution is outlined. The
adapter class communicates with TDM through two different sockets, one enabling push-
to-talk functionality and the other communicating with the application. It also commu-
nicates with Navit and ResFW via D-bus. See below for explanations of each connection
respectively.

4.1.1.1 The TDM PTT Connection

The PTT connection enables the use of a push-to-talk (PTT) button. Through the
ResFW-connection, PTT messages are then passed on to the HMI, allowing it to display
a graphical notification when the user presses the PTT button. In the same way, a PTT
button can be shown in the HMI, which upon a press sends a signal through the adapter
to TDM, to start listening to user speech.

4.1.1.2 The TDM Application Connection

When the user makes a request, for example to start navigation to a city, it is first
interpreted by the automatic speech recognizer (ASR) and then by the TDM application,
as described in section 3.1.4. If the interpretation goes well, the TDM application tells
the adapter to service the request. The request is then passed on to either ResFW or
Navit, depending on what to do. If the interpretation for some reason does not go well,
the user will be told and has to repeat her utterance.

The connection between the TDM application and the adapter is based on a socket,
using an XML protocol to specify communication (see appendix A). In the static demon-
strator, the communication is unidirectional from the TDM application to the adapter,
consisting of two messages. One of the messages is to start navigation, the other to show
a weather forecast.

4.1.1.3 The Navit connection

Navit is supposedly a navigation resource, but ended up outside of ResFW when it was
integrated. See section 3.3.1 for details.

Communication with Navit is done separately over D-bus. In the static-demonstrator,
some cities are hard-coded in grammar and these are the only possible destinations. To
start navigation to one of them, the adapter sets the destination to the longitude and
latitude coordinates of the city.

4.1.1.4 The Resource Framework Connection

Communication with ResFW is done over D-bus. On the ResFW side of communica-
tions, a spoken dialogue resource appeared, providing PTT functionality to the HMI

24

4.1. COMPONENTS CHAPTER 4. STATIC DEMONSTRATOR

e Provide a local cache with a duration of at least ten minutes

— An HTTP cache listening to the header entries ’cache-control’ and 'max-age’
enables the caching. The weather service itself makes sure to never call yr.no
with a max-age of less than ten minutes.

e Credit yr.no and the Norwegian Meteorological Insitute

— A standard credit string is supplied with all forecasts shown in the graphical
user interface.

Figure 4.2: These are the yr.no compliance rules. All are met in the static demonstrator.

developer. That is all that the HMI developer ever sees. To him, the entire SD system is
a black box. What actually happens when the PTT function runs is that a signal travels
from ResFW to the spoken dialogue adapter, which sends a PTT request on the TDM
PTT connection. Eventually, a return message appears, travelling the whole way back
although transforming into a D-bus signal on the way. The result confirms the PTT
request, letting the user know that TDM and the ASR is listening.

Finally, when the user finishes speaking, the ASR considers the speech finished and
sends a new return message, letting the user know that it have stopped listening. This
message travels the same route as the first PTT confirmation message.

4.1.2 Weather Service

The weather service is a separate program developed to take care of weather requests,
delivering forecasts in a known format. It is part of ResFW, fitting well with a D-
bus interface and known output. Internally, the yr.no The Norwegian Meteorological
Institute (2012b) web service for location forecasts is used to deliver forecasts. yr.no
however has some rules (The Norwegian Meteorological Institute, 2012a) that must be
met in order to use their web service. The weather service I implemented here complies
with all of them. See figure 4.2 for the relevant rules and how they are met. Note
that results from yr.no are delivered in XML format but converted to a ResFW-specific
format before they are sent along across D-bus.

4.1.3 Human-Machine Interface

When requesting a weather forecast through ResFW, the forecast is always sent to the
human-machine interface (HMI). It is up to the HMI itself to decide whether the forecast
should be shown or not, rather than letting the resource have that kind of control. This
means that any other resource, not just the spoken dialogue one, can request a forecast
and have it shown in the HMI. Currently, the HMI has one forecast display, showing four
days of weather. The current day’s weather is shown in the top half, including the place
name. Then the weather for the coming three days is shown separately in the bottom

25

4.2. TDM APPLICATION CHAPTER 4. STATIC DEMONSTRATOR

3 1 B0 & 24.0° 09:35Au N/A

MONDAY

«Weather forecast from yr.no, delivered by the
Norwegian Meteorological Institute and the NRK»

I

Figure 4.3: Weather forecasts are shown in a window on the right side of the HMI. Today’s
weather is shown in the top half while the coming three days are shown below. For each day
there is a symbol, showing what kind of weather to expect, and the temperature in written
numbers. The forecast location is also displayed, in this case Gothenburg.

half. See figure 4.3 for a picture.

4.2 'TDM Application

The Talkamatic Dialogue Manager (TDM) application holds everything specific to the
implemented use cases and the adaption to the domain. See section 3.1 for an introduc-
tion to TDM and section 3.1.4 to learn about its applications and what they contain.
Use cases in the TDM application of the static demonstrator focus on places, of two
different kinds. First there are geographical locations, such as cities. Second, there are
named entities, such as restaurants and gas stations. Read more about them and how
they are organized in section 4.2.2 below. The use cases themselves are described in
section 4.2.1.

4.2.1 Use Case Tasks and Plans

Early in the thesis I made a list of desired use case tasks, relevant to the two kinds
of places mentioned above. I also made a list of named entity categories, relevant to
navigation.

Both lists are appended, see appendix E. The use case tasks chosen from the list are
listed below, with the plans that use them described in the sections that follow.

26

4.2. TDM APPLICATION CHAPTER 4. STATIC DEMONSTRATOR

ISSUE : nav_to

PLAN:
findout (?x.nav_to_place(x))
dev_perform(?x.nav_to(x))

Figure 4.4: The nav_to plan starts a new navigation in the HMI. The nav_to_place is the
destination.

ISSUE : show_weather

PLAN:
findout (7x.show_weather_place(x))
findout (?x.show_weather_time(x))
dev_perform(?x.show_weather(x))

Figure 4.5: The show_weather plan shows a weather forecast in the HMI. The
show_weather_place specifies the location and the show_weather_time specifies a week day
for the forecast.

1. Navigate to a location

2. Navigate to a named entity at, or near, a location

w

. Display weather at, or near, location or named entity

S

. Display weather at a specified time or within a specified timespan

nav_to

The first two use cases, navigate to location and named entity respectively, are im-
plemented in the same plan in the TDM application — the nav_to plan (figure 4.4).
Locations and named entities are handled in the same way by the application, both
regarded as places. See an example of how both kinds can be used in the same way in
figure 4.7.

show_weather

The remaining two use cases, concerning display of weather, are also implemented in
the same plan in the TDM application — the show_weather plan (figure 4.5). They
are combinable so that the user can specify both place and time (in this case time is
a weekday) in the same utterance. If the user does not specify a place however, the
application uses the current user position. Similarly, if the user does not specify a time,
the application uses the current time.

27

4.2. TDM APPLICATION CHAPTER 4. STATIC DEMONSTRATOR

ISSUE : nav_do

PLAN:
findout (?x.nav_do_verb(x))
findout (?x.nav_do_place(x))
dev_perform(?x.nav_do(x))

Figure 4.6: The nav_do plan starts a navigation. If the user does not specify a nav_do_place,
the static demonstrator will find one for her. It uses the nav_do_verb and selects a place
where the user can do what the verb describes.

nav_do

In addition to the above mentioned plans, another one has been implemented, the nav_do
plan (figure 4.6). It results in the second use case in the list above, navigation to named
entities. The idea with this plan is to help a user that wants to do something. It helps
the static demonstrator interpret verbs related to places. Or rather interpret what the
user wants to do and find a named entity where she can do such a thing, also starting
navigation there. For example, eating can be done at restaurants and cafes. For a better
description and examples of what this plan can do, see figure 4.9.

4.2.2 Data

In the static demonstrator, data is totally static, it is hard-coded and there are only
around twenty places. Places are of the following types:

e Locations — Geographical locations, for example countries, cities, neighborhoods.
USA, New York, Brooklyn are all geographical locations.

e Named Entities — For example specific restaurants, gas stations, parking lots or
schools, as long as they have a name. Starbucks, Walmart and New York University
are all named entities.

Place data is located in data files on disk, mapping places to place data. Some data
entries are required, some optional.

¢ Required place data — Used by both locations and named entities.

— English name — Each place has a name, for example San Francisco.

— longitude — Each place has a position, specified by a coordinate in longitude
and latitude.

— latitude — See longitude above.

e Optional place data — Not used for both types of places, but necessary for named
entities, for example when displaying weather forecasts in the HMI.

28

4.2. TDM APPLICATION CHAPTER 4. STATIC DEMONSTRATOR

U> I want to go to San Francisco
S> Okay. Started navigation to San Francisco

U> I want to go to The Cheesecake Factory
5> Okay. Started navigation to The Cheesecake Factory

Figure 4.7: The static demonstrator is able to start navigations to places, either locations
such as the city San Francisco or named entities such as The Cheesecake Factory, a restaurant
in San Francisco.

U> I want to go to San Francisco

S> Okay. Started navigation to San Francisco

U> what will the weather be like

S> Okay. Showing the weather for San Francisco, now

Figure 4.8: The static demonstrator supports two kinds of use cases, modelled in plans.
The two kinds are navigation and weather and both of them focus on places. The static
demonstrator is able to keep places in context, between plans.

— category — The category of a named entity. Locations does not have this. A
list of desired categories is appended in appendix E.2, although only two are
supported in the static demonstrator — Food & Drink and Gas station.

— address — The address to a named entity. Locations does not have this as
they cover larger areas than can be specified with an address.

4.2.3 Dialogue

The static demonstrator dialogue focuses on places, both locations and named entities.
But how does it work? To describe the different kinds of places, I will give some examples
of how the dialogue could look in the static demonstrator. Figure 4.7 shows how the
static demonstrator can interpret both a city (location) and a named restaurant as the
same thing — places. Internally, the static demonstrator had knowledge about which
type a place had, although to the user, it all seemed coherent.

The static demonstrator can also keep places in context between plans. See the exam-
ple in figure 4.8. The static demonstrator is told about the a location, San Francisco,
in the first request. The nav_to plan is used to start a navigation. The second request
is to show the weather, but no place is specified so the static demonstrator uses the
place in context, San Francisco. This time, the show_weather plan is used to show
the weather in the HMI. Keeping places in context also works the other way round, with
weather first and navigation after.

Three different scenarios are demonstrated in figure 4.9. The first scenario covers
the case where the user mentions both a verb and a place. In that case the static
demonstrator has several options since it has knowledge about both the place and the

29

4.3. SHORTCOMINGS CHAPTER 4. STATIC DEMONSTRATOR

(»)
U> I want to eat at The Cheesecake Factory
S> Okay. Started navigation to The Cheesecake Factory

(B)
U> I want to eat at Auto City
S> Okay. Started navigation to Auto City

(©
U> I want to eat
S> Okay. Started navigation to The Cheesecake Factory

Figure 4.9: The static demonstrator has knowledge about verbs such as eat or refuel. If
the user tells the static demonstrator that she wants to eat, the demonstrator finds her a
place where she can eat and starts a navigation there.

verb. In (A), the place is a restaurant and everything is fine. However in (B), the place
is a gas station and the static demonstrator could tell the user that:

"no, you can not eat there, choose another place"
But perhaps the user has local knowledge and knows that in fact
"yes, actually you can!"

So the static demonstrator takes a passive stance instead and simply starts a navigation
to the place, no matter what the user wants to do there. In (C), the user does not
specify a place. Instead, based on the user position, the place in context and an ongoing
navigation destination, the static demonstrator selects a suitable place. In this case it is
the same restaurant as in the first scenario.

4.3 Shortcomings

Some shortcomings exist in the static demonstrator. Some relate to the purpose (see
section 1.1) of the thesis and some relate to an unfinished and unpolished implementation.

4.3.1 Static Grammars

The shortcomings relating to the thesis purpose are mostly due to the static grammars
of the static demonstrator implementation. Of course, that is why it is called static in
the first place.

Names of places are hard-coded and around twenty in numbers, so knowledge of
places around the world is very limited. Categories of named entities are also hard-
coded, which in itself is reasonable since there exist a finite number of categories. The
static demonstrator only supports two of them though.

30

4.3. SHORTCOMINGS CHAPTER 4. STATIC DEMONSTRATOR

U> I want to eat at The Cheesecake Factory
S> Okay. Started navigation to The Cheesecake Factory

U> show me the weather
5> Okay. Showing the weather for The Cheesecake Factory, now

Figure 4.10: The user wants to show the weather for her destination, The Cheesecake
Factory. In the context of weather forecasts, one may consider an individual named entity
rather small. One may wish that the name of its geographical location should be mentioned
instead, or at least in addition to the named entity.

Both of these shortcomings are mentioned in section 4.2.2 above. Additionally, the
grammar itself only covers so many utterances. Until thorough user tests can be per-
formed it is unknown how restricted the grammar is.

Proposed Solution

A solution to the problem with static grammars is to provide the demonstrator with world
knowledge. With the case of hard-coded place names, they may be extended to cover
all the names in the world and loaded on startup. This still involves a static grammar,
which seems to be a common approach among SD systems in in-vehicle infotainment
(IVI) systems at the time of the thesis (see section 2.4). No modern IVI SD systems
support names though, probably because of their use of static grammars (see section 2.4).
Loading names on startup would create a huge list, since places include anything from
geographical locations to named entities of many different categories. Named entities
also develops over time, some disappearing, new created.

Another alternative is to dynamically load new places at run time when they prove
relevant to the user. A place can be considered relevant either if the user is nearby, talks
about it or perhaps navigates to it.

When it comes to categories of named entities as well as utterances, the solution
is simpler. Since there is a finite number of them, they just need to be added to the
demonstrator, of course also including places for each new category.

4.3.2 Spoken User Feedback

When the system replies to the user in speech, it is desirable to have feedback as shown
in the examples above, in figures 4.7, 4.8 and 4.9. However, with the static demonstrator,
feedback only uses the place in context. This occasionally results in undesired feedback,
such as the one described in figure 4.10. If the user wants to show the weather for her
destination, in this case a named entity, the system will use the named entity name in its
feedback. A named entity may be considered rather small in a weather context. Instead,
it is desirable that its geographical location is used.

31

4.3. SHORTCOMINGS CHAPTER 4. STATIC DEMONSTRATOR

Proposed Solution

To solve this problem, the TDM application needs to be modified. The device resource
of the application can for example infer a new place from an old one, resulting in proper
feedback. This solution could well have been implemented in the static demonstrator
but have so far been left out.

4.3.3 Graphical User Feedback

Interacting with the HMI should provide graphical feedback so that the user knows that
the system acknowledged the action. Similarly, speaking should provide feedback as
well. Trivially, it should provide spoken feedback since this is an SD system, but also
graphical feedback showing that the system acknowledges the action just like it does if
it is taken through the HMI.

In the static demonstrator, graphical feedback is not always clear. As described in
section 4.1.3, the show_weather plan always results in graphical feedback. However,
the nav_to and nav_do plans just sets a new destination in Navit, not providing any
really clear visual cues that something actually happens. If no navigation is active,
starting a new one provides clear visual feedback, showing the route, directions, et
cetera. The destination is not shown in the navigation however, so the only feedback the
user gets is that she is actually navigating to the correct place, is the spoken feedback.
If a navigation is started while one is already active, the user may not notice that the
destination changes.

Proposed Solution

The solution is rather simple and requires measures to be taken to the HMI. In the nav-
igation view, the destination can simply be displayed, changing when a new navigation
is started. While the solution sounds rather simple it is slightly more complex, since
Navit that keeps track of the destination is not part of ResFW, see section 3.3.1. This
means that instead of just telling Navit to set a new destination, ResFW must also tell
the HMI that a new destination has been set. Still, it is a rather small change with big
impact on user experience.

32

Second Prototype — Dynamic
Demonstrator

HE DYNAMIC DEMONSTRATOR is the second version of the Pelagicore In-Vehicle In-
fotainment (IVI) system with spoken dialogue (SD) control and the resulting pro-
totype of the thesis. It builds upon the static demonstrator described in chapter 4 but
features some critical improvements. Primarily, it tries to solve the static grammar
problem described in section 4.3.1. This is done by fetching actual place data from
the Internet, reloading the Talkamatic Dialogue Manager (TDM) application at run-
time as proposed in the just mentioned section. More details on the targeted problem
are described in section 5.1. This solution moves away from the commonly used static
grammars in IVI SD systems (see section 2.4). Often, named entities are only loaded on
initialization, or not at all as described in section 2.4.
The new components introduced to the demonstrator for this solution are described
in section 5.2 below and the changes to the TDM application are described in section 5.3.
Some new shortcomings have appeared with this solution as well, explained in section
5.4 with proposed solutions.

5.1 New functionality

The dynamic demonstrator tries to solve the static grammar problem. From the two
proposed solutions in section 4.3.1, I have chosen to dynamically load new places at run
time. The TDM application is compiled at run-time with new places, then loaded by
TDM.

To allow for the new functionality, new components have been constructed and some
of the existing components have been modified. New and modified components are
described in section 5.2 below. Changes have also been made to the TDM application,
described in section 5.3 below.

33

5.1. NEW FUNCTIONALITY CHAPTER 5. DYNAMIC DEMONSTRATOR

Talkamatic
Dialogue
Manager

Speech
Synthesis
\ Speech

Recognition

*
S

oo

Pelagicore PTT
dbus Application Adapter
\ A J
Resource " socket
us
Framework socket

Spoken
Entities ‘ ‘ Dialogue
Database \

dbus
Spoken Dialogue
Adapter

Google
Places

GeoNames

Figure 5.1: The dynamic demonstrator is nearly identical to the static demonstrator, but
additionally contains a named entities database. It is a resource in ResFW.

34

5.2. COMPONENTS CHAPTER 5. DYNAMIC DEMONSTRATOR

5.2 Components

The components that had to be modified when evolving the static demonstrator are
described below. The sections correspond to those of the static demonstrator components
section (4.1), with two exceptions. Firstly, a data compilation module have been added
to the spoken dialogue adapter, compiling new data for TDM as mentioned in section
3.1.4. Secondly, an entirely new component has been added, the named entities database,
(see section 5.2.2 below). Just like the weather service (section 4.1.2), requests to the
named entities database goes through the Pelagicore resource framework (ResFW).

5.2.1 Spoken Dialogue Adapter

The biggest difference to the spoken dialogue adapter, is bidirectional communication
with the TDM application. This is needed to reply to TDM application requests over the
TDM application connection. Several new messages have also been added to the TDM
application protocol (see appendix A). The replies themselves have been added but also
messages to allow the demonstrator to work dynamically, for example data compilation
requests (see section 5.2.1.1). Additionally, requests for new places can be made to the
named entities database (section 5.2.1.4).

5.2.1.1 Compiling Places

The TDM application needs to be compiled before it can be initialized, so it needs to be
compiled and reloaded at run-time in the dynamic demonstrator. The different resources
of the TDM application need to access place data, but on slightly different levels. So, if
the place data change, then the application needs to be compiled anew, providing place
data on all levels. These levels are enabled by two extra compilation steps — the place
exporter and the place compiler.

Place Exporter

The place exporter is written for specifically for the dynamic demonstrator to support
dynamic places, for both geographical locations and named entities. It keeps locations
and named entities separated and writes them to the place ontology, a resource that can
be accessed by the place compiler.

Place Compiler

The place compiler is also written with the sole purpose of supporting dynamic places.
It converts the locations and named entities of the place ontology to places — without
any notion of place types. Places, in this sense, are a part of the TDM application,
which can be compiled by the regular TDM compiler (mentioned in section 3.1.4).

35

5.2. COMPONENTS CHAPTER 5. DYNAMIC DEMONSTRATOR

Named Entities
Database

position position

places

Spoken Dialogue
Adapter

Place
Exporter

@ \@

place ontology

\

Place Compiler

place
selector

TDM application

!

compiled TDM
application —— TDM Compiler

Figure 5.2: The flow of actions that are related to places and to compilation are shown
in this figure. Navit handles position requests, returning the user position to the spoken
dialogue adapter (1). There can be two reasons for a position request. Either (a), a com-
pilation request, passing the position to the named entities database (2a) to compile new
places (3a); or (b), place selection (2b, 3b). In the compilation sequence, places are exported
to the place ontology (4a). The place compiler compiles places for the TDM application,
updating the old application with new places (5a). In step 6a the regular TDM compiler
kicks in.

36

5.2. COMPONENTS CHAPTER 5. DYNAMIC DEMONSTRATOR

5.2.1.2 The TDM Application Connection

Since the TDM application in the dynamic demonstrator receives replies from the spoken
dialogue adapter, the TDM application connection supports this. The solution extends
the protocol, with several new message added to it. The full list of messages can be
found in appendix A.

Unfortunately, there is a limitation in the data request message used to reload places.
Only one named entity category can be given in each request. This was initially supposed
to be used when the category is known so that only requests with one named entity
category are needed. It is however impossible to know what category the user may talk
about in the future, so all named entity categories need to be loaded at all times. The
data request message still only supports one category though. To the user, this means
that she may only talk about one particular verb in the nav_do plan (section 4.2.1) —
eat.

5.2.1.3 The Navit Connection

From the original Navit resource it was not possible to get the user position, as men-
tioned in section 3.3.1. The TDM application however needs to know the user position.
Meanwhile, Navit is the natural component to ask for such a thing, being used as source
for everything related to the geographical world.

The implementation is a bit tricky. It is done in the Pelagicore version of Navit,
which is a slightly modified version of an old snapshot of Navit.

Navit does not seem to have a representation of user postion though, so instead I
used the map center, which is the longitude and latitude coordinate that is centered on
the screen. It is a solution specific to Pelagicore, but it works thanks to the fact that
Pelagicore always keep the map centered on the user position anyway.

This solution can be exchanged for a better one, once one is provided.

5.2.1.4 The Resource Framework Connection

The ResFW connection have been modified as well since there is now a new resource
in ResFW used by the spoken dialogue adapter, the named entities database (section
5.2.2). While doing this change, I also changed how the weather service (section 4.1.2) is
used. In the static demonstrator, the spoken dialogue resource in ResFW (mentioned in
section 4.1.1.4) took care of weather requests. In the dynamic demonstrator however, the
spoken dialogue resource in ResFW supplies the spoken dialogue adapter with agents
for the weather resource and the named entities database resource respectively (both
are ResFW resources). An agent in this context means an interface through which the
spoken dialogue adapter can make relevant requests and receive their results.

From the ResFW point of view, the agents are represented by objects wrapped in
the actual resources. Since resources are interfaced through D-bus, so are the agents.
They have unique D-bus object paths and provide interfaces specific to the purpose of
receiving requests from the spoken dialogue adapter.

37

5.2. COMPONENTS CHAPTER 5. DYNAMIC DEMONSTRATOR

5.2.2 Named Entities Database

The named entities database is, similarly to the weather service, a separate program.
It handles requests for locations and named entities close to a position. Through the
provided interface the user can request either locations or named entities of a specific
category, within a specific radius of a longitude and latitude coordinate. To handle
requests for locations and named entities in an optimal way, different web services are
used, one for locations and one for named entities. The services deliver their data in
different formats so they are converted to a common format in the ResFW resource, see
section 5.2.2.3 below.

5.2.2.1 The Locations Web Service

GeoNames' is used for finding locations. It covers over eight million geographical loca-

tions across the world, provided through a web API.

By giving GeoNames a bounding box it returns a suitable amount of results from
inside the box. The results returned are based on importance, so the bigger the bounding
box, the bigger and more important the results returned. Covering the whole world for
example would result in some countries and some capitals. Usually, the number of
locations returned are between 10 and 20.

The bounding box is rectangular but since I use a circle radius to specify it, a
conversion is made. The bounding box is calculated as the smallest square wrapping
the circle.

5.2.2.2 The Named Entities Web Service

Google Places? is used for finding named entities. It covers almost any named entity
category such as restaurants, barber shops, parking lots, et cetera, all over the world.
Not to mention it provides details such as address, formatted address, phone number,
postal code, et cetera. This implementation makes use of name, longitude and latitude
coordinate, address and category.

Google Places use the specified radius directly, returning the most important results
within the radius of the position. For each request, 20 results are returned with the
option to get another 20 by sending a new request, passing a token found in the first
result; a maximum of 60 results can be returned in total.

It is also possible to specify categories in the request, on a very fine level. There are
for example several different categories of where you can eat, for example cafe, food
and restaurant (Google, 2012).

!GeoNames is a web service for finding location names across the world, plus much more. Website:
http://www.geonames.org/ [Accessed Oct 4th, 2012]

2The Google Places API is documented online, at https://developers.google.com/places/
documentation/ [Accessed Oct 4th, 2012]

38

http://www.geonames.org/
https://developers.google.com/places/documentation/
https://developers.google.com/places/documentation/

5.3. TDM APPLICATION CHAPTER 5. DYNAMIC DEMONSTRATOR

e Required place data entries

— Name
— Longitude
— Latitude

e Optional place data entries (only valid for named entities)

— Address
— Named Entity Category

Figure 5.3: Required place data is needed for both locations and named entities while
optional place data is only needed for named entities

5.2.2.3 Place Data

The two web services for places return results in their own ways. To better support the
concept of ResF'W resources wrapping several services of the same type in the same way,
the data is converted to a common format in the named entities database resource in
ResFW. This also supports the notion of locations and named entities both being places.

Essential to places is of course the longitude and latitude coordinate but also the
name of the place. These data entries are considered required. There are however two
additional data entries provided for named entities: address and category. These are
considered optional. Figure 5.3 summarizes it.

5.3 TDM Application

The TDM application (section 3.1.4) remains mostly the same in the dynamic demonstra-
tor compared to the static. All modifications that have been implemented are mentioned
in this section.

Mainly one difference exists between the demonstrators. The dynamic demonstra-
tor requires the TDM application to be able to receive data from the spoken dialogue
adapter. For example, it needs knowledge about the user position and destination. The
reason that it needs this information is that the TDM application identifies places by
name, while the spoken dialogue adapter gets positions as coordinates, having no knowl-
edge of the TDM application place names.

Positions in coordinate form can be used in two ways. Firstly, the position is needed
directly by the device resource to select a place, either a location representing a position
or a named entity to navigate to. They are used in the show_weather and nav_do plans
mentioned in section 4.2.1 and shown in the action flow diagram in figure 5.4. The place
selection process is described in section 5.3.2. Secondly, the position is needed when
compiling and loading new places. As seen in figure 5.2, data compilation consists of
three steps. Although internal names are assigned in the first compilation step (step

39

5.3. TDM APPLICATION CHAPTER 5. DYNAMIC DEMONSTRATOR

navdo
v

* \é

place in

context
?

yes

place in

context
?

navigation

is started
?

yes yes

¢no no
lace bet ne
H use place petween
use user use plac_e in user position and
position discussion destination
\/
use place in ask user use place near
discussion user position

\

start
navigation

show
weather

Figure 5.4: The flow of actions in the TDM application plans are shown here. When
requesting the weather to be shown the TDM application uses either the user position or
the place in discussion as the weather forecast location. Starting a navigation can be done in
two ways, either through the nav_to or the nav_do plan. In the nav_to plan, TDM asks the
user if there is no place in discussion. In the nav_do plan however, it is guaranteed that a
category is specified, so there is no need to ask the user for a specific named entity — one can
always be found either near the user position or toward the destination, in case a navigation
is already started.

40

5.3. TDM APPLICATION CHAPTER 5. DYNAMIC DEMONSTRATOR

ISSUE : nav_to

PLAN:
findout (?x.nav_to_place(x))
dev_perform(?x.nav_to(x))

POSTPLAN:
change_domain(domain(dynamic_demonstrator))

Figure 5.5: The nav_to plan in the dynamic demonstrator is identical to the one in the
static, except for the change_domain item in the postplan. This makes sure that TDM
reloads the application (called dynamic_demonstrator), which have been compiled in the
dev_perform step.

ISSUE : show_weather

PLAN:
findout (7x.show_weather_place(x))
findout (7x.show_weather_time(x))
dev_perform(?7x.show_weather(x))

POSTPLAN:
change_domain(domain(dynamic_demonstrator))

Figure 5.6: The nav_to plan in the dynamic demonstrator is identical to the one in the
static, except for the change_domain item in the postplan. This makes sure that TDM
reloads the application (called dynamic_demonstrator), which have been compiled in the
dev_perform step.

number 4a in the figure) the compiler in the spoken dialogue adapter just writes to
disk and then forgets the names, so they are ever only known by the TDM application
anyway.

It is tempting to put the place selection job on the named entities database which
has all the knowledge about places, but this would ruin feedback for TDM in case the
place is not already loaded. If the place is not loaded it can obviously be loaded but
this would cause new problems for TDM, forgetting everything about the current plan
as I will describe in section 5.3.1. There are also latencies involved when loading places,
causing performance issues, which I will mention in section 5.4.

5.3.1 Loading data

Loading data at run time requires a readily compiled TDM application. Plans have been
updated for the dynamic demonstrator with a postplan (see figures 5.5, 5.6 and 5.7). The
dev_perform item of each plan makes sure that new place data is fetched and compiled
(see section 5.3.1.1). The change_domain then reloads the application in TDM, enabling
the new places. The reason to have it in the postplan is that it guarantees the reload
to happen after the dev_perform.

Loading dynamic data, that can change on disk, is not supported by TDM. The

41

5.3. TDM APPLICATION CHAPTER 5. DYNAMIC DEMONSTRATOR

ISSUE : nav_do

PLAN:
findout (?x.nav_do_verb(x))
findout (?x.nav_do_place(x))
dev_perform(?x.nav_do(x))

POSTPLAN:
change_domain(domain(dynamic_demonstrator))

Figure 5.7: The nav_to plan in the dynamic demonstrator is identical to the one in the
static, except for the change domain item in the postplan. This makes sure that TDM
reloads the application (called dynamic_demonstrator), which have been compiled in the
dev_perform step.

reason is that all data is imported by TDM on startup, so loading data at run time
requires it to be imported anew. I have made changes to TDM to support dynamic
data. Mainly by making sure that data is always read from disk when imported.

So, loading data can be performed dynamically. But the change_domain procedure
causes TDM to forget everything it already knew. This results in TDM returning to its
startup plan, which makes it ask the user what she wants to do. Since change_domain
plan items are performed after each plan has been completed though, the problem can be
considered small for the dynamic demonstrator. There is no need to remember anything
for the next plan.

5.3.1.1 Area to Load

In the dynamic demonstrator, places can be loaded for one position at a time. Usually,
the position is the one used in the most recent plan. It is desirable to keep places loaded
for several positions, but this have not yet been implemented.

When a position is chosen to be loaded, several queries are made to the named
entities database. There are two levels of queries, global and local. Basically, there
can be any number of levels but the dynamic demonstrator uses these two. Both are
described below, with some practical details. They are also visualized in figure 5.8.

e Global locations — These are used to provide knowledge about the world. Pos-
sible locations at this level can be countries, capitals, big cities and other major
geographical locations. In the dynamic demonstrator, the global level covers places
within a 1000km radius of the chosen position.

e Local locations — These provide knowledge of local locations, because locations
close to the target position are more relevant than those far away of the same size.
In the dynamic demonstrator, the local level covers places within a 2.5km radius
of the chosen position.

e Local named entities — Along with local locations, named entities in the same
area are also loaded.

42

5.3. TDM APPLICATION CHAPTER 5. DYNAMIC DEMONSTRATOR

Figure 5.8: Places are loaded on different levels. In the dynamic demonstrator they can
be loaded for one position at a time but the idea is to keep places loaded aruond all relevant
positions. This figure shows how two positions are used. Locations are loaded on both a
local (small circle) and global (large circle) level, while named entities are only loaded on
the local level.

Unfortunately, the fact that data is only loaded for one position at a time is a big
restriction, causing problems. For example, place names can be removed from TDM
although they are still relevant to the dialogue or have been used in it.

It is worth saying that the idea is to always keep relevant positions loaded. For
example when a navigation is started to a location, this location should remain loaded
until it is no longer used. It can be considered not used if the user reaches it or if she
sets a new destination. So, if the user reaches her destination, the idea is that it is
no longer relevant as a destination. But it is now her position, hence relevant anyway.
To conclude, the idea is that all relevant places should always be loaded in the TDM
application.

43

5.3. TDM APPLICATION CHAPTER 5. DYNAMIC DEMONSTRATOR

5.3.2 Selecting places

The TDM application knows about place names. The spoken dialogue adapter does not.
So when the device in the TDM application communicates with the spoken dialogue
adapter, for example when requesting the position of the user, it just receives a world
position as a longitude/latitude-coordinate.

To use the position within the application, the device needs to translate the coordi-
nate to a place name given the currently loaded names. Two different selection methods
have been constructed. The first is to select a named entity or location near a position,
for example the user position in the show_weather and nav_do plans. The other is to
select a named entity along the shortest path between two positions. For example be-
tween the user position and destination when looking for a named entity in the nav_do
plan with navigation started (see figure 5.4).

Selection of place near a position

Given a position in longitude and latitude as described above, a place needs to be found.
This is done by first filtering out valid places (which only applies for named entities,
where they need to match a category). Next, the actual selection step, the distance is
measured between the user position and every valid place, selecting the one closest to
the user position.

Selection of place between two positions

Given two positions of longitude and latitude, a place needs to be found. The process
is similar to the one of place selection near a single position, but instead of measuring
distance between the position and candidate place it is now measured going from the
first position, via the candidate place, to the second position.

The navigation resource of ResFW should be able to calculate distances between po-
sitions. With Navit this is not possible, at least not using the D-bus interface. Instead,
distance is calculated naively as the crow flies. This resulted in a very fast implementa-
tion.

5.3.3 Two way communication

Communication in the TDM application is done in the device resource, sending a message
across a socket using a protocol (section 5.2.1.2). When a request is sent from the device
resource, a result is eventually expected back. The spoken dialogue adapter potentially
has to forward the request to other systems though, so it is processed asynchronously
on that end. TDM however needs the result to be returned synchronously. The device
resource thus blocks the call until it the result is returned.

The blocking mechanism is implemented by letting two threads, a writer and a
reader, deal with the socket communication. These threads communicate with the device
through a thread-safe queue each, the reader filling the read queue with whatever comes
across the socket and the writer forwarding messages on the write queue to the socket.

44

5.4. SHORTCOMINGS CHAPTER 5. DYNAMIC DEMONSTRATOR

This way, the device can do a blocking read on the read queue until the expected result
is received.

5.4 Shortcomings

The dynamic demonstrator (partly) solves the static grammar problem (see section 4.3.1)
of the static demonstrator. The other shortcomings still remain though.
Some new shortcomings are introduced as well, described in the sections below.

5.4.1 Performance

With the dynamic data compilation step comes delays. They are particularly caused
by the TDM compiler mentioned in section 3.1.4, corresponding to the last compilation
step (6a) shown in figure 5.2. The reason behind the latency is mainly the ASR specific
compiler. For example, the Nuance VoCon Hybrid ASR compiles a binary grammar,
usually needing five to thirty seconds to compile roughly 40 places for the dynamic
demonstrator.

Proposed Solution

Performance can be improved by removing the compilation step in some way. For ex-
ample, Nuance ASRs have the ability to compile static parts of a grammar in advance,
linking dynamic data at run-time (Nuance, 2007, p. 82). This way, most of the grammar
could be compiled in advance, allowing places to be loaded dynamically. This solution
however requires support to be implemented in TDM, since TDM controls the ASR.
Performance can also be sped up by running on a faster machine. My reference system
is a 4GB RAM, 2x2.53GHz Intel Core2Duo CPU, single SATA HDD Apple Macmini.
A server in the cloud can be used instead, taking care of the ASR while keeping the
dialogue system mainly running on the client. Or perhaps the server can take care of
the entire dialogue system. Both server based solutions face some technical difficulties.

5.4.2 Naive Place Selection

Place selection (described in section 5.3.2) is done naively in the dynamic demonstrator.
Places are ranked by distance as the crow flies, disregarding all other potential ranking
measures. Importance of places, fine detailed categories of named entities (mentioned in
section 5.2.2), driving distance (both spatial and temporal), are all disregarded in the
selection process.

Proposed Solution

An optimal solution would be to use all above mentioned properties when ranking places.
What an implementation of this would look like is hard to tell, but would optimally be
put in a single component. This component needs to have all the information readily

45

5.4. SHORTCOMINGS CHAPTER 5. DYNAMIC DEMONSTRATOR

available. Such a component does not exist however. Navit has navigational knowledge
(such as driving distances) while the named entities database has place knowledge. The
solution has to be driven from the TDM application device as well, which only knows
about a few places. In total, there are many issues that needs to be solved if a truly
sophisticated selection process is to be implemented.

5.4.3 Inconsistent places

Data displayed on the map are taken from the Navit database, based on OpenStreetMap
as described in section 3.3.1. Place names used in the TDM application are based on
the named entities database which uses GeoNames and Google Places as described in
section 5.2.2.

But what happens when the data displayed on the map does not match the data
loaded in the TDM application? For example when a restaurant displayed on the map is
not loaded in the TDM application. The user may say the name of the place, expecting
it to be recognized. After all, it is shown on the map. But since it is not loaded in the
TDM application, it will either be misinterpreted or not understood at all. In the end,
the user will most likely become confused.

Proposed Solution

There is no clear solution to this problem. There is a great technical complexity with
several co-existing systems that need to co-operate in order to solve the issue. And even
if all the names shown on the map are loaded in the TDM application, what will happen
when moving around? Of course, new names will become visible for the user, other
names removed. Either the system needs to reload names when they come into view and
go away or keep names loaded at all times. Or perhaps loading names at pre-determined
boundaries instead, providing a kind of buffering.

Implementing such a solution, with requirements on both performance and avail-
ability of names, is probably not manageable with the current software design. On one
hand, Navit and the TDM application uses different data sources, so name mismatches
are likely; on the other hand, the TDM application requires time to reload while the
map does not.

Part of a solution is to make the navigation system and the named entities database
use the same database. This will solve the problem where names differ between these
sources. However, it does not solve the problem of loading everything that is visible on
the map. The performance issues (section 5.4.1) related to data reloads in the TDM
application are limiting factors in this problem.

5.4.4 Inconsistent Place Names

Place names are reloaded dynamically, using the named entities database. But on every
reload, a place selection is performed in the device resource of the TDM application, to
get the name of the place. (sections 5.3 and 5.3.1). The name is used for example in

46

5.4. SHORTCOMINGS CHAPTER 5. DYNAMIC DEMONSTRATOR

spoken feedback to the user. Because the named entities database is not guaranteed to
always return the same results, it can happen that the name of a place suddenly changes,
although the coordinates identifying the place do not.

This can only happen when a name needs to be carried along across reloads though,
for example when starting navigation to a place. If later referring to the destination,
the name may be missing because the named entities database did not return the actual
destination in its results.

Proposed Solution

Adding all relevant places on every reload, instead of relying solely on the named entities
database, would ensure consistent place names at all times. This would however require
adjustments to the reloading process as well as the TDM application connection of the
spoken dialogue adapter.

5.4.5 Number of Places Loaded

When loading places, all places returned by the named entities database are used. They
are however a rather small number on each level (see sections 5.2.2 and 5.3.1.1). Figure
5.8 shows how places are intended to be loaded on the different levels.

The problem is that so few places are loaded on each level that they may be spread
thinner than desired. The graphical coverage is simply not satisfactory. If unlucky (with
10 locations loaded globally), the smallest distance to a global location may for example
be 100km (which is not unlikely with 10 locations spread between 0 and 1000km from
the target position). Meanwhile, the largest distance to a local location can be 2.5km.
This results in a gap of 97.5km. Such a gap can be acceptable if far enough away from
the position, but currently the gap is often too large and too close to the position.

Global locations in the dynamic demonstrator are not all that global either, since
they only cover the area within 1000km from the target position. There is no knowledge
at all about places further away than 1000km. These facts mean that there are big gaps
in the overall graphical coverage of the world.

Proposed Solution

Analyses can be made to measure coverage. Place requests can then be adjusted to in-
crease coverage, weighing it against the resulting performance reduction. Of course, both
graphical coverage and performance need to be satisfactory to have a usable product.
User tests are ultimately needed to measure the overall usability in the product.

5.4.6 Number of Named Entity Categories

The dynamic demonstrator, like the static demonstrator, only supports two hard coded
named entity categories. In addition to this, the dynamic demonstrator only supports
loading places from one category on each reload. The reason is the protocol limitation for

47

5.4. SHORTCOMINGS CHAPTER 5. DYNAMIC DEMONSTRATOR

the TDM application connection in the spoken dialogue adapter, mentioned in section
5.2.1.2.

Proposed Solution

The solution is to update the protocol of the TDM application connection in the spoken
dialogue adapter to handle all possible categories. Perhaps by providing the protocol
with a list of categories in a well specified format instead of just one category.

5.4.7 Resolution of Named Entity Categories

Named entity categories in the dynamic demonstrator are hard coded. Only two cate-
gories are supported, Food & Drink and Gas station, the same as in the static demon-
strator. Especially the Food & Drink category can be compared to the extensive number
of food-relevant categories in use in the named entities database, described in section
5.2.2.2.

This means that, if the user tells the demonstrator that she wants to eat somewhere,
a place is selected that fits any of the food-relevant categories in the named entities
database. It may not be at all what the user expects. Maybe a cafe is selected but the
user desired a fine dining restaurant. Maybe a fine dining restaurant is selected when
the user wanted take away food from a drive-in.

Proposed Solution

The interaction between user and demonstrator may look the same, but before finding
the place the demonstrator can ask the user to specify her requirements further. The risk
is that the interaction is dominated by questions, but the user should of course be able
to specify a more specific category from the start, rending the questions unnecessary.
Another approach is to let the user specify category if she wants to, otherwise use a
default. Both solutions can be implemented directly in the TDM application by, without
heading into details, modifying the ontology, domain, device and grammar resources.

48

System Evaluation

HIS CHAPTER DESCRIBES a brief evaluation, performed to estimate the impact of
the dynamic demonstrator shortcomings (chapter 5) from the user’s perspective.
The evaluation attempted to estimate user satisfaction, partly by estimating the
relevant factors of task completion and concept accuracy mentioned in section 2.3.1.
Interviews were carried out as well, after each test, trying to judge which of the short-
comings in the demonstrator that had the biggest impact on user experience.
I should mention that concepts mentioned here correspond to dialogue moves when
talking about Talkamatic Dialogue Manager (TDM).

6.1 User Tests

Six people (the test subjects) were selected to test the dynamic demonstrator. All six
worked at the Pelagicore office, having a background in in-vehicle infotainment develop-
ment but with little or no knowledge of spoken dialogue systems. All test subjects were
males, five of them with an age ranging from 30-35, the sixth was in the age span of
45-50. So, the test subjects did not have a wide demographic spread. This is generally
not a good idea in testing but becomes more important the bigger the test and the closer
to release it is. For such a small and early test as this, the impact of demography is
highly limited, but should be noted.

The test subjects were given four tasks (see appendix F) that they needed to solve.
To help them get started, they were initially given a brief description of the capabilities
of the demonstrator. In addition to this they were also guided along the test, in case
they seemed to get stuck on utterances not supported by the demonstrator. Note that
all users did the tasks in the same order, starting with number one and ending with
number four.

The tasks ranged in complexity, some requiring several utterances, spanning across
both use cases, some just requiring one utterance.

49

6.2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

Measures in the tests were the ones described in sections 2.3.2 and 2.3.3, task com-
pletion and concept accuracy. To achieve high accuracy on these measures, data was
gathered from audio recordings first after all tests were completed.

6.1.1 Results

To begin with, I would like to state that no time was available for configuration of the
dynamic demonstrator and its components before these tests began. This resulted in,
for example, bad speech recognition accuracy. In fact, it was lower than 50% overall.
Because of this, I present two different estimations of task completion rate. The first
one is based on all utterances that were required to complete tasks (all utterances).
The second one is only based on the utterances that were recognized at all by the ASR
(successful utterances, those that were interpreted as containing a concept). For concept
accuracy, only the successful utterances were considered relevant.

Task completion rate based on all utterances is shown in figure 6.1. Note the high
standard deviation on task two. This is because one troubled test subject required
more than twice the utterances to complete it, compared to the others. Most of these
utterances were not successful.

The task completion rate based on successful utterances is shown in figure 6.2 for
each of the four tasks. In this case, the unsuccessful utterances from the troubled test
subject in task two are filtered out. Thanks to this, the standard deviation and the mean
for task two is significantly lower. Task four seems to be the most complex, requiring
the most utterances to complete. Task three on the other hand seems to be simplest,
requiring the least number of utterances. Tasks one and two are placed in the middle,
task one requiring less utterances than task two.

Finally, concept accuracy is shown in figure 6.3. The accuracy is lower for tasks two
and four while it is higher for tasks one and three.

6.2 Discussion

It is interesting to analyse and discuss the results. It is also interesting to discuss the
shortcomings found during interviews with the test subjects. Both discussions are done
in the below sections.

6.2.1 Discussion of Results

From the figures in section 6.1.1, it looks as if a more complex task (requiring more
utterances to complete) leads to a lower concept accuracy. Since the concept accuracy
figure only covers successful utterances though, it seems reasonable to compare it to the
task completion rate figure that only covers successful utterances as well. However, there
is less correlation with this figure than with the task completion rate figure that covers
all utterances. Probably, the evaluation is too small to draw any statistical conclusions.

What must be mentioned again, is the low speech recognition accuracy. In roughly
half of all cases, the ASR did not recognize any concept at all. This happened when

20

6.

2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

Number of All Utterances

Number of All Utterances to Complete Task
25 | | |

Task

Figure 6.1: The number of utterances needed to complete each task is displayed above. The
big black bars represent mean value across users and the tiny black bars indicate standard
deviation. The simplest task, number three, takes around three utterances to complete while
the hardest task, number four, takes around twelve utterances to complete. The standard
deviation is roughly equal for all tasks, except number two.

51

6.2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

Number of Successful Utterances

Number of Successful Utterances to Complete Task
10 | | | |

Task

Figure 6.2: The number of successful utterances needed to complete each task is displayed
above. Successful utterances in this context are those that contained a concept after the
speech recognition step. The big black bars represent mean value across users and the tiny
black bars indicate standard deviation.

52

6.2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

Concept Accuracy
100

Concept Accuracy (%)

Task

Figure 6.3: Concept accuracy for each task is displayed above. The big black bars represent
mean value across users and the tiny black bars indicate standard deviation.

using the Nuance Vocon Hybrid ASR, a commercial and normally very accurate ASR.
I suspect there was a problem with either the microphone, or the acoustic model used
with the ASR. The microphone filtered noise, also reducing the audio output volume
to the ASR. This could be a problem if the ASR wants input audio in a special way.
Perhaps it wanted normalized audio where the maximum recorded amplitude matched
the theoretical maximum. This is unknown, but if true it could certainly have been the
cause of the problem. The second suspicion concerned the acoustic model. As described
in section 2.1.1.1, the acoustic model models how words sound. If the acoustic model
used in the ASR was made for a different language or a strongly differing accent, it may
also have been the cause of the problem. My personal judgement holds it more likely that
the microphone caused the problem though. The acoustic model is a standard model
provided with the Vocon Hybrid ASR, and should be able to handle regular English
speech.

23

6.2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

U> I want to eat

S> Okay. Do something

S> Okay. Eat

S> Started navigation to The Cheesecake Factory

Figure 6.4: This figure exemplifies the problems detected with the nav_do plan during user
testing. TDM gives feedback in two steps, first do something then eat, confusing the user.
It is desired to skip the do something feedback and just use the eat.

6.2.2 Interviews

Several problems were identified during the test subject interviews. I will discuss each
problem in a separate section, below.

6.2.2.1 The nav_do Plan

The nav_do plan (see figure 5.7) results in undesired feedback because of its structure.
It wraps verbs, such as eat and refuel, finding places for them. This means that when
TDM tries to give feedback acknowledging this, it comes in two steps. Firstly, the action
request is acknowledged — ”do something”. Secondly, the verb is acknowledged — "eat”.
Instead, it is desired that feedback comes in one step — eat”. See figure 6.4 for an
example of the problem.

Proposed Solution

A potential solution is to rewrite the nav_do plan, constructing a new plan for each
supported verb. For example, a nav_eat plan, a nav_refuel plan, et cetera.

Another solution would be if TDM enables better spoken feedback, or enables better
control over spoken feedback.

6.2.2.2 Competing with Apple SIRI, Google Voice Search

The test subjects had tried the top commercial competition. For example the Apple
SIRI! or Google Voice Search?? (GVS) before trying the dynamic demonstrator. They
thought the performance and accuracy was significantly lower for the dynamic demon-
strator compared to competition. The SIRI and GVS both have one thing in common,
one thing that makes them different from the dynamic demonstrator. They run on
powerful servers in the cloud.

The problem in the dynamic demonstrator is that TDM works natively with a local
ASR using a grammar based language model. A cloud based, freeform, ASR (one which

! Apple SIRI website: http://www.apple.com/ios/siri/ [Accessed Oct 26th, 2012]

2Google Mobile website, voice search: http://www.google.com/mobile/voice-search/ [Accessed
Oct 26th, 2012]

3Google website, showing the voice search feature: http://www.google.com/insidesearch/
features/voicesearch/index.html [Accessed Oct 26th, 2012]

54

http://www.apple.com/ios/siri/
http://www.google.com/mobile/voice-search/
http://www.google.com/insidesearch/features/voicesearch/index.html
http://www.google.com/insidesearch/features/voicesearch/index.html

6.2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

can natively recognize any utterance) could be used to allow more robust recognition. In
this case, its output must be parsed in a robust way to accurately determine utterance
concepts for TDM.

Unfortunately, such a parser does not exist for TDM today, but if it did it could well
increase ASR accuracy to the same levels as for SIRI and GVS, given that the same ASR
is used. TDM however requires data, such as places, to be declared on initialization,
for example in the ontology resource (see section 3.1.4). If the solution with dynamic
application reloads (section 5.3.1) that was introduced with the dynamic demonstrator
is used, places can be loaded dynamically. Since the ASR is cloud based, there would be
no performance problems caused by ASR compilation (see section 5.4.1). Many place
names would still not be supported however, unless covered by the cloud based ASR.

6.2.2.3 Performance

With dynamic data compilations comes the performance problem mentioned in section
5.4.1. The user tests revealed that test subjects become confused during compilation
because there is no feedback and it takes too long time. They are not sure what is going
on, so they assume that everything is normal and continue to speak. This results in an
unexpected ketchup-effect behaviour once compilation finishes.

Proposed Solutions

One possible solution is mentioned in section 5.4.1.

Another solution, which is much easier to implement, is to improve control over
spoken feedback with TDM. Doing this, at least the user becomes aware of what is going
on. However, users will still compare with SIRI and GVS and be disappointed, so it is
no long term solution.

6.2.2.4 Grammar Coverage

When the test subjects’ utterances were not recognized by TDM several times in a row
they became confused. Either, they spoke an utterance not covered by grammar, or the
place they used (if they used one) was not loaded (section 4.3.1). The user could not
tell from the spoken feedback given by TDM.

Proposed Solution

Solutions were proposed by users. One was to display what was actually recognized by
the ASR. This would work when the ASR returns a result which is rejected by TDM,
but it would not work when no results are returned at all.

Another proposed solution was to display some supported utterances; utterances that
would surely work. This is tricky however, since places are loaded dynamically and they
are often too many to display all at once. This approach eliminates the concern that the
spoken utterance may not be covered by grammar.

95

6.2. DISCUSSION CHAPTER 6. SYSTEM EVALUATION

6.2.2.5 Places and Context

If the user stops speaking, resuming after a while, the last mentioned place is still con-
sidered in context and will be used if a place can be implicitly referred in the dialogue.
The problem is that it is kept in context no matter how long the pause is. Considering
human-to-human dialogue, a place is normally not in context for longer than some sec-
onds or minutes. However, considering the nature of human-to-human dialogue, a place
could probably be referred naturally hours later as well. It is simply hard to tell without
performing user tests or consulting literature on the subject.

Proposed Solution

It is possible to start a timer to remove the place in context after a certain amount of
time. Another solution is to make this part of grounding (section 3.1.3), where TDM
gives more pessimistic feedback the longer time it takes since the place was mentioned.
Research must be performed to show what a proper solution is.

o6

Conclusions

The purpose of the thesis have been, as stated in section 1.1, to enable spoken dialogue
(SD) control of an in-vehicle infotainment (IVI) system. It have also been to enable
place names across the world in the dialogue.

7.1 Accomplishments

First, I constructed a prototype demonstrator using a static grammar, the static demon-
strator. It provided full integration with the IVI system, but places were static and did
not cover the entire world. I constructed the dynamic demonstrator next, addressing the
static grammar problem to provide world wide coverage of places. Some shortcomings
were identified and potential solutions to them were proposed.

I also conducted small scale user tests to assess the usability and performance of
the dynamic demonstrator. They revealed shortcomings as well, which I have provided
potential solutions for.

7.2 Significant Shortcomings

As mentioned in the introduction 1, a dialogue system needs to be highly natural, highly
intuitive and easy-to-use, among other things. Several shortcomings break these require-
ments, but I consider the following two problems the most important as a first step.

During the user tests, speech recognition accuracy was low. Users compared the
dynamic demonstrator to top competition today and were disappointed, both with per-
formance and accuracy'. Accuracy plays a major role if the system is going to fulfill the
requirements of highly natural, intuitive and easy-to-use.

!Speech recognition accuracy have improved significantly since the user tests were conducted. A new
microphone setup and optimized configuration have resulted in accuracy levels very close to those of the
top competition, as long as the user utterance matches the grammar.

o7

7.3. FUTURE WORK CHAPTER 7. CONCLUSIONS

The dynamic demonstrator also has a performance problem. I identified it in the
dynamic demonstrator (section 5.4.1) and the user tests revealed it as well (section
6.2.2.3). To fulfill the requirements of highly natural, intuitive and easy-to-use, there
must be no performance problem even when the number of places is heavily increased.

7.3 Future Work

The most important future work is to solve the performance problem. I have proposed
two different solutions to it. One is to go the same path as the top competition, using
a cloud based speech recognizer (section 6.2.2.2). However, this solution requires a
robust parser in order to interpret the semantics of recognition results. The solution
also restricts place names, since place names are only supported if they are covered in
the language model of the speech recognizer. In addition, using the cloud is unsuitable
in an automotive environment.

Another solution is to avoid compiling the entire speech recognizer grammar during
run-time. This can be done with a speech recognizer that can handle dynamic grammars
(section 5.4.1). If so, the static parts of the grammar (everything except the places) are
compiled in advance while dynamic parts (the places) are linked during run-time. This
solution keeps the dynamic demonstrator mainly intact while the performance problem is
greatly reduced. It however requires support to be implemented in Talkamatic dialogue
manager (TDM).

o8

References

Acapela (2012a). Acapela Website - How does it work?
http://www.acapela-group.com/how-does-text-to-speech-work.html. [Ac-
cessed May 17th, 2012].

Acapela (2012b). Acapela Website - What is Text-to-Speech?
http://www.acapela-group.com/what-is-text-to-speech-faq.html. [Accessed
May 17th, 2012].

Boros, M., Eckert, W., Gallwitz, F., Gorz, G., Hanrieder, G., and Niemann, H. (1996).
Towards understanding spontaneous speech: Word accuracy vs. concept accuracy. In

In Proceedings of the Fourth International Conference on Spoken Language Processing
(ICSLP 96), volume 2, pages 1009-1012. IEEE.

Chen, F., Jonsson, I.-M., Villing, J., and Larsson, S. (2010). Speech Technology - Theory
and Applications, chapter 11. Application of Speech Technology in Vehicles. Springer.

Fant, G. (2005). Speech analysis and features. In Speech Acoustics and Phonetics,
volume 24 of Text, Speech and Language Technology, pages 143-197. Springer Nether-
lands.

Fung, D. (2011). CNET Australia Website - Volvo Sensus Review.
http://www.cnet.com.au/volvo-sensus-339315932.htm. [Accessed Oct 10th,
2012].

Google (2012). Google Places API Website - Supported Place Types.
https://developers.google.com/places/documentation/supported_types. [Ac-
cessed Oct 4th, 2012].

Howard, B. (2012). Extremetech Website - Cadillac CUE hands-on: How well does
Caddy’s tech stack up to Ford Sync and MyFord Touch?
http://wuw.extremetech.com/extreme/130139-cadillac-cue-hands-on-how-
well-does-caddys-tech-stack-up-to-ford-sync-and-myford-touch/2. [Ac-
cessed Oct 10th, 2012].

29

http://www.acapela-group.com/how-does-text-to-speech-work.html
http://www.acapela-group.com/what-is-text-to-speech-faq.html
http://www.cnet.com.au/volvo-sensus-339315932.htm
https://developers.google.com/places/documentation/supported_types
http://www.extremetech.com/extreme/130139-cadillac-cue-hands-on-how-well-does-caddys-tech-stack-up-to-ford-sync-and-myford-touch/2
http://www.extremetech.com/extreme/130139-cadillac-cue-hands-on-how-well-does-caddys-tech-stack-up-to-ford-sync-and-myford-touch/2

Kang, S., Lee, S., and Seo, J. (2009). Dialogue Strategies to Overcome Speech Recogni-
tion Errors in Form-Filling Dialogue. In Computer Processing of Oriental Languages.
Language Technology for the Knowledge-based Economy, volume 5459, pages 282-289.
Springer Berlin / Heidelberg.

Larsson, S. (2002). Issue-Based Dialogue Management. PhD thesis, University of Gothen-
burg. [Accessed Oct 2nd, 2012].

Larsson, S., Ljunglof, P., Cooper, R., Engdahl, E., and Ericsson, S. (2000). Godis: an
accommodating dialogue system. In Proceedings of the 2000 ANLP/NAACL Workshop
on Conversational systems - Volume 3, ANLP/NAACL-ConvSyst '00, pages 7—10.
Association for Computational Linguistics.

McTear, M. F. (2002). Spoken dialogue technology: Enabling the conversational user
interface. ACM Computer Surveys, 34(1):90-169.

Nuance (2007). Nuance Recognizer 9.0 — Grammar Developer’s Guide.

Sutton, S. and Cole, R. (1997). The CSLU toolkit: rapid prototyping of spoken language
systems. In Proceedings of the 10th annual ACM symposium on User interface software
and technology, UIST ’97, pages 85-86. ACM.

The Norwegian Meteorological Institute (2012a). Vilkar for bruk av gratis data fra yr.no.
http://om.yr.no/verdata/vilkar/. Written in Norwegian. [Accessed Oct 2nd,
2012)].

The Norwegian Meteorological Institute (2012b). YR Web Services - Locationforecast -
Documentation.
http://api.yr.no/weatherapi/locationforecast/1.8/documentation. [Accessed

Oct 2nd, 2012].

VoiceXML Forum (2000). Voice eXtensible Markup Language (VoiceXML™) version
1.0.
http://www.w3.org/TR/voicexml. [Accessed Oct 19th, 2012].

Walker, M. A., Litman, D. J., Kamm, C. A., and Abella, A. (1997). PARADISE: A
Framework for Evaluating Spoken Dialogue Agents. In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics, pages 271-280. Association
for Computational Linguistics.

60

http://om.yr.no/verdata/vilkar/
http://api.yr.no/weatherapi/locationforecast/1.8/documentation
http://www.w3.org/TR/voicexml

TDM Device Protocol

This appendix covers the protocol used for socket communication between the spoken
dialogue adapter and the TDM application. When reading this, keep the TDM appli-
cation as your point of view. If a message is sent somewhere, the sender is the TDM
application. Likewise, if a message is returned from somewhere, it is returned to the
TDM application.

The static demonstrator just uses two messages, RequestStartNavigation and Re-
questShowWeather. All the messages are used in the dynamic demonstrator though.

RequestlnitializeCompiler Sent to the spoken dialogue adapter.
Tell it to initialize the place compiler (the one between steps 3a and 4a in figure 5.2).

<request_initialize_compiler

absolute_config_path = "string value"
project_name = "string value"
subapplication_name = "string value"

/>

RequestlInitializeCompilerSuccess Returned from the spoken dialogue adapter.
Is True if the place compiler was successfully initialized.

<request_initialize_compiler_success
success = "True | False"

/>

RequestStartNavigation Sent to the spoken dialogue adapter.

Tell it to start navigation to the specified longitude and latitude in WGS84 format.
If the destination is displayed somewhere it will use the specified main (e.g. name of the
named entity) and secondary (e.g. address of the named entity) names.

<request_start_navigation

longitude = "decimal.value"
latitude = "decimal.value"
main_name = "string value"
secondary_name = "string value"

/>

RequestStartNavigationSuccess Returned from the spoken dialogue adapter.
Is True if the navigation was successfully started.

<request_start_navigation_success
success = "True | False"

/>

RequestShowWeather Sent to the spoken dialogue adapter.

Tell it to show the weather at the specified longitude and latitude in WGS84 format in
day_offset number of days from today. If a forecast for the target position is displayed
somewhere it will use the specified main (e.g. name of the named entity) and secondary
(e.g. address of the named entity) names.

<request_show_weather

longitude = "decimal.value"

latitude = "decimal.value"

day_offset = "int value"

main_name = "string value"

secondary_name = "string value (default ’’)"

/>

RequestShowWeatherSuccess Returned from the spoken dialogue adapter.

Is True if a weather forecast was successfully fetched and propagated. Note that it
can be True even if there were no listeners for the result on D-bus (see the weather API
in appendix C).

<request_show_weather_success
success = "True | False"

/>

11

RequestCurrentPosition Sent to the spoken dialogue adapter.
Request the current user position.

<request_current_position />

RequestCurrentPositionResult Returned from the spoken dialogue adapter.
Contains the longitude and latitude coordinates of the current user position. In
WGS84 format.

<request_current_position_result
longitude = "decimal.value"
latitude = "decimal.value"

/>

RequestDestination Sent to the spoken dialogue adapter.
Request the current destination.

<request_destination />

RequestDestinationResult Returned from the spoken dialogue adapter.

Contains the longitude and latitude coordinates of the current destination. In WGS84
format. Unclear behaviour if no destination is set (check with RequestNavigationls-
Started first).

<request_destination_result
longitude = "decimal.value"
latitude = "decimal.value"

/>

11

RequestNavigationlsStarted Sent to the spoken dialogue adapter.
Request to find out if a navigation is currently active.

<request_navigation_is_started />

RequestNavigationIsStartedResult Returned from the spoken dialogue adapter.
Returns True if there is an ongoing navigation (it checks if a destination is set).

<request_navigation_is_started_result
result = "True | False"

/>

RequestCompilePlaces Sent to the spoken dialogue adapter.

Request place compilation for places around the specified position in longitude and
latitude coordinate. It is specified in WGS84 format.

If global_places is set to True, include important locations in a 1000km radius
from the specified position.

If local_places is set to True, include important locations in a 2.5km radius from
the specified position.

If poi_type corresponds to a supported named entity category, include important
named entities of the specified category in a 2.5km radius from the specified position.

<request_compile_places
longitude = "decimal.value"
latitude = "decimal.value"
global_places = "True | False"
local_places = "True | False"
poi_type = "string value"

/>

RequestCompilePlacesSuccess Returned from the spoken dialogue adapter.
Returns True if the compilation was successful.

<request_compile_places_success
success = "True | False"

/>

v

Spoken Dialogue Adapter API

There are two different APIs of the spoken dialogue adapter. Firstly, of course for the
adapter itself. Secondly, for the spoken dialogue resource in the Pelagicore resource
framework (ResFW). Both are described below.

B.1 The Service API

The adapter communicates with ResF'W, and anyone else that is interested, over D-bus.
Below are its specifications.

Session bus name: com.pelagicore.spokendialogue
Object path: /com/pelagicore/spokendialogue
Interface: com.pelagicore.spokendialogue.SpokenDialogue
Provided methods:
adapter_set_ptt_held
parameters:
None
signatures:
in: "
out: ""
adapter_ptt_held
parameters:
None
signatures:
in: ""
out: "b" (returns the status of the push-to-talk
button, True if held, False if released)

named_entities_available
parameters:
named_entities_db_agent_object_path:
(object path of the named entities database -
spoken dialogue agent D-bus object)
signatures:
in: "o"
out: ""
named_entities_unavailable
parameters:
None
signatures:
in: "'
out: ""
weather_available
parameters:
weather_agent_object_path:
(object path of the weather service -
spoken dialogue agent D-bus object)
signatures:
in: "o"
out: ""
weather_unavailable
parameters:
None
signatures:
in: ""
out: ""

VI

Provided signals:
pending
parameters:
None
signature: ""
ready
parameters:
None
signature: ""
close
parameters:
None
signature: ""
ptt_status_changed
parameters:
None

signature: ""

B.2 The Resource API

The resource API uses a D-bus property, nothing more. It is managed by the resource
superclass, service.0bject.

Session bus name: com.pelagicore.resource.SpokenDialogue

Object path: /com/pelagicore/resource/spokendialogueX
(where X is an integer instance identifier)
Interface: com.pelagicore.resource.SpokenDialogue.SpokenDialogue
Provided methods & signals:
None

Pelagicore D-bus properties:
PttHeld (bool - True if push-to-talk held, False if released)

VII

Weather API

The weather service provides two APIs. One for the service itself, the separate pro-
gram, and one for the resource in the Pelagicore resource framework (ResFW). Both are
described below.

VIII

C.1 The Service API

The service communicates with ResFW, and anyone else that is interested, over D-bus.

Session bus name: com.pelagicore.weather
Object path: /com/pelagicore/weather
Interface: com.pelagicore.weather.Weather
Provided methods:
requestWeather
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)
signatures:
in: "ss"
out: "s" (returns the HTTP response body
with the yr.no results)
readyQuery
parameters:
None
signatures:
in: ""
out: ""
Provided signals:
ready
parameters:
None
signature: ""

IX

C.2 The Resource API

The weather resource takes a forecast from yr.no and standardizes its format before
forwarding it. It accepts requests with the requestWeather method and eventually
emits the result with the weatherResult signal. Requests can come the regular way on
the regular D-bus object, from the HMI; or through the spoken dialogue agent D-bus
object, from the spoken dialogue adapter. These are described below along with the
standardized weather data format output by the weatherResult signal.

The Regular Weather Object

Session bus name: com.pelagicore.resource.Weather

Object path: /com/pelagicore/resource/weatherX
(where X is an integer instance identifier)
Interface: com.pelagicore.resource.Weather.Weather
Provided methods:
requestWeather
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)
main_name: (main name if displayed)
secondary_name: (secondary name if displayed)
day_offset: (number of days from today)
signatures:
in: ‘"ssssi"
out: ""
Provided signals:
weatherResult
parameters:
main_name: (main name to be displayed)
secondary_name: (secondary name to be displayed)
result: (resulting array of dicts,

containing standardized weather data)
signature: "ssaa{sv}"

The Spoken Dialogue Agent Object

Session bus name: com.pelagicore.resource.Weather
Object path: /com/pelagicore/weather/spokendialogueagent
Interface: com.pelagicore.resource.Weather.Weather.SpokenDialogueAgent
Provided methods:
requestWeather (This method eventually emits the weatherResult
signal on the regular weather object, described

above.)
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)
main_name: (main name if displayed)
secondary_name: (secondary name if displayed)
day_offset: (number of days from today)
signatures:
in: '"ssssi"
out: "b" (success)

Provided signals:
None

XI

C.2.1 Weather Data Format

This is the specification of the standardized weather data format.

standardized_result = list(
several_elements_of: dict(
"time": Python datetime.time timestamp in format:
"%Y-Ym=%d H:%M:%S"
"temperature": Temperature in degrees: '"decimal number"
"temperatureUnit": Temperature unit for degrees: "C | F"
"windDirection": Wind direction, north is O:
"decimal number"
"windDirectionUnit": Wind direction unit: "deg | rad"
"windDirectionName": Wind direction name:
"WI|NE|E|SE| S| SWw /W] NW"
"windSpeed": Wind speed: "decimal number"
"windSpeedUnit": Wind speed unit: "m/s"
"pressure": Air pressure: "decimal number"
"pressureUnit": Air pressure unit: "hPa"
"symbol": Symbol id, yr.no-specific: "integer"
"precipitation": Precipitation during interval:
"decimal number"
(KNOWN BUG: Does not accumulate
full day precipitation)
"precipitationUnit": Precipitation unit: "mm"

X1II

Named Entities Database API

The named entities database provides two APIs. One for the database service itself
the separate program, and one for the resource in the Pelagicore resource framework
(ResFW). Both are described below.

XIIT

D.1 The Service API

The database service communicates with ResFW, and anyone else that is interested,
over D-bus.

Session bus name: com.pelagicore.namedentities

Object path: /com/pelagicore/namedentities
Interface: com.pelagicore.namedentities.NamedEntities
Provided methods:
requestPois
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)
meter_radius: (Entities returned are
located within this radius of the
given longitude and latitude)
types: (List of Google Places types.
See details at the below address)
signatures:
in: '"ssias"
out: "s" (returns the HTTP response body
with the Google Places results)

https://developers.google.com/places/documentation/supported_types

requestLocations
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)

meter_radius: (Locations returned are
located within this radius of the
given longitude and latitude)
signatures:
in: "ssi"
out: "s" (returns the HTTP response body
with the GeoNames results)

XIV

https://developers.google.com/places/documentation/supported_types

readyQuery
parameters:
None
signatures:
in: ""
out: ""

Provided signals:
ready
parameters:
None
signature: ""

XV

D.2 The Resource API

The named entities resource can send named entity category-specific requests to the
database service, not requiring the resource user to have knowledge about the actual
categories and their spelling. The resource also standardizes the results, providing the
same format regardless of the actual data source. Requests can come the regular way
on the regular D-bus object, from the HMI; or through the spoken dialogue agent D-
bus object, from the spoken dialogue adapter. These are described below along with
the standardized place data format output by the result signal and the named entity
categories that were supported at the end of this thesis.

The Regular Named Entities Object

Session bus name: com.pelagicore.resource.NamedEntities

Object path: /com/pelagicore/resource/namedentitiesX
(where X is an integer instance identifier)
Interface: com.pelagicore.resource.NamedEntities.NamedEntities
Provided methods:
requestFoodPois (places where you can eat
eventually emitted by resource)
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)

meter_radius: (Places returned are
located within this radius of the
given longitude and latitude)

signatures:
in: '"ssi"
out: ""
requestGasstationPois (places where you can refuel

eventually emitted by resource)

parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)

meter_radius: (Places returned are
located within this radius of the
given longitude and latitude)
signatures:
in: "ssi"
out: ""

XVI

requestPoisByType (places of the specified category
eventually emitted by resource)
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)
poi_type: (Named entity category)

meter_radius:

(Places returned are
located within this radius of the
given longitude and latitude)

signatures:
in: ‘"sssi"
out: ""
requestLocations (geographical locations
eventually emitted by resource)
parameters:
longitude: (Decimal WGS84 coordinate)
latitude: (Decimal WGS84 coordinate)

meter_radius:

signatures:
in: '"ssi"
Out . nn

Provided signals:
result

parameters:

(Places returned are
located within this radius of the
given longitude and latitude)

result: (resulting array of dicts,
containing standardized place data)
signature: "a{sv}"

XVII

The Spoken Dialogue Agent Object

Session bus name: com.pelagicore.resource.NamedEntities

Object path: /com/pelagicore/namedentities/spokendialogueagent

Interface:

com.pelagicore.resource.NamedEntities.

NamedEntities.SpokenDialogueAgent

Provided methods:
requestPoisByType

parameters:
longitude:
latitude:

poi_type:

meter_radius:

signatures:
in: ‘"sssi"
Out . nn
requestLocations

parameters:
longitude:
latitude:

meter_radius:

signatures:
in: '"ssi"
out: ""
Provided signals:
result
parameters:

(places of the specified category
eventually emitted by agent)

(Decimal WGS84 coordinate)
(Decimal WGS84 coordinate)

(Named entity category)

(Places returned are

located within this radius of the
given longitude and latitude)

(geographical locations
eventually emitted by agent)

(Decimal WGS84 coordinate)
(Decimal WGS84 coordinate)

(Places returned are

located within this radius of the
given longitude and latitude)

result: (resulting array of dicts,
containing standardized place data)

signature: "a{sv}"

XVIII

D.2.1 Place Data Format
This is the specification of the standardized place data format.

standardized_result = dict(
"type": "poi | location" (poi = named entity)
"places": list(
several_elements_of: dict(
"name" : (required - the English name of the place)
"longitude": (required - decimal WGS84 longitude)
"latitude": (required - decimal WGS84 latitude)

"amenity": (optional - the named entity category,
only available for named entities)
"address": (optional - the address of a named entity,

only available for named entities)

D.2.2 Supported Named Entity Categories

Only one named entity category is supported by the named entities database — the
Food & Drink. More are needed but in the dynamic demonstrator this is the only one.

The reason is that the data request messages only support one category at a time (section
5.2.1.2).

XIX

Places

Below are two sections, outlining what was desired when initiating the thesis. The first
section lists tasks relevant to the use cases of navigation and weather. Remember that
two kinds of places are used, geographical locations and named entities. The second
section covers named entity categories.

E.1 Use Case Tasks

This section covers desired use case tasks for the navigation and weather use cases. No
further explanation than the short headings are given. The idea is that tasks can be
performed one-at-a-time or several in the same utterance, using spoken dialogue system.

1. Navigate to a location

2. Navigate to a named entity at or near a location

3. Navigate via locations

4. Navigate via named entities at or near locations

5. Display named entities at or near locations

6. Display weather at or near location or named entity

7. Display weather at specified time or within specified timespan
8. Change some settings

9. Change view mode, one of

(a) Map tracking (Follows the user’s vehicle on the map)

(b) List of directions (Shows a list of navigation directions)

XX

(c) Static map location (Center’s the map on a specific location)
10. Change map view, one of

(a) Egocentric view (Tracking)
(b) Exocentric view
i. Map view
A. Track-up (Tracking)
B. North-up (Tracking & Static)
ii. Over-the-shoulder (Tracking)
iii. God’s-eye (Tracking)
iv. Wingman’s view (Tracking)
v. Another person’s view (Tracking)

11. Ask context-relevant questions, such as

Distance to destination

b

(c
(d

(a
(b) Phone number of named entity

Population of city

Country of location

12. Receive continuous instructions of navigation

XXI

E.2 Named Entity Categories

This section declares some relevant and desired named entity categories!.

1. Parking

2. Car repair service
3. Car wash

4. Gas station

5. Toll station

6. Ferry terminal

7. Airport

8. Railway station
9. Bus terminal

10. Bank

11. ATM

12. School

13. Emergency care
14. Entertainment
15. Food & Drink

16. Lodging

17. Recreation

18. Post office

19. Tourist information
20. Service Shop

21. Tourist Attraction

'Relevant and desired named entity categories have been derived from amenities used by Open-
StreetMap. See http://wiki.openstreetmap.org/wiki/Map_Features#Amenity [Accessed November
17th, 2012].

XXII

http://wiki.openstreetmap.org/wiki/Map_Features#Amenity

System Evaluation Tasks

All test subjects were given the four tasks below during evaluation. All tasks were given
in the same order.

1. Start navigation to a place where you can eat.
2. Start navigation to a city that has good weather the coming days.
3. Start navigation to a place where you can eat, in your destination city.

4. Show the weather at your current location.

XXIIT

	Introduction
	Purpose
	Scope & Limitations
	Outline

	Technical Background
	Spoken Dialogue Systems
	Dialogue Management
	Evaluation of Dialogue Systems
	In-Vehicle Infotainment Systems

	Review of Existing Components
	Talkamatic Dialogue Manager
	D-bus
	Pelagicore Resource Framework
	Pelagicore HMI

	First Prototype – Static Demonstrator
	Components
	TDM Application
	Shortcomings

	Second Prototype – Dynamic Demonstrator
	New functionality
	Components
	TDM Application
	Shortcomings

	System Evaluation
	User Tests
	Discussion

	Conclusions
	Accomplishments
	Significant Shortcomings
	Future Work

	References
	Appendix TDM Device Protocol
	Appendix Spoken Dialogue Adapter API
	The Service API
	The Resource API

	Appendix Weather API
	The Service API
	The Resource API

	Appendix Named Entities Database API
	The Service API
	The Resource API

	Appendix Places
	Use Case Tasks
	Named Entity Categories

	Appendix System Evaluation Tasks

