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Abstract

The topic of this thesis is aggregation of quantitative risks in the insurance busi-
ness. The two major quantitative risk components are underwriting risk, i.e.,
risk entailed in writing an insurance policy, and market risk, i.e., risk of losses
in positions arising from movements in market prices. The ultimate research
goal is to develop a theoretically sound and practically useful model that can
handle risks on the asset and liability sides of the balance sheet simultaneously.
One feature of a practically useful model is that it can produce a reasonable
solvency-capital estimate.

In the �rst paper, we aggregate underwriting risk for individual types of non-
life insurance policies into an overall non-life underwriting risk. We develop
a technique for constructing simulation models that could be used to get a
better understanding of the stochastic nature of insurance claims payments,
and to calculate solvency capital requirements (SCR) in view of the Solvency
II framework. The modeling technique is illustrated with an analysis of motor
insurance data from the Swedish insurer Folksam. The most important �nding
in this paper is that the uncertainty in prediction of the trend in ultimate claim
amounts may a�ect the SCR substantially.

In the second paper, we aggregate interest-rate risk, interest-rate-spread risk,
equity risk and exchange-rate risk into an overall market risk for an insurer.
We investigate risks related to the common industry practice of engaging in
interest-rate swaps to increase the duration of assets, and hence reduce the
portfolio sensitivity to falling interest rates. The fundamental result in this
paper is that engaging in swap contracts may reduce the standard deviation of
changes in the insurer's net asset value, but it may at the same time signi�cantly
increase the exposure to tail risk; and when determining an appropriate level
of solvency capital, the tail-risk exposure is of great importance.

Keywords: risk aggregation, solvency capital requirements, Solvency II, sto-
chastic modeling, asset-liability management, extreme-value statistics
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Chapter 1

Introduction

Risk management is the art of identifying and assessing risks a business is
exposed to, and making decisions whether to avoid, accept or mitigate each of
these risks. Typically, the risk manager would like to avoid risks that could be
avoided without changing the core business of the company. For example, a
non-life insurer would ideally only take on risks that are due to the stochastic
nature of claims payments.

Closely related to the concept of risk is the concept of uncertainty. In my view,
uncertainty is to be interpreted as the state of having limited knowledge, while
risks are potential bad outcomes due to this uncertainty. Uncertainty is not
inherently bad though; pro�t is a potential good outcome due to uncertainty.
To make the subject of mathematical statistics useful in risk management, the
risk must, at least to some extent, be quanti�able. For an insurer this is true
for some risks, most notably underwriting risk, i.e., risk entailed in writing
an insurance policy, and market risk, i.e., risk of losses in positions arising
from movements in market prices. These are the risks my work is concerned
with. Other risks, for example the risk of fraud, are impossible to quantify
in a meaningful way using methods from mathematical statistics, but may be
mitigated using other techniques.

In an ideal world, both the owners and the policy holders are interested in
the long-term survival of the insurance company. However, other interests,
for example higher pro�ts (for the owners) or lower premiums (for the policy
holders), may at times overshadow the interest in long-term survival. This may
be the case even in a mutual insurance company where the policy holders are
the owners. To create a 'level playing �eld' the �nancial regulator designs and

1



�main� � 2013/2/13 � 13:47 � page 2 � #10

2 1. Introduction

supervises rules that all insurers on the market must follow. In particular the
regulator imposes a rule of what level of capital an insurer must hold to reduce
the risk of insolvency. To calculate such a capital level, individual risks must
somehow be aggregated to get an idea of the overall risk the insurer is exposed
to, and in connection to this many questions arise. For example: How do we
aggregate underwriting risk for two di�erent lines of business? Or: How do we
aggregate an insurer's underwriting risk and market risk?

The Solvency II Directive (European Parliament and the Council (2009)) is an
EU directive that harmonizes the �nancial regulation so that the same set of
rules applies to all insurers doing business within the European Union. These
rules are supposed to be implemented in the not-very-far-away future, but I
do not dare to predict a date; they have already been postponed more than
once. The directive and its related papers (e.g., CEIOPS (2007) and European
Commission (2010)) suggest a two-level model for risk aggregation in terms of a
standard formula for calculation of solvency capital requirements or SCR. The
standard formula has pre-de�ned correlations between di�erent risk modules
(there are, for example, a non-life underwriting risk module and a market risk
module) on the top level, and between submodules within each risk module
on the base level. My work does not concern the standard formula. The
formula has an advantage in that it is easy to use, but the implicit assumptions
are not easy to �gure out. Moreover, correlation matrices do not capture
dependencies in distributional tails in a realistic way unless the data is close
to normally distributed; and for solvency purposes the tails are the interesting
part of the distribution. Relevant critique of the standard formula is found in,
e.g., Filipovic (2009), Ronkainen and Koskinen (2007), and Sandström (2007).

The directive also allows insurers to develop their own models, known as in-
ternal models, to calculate the SCR and to get a better understanding of the
risk pro�le of the speci�c company. In Section 1.1 we start out from the balance
sheet to create a top-down modeling framwork for risk aggregation. Valuation
methods for both assets and liabilities are of great importance in risk aggre-
gation, and such methods are presented in Section 1.2. We use the risk measure
proposed in the directive, i.e., one-year value-at-risk at the level 0.005, but this
can easily be altered in our modeling framwork. In particular, we are often
interested in the entire distribution of one-year losses, and not just the value-
at-risk which essentially is a high quantile of this distribution. Moreover, we
use the Solvency II directive as a guideline when deciding how to value assets
and liabilities.
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1.1 Risk aggregation

In order to understand the role of the risk manager we need some basic ac-
counting terminology. A balance sheet is a statement of a company's assets,
liabilities and owner's equity. The assets are what the company owns, and
the liabilities are what it owes. To get the numbers on the balance sheet we
need valuation methods for both assets and liabilities. Given such valuation
methods, the value of owner's equity is the net asset value, i.e, the di�erence
between the value of assets and the value of liabilities.

The other important �nancial statement is the income statement which displays
revenues recognized for a speci�ed time period, and the cost and expenses
charged against these revenues. Upper management is often concerned about
the net pro�t, also known as the 'bottom line' of the income statement. One
very real danger, especially in good times, is that too much focus is drawn
to the income statement, and the balance sheet gets neglected. It is the risk
manager's task to prevent this from happening.

From an accounting point of view, insolvency, or more precise balance-sheet
insolvency, is the event that the net asset value becomes negative. If A0 and
L0 are today's values of assets and liabilities, respectively, given some valuation
methods. Then, today's net asset value V0 is given by V0 = A0 − L0. The risk
manager is interested in what can happen to the net asset value over some
time horizon (often a one-year horizon for an insurance company). Let A1, L1

and V1 = A1 − L1 denote the asset value, liability value and net asset value,
respectively, in one year. The change in net asset value over the coming year
X is given by X = V1 − er0V0, where r0 is the zero rate of a non-defaultable
bond with maturity in one year. The discounted loss Y over the same time
period is given by Y = −e−r0X = V0 − e−r0V1. Large losses are what the risk
manager fears, so estimation of the probability distribution of the discounted
loss Y , especially the right tail of the distribution, is of great importance.

The �nancial regulator decides a minimum amount by which the asset value
must exceed the liability value in order to consider the insurance company to be
on good standing; this amount is known as the solvency capital requirements
(SCR) in Solvency II. In Article 101 in the directive (European Parliament and
the Council (2009)) it is stated that the SCR �shall correspond to the Value-at-
Risk of the basic own funds of an insurance or reinsurance undertaking subject
to a con�dence level of 99.5% over a one-year period�.

The basic own funds in Solvency II are identi�ed with the net asset value. The
value-at-risk (VaR) at level p ∈ (0, 1) of a portfolio with value V in one year is



�main� � 2013/2/13 � 13:47 � page 4 � #12

4 1. Introduction

a risk measure de�ned as

VaRp(V ) := min{m : P(mer0 + V < 0) ≤ p},

and should be interpreted as the smallest amount of money that if added to
the portfolio today and invested in a non-defaultable bond ensures that the
probability of a strictly negative portfolio value in one year is not greater than
p. In our notation the good-standing condition in Solvency II can be written
VaR0.005(V1) ≤ 0, which is equivalent to A0 ≥ L0 + VaR0.005(X), and we get a
natural de�nition of the solvency capital requirements

SCR := VaR0.005(X) = F̂−1
Y (0.995), (1.1)

where F̂−1
Y is the estimated inverse distribution function (i.e., estimated quan-

tile function) of the discounted loss Y (see Chapter 6 in Hult et al. (2012) for
details).

Now, the fundamental question is: What is the distribution of the discounted
loss Y ? To answer this question we must understand how much the values of
assets and liabilities may change over a one-year horizon given some valuation
methods.

1.2 Valuation of assets and liabilities

To �ll in the numbers on the balance sheet, assets and liabilities must be
valued in some currency unit, for example Swedish krona or Euro. There
is no unique way of doing this; there is always room for subjectivity when
uncertainty is present. Article 75 in the Solvency II directive states that �assets
shall be valued at the amount for which they could be exchanged between
knowledgeable willing parties in an arm's length transaction� and �liabilities
shall be valued at the amount for which they could be transferred, or settled,
between knowledgeable willing parties in an arm's length transaction�. The
common interpretation of this is that market valuation, i.e., equating the value
with the price paid in the latest market transaction, should be used when a
deep and liquid market exists, and this is the case for most of the insurer's
assets.

Valuation of liabilities is not as straightforward since no liquid market exists
for insurance policies. For an insurer, the major part of the liability side of the
balance sheet consists of obligations towards its policy holders. Such obligations
are known as technical provisions in Solvency II. Article 77 in the directive
states that �the value of technical provisions shall be equal to the sum of a best
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estimate and a risk margin�, where the best estimate is the expected present
value of future liability cash �ows and the risk margin is commonly understood
as the value of the non-hedgeable risks related to these cash �ows.

Actuarial methods for calculating best estimates, known as claims reserving
methods, have been around for quite some time. Two of the most famous are the
chain-ladder (CL) method and the Bornhuetter-Ferguson (BF) method (Born-
huetter and Ferguson (1972)). These methods started o� as purely algorithmic
methods to calculate reserves, but later actuaries started to think about the sto-
chastic models underlying these methods to assess the prediction uncertainty.
There are several underlying assumptions that justify both the CL and the
BF method. Assumptions underlying the CL method were �rst formulated in
Mack (1993). These assumptions, as well as assumptions underlying the BF
method, are found in Chapter 2 of Wüthrich and Merz (2008). Wüthrich and
Merz (2008) also covers the mathematical theory of other stochastic claims
reserving methods, e.g., generalized linear models (GLM), and is a good start
for the interested reader. For more information about GLM, see, e.g., England
and Verrall (2002), and Björkwall et al. (2011).

There are several suggestions of how the risk margin should be calculated.
One of the most common approaches is the cost-of-capital method (see, e.g.,
Keller (2006), Ohlsson and Lauzeningks (2009), and Salzmann and Wüthrich
(2010)), where the value of the risk margin is supposed to be the cost of holding
an amount equal to the SCR in own funds over the lifetime of the insurance
obligations. An alternative approach, based on the risk aversion the �nancial
agent providing the protection against adverse developments, is presented in
Wüthrich et al. (2011).

Given valuation methods for assets and liabilities, and n years of insurance and
�nancial data, we get a sample of net asset values v0, . . . , vn. From these net
asset values (and historical zero-rates) we can create a sample of discounted
one-year losses y1, . . . , yn, where yi = vi−1 − e−ri−1vi. This sample may then
be used for making inferences on the SCR in view of (1.1).
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Chapter 2

Introduction to papers

2.1 Introduction to Paper I

In the �rst paper, called A simulation model for calculating solvency capital
requirements for a non-life insurance company, we develop a technique for con-
structing multidimensional simulation models that could be used to get a better
understanding of the stochastic nature of insurance claims payments, and to
calculate SCR, best estimates, risk margins and technical provisions. The only
model input is assumptions about distributions of payment patterns, i.e., how
fast claims are handled and closed, and ultimate claim amounts, i.e, the total
amount paid to policyholders for accidents occuring in a speci�ed time period.
This kind of modeling works rather well on claims that are handled rather
quickly, say in a few years. The assumptions made in the paper are based
on an analysis of motor insurance data from the Swedish insurance company
Folksam. Motor insurance is divided into the three subgroups collision, major
�rst party and third party property insurance. The data analysis is interesting
in itself and presented in detail in Chapter 3 of the paper.

Some of the more interesting �ndings of Paper I are that: the multivariate
normal distribution �tted the motor insurance data rather well; modeling data
for each subgroup individually, and the dependencies between the subgroups,
yielded more or less the same SCR as modeling aggregated motor insurance
data; uncertainty in prediction of trends in ultimate claim amounts a�ects the
SCR substantially.

7
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2.2 Introduction to Paper II

In the second paper, Foreign-currency interest-rate swaps in asset-liability man-
agement for insurers, co-authored with Filip Lindskog, we investigate risks re-
lated to the common industry practice of engaging in interest-rate swaps to
increase the duration of assets. Our main focus is on foreign-currency swaps,
but the same risks are present in domestic-currency swaps if there is a spread
between the swap-zero-rate curve and the zero-rate curve used for discounting
insurance liabilities.

We set up a stylized insurance company, where the size of the swap position
can be varied, and conduct peaks-over-threshold analyses of the distribution
of monthly changes in net asset value given historical changes in market val-
ues of bonds, swaps, stocks and the exchange rate. Moreover, we consider a
4-dimensional sample of risk-factor changes (domestic yield change, foreign-
domestic yield-spread change, exchange-rate log return, and stock-index log
return) and develop a structured approach to identifying sets of equally likely
extreme scenarios using the assumption that the risk-factor changes are ellipti-
cally distributed. We de�ne the worst area which is interpreted as the subset
of a set of equally extreme scenarios that leads to the worst outcomes for the
insurer.

The fundamental result of Paper II is that engaging in swap contracts may
reduce the standard deviation of changes in net asset value, but it may at the
same time signi�cantly increase the exposure to tail risk; and tail risk is what
matters for the solvency of the insurer.
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Chapter 3

Future work

The �rst of the two papers in this thesis deals with risk aggregation on the
liability side of the balance sheet, while the second deals with risk aggregation
on the asset side. A natural continuation of this work is to develop a model that
can handle quantitative risks on the asset and liability sides simultaneously. To
develop such a model that is both theoretically sound and useful in practice is
the ultimate research goal.

Before this complete-balance-sheet model can be constructed, we must extend
the underwriting-risk model developed in the �rst paper so that it can in-
corporate lines of business (LoB) where claims may take many years to close,
e.g., health or accident insurance. A �rst step is to �nd viable chain-ladder-
factor parametrizations to reduce the number of model parameters that must
estimated from data. Moreover, we need a better understanding of insurance
data. In particular, what kind of tail behavior we may expect for each LoB,
and whether or not data supports tail dependencies between di�erent LoBs.

Finally, we need to further develop multivariate methods of threshold ex-
ceedances, based on a multivariate generalized Pareto distribution (see Ledford
and Tawn (1996) and Rootzén and Tajvidi (2006)), that could be used with a
limited number of observations.

9
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A simulation model for calculating solvency
capital requirements for a non-life insurance

company
Jonas Alm∗

May 3, 2012

Abstract
To stay solvent, an insurance company must have enough assets to cover
its liabilities towards its policy holders. In this paper we develop a general
technique for constructing a simulation model that is able to generate a
solvency capital requirement (SCR) value for a non-life insurance com-
pany. The only input to the model is assumptions about the distributions
of payment patterns and ultimate claim amounts. These assumptions
should ideally be based on �ndings in empirical data studies.

We illustrate the modeling technique by considering a speci�c case
with motor insurance data from the Swedish insurance company Folk-
sam. The SCR values generated by the simulation model with di�erent
distributional assumptions in this speci�c case are analyzed and com-
pared to the SCR value calculated using the Solvency II standard model.
The most important �nding was that the uncertainty in prediction of the
trend in ultimate claim amounts a�ect the SCR substantially. Insurance
companies and supervisory authorities should be aware of the e�ects of
this trend prediction uncertainty when building and evaluating internal
models in the Solvency II or other regulatory frameworks.

Keywords: risk aggregation, stochastic modeling, SCR, Solvency II,
premium and reserve risk

1 Introduction
The problem of how to aggregate risks of single insurance types, lines of business
(LoBs) or risk classes (e.g., market risk and di�erent non-life insurance risks)

∗Chalmers University of Technology, Department of Mathematical Sciences, Gothenburg,
Sweden.
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to come up with reasonable solvency capital requirements (SCR) for insurance
companies have been hotly discussed the last few years. Actuaries, regulators
and people in academia have been involved in these discussions as the Solvency
II framework has been developed within the European Union. One of the
main issues is how to take dependencies between insurance types, LoBs or risk
classes into account. EIOPA1 proposes a standard model using a two-level
approach with pre-de�ned correlations between the di�erent risk classes on the
top level, and between the risk types within each risk class on the base level.
The insurance companies also have the possibility to develop their own (full
or partial) internal models as long as they comply with the general guidelines.
One of the main features of the general guidelines is the use of value-at-risk at
the level 0.005 as risk measure. For more details about the standard model and
internal model guidelines, see, e.g., CEIOPS (2007), CEIOPS (2009), European
Commission (2010) and Ronkainen and Koskinen (2007).

Several papers discussing the shortcomings of the standard model have been
published: Filipovic (2009) studies the implications of using correlation matri-
ces on two levels and shows that in general only parameters set at the base level
lead to unequivocally comparable solvency capital requirements, Sandström
(2007) proposes one way of calibrating the standard formula for for skewness,
and Savelli and Clemente (2011) show limitations of Sandström's calibration
method if the skewness of a single risk type is very high.

In this paper we start from scratch rather than trying to modify the Solvency
II standard model. We develop a simulation model for calculating solvency
capital requirements for a non-life insurance company which takes both the
one-year reserve risk and the one-year premium risk into account.2 The only
input is assumptions about the distributions of payment patterns and ultimate
claim amounts of the insurance types considered. These assumptions should
ideally be based on �ndings in empirical data studies. Given the distributional
assumptions, a simulation procedure generates values of best estimates, techni-
cal provisions, risk margins and solvency capital requirements. The risk mea-
sure used to calculate the SCR is value-at-risk at the level 0.005, as proposed
in the Solvency II framework.

The technique used to develop the simulation model is very general: it
can be applied to many di�erent insurance types and to insurance companies
of di�erent sizes. We consider a speci�c set of motor insurance data from
the mutual insurance company Folksam, one of the leading non-life insurance
companies in Sweden, to illustrate the modeling technique. Even though we
use Folksam data, the aim of this paper is not to build an internal model for
Folksam but rather to show how di�erent distributional assumptions may a�ect

1EIOPA (European Insurance and Occupational Pensions Authority) replaced CEIOPS
(Committee of European Insurance and Occupational Pensions Supervisors) in January 2011.

2For a thoughrough discussion of the one-year reserve and premium risks, see Ohlsson
and Lauzeningks (2009).

2
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the solvency capital requirements.
In the special case with motor insurance data we �nd, as expected, that de-

pendencies between insurance types and heaviness of tails of the ultimate claim
amount distributions a�ect the SCR markedly. Perhaps more surprisingly, we
�nd that the uncertainty in the prediction of trends in ultimate claim amounts
a�ect the SCR considerably. This issue of prediction uncertainty has not been
discussed to the same extent as dependencies and heavy tails in relation to the
Solvency II framework, but due to its importance we suggest supervisory au-
thorities to consider the e�ects of trend prediction uncertainty in detail when
evaluating internal models.

Moreover, treating all policies as being of the same insurance type (the
aggregate method) yielded more or less the same results as treating policies of
the di�erent insurance types individually (the individual method). A summary
of how the distributional assumptions a�ect the SCR in this speci�c motor
insurance case are shown in Table 14.

As mentioned above, exposure to risks caused by skewness or heavy tails is
important when assessing the standing of an insurance company. We hence
made standard GPD-analyses (cf. Coles (2001), pp. 74�91) of both the
quarterly data and of the individual claims. All the estimated tails were light,
and the data gave no indication of catastrophic risks. Since our simulations were
based on the data, they could not either point to possibilities of catastrophes.
Still, catastrophic risks exist even for motor insurance. For example, a very
serious hail storm is not inconceivable even if it has not happened in Sweden
up to now. However, as such risks were not present in the data they have to
be handled by other, more ad hoc, methods, such as scenario analysis, which
are outside the scope of this paper.

Now follows a short outline of the paper: In Section 2 we introduce the
basic concepts and �x the notation, which mostly follows Wüthrich and Merz
(2008). In Section 3 we present our �ndings from the analysis of Folksam's
data. In Section 4 the simulation procedure is explained in detail. We moti-
vate and state the assumptions of the di�erent scenarios. In Section 5 we
explain how the SCR is calculated using the Solvency II standard model if only
non-life premium and reserve risk is taken into account, and discuss how the
insurance types studied relate to the lines of business de�ned in the Solvency
II framework. Results from the simulation study are presented in Section 6.
The solvency capital requirements generated by the simulation model with
di�erent distributional assumptions are compared to the SCR calculated using
the Solvency II standard model. A discussion of what impact the results may
have on future insurance risk modeling follows in Section 7. The actuarial
prediction methods are described in Appendix A, and data plots of payment
patterns and claim amounts are shown in Appendix B.
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2 Theory and model
In this section we introduce the notation that will be used throughout this
paper. We discuss the general concept solvency risk, and the Solvency II con-
cepts solvency capital requirements, best estimate, risk margin and technical
provisions. Moreover, we outline the SCR calculation steps in our model as
well as in the Solvency II standard model.

2.1 Notation
Consider a non-life insurance company with N di�erent insurance types. We
assume that all policies have a length of one year, and that they are written
uniformly over the year. We divide each accident year into K accident periods
of equal length, and denote the most recent accident period by I. The ultimate
development period (i.e., the last period after a �xed accident period in which
claim payments are made) is denoted by J .

The incremental and cumulative claim amounts for accident period i, de-
velopment period j and insurance type n are denoted by X

(n)
ij and C

(n)
ij , respec-

tively. Each insurance type has a corresponding claims development �triangle�.
The structure of these triangles is shown in Table 1.

Accident Development period
period 0 1 · · · J

1
... observed C

(n)
ij 's

I − J + 1
... C

(n)
ij 's to predict,

I incurred claims
I + 1
... C

(n)
ij 's to predict,

I + K not yet incurred claims

Table 1: The structure of the claims development triangle at time I for in-
surance type n.

Let M
(n)
i denote the number of policies of type n at time i (i.e., the end of

accident period i). Since the length of each accident period is 1/K years, and
we assume that the policies are written uniformly over the year, the insurance
company's exposure E

(n)
i (i.e., the number of �one-year policy equivalents�) to

4
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insurance type n in accident period i is given by

E
(n)
i :=

M
(n)
i−1 + M

(n)
i

2K
, (1)

where we implicitly assume that the exposure is independent of season.
The payment pattern for accident period i and insurance type n is de�ned

by
p

(n)
i :=

(
p
(n)
i0 , . . . , p

(n)
iJ

)T

,
i = 1, . . . , I + K,
n = 1, . . . , N,

(2)

where p
(n)
ij is the proportion of the ultimate claim amount paid in development

period j for accident period i and insurance type n, i.e., p
(n)
ij = X

(n)
ij /C

(n)
iJ .

The normalized ultimate claim amounts of accident period i are de�ned by

Y i :=
(
Y

(1)
i , . . . , Y

(N)
i

)T

, i = 1, . . . , I + K, (3)

where Y
(n)
i is the individual ultimate claim amount for insurance type n and

accident period i normalized by the exposure, i.e., Y
(n)
i = C

(n)
iJ /E

(n)
i .

Let Qk` denote the interest rate at time k of a zero-coupon bond maturing at
time `. In this paper discounting always means discounting by the zero-coupon
rate. This implies that the discount factor Bk` used at time k to discount
a cash �ow at time ` equals the price at time k of a zero-coupon bond with
principal 1 maturing at time `, i.e.,

Bk` = e−Qk`tk` , tk` :=
`− k

K
, ` ≥ k.

Moreover, let Ft denote the information available at time t. This information
includes the paid claim amounts (upper left corner of the development triangle
in Table 1), the number of policies and the zero-coupon rate curves up to time
t.

2.2 Solvency risk
The solvency risk of an insurance company is the risk that it will not have
enough assets to cover its liabilities3 at some future point in time. In this

3It is not completely clear what to mean by the �value� of an asset or a liability. For
assets traded on liquid markets the asset value is often equated with the price paid for the
asset in the latest market transaction (i.e., the �market value�). Insurance liability cash �ows,
however, are in general not traded on liquid markets, so there is no obvious answer to the
question of how to value the liabilities in a �market consistent� way.

One way to think about this problem is to consider what amount of (publicly traded)
assets an external investor would demand in order to be willing to take over the liabilities of
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paper we only consider what can happen to the values of assets and liabilities
one year into the future, so we focus our attention on what we know today (i.e.,
at time I) and what we will know in one year (i.e., at time I + K).

Today's outstanding loss liabilities of the insurance company are described
by the cash �ow vector X := (XI+1, . . . , XI+J+K)T , where Xt is the amount
to be paid by the company at time t, i.e.,

Xt =
N∑

n=1

∑

(i,j)∈St

X
(n)
ij , t = I + 1, . . . , I + J + K,

with St := {(i, j) : max (t− J, 1) ≤ i ≤ min (t, I + K), j = t − i}. The so
called best estimate (BE), which is an unbiased best estimate of the present
value of the outstanding loss liability cash �ows, is given by

BE :=
I+J+K∑

t=I+1

BItÊ [Xt|FI ] , (4)

where BIt is the price today of a zero-coupon bond with principal 1 maturing at
time t and Ê [Xt|FI ] is to be interpreted as an unbiased prediction of Xt given
the information FI using some (pre-de�ned) actuarial method. (The actuarial
prediction methods considered later in this paper are essentially versions of the
chain ladder method combined with trend assumptions, see Appendix A for
details.)

Let LI and LI+K denote the value today and in one year, respectively, of
the insurance company's liabilities. Using the best estimate as a proxy for the
liability value, we get

Lu =
I+J+K∑
t=u+1

ButÊ [Xt|Fu] , u = I, I + K. (5)

Moreover, let AI and AI+K denote the value today and in one year, respectively,
of the insurance company's assets. Assuming that all assets of the insurance
company are zero-coupon bonds maturing in one year, and that some of these
bonds are sold during the coming year to pay o� maturing liabilities, we get
the asset value in one year as the di�erence between the value (in one year)
the insurance company, and then equate the value of the liabilities with the market value of
these assets. It is widely belived (although impossible to prove scienti�cally) that investors
are risk averse, and since the future liability cash �ow amounts are uncertain one could argue
that an external investor would demand an amount of assets that is higher than an unbiased
best estimate of the discounted liability cash �ows. In the Solvency II framework the present
value of the liabilities is estimated by the so called technical provisions, which are the sum
of a best estimate and a risk margin, see CEIOPS (2007) and European Commission (2010)
for details.
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of today's assets and the value (in one year) of the coming year's maturing
liabilities, i.e.,

AI+K =
AI

BI,I+K
−

I+K∑

t=I+1

Xt

Bt,I+K
. (6)

Value-at-risk at the level 0.005 will be our risk measure, as proposed in the
Solvency II framework. It is outside the scope of this paper to discuss whether
this is a good choice of risk measure or not. However, it will serve the purpose
of making comparisons of solvency capital requirements for di�erent scenarios
possible. If X is the value of a stochastic portfolio at time t, and α ∈ (0, 1),
then value-at-risk at the level α is de�ned by

VaRα (X) := BItF
−1
−X(1− α), t ≥ I, (7)

where F−1
−X is the inverse of the distribution function (i.e., the quantile function)

of −X (note the minus sign), and BIt is the price today of a zero-coupon bond
with principal 1 maturing at time t.

In one year the value of the insurance company's portfolio will be AI+K −
LI+K . The regulator will conclude that the insurance company has enough
assets to cover its liablities if VaR0.005 (AI+K − LI+K) ≤ 0 which is equivalent
to

AI ≥ LI + VaR0.005 (∆) , (8)
where, using (5) and (6),

∆ :=AI+K − AI

BI,I+K
−

(
LI+K − LI

BI,I+K

)

=
I+K∑

t=I+1

(
BIt

BI,I+K
Ê [Xt|FI ]− Xt

Bt,I+K

)

+
I+J+K∑

t=I+K+1

(
BIt

BI,I+K
Ê [Xt|FI ]

−BI+K,tÊ [Xt|FI+K ]
)

.

(9)

The random variable ∆ tells us how the balance (i.e., the di�erence between
assets and liabilities) of the insurance company changes over the coming year.
The value of ∆ is a�ected by:

1. changes in bond prices over the coming year,

2. discrepancy between the actuary's expectations today about payments
due within one year and the actual amounts paid, and,

7
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3. discrepancy between the actuary's expectations today and their expec-
tations in one year about payments due later than one year from today.

To set the change in balance (i.e., pro�t or loss) in relation to the size of
the insurance company's liability portfolio, we construct the normalized loss
statistic U ,

U :=
−BI,I+K∆

BE
. (10)

We call U a loss statistic since a high value of U means a large (relative) loss
for the insurance company.

The solvency capital requirement (SCR) is the minimum amount by which
the present asset value must exceed the present liability value. From the con-
dition in (8) we see that in our setup a natural de�nition of SCR is

SCR := VaR0.005 (∆) = BE ·F−1
U (0.995), (11)

where we use (7) and (10) to get the last equality.
An external investor willing to take over the outstanding loss liabilities of

the insurance company would demand an amount of assets to balance these
liabilities. Assuming that the investor must hold capital equal to the calcu-
lated SCR for the duration of the liabilities, one could argue that they would
demand an amount of assets that is c · T · SCR higher than the best estimate,
where c is the investor's cost-of-capital rate (e.g., 6%, as proposed in European
Commission (2010)) and T is the estimated duration of the liabilities,

T =

∑I+J+K
t=I+1

t−I
K Ê [Xt|FI ]∑I+J+K

u=I+1 Ê [Xu|FI ]
. (12)

With this reasoning we get the risk margin (RM) by

RM := c · T · SCR . (13)

The technical provisions (TP), i.e., the estimated �market value� of the lia-
bilites, are the sum of the best estimate and the risk margin,

TP := BE + RM . (14)

The approach used above, where we assume that the risk margin is proportional
to the SCR value and leave it outside the SCR calculation, is known as the
simpli�ed cost-of-capital method, see Keller (2006) and Ohlsson and Lauzen-
ingks (2009) for further details.4

4Other approaches to the calculation of the risk margin are found in Salzmann and
Wüthrich (2010) and Wüthrich et al. (2011).
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The construction with a best estimate and a risk margin is political rather
than scienti�c. Which price an investor actually would pay depends on a range
of factors. For example, an investor may be willing to accept a lower amount of
assets if they believe that taking over the liabilities from the insurance company
will strengthen their market position. However, we will stick to the BE plus
RM approach in this paper.

The rationale for our model setup is that, since all best estimates are known
today, the stochastic behavior of the loss of the insurance company over the
coming year is captured in the single random variable U . If the distribution of
U is known, then the solvency capital requirements, risk margin and technical
provisions follows directly from (11), (13) and (14), respectively, assuming that
the cost-of-capital rate c is known.

2.3 Splitting up the best estimate and the loss statistic
The best estimate BE can be split into two parts: a best estimate of incurred
claims BER and a best estimate of future claims BEP . The subscripts R
and P indicate that these best estimates relate to the reserve risk and the
premium risk, respectively. We get BER and BEP by replacing Xt by Rt and
Pt, respectively, in (4), where Rt is the part of the liability cash �ow at time t
arising from accidents before today and Pt is the part of the liability cash �ow
at time t arising from accidents after today, i.e.,

BER :=
I+J+K∑

t=I+1

BItÊ [Rt|FI ] and

BEP :=
I+J+K∑

t=I+1

BItÊ [Pt|FI ] ,

(15)

with

Rt :=
N∑

n=1

∑

(i,j)∈SR
t

X
(n)
ij and

Pt :=
N∑

n=1

∑

(i,j)∈SP
t

X
(n)
ij ,

where SR
t := St ∩ {(i, j) : i ≤ I} and SP

t := St ∩ {(i, j) : i > I}.
We split ∆ into ∆R and ∆P by doing the same replacement in (9). Since

Xt = Rt + Pt and all actuarial predictions are unbiased, we have

BE = BER +BEP and ∆ = ∆R + ∆P .

9
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We get UR by replacing ∆ and BE by ∆R and BER, respectively, in (10).
Analogously, we get UP by replacing ∆ and BE by ∆P and BEP . In general,
U 6= UR + UP , instead the relation

U =
1

BE
(BER UR + BEP UP ) (16)

holds.
Instead of considering the distribution of U directly, we could study the

distribution of the 2-dimensional vector U2 := (UR, UP )T , and use the relation
(16) to get the distribution of U .

3 Data analysis
In this section we analyze historical payment patterns (in the sense of (2)) and
normalized ultimate claim amounts (in the sense of (3)), and suggest distri-
butions to be used in the simulation study. The data consist of Folksam's claim
payments and exposures for three motor insurance types: collision insurance
(n = 1), major �rst party insurance (n = 2) and third party property insurance
(n = 3) for all accident quarters from 1998 to 2007 (40 accident periods, 9
development periods).

3.1 Payment patterns
By payment proportion (p(n)

ij ) we mean the proportion of the total claim amount
(for a �xed accident period) paid in a speci�c development period. The pay-
ment pattern (p(n)

i ) is the vector consisting of the payment proportions for all
development periods. The entries of the payment pattern vector must sum to
1 by de�nition.

We make some remarks regarding the empirical payment proportions by
considering the data plots in Figures 1, 2 and 3, and the sample means and
sample standard deviations in Table 2.

• There is a rather distinct seasonal pattern, especially for collision in-
surance, where accidents in the �rst quarter of each year are handled
more quickly than accidents occuring later in the year. In Figure 1 we
see this pattern as peaks at accident quarters 1, 5, 9, . . . in the diagram
for development quarter 0 (upper left corner).

• There are negative proportions in development quarters 2 and higher for
collision insurance (see Figure 1 and Table 2). This is due to the fact
that Folksam pays their (collision) policy holders before it is clear who
caused the accident. If it turns out that the counterpart to Folksam's

10
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policy holder caused the accident, then Folksam receives a payment from
the counterpart's (third party property) insurance company. This is also
one of the reasons why third party property insurance claims are not paid
as quickly as collision insurance claims (see Figure 3).

• There is some variation between di�erent accident years, but in general
there are no clear trends over time except perhaps for a somewhat down-
ward trend for development quarter 0, and a somewhat upward trend for
development quarter 2, for collision insurance (see Figure 1).

Dev. Collision Major �rst party Third party property
quarter Mean SD Mean SD Mean SD

0 0.571 0.059 0.450 0.036 0.161 0.029
1 0.482 0.048 0.445 0.031 0.476 0.039
2 -0.010 0.026 0.069 0.014 0.207 0.038
3 -0.024 0.012 0.019 0.005 0.080 0.015
4 -0.011 0.008 0.008 0.002 0.037 0.009
5 -0.004 0.006 0.004 0.002 0.019 0.006
6 -0.002 0.004 0.002 0.001 0.011 0.004
7 -0.001 0.003 0.002 0.001 0.006 0.003
8 -0.001 0.002 0.001 0.001 0.004 0.002

Table 2: Sample means (mjn's) and sample standard deviations (sjn's) of the
payment proportions (p(n)

ij 's).

Despite the �ndings above regarding seasonal patterns and trends, we will
assume that the payment patterns (p(n)

i 's, with n �xed) are i.i.d. random
vectors in the simulations later in this paper. Moreover, we will assume that
there is no dependence between payment patterns for di�erent insurance types.

In particular, we we will use the Dirichlet distribution to simulate pay-
ment patterns. Since this distribution only handles non-negative payment pro-
portions, we must modify the sample means in order to be able to use them
as distribution parameters. Below follows some details regarding the Dirichlet
distribution, and a description of the procedure used to get parameter estimates
from data.

3.1.1 The Dirichlet distribution
The J+1-dimensional Dirichlet distribution5 has a parameter vector λπ, where
λ > 0 is an inverse variability parameter and π := (π0, . . . , πJ)T is a mean

5See, e.g., Kotz et al. (2000) for further details about the Dirichlet distribution.
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vector with constraints πj ≥ 0 and
∑J

j=0 πj = 1. If p := (p0, . . . , pJ )T ∼
Dir (λπ), then

E [pj ] = πj , and

Var (pj) =
πj(1− πj)

λ + 1
.

We de�ne the modi�ed sample mean m̃jn of the payment proportion in de-
velopment quarter j for insurance type n by

m̃jn :=
max (0, mjn)∑J

k=0 max (0, mkn)
,

where the mjn's are the original sample means. Moreover, we de�ne the sample
inverse variability λ̃n for insurance type n as the weighted average

λ̃n :=
J∑

j=0

m̃jnλ̃jn,

with λ̃jn :=
m̃jn (1− m̃jn)

s2
jn

− 1,

where sjn is the sample standard deviation in development quarter j for in-
surance type n. The modi�ed sample means and inverse variabilities are shown
in Tables 3 and 4, respectively.

Dev. quarter Collision Major �rst party Third party property
0 0.543 0.450 0.161
1 0.457 0.445 0.476
2 0 0.069 0.207
3 0 0.019 0.080
4 0 0.008 0.037
5 0 0.004 0.019
6 0 0.002 0.011
7 0 0.002 0.006
8 0 0.001 0.004

Table 3: Modi�ed sample means (m̃jn's) of the payment proportions (p(n)
ij 's).

3.2 Normalized ultimate claim amounts
The individual normalized ultimate claim amount (Y (n)

i ) is the total amount
paid (for claims in a �xed accident period) by the insurance company to its

12
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Collision Major �rst party Third party property
Inverse var. 86 259 195

Table 4: Sample inverse variabilities (λ̃n's) of the payment proportions (p(n)
ij 's).

policy holders divided by the exposure in terms of number of �one-year policy
equivalents�. Note that this is a measure of cost per policy, not cost per
accident. For each accident period, we gather the individual amounts into
a normalized ultimate claim amount vector (Y i). From now on, �amounts�
will always mean �normalized ultimate claim amounts�.

Data plots of the normalized ultimate claim amounts are shown in the left
column of Figure 4. All amounts are in nominal SEK, i.e., the amounts have
not been adjusted by some price index. These plots reveal some interesting
properties of the data:

• For collision and third party property insurance the amounts are con-
sistently higher in the winter quarters (1, 4, 5, 8, . . .) than in the summer
quarters of the same accident year. This is due to the fact that slippery
roads increase the number of car accidents in Sweden during the winter.

• For major �rst party insurance the amounts are slightly higher in the
summer quarters than in the winter quarters. This may be due to that
car thefts and �res are more common during the summer.

• For collision and third party property insurance there is an upward trend
over time. This is very likely due to �claims in�ation� (i.e., price increases
for repair work and spare parts). Changes in deductibles may also a�ect
the trend to some extent.

• For major �rst party insurance there is a rather sharpe downward trend
in the amounts over the last few years. A probable explanation is that
new cars are much more di�cult to steal than older ones, so the number
of car thefts decreases as people buy new cars.

The amounts are clearly non-stationary, so to be able to compare di�erent
accident quarters, we must adjust for both seasonal variation and trends over
longer time frames. One quadratic function is �tted to the amounts of the
winter accident quarters, and one quadratic function is �tted to the amounts
of the summer accident quarters. We add the condition that the shape of the
quadratic functions must be the same, i.e., the only parameter that may di�er is
the intercept. In this setting the di�erence between the two intercepts describes
the seasonal variation and the curvature describes the trend from year to year.

The rationale for the choice of quadratic functions is the idea that the
amounts increase (or decrease) linearly in some shorter time frame but that

13
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the slope may change (slowly) from year to year. One issue that should be
emphasized at this point is that, even though the trends are clearly visible in
hindsight, it is not clear if it is possible to predict the trend for the coming
year. This issue will be discussed later in this paper.

The trend and seasonally adjusted amounts (i.e., the residuals from the
quadratic �t plus the mean of the end values of the �tted summer and winter
functions) are shown in the middle column of Figure 4. The adjusted amounts
seem rather stationary over time, and the normal QQ plots in the right column
indicate that the data are close to being normally distributed with the means
and standard deviations shown in Table 5. Moreover, the scatter plots in
Figure 5, and the sample correlation coe�cients in Table 6, suggest a positive
linear dependence between each pair of insurance types.

Collision Major �rst party Third party property
Mean 887.3 432.7 492.8
SD 71.6 25.1 23.6

Table 5: Sample means and sample standard deviations of the trend and sea-
sonally adjusted (normalized ultimate claim) amounts (Y (n)

i 's). Values in SEK.

Collision Major �rst party Third party property
Collision 1 0.67 0.61
M.F.P. 0.67 1 0.40
T.P.P. 0.61 0.40 1

Table 6: Sample correlations of the trend and seasonally adjusted (normalized
ultimate claim) amounts (Y (n)

i 's).

Even though the adjusted amounts seem normally distributed, we will use
two other distributions (in addition to the normal distribution) when simulating
the amounts in our model. One of the reasons for this is that the Folksam data
sample may not be representative of data from the insurance types considered.
The calculated SCR value could be misleading if we rely only on what we see
in one speci�c data sample.

The two distributions are Student's t-distribution and the log-normal distri-
bution. Below we give some details about these distributions, and show what
parameter choices our data suggest.
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3.2.1 The multivariate Student's t-distribution
The multivariate Student's t-distribution6 is a generalization of the one-dimen-
sional Student's t-distribution.

Let G be a random vector from an N -dimensional normal distribution with
mean 0 and covariance matrix Σ, and let χ2

ν be a random variable from a chi-
squared distribution with ν degrees of freedom. If G and χ2

ν are independent
and µ is an N -dimensional vector, then Z, de�ned by

Z := µ + G

√
ν

χ2
ν

,

is from an N -dimensional Student's t-distribution with parameters µ (location
vector), Σ (dispersion matrix) and ν (degrees of freedom). The mean vector
and covariance matrix of Z are given by

E [Z] =
{

µ, if ν > 1,
unde�ned, otherwise, and

Var (Z) =
{

ν
ν−2Σ, if ν > 2,

unde�ned, otherwise,

respectively.
Using the sample means and sample standard deviations in Table 5, and

the sample correlations in Table 6, a sample location vector µ and a sample
covariance matrix W can be constructed. Taking this location vector and
covariance matrix as given, we maximize the likelihood function of the N -
dimensional Student's t-distribution with respect to the degrees of freedom
parameter ν. We add the condition ν > 2, to make sure that the covariance
matrix is properly de�ned. Note that the dispersion matrix Σ is not equal
to the covariance matrix W . For a given ν, we get the dispersion matrix as
Σ = ν−2

ν W .
The maximization procedure suggests ν = 59 as degrees of freedom pa-

rameter for the multivariate Student's t-distribution. This indicates that our
data are almost normally distributed.

3.2.2 The multivariate log-normal distribution
Now, instead of studying the original values, we look at the logarithms of
the amounts. The normal QQ plots of the trend and seasonally adjusted �log
amounts� in the right column of Figure 6 indicate that the logaritmized data
are close to being normally distributed. Sample means and sample standard
deviations of the log amounts are shown in Table 7. The scatter plots in

6See, e.g., McNeil et al. (2005) for further details about the multivariate Student's t-
distribution.
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Figure 7, together with the sample correlation coe�cients in Table 8, show a
positive linear dependence between each pair of insurance types.

Collision Major �rst party Third party property
Mean 6.79 6.07 6.20
SD 0.08 0.06 0.05

Table 7: Sample means and sample standard deviations of the trend and sea-
sonally adjusted log amounts (log Y

(n)
i 's).

Collision Major �rst party Third party property
Collision 1 0.67 0.62
M.F.P. 0.67 1 0.40
T.P.P. 0.62 0.40 1

Table 8: Sample correlations of the trend and seasonally adjusted log amounts
(log Y

(n)
i 's).

4 Simulation setup
In this section we set up �ve di�erent scenarios. For each scenario we specify
distributions of the payment patterns (p(n)

i 's, see (2)), and the normalized
ultimate claim amounts (Y i's, see (3)). The distribution and parameter choices
are based on the �ndings in Section 3. Throughout this paper we assume
that the (normalized ultimate claim) amounts are independent of the payment
patterns.

4.1 Simpli�cations and general assumptions
In this paper we are only interested in the non-life insurance risks. Since the
claims of all our insurance types are handled quickly, we simplify by setting all
zero-coupon rates to zero in all scenarios, i.e., Qk` = 0 for all k and `, ignoring
the market and interest rate risks. Moreover, we set the cost-of-capital rate c to
0.06 as suggested in the Solvency II framework (see, e.g., European Commission
(2010)).

We divide each year into quarters (K = 4), and simulate data for the
latest 40 quarters (I = 40) and the coming four quarters. We assume that no
payments are made later than 8 quarters after the quarter in which the accident
happens (J = 8). The insurance types in the simulations are the same as the
three we studied in Section 3 (N = 3). For each insurance type (n �xed), we
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let the number of policies be constant up to time I and then decline linearly
to zero from time I to time I + K, i.e.,

M
(n)
i =

{
anM, i ≤ I,
anM

(
1− i−I

K

)
, i > I,

where M = 430,000, a1 = 0.26, a2 = 0.35 and a3 = 0.39. Using (1), we get the
exposures

E
(n)
i =

{
anM

K , i ≤ I,
anM

K

(
1− 2(i−I)−1

2K

)
, i > I.

In the equations above we implicitly assume that the contracts are written
uniformly over the year, that no new business is written after time I and
that the exposure is independent of season. The exposure is in general not
independent of season, as we have seen in the data analysis. However, this
will not matter in the simulations since we only consider seasonally adjusted
amounts.

In all scenarios we assume that the p
(n)
i 's (payment patterns) are inde-

pendent in n, and that p
(n)
1 , . . . , p

(n)
I+K (n �xed) are i.i.d. random vectors from

a Dirichlet distribution. The expected proportions and inverse variability pa-
rameters in the Dirichlet distributions are set to the empirical values shown in
Tables 3 and 4, respectively.

4.2 Scenario speci�c assumptions
Below follows an outline of the scenario speci�c distribution and parameter
choices.

Multivariate normal distribution, no correlation and no trend
In this scenario we assume that Y 1, . . . , Y I+K are i.i.d. random vectors from
an N -dimensional normal distribution with diagonal covariance matrix. (The
diagonal covariance matrix implies that there is no dependence between claim
amounts of di�erent insurance types.) The means and standard deviations are
set to the sample means and sample standard deviations seen in Table 5.

Multivariate normal distribution, correlation but no trend
In this scenario we assume that Y 1, . . . , Y I+K are i.i.d. random vectors from
an N -dimensional normal distribution. The means and standard deviations are
the same as in the previous scenario. The covariance matrix is chosen to get
the correlations between insurance types suggested by the data analysis, see
Table 6.
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Multivariate normal distribution, correlation and trend
In this scenario we assume that Y 1, . . . , Y I+K are independent random vectors.
All vectors are assumed to be normally distributed with the same coe�cients
of variation (i.e., ratio between the standard deviations and the means) as in
the two previous scenarios. The means will be same as in the two previous
scenarios up to time I, but will thereafter increase by 2% per quarter. The
correlations between insurance types are the same as in the previous scenario,
i.e., the correlations seen in Table 6.

Multivariate Student's t-distribution, correlation but no trend
In this scenario we assume that Y 1, . . . , Y I+K are i.i.d. random vectors from
an N -dimensional Student's t-distribution. The location vector and covariance
matrix are the same as the mean vector and covariance matrix, respectively, in
the multivariate normal scenario with correlation but no trend. The degrees of
freedom parameter ν is set to 3.

Note that the data analyis in Section 3 suggests a degrees of freedom pa-
rameter ν equal to 59. However, with such a high ν, it is essentially impossible
to distinguish Student's t-distribution from the normal distribution. We set
ν = 3 in order to examine what happens to the SCR if the distribution is more
heavy-tailed than our data sample indicates.

Multivariate log-normal distribution, correlation but no trend
In this scenario we assume that Y 1, . . . , Y I+K are i.i.d. random vectors from an
N -dimensional log-normal distribution. The means and standard deviations of
the logarithms are set to the sample means and sample standard deviations seen
in Table 7. The logarithm covariance matrix is chosen to get the correlations
between insurance types suggested by the data analysis, see Table 8.

4.3 Simulation procedure and actuarial calculations
For each scenario we make 10,000 simulations. Consider a speci�c simulation,
say simulation `, for a �xed scenario. This simulation has the following steps:

1. Amounts and payment patterns,

Y
[`]
i , i = 1, . . . , I + K, and,

p
(n) [`]
i , i = 1, . . . , I + K, n = 1, . . . , N,

are simulated given the scenario speci�c distributions.

2. Using the relation X
(n)
ij = p

(n)
ij E

(n)
i Y

(n)
i , development triangles are cre-

ated given the information available at times I (today) and I +K (in one
year), respectively.
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3. A ��ctive actuary� calculates Ê [Xt|FI ] and Ê [Xt|FI+K ] using the tri-
angles in the previous step and the prediction methods de�ned in Ap-
pendix A.

4. The actuary calculates best estimates (BE[`], BE[`]
R , BE[`]

P ) using (4), bal-
ance changes (∆[`], ∆[`]

R , ∆[`]
P ) using (9), and loss statistics (U [`], U

[`]
R ,

U
[`]
P ) using (10). The estimated liability duration (T [`]) is calculated

using (12).

The best estimate BE is calculated as the mean of the BE[`]'s, and the
duration T as the mean of the T [`]'s. Analoguosly, BER and BEP are calculated
as the means of the BE[`]

R 's and BE[`]
P 's, respectively.

The U [`]'s make up the simulated distribution of U . In an analog way, the
U

[`]
R 's and U

[`]
P 's make up the simulated distributions of UR and UP , respectively.

Using the simulated 0.995 quantile of U we are able to calculate the SCR using
(11), and then, RM and TP using (13) and (14), respectively.

Note that for an actuary looking at the data at time I the two multivariate
normal scenarios with correlation will be indistinguishable since the trend in
the mean value for one the scenarios is only present for future accident quarters.
The chain ladder development factors and trend assumptions will therefore be
the same for these two scenarios. However, the losses compared to the best
estimates (U 's) will be larger in the scenario with trend due to the incorrect
trend assumptions.

5 The Solvency II standard model
In this section we explain how solvency capital requirements are calculated
using the Solvency II standard model, and discuss how the insurance types
studied in this paper relate to the lines of business (LoBs) de�ned in the
Solvency II framework. Moreover, we make an interpretation of the stan-
dard model in terms of a normalized loss statistic (Ũ) to illustrate the implicit
assumptions of this model.

5.1 Standard model calculations
The capital requirements for the non-life underwriting risk module SCRNL in
the Solvency II standard model is derived by combining the capital require-
ments for the three submodules: premium and reserve risk, lapse risk, and
catastrophe risk. In this paper we only consider premium and reserve risk, so
we set the non-life underwriting risk equal to the premium and reserve risk.
Using the standard model formula for the capital requirement for the premium
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and reserve risk7 we get

SCRNL = V · g(σ),

with g(σ) :=

(
eN0.995

√
log (σ2+1)

√
σ2 + 1

− 1

)
,

(17)

where N0.995 is the 0.995 quantile of the standard normal distribution (N0.995 ≈
2.58), V is a volume measure and σ is the combined standard deviation per
volume unit of the non-life LoBs.

One interpretation of the standard model is that the loss per volume unit Ũ
is a random variable with mean zero and variance σ2, but unknown distribution,
and the function g(σ) is the 0.995 quantile of Ũ . If Ũ is normally distributed,
then g(σ) = N0.995σ ≈ 2.58σ. However, in the standard model, with g de�ned
as in (17), we have g(σ) between 2.7σ and 3.1σ for standard deviations in the
appropriate range. So, the assumption in the standard model is that insurance
data have heavier tails than the normal distribution.

With this interpretation we can rewrite (17) as

SCRNL = V · F−1
eU (0.995),

which is very simliar to the SCR of our simulation model seen in (11),

SCR = BE ·F−1
U (0.995).

The volume measure V is the sum of the volume measures of the individual
LoBs. For an individual LoB, say `, the volume measure V (`) is the sum
of the volume of outstanding incurred claims V

(`)
R and the volume of claims

expected to arise in the future V
(`)
P . Typically, the volume of outstanding

incurred claims is set to the best estimate of outstanding incurred claims, i.e.,
V

(`)
R = BE(`)

R , while the volume of claims expected to arise in the future is set
to the expected premium volume of the coming year. In this paper we do not
work with premium volume data, instead we use the best estimate of future
claims multiplied by the estimated total cost8 to claim cost ratio γ(`) as a proxy
for the volume of claims expected to arise in the future, i.e., V

(`)
P = γ(`) BE(`)

P .
The combined standard deviation (per volume unit) σ is given by

σ =
1
V

(∑

`

∑
m

ρ`mσ(`)σ(m)V (`)V (m)

)1/2

, (18)

7For details about the Solvency II standard model calculations for the non-life premium
and reserve risk submodule, see pp. 196�203 in European Commission (2010).

8The total cost is the claim cost plus the operating cost less the interest income due to
the time lag between premium payments and claim payments.
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where σ(`) is the standard deviation of LoB `, and ρ`,m is the correlation
between LoBs ` and m. The correlations between the LoBs are given to the
insurance company by the regulator. The standard deviation of LoB ` is given
by

σ(`) =
1

V (`)

((
σ

(`)
R V

(`)
R

)2

+ 2ρσ
(`)
R σ

(`)
P V

(`)
R V

(`)
P

+
(
σ

(`)
P V

(`)
P

)2
)1/2

,

(19)

where σ
(`)
R and σ

(`)
P are the standard deviations for reserve risk and premium

risk, respectively, for LoB `, and ρ is the correlation between the reserve risk
and the premium risk (note that ρ is independent of `).

5.2 Standard model parameters
For each LoB, the Solvency II standard model speci�es values of standard
deviations per volume unit of the reserve risk (σ(`)

R in (19)) and premium risk
(σ(`)

P in (19)), respectively. Moreover, it speci�es the correlation coe�cient
(ρ in (19)) beween reserve risk and premium risk, as well as the correlations
between each pair of LoBs (ρ`m in (18)).

In terms of the standard model, the insurance types collision and major
�rst party belong to the LoB other motor (OM), while the insurance type
third party property belongs to the LoB motor vehicle liability (MVL).

The standard deviations per volume unit of the reserve risk and premium
risk, respectively, for these LoBs are shown in Table 9. The correlation (ρ)
between the reserve risk and premium risk is 0.5, and the correlation (ρOM,MVL)
between other motor and motor vehicle liability is also 0.5.

SD, reserve risk SD, premium risk
Other motor 0.100 0.070
Motor vehicle liability 0.095 0.100

Table 9: Standard deviations per volume unit of the reserve risk (σ(`)
R ) and

premium risk (σ(`)
P ), respectively.

According to Folksam's annual report 2010 (see Folksam General Insurance
(2011), p. 76), the total cost to claim cost ratio (γ(`)) for the LoBs other motor
and motor vehicle liability are 1.25 and 1.26, respectively, assuming that the
interest income due to the time lag between premium payments and claim
payments is zero. So, the premium risk volumes are estimated by V

(OM)
P =

1.25 · BE(OM)
P and V

(MVL)
P = 1.26 · BE(MVL)

P , respectively.
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Now, given best estimates BE(OM)
R , BE(OM)

P , BE(MVL)
R and BE(MVL)

P , the
calculation of SCRNL using (17) becomes straightforward.

6 Results
In this section we compare solvency capital requirements, best estimates, du-
rations, risk margins and technical provisions for the di�erent scenarios de�ned
in Section 4 and the two actuarial methods de�ned in Appendix A. Moreover,
we compare the SCR calculated using the Solvency II standard model with the
SCR values our simulation model generates. The main results are summarized
in Table 14.

6.1 Simulation model results
There are some interesting observations to be made about the simulated values
for the di�erent scenarios shown in Tables 10 and 11:

• We got more or less the same best estimates, durations, solvency capi-
tal requirements, risk margins and technical provisions for the aggregate
method as for the individual method.

• The SCR was markedly a�ected by the correlation, it increased about
10% when correlation was added in the normally distributed scenarios.

• The SCR was even more a�ected by not being able to predict a trend of
2% per quarter, it increased about 20% when the trend was added in the
normally distributed scenarios.

• Assuming log-normal amounts instead of normal did not change the val-
ues a lot.

• However, assuming Student's t-distributed amounts did increase the SCR,
and hence increased the RM and TP.

• The risk margin was small compared to the solvency capital requirements,
so leaving it outside the SCR calculation did not a�ect the model much.

For a generic random variable X, let µ̂X , σ̂X and F̂−1
X (0.995) denote the

simulated mean, standard deviation and 0.995 quantile, respectively. If Y is
another generic random variable, then the simulated correlation between X
and Y is denoted by ρ̂X,Y .

By considering the simulated values for the individual method in Table 12
(the values are very similar in the aggregate case), we notice the following
regarding the normalized loss statistics U , UR and UP :
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Scenario Normal Normal Normal Student's t Log-normal
No cor. Cor. Cor. Cor. Cor.
No trend No trend Trend No trend No trend

BE 177.9 177.9 177.9 178.0 178.0
T 0.6 0.6 0.6 0.6 0.6
SCR 25.7 27.8 33.3 29.7 27.9
RM 0.9 1.0 1.2 1.1 1.0
TP 178.9 178.9 179.1 179.0 178.9

Table 10: Individual method: Simulated best estimates, durations, solvency
capital requirements, risk margins and technical provisions (assuming the cost-
of-capital rate c = 0.06). BE, SCR, RM and TP in million SEK, T in years.

Scenario Normal Normal Normal Student's t Log-normal
No cor. Cor. Cor. Cor. Cor.
No trend No trend Trend No trend No trend

BE 177.8 177.8 177.8 177.8 177.8
T 0.6 0.6 0.6 0.6 0.6
SCR 25.2 28.1 33.6 30.1 28.2
RM 0.9 1.0 1.2 1.1 1.0
TP 178.7 178.8 179.0 178.9 178.8

Table 11: Aggregate method: Simulated best estimates, durations, solvency
capital requirements, risk margins and technical provisions (assuming the cost-
of-capital rate c = 0.06). BE, SCR, RM and TP in million SEK, T in years.

• The estimates of parameters related to accident periods up to time I (i.e.,
parameters with subscript UR) were more or less the same in all scenarios.

• Adding correlation between insurance types made the standard deviation
of UP increase in value.

• Adding a trend after time I made the mean of UP increase in value.

• Assuming log-normally distributed amounts instead of normally distri-
buted did not a�ect the values much.

• Assuming Student's t-distributed amounts instead of normally distri-
buted increased the 0.995 quantile of UP , but not the mean and standard
deviation.

• The correlation between UR and UP decreased when we added correlation
between insurance types.
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Scenario Normal Normal Normal Student's t Log-normal
No cor. Cor. Cor. Cor. Cor.
No trend No trend Trend No trend No trend

µ̂U 0.002 0.003 0.030 0.003 0.003
σ̂U 0.052 0.057 0.059 0.058 0.057
F̂−1

U (0.995) 0.144 0.156 0.187 0.167 0.157
µ̂UR 0.005 0.005 0.005 0.005 0.005
σ̂UR

0.088 0.088 0.088 0.088 0.088
F̂−1

UR
(0.995) 0.253 0.254 0.254 0.254 0.254

µ̂UP 0.002 0.003 0.041 0.003 0.003
σ̂UP

0.045 0.057 0.059 0.057 0.057
F̂−1

UP
(0.995) 0.126 0.159 0.204 0.179 0.159

ρ̂UC ,UP
0.597 0.470 0.470 0.467 0.470

Table 12: Individual method: Simulated means, standard deviations, 0.995
quantiles of U , UR and UP , and correlation between UR and UP for all scenarios.

Some of the observations made in Tables 10 and 11 can be understood by
considering the above items. For example, an increase in the mean, standard
deviation or 0.995 quantile of UP implies an increase in the 0.995 quantile of
U , and hence an increase in SCR.

6.2 Comparison to the Solvency II standard model
In the Solvency II standard model, the motor insurance types collision and
major �rst party (n = 1, 2) belong to the LoB other motor, and the insurance
type third party property (n = 3) belongs to the LoB motor vehicle liability.
Using the best estimate (in terms of (15)) as a proxy of the volume measure of
reserve risk (V (`)

R ), and the best estimate multiplied by the total cost to claim
cost ratio as a proxy of the volume measure of premium risk (V (`)

P ), we get the
values shown in Table 13. Combining these volume measures with the standard

Volume measure Value (million SEK)
V

(OM)
R 23.2

V
(OM)
P 102.7

V
(MVL)
R 31.3

V
(MVL)
P 52.1

Table 13: Volume measures of the reserve risk (V (`)
R 's) and premium risk

(V (`)
P 's) for the LoBs other motor (OM) and motor vehicle liability (MVL).
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deviations and correlations of the Solvency II standard model (see Section 5.2),
we get the solvency capital requirement SCRNL using (17). The SCR values for
all scenarios and both methods, as well as for the Solvency II standard model
are shown in Table 14.

Scenario Normal Normal Normal Student's t Log-normal Solvency II
No cor. Cor. Cor. Cor. Cor. standard
No trend No trend Trend No trend No trend model

Individual 25.7 27.8 33.3 29.7 27.9 37.8
Aggregate 25.2 28.1 33.6 30.1 28.2 -

Table 14: Simulated solvency capital requirements for all scenarios and both
methods (assuming the cost-of-capital rate c = 0.06), as well as the calculated
SCR for the Solvency II standard model. Values in million SEK.

An interesting remark is that if we use the best estimate (BE(`)
P ) instead

of the estimated premium volume (γ(`) BE(`)
P ) as volume measure (V (`)

P ), and
let g(σ) in (17) equal N0.995σ (≈ 2.58σ), then the SCR calculated using the
Solvency II standard model becomes very close to the values generated by the
simulation model.

7 Discussion
In this section we discuss pros and cons of the simulation model for calculating
solvency capital requirements developed in this paper. Moreover, we pinpoint
some of the results of the previous section and discuss what impact they may
have on future insurance risk modeling.

The most important characteristics of the modeling technique are summa-
rized below.

Data driven. No a priori assumptions about the distributions are needed.
The data decide which distributions and parameters to use.

Universal across insurance types. Applicable on a wide range of insurance
types (not only motor), as long as there are data available.

Universal in space. The technique can be used regardless of the insurance
company's geographical region or jurisdiction. However, the distribution
and parameter choices may di�er between regions due to, e.g., climate or
local laws.

Scalable. The technique can be used by all non-life insurance companies, re-
gardless of their sizes.
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Even though the model is data driven, there may be ambiguity in the choice
of distribution. In the speci�c case with three motor insurance types it is, due
to the small data sample, more or less impossible to determine from data if one
should choose the multivariate normal, Student's t or log-normal distribution.
However, the simulated SCR values for the di�erent assumptions are in a quite
narrow range (see Table 14) so the choice did not matter too much.

The SCR values generated by the simulation model are markedly lower than
the value calculated using the Solvency II standard model. One reason for this
may be that the LoB motor vehicle liability contains not only third party
property claims but also third party personal injury claims which are often
greater in size and take longer time to handle. Another reason may be that the
standard model assumptions about the data distribution of the insurance types
studied in this paper are di�erent from the distribution of Folksam's data.

The big advantage of using the simulation model instead of the standard
model is that the distributional assumptions are very explicit in the former.
We do not only get a numerical SCR value, we also formulate our beliefs about
the data. These beliefs may, of course, be wrong but without formulating them
there is no possibility to discuss them.

Risks, in particular catastrophic risks, which are not present at all in the
data cannot be assessed by statistical methods. Since our simulation model is
statistically based it cannot account for such risks either. Instead these risks
have to be handled by ad hoc methods, such as scenario analysis. This is
however not a disadvantage in comparison to the Solvency II standard model
where ad hoc methods are used for catastrophe risk assessment.

The simulation model clearly shows that dependencies (correlations in the
linear case) between insurance types must be taken into account when calcu-
lating the SCR level. This issue has been discussed a lot the last few years
as the Solvency II framework has been developed. Another issue that has
not been discussed as frequently as dependencies is the importance of trend
assumptions. In Table 14 we see that, for the speci�c motor insurance case,
a trend prediction error of 2% per quarter will a�ect the SCR twice as much
as the error of not taking correlations between insurance types into account.
To make the SCR value meaningful, one somehow must quantify how well an
experienced actuary can anticipate future trends in average claim amounts. If
the prediction uncertainty is high, then this uncertainty may a�ect the SCR
level more than the data distribution assumptions. A suggestion to insurance
companies developing internal models, and supervisory authorities evaluating
them, is to consider the e�ects of the uncertainty in trend prediction in detail
in their continuing work.

CEIOPS (2009) suggests that insurance obligations should be segmented
into homogenous risk groups when calculating technical provisions, where the
minimum level of segmentation is lines of business. For the solvency capital

26



�paper1� � 2013/2/14 � 9:46 � page 27 � #27

requirements, however, an insurance company is not necessarily required to use
this segmentation.

In the aggregate method all insurance obligations are aggregated into one
risk group. This risk group will contain claims from two di�erent lines of
business. The rationale for this aggregation is that, since uncertainty is always
present when working with a limited amount of data, reducing the number
of parameters will reduce the overall uncertainty of the model. The fact that
the aggregate method gives results similar to the individual method in our
simulations indicate that this is the way to go. More work is needed to �gure
out under what circumstances, and to what risk types, the aggregate method
can be applied.
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A Actuarial prediction methods
In this paper we assume that payment patterns of di�erent insurance types
are independent. Moreover, we assume that, for a �xed insurance type, the
payment patterns of di�erent accident periods are i.i.d. These assumptions
make it reasonable to let our �ctive actuary apply the one-dimensional chain
ladder method to each individual insurance type when predicting future claim
amounts.
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Individual method
In the following we consider a speci�c insurance type, say n. We drop the
superscript (n) to simplify the notation.

The basic assumptions in the (distribution-free and one-dimensional) chain
ladder method are:

• Cumulative claim amounts Cij of di�erent accident periods i are inde-
pendent.

• There are development factors f0, . . . , fJ−1 such that

E [Cij |Ci0, . . . , Ci,j−1]
= E [Cij |Ci,j−1] = fj−1Ci,j−1.

These assumptions were proposed by Mack (1993) and are su�cient for moti-
vating the mechanical chain ladder calculations used in this paper. It is easy
to show from the assumptions above that if FI is the information available at
time I, then

E [Cij |FI ] = Ci,I−ifI−i · · · fj−1,

i ≤ I, j ≥ I − i + 1.

The development factors are estimated using data from the last d periods (d =
12). Let f̂ I

j denote the estimated development factor at time I, then

f̂ I
j =




I−j−1∑

i=I−j−d

Ci,j+1




/


I−j−1∑

i=I−j−d

Cij


 . (20)

Let Ê [Cij |FI ] and Ê [Xij |FI ] denote the predictions of Cij and Xij , respec-
tively, at time I, then

Ê [Cij |FI ] = Ci,I−if̂
I
I−i · · · f̂ I

j−1, and
Ê [Xij |FI ] = Ê [Cij |FI ]− Ê [Ci,j−1|FI ] .

(21)

To use the chain ladder method we need at least one payment, so we can-
not use it directly for future accident periods. Instead we look at the nor-
malized ultimate claim amounts Y1, . . . , YI . The �rst I − J of these amounts
(Y1, . . . , YI−J) are known at time I, while the others (YI−J+1, . . . , YI) are pre-
dicted by

Ŷi =
Ê [CiJ |FI ]

Ei
, i = I − J + 1, . . . , I,

where Ei is the exposure of accident period i.
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To predict the future normalized ultimate claim amounts, a linear function
is �tted to the last h of the known or predicted Yi's (h = 12). Let α̂ and
β̂ denote the intercept and slope, respectively, of the �tted function. Then,
YI+1, . . . , YI+K are predicted by

Ê [Yi|FI ] = α̂ + β̂I + b̂(i− I),

where b̂ is the actuary's guess about the future trend of the normalized ulti-
mate claim amounts. In this paper the actuary always predicts that the trend
continues, i.e., b̂ = β̂.

The incremental claim amounts are now predicted by

Ê [Xij |FI ] = p̂I
jEiÊ [Yi|FI ] ,

i = I + 1, . . . , I + K,

where p̂I
j is the chain ladder estimate of the proportion paid in development

period j given the information FI ,

p̂I
0 =

J−1∏

k=0

1

f̂ I
k

, and

p̂I
j = p̂I

j−1f̂
I
j−1, j ≥ 1.

At time I + K, we have at least one payment for each accident period, so
the actuary just updates the development factors and predicts the unknown
claim amounts by replacing I with I + K in (20) and (21), respectively.

Aggregate method
In the aggregate method we treat all insurance policies as if they were of the
same type, i.e., we let

Xij =
N∑

n=1

X
(n)
ij , Cij =

N∑
n=1

C
(n)
ij ,

and Ei =
N∑

n=1

E
(n)
i .

The calculations in the aggregate method are exactly the same as in the indi-
vidual method with only one insurance type.

B Data plots
In all �gures below, winter quarters are visualized by blue solid circles and
summer quarters by red solid triangles.
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Figure 1: Payment proportions (p(n)
ij 's) for development quarters 0�5 for colli-

sion insurance (n = 1).
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Figure 2: Payment proportions (p(n)
ij 's) for development quarters 0�5 for major

�rst party insurance (n = 2).

31



�paper1� � 2013/2/13 � 13:31 � page 32 � #32

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Development quarter 0

P
ro

po
rt

io
n

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Development quarter 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Development quarter 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Development quarter 3

P
ro

po
rt

io
n

Accident quarter
0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Development quarter 4

Accident quarter
0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Development quarter 5

Accident quarter

Figure 3: Payment proportions (p(n)
ij 's) for development quarters 0�5 for third

party property insurance (n = 3).
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Figure 4: Empirical (normalized) ultimate claim amounts. Original values (left
column), trend and seasonally adjusted values (middle column) and normal QQ
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Figure 5: Scatter plots of trend and seasonally adjusted amounts.
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Figure 6: Logarithmized empirical (normalized) ultimate claim amounts. Orig-
inal values (left column), trend and seasonally adjusted values (middle column)
and normal QQ plot of trend and seasonally adjusted values (right column).
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Figure 7: Scatter plots of trend and seasonally adjusted logarithmized amounts.
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Foreign-currency interest-rate swaps in
asset-liability management for insurers

Jonas Alm∗and Filip Lindskog†

January 8, 2013

Abstract
We consider an insurer with purely domestic business whose liabilities
towards its policy holders have long durations. The relative shortage of
domestic government bonds with long maturities makes the insurer's net
asset value sensitive to �uctuations in the zero rates used for liability
valuation. Therefore, in order to increase the duration of the insurer's
assets, it is common practice for insurers to take a position as the �xed-
rate receiver in an interest-rate swap. We assume that this is not possible
in the domestic currency but in a foreign currency supporting a larger
market of interest-rate swaps. Monthly data over 16 years are used as the
basis for investigating the risks to the future net asset value of the insurer
from using foreign-currency interest-rate swaps as a proxy for domestic
ones in asset-liability management. We �nd that although a suitable
position in swaps may reduce the standard deviation of the future net
asset value it may signi�cantly increase the exposure to tail risk that has a
substantial e�ect on the estimation of the solvency capital requirements.

1 Introduction
Typically, a life insurer has a liability portfolio with longer duration than its
bond portfolio. This makes the insurer's balance sheet vulnerable to a sudden
fall in interest rates. To increase the duration of the asset portfolio, and hence
reduce the interest-rate risk, the insurer may engage in an interest-rate swap as
the �xed-rate receiver. For an insurer operating in a small country with its own
currency (for example Sweden) it may not be possible to �nd a counterparty
willing to enter a swap agreement in the local currency. The insurer may then

∗Chalmers University of Technology, jonasa@chalmers.se. Industry-based PhD student at
the insurance company Folksam

†KTH Royal Institute of Technology, lindskog@kth.se
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choose to enter a swap agreement in a major currency in a neighboring market
(for example the euro). This introduces some new risks, most notably spread
risk (i.e., the risk that the spread between the domestic zero-rate curve and
the foreign swap zero-rate curve changes) and exchange-rate risk. The aim of
this paper is to study these risks in detail, and identify situations where the
balance sheet may be a�ected for the worse.

We consider an insurer with a purely domestic insurance business. In order
to obtain a good return on capital the insurer is exposed to the domestic stock
market (e.g., OMX Stockholm 30 for a Swedish insurer) and in order to manage
interest-rate risk the insurer takes positions in liquid interest-rate swaps in a
foreign currency (e.g., the euro) closely linked to the domestic currency.

This is the outline of the paper: In Section 2 we introduce the notation,
set up an expression for the insurer's net asset value, and discuss how the
size of the swap position may be chosen. Section 3 consists of a peaks-over-
threshold analysis of empirical future net asset values for an insurer with a
stylized portfolio under four di�erent settings. In Section 4 we replace the
domestic zero-rate curve and the foreign-domestic zero-rate spread curve with a
domestic yield and a yield spread, respectively, and then analyze the empirical
distribution of of the 4-dimensional vector consisting of monthly changes in
the risk factors: yield, yield spread, exchange rate and stock index. We also
investigate how the insurer's net asset value is a�ected by these risk-factor
changes. Conclusions are presented in Section 5, and all �gures are found in
Section 6.

2 The insurer's assets and liabilities
In this section we introduce the notation used throughout this paper and set
up expressions for the values of an insurer's liabilities, bond portfolio and swap
position, respectively. We arrive in an expression for the change in the insurer's
net asset value given changes in zero rates, swap spreads, stock prices and
exchange rate.

Consider an insurer with a random liability cash �ow (CL
1/2, C

L
2/2, . . . , C

L
n/2),

where CL
t refers to the random amount to be paid to policy holders in t years

from today. In reality, the insurer's payments to policy holders will occur more
often than every six months. However, in order to simplify the presentation
we consider only cash �ows at the frequency of six months. The cash-�ow
structure is assumed to be stationary since the age distribution of the policy
holders does not change markedly in a short time frame.

The insurer's assets are assumed to consist of domestic non-defaultable
government bonds, domestic stocks, and interest-rate swaps in a foreign cur-
rency. The bonds give rise to a deterministic cash �ow (cB

1/2, c
B
2/2, . . . , c

B
n/2).

Also this cash-�ow structure is assumed to be stationary over time. The lia-

2
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bility cash �ow we consider here stretches further into the future than the bond
cash �ow, and therefore cB

k/2 = 0 for k > n0 for some n0 < n. We focus on the
modeling of the values of assets and liabilities at a time ∆t ∈ (0, 1/2), e.g., one
month from today.

Taking taxes into account1, the values of the insurer's liabilities at times 0
and ∆t are given by

L0 =
n∑

k=1

E[CL
k/2]e

−(1−T )rk/2k/2, (1)

L∆t =
n∑

k=1

E∆t[CL
k/2]e

−(1−T )r∆t,k/2+∆tk/2, (2)

respectively, where T is the tax level in terms of the zero rates obtained from
domestic government bonds, E∆t denotes conditional expectation given the
information available at time ∆t, and rt and r∆t,t refers to the domestic zero
rates at time 0 and ∆t, respectively, for maturity t. We assume that no infor-
mation is available at time ∆t that gives the insurer reasons to re-estimate the
expected liability cash �ow, and set cL

t = E[CL
t ] = E∆t[CL

t ].
The value of the insurer's assets is the sum of the values of the positions

in bonds, stocks, cash, and swaps. Here, cash may be interpreted as non-
defaultable zero-coupon no-discount bonds maturing at time ∆t. The values
of the bond portfolio at times 0 and ∆t are

AB
0 =

n∑

k=1

cB
k/2e

−rk/2k/2, AB
∆t =

n∑

k=1

cB
k/2e

−r∆t,k/2+∆tk/2

respectively, and the value of the stocks at time ∆t is ASt
∆t = ASt

0 eySt
∆t , where

ASt
0 is the stock value at time 0, and ySt

∆t is the stock log return from time 0 to
time ∆t. The amount held in cash is denoted by K.

At time 0, the insurer takes a position as the �xed-rate receiver in an m-
year foreign-currency interest-rate swap with nominal amount N in the foreign
currency. The swap zero rates are expressed as rt + st, where the spread st is
simply the di�erence between the swap's zero rate and the domestic government
zero rate. The insurer relies on that the spread does not vary much over
time. The insurer receives the yearly �xed amount cN at times 1, . . . ,m and
makes semi-annual �oating-rate payments on the nominal amount N at times

1Each year a Swedish life insurer must pay a tax amount equal to 15% of the government
borrowing rate times the estimated value of the liabilities towards its policy holders. The
government borrowing rate is a weighted average of market rates during the previous year
of government bonds with a maturity of 5 years or more. Setting T = 0.15 in (1) and (2)
yields good approximations of the total liabilities (i.e., liabilities towards the policy holders
plus liabilities towards the tax enforcement administration) at times 0 and ∆t, respectively.

3
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1/2, 1, . . . , m. The �xed swap rate c and the swap zero rates rk +sk are related
via the expression

c
m∑

k=1

e−(rk+sk)k + e−(rm+sm)m − 1 = 0

re�ecting that the initial market value of the swap is zero. However, the in-
vestment bank setting up the swap agreement charges the insurer a fee by
increasing the �oating rate by a �xed amount. The market values of the swap
for the insurer at times 0 and ∆t are therefore

ASw
0 =N0

(
c

m∑

k=1

e−(rk+sk)k + e−(rm+sm)m − 1− d
2m∑

k=1

e−(rk/2+sk/2)k/2

)
,

ASw
∆t =N0e

yE
∆t

(
c

m∑

k=1

e−(r∆t,k+s∆t,k)(k−∆t) + e−(r∆t,m+s∆t,m)(m−∆t) − 1

−d
2m∑

k=1

e−(r∆t,k/2+s∆t,k/2)(k/2−∆t)

)
,

respectively, where N0 is the initial nominal swap amount in the domestic
currency (i.e., N times the initial exchange rate), yE

∆t is the exchange-rate
log return from time 0 to time ∆t. Note that the swap's initial market value
is negative for the insurer, and that the additional interest rate payments,
determined by the value d, makes the future value of the swap more exposed to
exchange rate changes. Notice also that a simultaneous increase in swap zero
rates and the exchange rate is the worst scenario for the value of the insurer's
swap position.

The insurer's net asset value, i.e., the di�erence in value between assets and
liabilities, at time ∆t is

A∆t − L∆t =
n∑

k=1

(
cB
k/2e

−r∆t,k/2+∆tk/2 − cL
k/2e

−(1−T )r∆t,k/2+∆tk/2
)

+ ASt
0 eySt

∆t + K + N0e
yE
∆t

(
c

m∑

k=1

e−(r∆t,k+s∆t,k)(k−∆t)

+ e−(r∆t,m+s∆t,m)(m−∆t) − 1

−d
2m∑

k=1

e−(r∆t,k/2+s∆t,k/2)(k/2−∆t)

)
.

(3)

This net asset value must exceed the insurer's solvency capital requirements
(SCR) if the insurer is to be considered solvent. In Solvency I the SCR is equal

4
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to 4% of the present liability value (SCR = 0.04L∆t), but in Solvency II the
SCR depends on the distributions of both assets and liabilities. As a rule of
thumb, the insurer will have some trouble with the supervising authorities, and
may be forced to sell o� stocks, if the net asset value is less than 25% of the
present liability value. More details about solvency regulation proposals and
practical implementation issues can be found in [2] and [5].

2.1 Portfolio settings
In this subsection we set up stylized cash-�ow structures for an insurer's lia-
bilities and bonds, respectively. Given such structures, the change in net asset
value over some time period depends on the size of the swap position, and the
amount of money invested in stocks and held in cash, respectively. We intro-
duce the concept of a portfolio setting as a choice of swap-stock-cash position,
and discuss how the swap position may be chosen to be, in some sense, optimal.

We consider an insurer with liability-cash-�ow structure

cL
k/2 =





cL, k = 1, . . . , 50,
cL

(
1− 1

30

(
k
2 − 25

))
, k = 51, . . . , 109,

0, k ≥ 110.
(4)

Given an initial domestic zero-rate curve and a tax rate, we normalize cL such
that L0 = 100, and get

cL =
100∑109

k=1 e−(1−T )rk/2k/2 − 1
30

∑109
i=51

(
k
2 − 25

)
e−(1−T )rk/2k/2

. (5)

We suppose that the insurer has 140 to invest at time 0, and that the insurer
invests 100 in a bond portfolio with cash-�ow structure

cB
k/2 =

{
cB , k = 1, . . . , 30,
0, k ≥ 31,

(6)

to balance its liabilities. This choice corresponds to choosing cB such that
AB

0 = L0 = 100:

cB =
100∑30

k=1 e−rk/2k/2
. (7)

The remainder is invested in either stocks or cash, i.e., (ASt
0 ,K) = (40, 0) or

(ASt
0 ,K) = (0, 40). The insurer also enters a position as the �xed receiver in a

5-year foreign-currency interest-rate swap (m = 5) with initial nominal amount
N0 in the domestic currency. There is no cost for taking the swap position, but
since the insurer will pay a �oating rate that is higher than the market rate,

5
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the initial market value of the swap position ASw
0 is negative. We call the triple

(ASt
0 ,K,N0) a portfolio setting for the insurer.
We set the tax rate T = 0.15 and the additional swap-rate payment corre-

sponds to d = 0.001. The initial domestic zero rates, and the initial spreads,
for maturities 1/2, 2, 5, 7 and 10 years are set to the market rates at December
30, 2011:

(r1/2, r2, r5, r7, r10) = (0.01333, 0.00918, 0.01153, 0.01353, 0.01621),
(s1/2, s2, s5, s7, s10) = (0.00294, 0.00402, 0.00580, 0.00731, 0.00779).

For t < 1/2 we set rt = r1/2 and st = s1/2, and for t > 10 we set rt = r10

and st = s10. To get zero rates and spreads for other maturities, we use linear
interpolation. These values imply that cL ≈ 1.649 and cB ≈ 3.732. The
resulting liability and bond cash �ows, and their corresponding market values,
are shown in Figure 1. The initial value of the insurer's swap position decreases
linearly in N0d. For N0 = 100 and d = 0.001k the initial value, for the insurer,
of the swap position is −0.96k (see Table 1 for the case d = 0.001).

N0 L0 AB
0 ASt

0 + K ASw
0 A0 A0 − L0

0 100.00 100.00 40.00 0.00 140.00 40.00
100 100.00 100.00 40.00 -0.96 139.04 39.04
200 100.00 100.00 40.00 -1.92 138.08 38.08

Table 1: Initial asset and liability values for the insurer for di�erent sizes N0

of the swap position.

There are various approaches to choosing the size N0 of the swap position.
A common text-book approach is to consider the asset and liability values as
functions of the domestic zero-rate curve and choose N0 to be the value that
makes the net asset value immune to an instantaneous parallel shift in the
zero-rate curve. Assuming that the value of the stocks and the exchange rate
are independent of interest-rate movements in the short term, the condition
can be written

∇(
AB

0

)T
1 +∇(

ASw
0

)T
1 = ∇(L0)

T 1, (8)

where ∇ =
(

∂
∂r1/2

, ∂
∂r2/2

, . . . , ∂
∂rn/2

)
, which yields

N0 =
1
2

∑n
k=1

(
(1− T )kcL

k/2e
−(1−T )rk/2k/2 − kcB

k/2e
−rk/2k/2

)

c
∑m

k=1 ke−(rk+sk)k + me−(rm+sm)m − d
2

∑2m
k=1 ke−(rk/2+sk/2)k/2

.

For the insurer considered here, under the market conditions de�ned in the
previous section, this approach produces an optimal N0-value of 178.
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Notice that although an appropriate swap position may reduce the sensi-
tivity of the net asset value to interest-rate changes, a large swap position leads
to an exposure to potentially dangerous �uctuations in the spread between the
swap zero rates and the domestic zero rates. In particular, a reduction in vari-
ance of the net asset value do not necessarily imply a reduction in the estimates
of the overall solvency capital requirements for the insurer. The solvency capi-
tal requirements are essentially a high quantile of the loss distribution over
some time period, where the loss is the negative change in net asset value. We
return to this important issue in Section 3.

3 Data and extreme-value analysis
In this section we construct a data set of risk-factor changes, and conduct a
peaks-over-threshold analysis of empirical future net asset values for an insurer
with the stylized liability and bond cash-�ow structures de�ned in Section 2.1
under four di�erent portfolio settings. We calculate point estimates and con�-
dence intervals of the parameters in the generalized Pareto distribution, and
of the 2400-month return level which is related to the solvency capital require-
ments (SCR) in Solvency II.

Market values of Swedish government bonds and Eurozone interbank swap
rates from 196 consecutive months (from September 1995 to December 2011)
are transformed, using a standard bootstrap procedure, into a data set con-
sisting of monthly changes in domestic zero rates and interest-rate-swap spreads
for maturities 1/2, 2, 5, 7 and 10 years. Market values of the exchange rate
SEK per euro and the stock index OMX Stockholm 30 from the same time
period are transformed into monthly exchange-rate log returns and stock log
returns, respectively, and added to the data set of rate and spread changes.

The data form a multidimensional sample of risk-factor changes. Given a
portfolio setting, i.e., a triple (ASt

0 ,K, N0), the net asset value in one month
may be computed for each sample point using (3). Thus, each portfolio setting
yields a sample of size 196 of future net asset values. Histograms of these
net asset values are shown in Figure 2 for one portfolio setting with stocks
and no cash: (40, 0, 100), and three portfolio settings with cash and no stocks:
(0, 40, 0), (0, 40, 100) and (0, 40, 200), respectively. The histograms indicate,
as expected, that increasing the size of the swap position reduces the variance
of the future net asset value. Figure 3 shows the empirical estimate of the
standard deviation of the future net asset value as a function of N0 given that
(ASt

0 ,K) is either (40, 0) or (0, 40). It is clear that swaps can be useful as a
variance-reduction tool. Moreover, we �nd that swap positions corresponding
to nominal amounts 210 (when the amount 40 is invested fully in stocks) and
140 (when the amount 40 is held in cash) give the optimal variance reduction.
However, what really could a�ect the solvency of the insurer for the worse is

7
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the behavior of the left tail of the net asset value distribution. A thorough
analysis, presented below, is required to get an idea of this behavior.

Given a portfolio setting, each sample point generates a net asset value in
one month. We are interested in analyzing small net asset values leading to
insolvency or near insolvency for the insurer. For practical reasons we consider
net liability values, i.e., net asset values with a minus sign. The ith sample
point of the historical multidimensional sample of risk-factor changes gives
rise to the net liability value zi. In order to analyze the right tail of the
distribution of net liability values we conduct a peaks-over-threshold analysis
on the sample {z1, . . . , z196}. We choose a threshold u such that 20% of the
zis exceed this level. Whether this threshold choice is good or not will be
examined later in this section. Since we have 196 observations, the 39 zi-values
exceeding u are z(158), . . . , z(196), where z(i) is the ith smallest order statistic.
We set u = (z(157) + z(158))/2, and de�ne excess i by yi = z(157+i) − u for i =
1, . . . , 39. Under the assumption that the net liability value is in the maximum
domain of attraction of an extreme-value distribution, the appropriately scaled
excesses y1, . . . , y39 �t well to a generalized Pareto distribution with distribution
function given by

G(y;σ, ξ) =
{

1− (1 + ξy/σ)−1/ξ, ξ 6= 0,
1− exp (−y/σ), ξ = 0,

for y > 0 and σ > 0. Maximum-likelihood estimation is used to estimate the
parameters of the generalized Pareto distribution, and the parameter estimates
are denoted by σ̂ and ξ̂, respectively.

Let `k denote the k-observation return level, i.e, the level that is exceeded
on average once every kth observation. Under the assumption that the excess
Y above the threshold u has distribution function G, the k-observation return
level is given by

`k =
{

u + σ
ξ

[
(kζu)ξ − 1

]
, ξ 6= 0,

u + σ log (kζu), ξ = 0,
(9)

where ζu = P (Z > u). We estimate ζu by ζ̂u = 39/196 ≈ 0.1990, and get an
estimate ˆ̀

k of `k by replacing σ, ξ and ζu by σ̂, ξ̂ and ζ̂u, respectively, in the
above expression.

In Solvency II, the solvency capital requirements (SCR) are related to the
200-year return level of the distribution of the net liability value: essentially
the probability that the net liability value in one year takes a positive value
must not exceed 0.5%. Here we model the net liability value in one month
and not in one year. There is no obvious relation between these two future
net liability values unless we make further assumptions about the evolution
of the net liability value over time. The 2400-month return level `2400 is a

8
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net liability value with the property that it will be exceeded on average once
every 200 years (if monthly updated and monthly exceedances of the return
levels are independent). We choose `2400 as a measure of risk for the insurer.
A negative value means a solvent company. In Figure 4 the estimates of σ,
ξ and `2400 are plotted against the swap position N0 given that (ASt

0 ,K) is
either (40, 0) (stocks but no cash) or (0, 40) (no stocks but cash). The lower
right plot in Figure 4 suggests that if there is no investment in stocks, then
engaging in swap contracts makes the insurer less solvent, so the optimal choice
in terms of extreme risk is N0 = 0. This is rather counterintuitive since there is
covariation between the domestic government bond rate and the foreign swap
rate. What may be even more counterintuitive is that when adding stocks to
the portfolio (lower left plot) the optimal choice becomes N0 = 100. However,
the ˆ̀

2400-curve is rather �at between N0 = 0 and N0 = 200, so we should not
focus too much on this value.

Now, consider four di�erent settings for the insurer's portfolio; (i) the
amount 40 invested in stocks, no cash and no swaps; (ii) the amount 40 in-
vested in stocks, no cash and and a swap position N0 = 178; (iii) no stocks, the
amount 40 held in cash and no swaps; and (iv) no stocks, the amount 40 held
in cash and a swap position N0 = 178; respectively. The four portfolio settings
correspond to the following values for the triple (ASt

0 ,K,N0):

(i) : (40, 0, 0), (ii) : (40, 0, 178),
(iii) : (0, 40, 0), (iv) : (0, 40, 178). (10)

We choose N0 = 178 since this is the value we get in the naïve text-book
approach for choosing swap position in Section 2.1. Maximum-likelihood point
estimates of the parameters in these four cases are shown in Table 2. The
generalized Pareto distribution with the ML estimates as parameters �ts the
data relatively well as seen in the QQ plots in Figures 5 and 6.

(ASt
0 , K,N0) ξ̂ σ̂ ˆ̀

2400

(40, 0, 0) −0.55 3.47 −31.0
(40, 0, 178) −0.29 2.37 −29.9
(0, 40, 0) −0.06 1.52 −30.2
(0, 40, 178) 0.21 0.81 −27.2

Table 2: Maximum-likelihood estimates of the parameters of the generalized
Pareto distribution for the four settings (i)�(iv) in (10).

Point estimates of the generalized Pareto parameters de�ne a model for
the threshold excesses. To get information about the model uncertainty, we
calculate con�dence intervals of the parameters ξ and σ, and the return level
`2400, respectively. We use pro�le log-likelihood intervals since they take the

9
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asymmetry of the return-level uncertainty into account. By the asymmetry
of return-level uncertainty we mean that if we have a small sample of heavy-
tailed data, we are more certain about the lower bound of the return level
than of the upper bound. This is true since we have at least a few observations
around the lower bound, but very often no observations at all around the upper
bound. Figures 5 and 6 contain plots of the pro�le log-likelihood functions of
ξ, σ and `2400, respectively, for the settings (i)�(iv) in (10). In each plot, the
cross shows the point estimate, and the intersections between the pro�le log-
likelihood function and the horizontal line show the bounds of an approximate
95% con�dence interval.

In this paragraph, and the one following, we explain the idea behind pro�le
log-likelihood con�dence intervals, and comment on some of the issues when the
sample size is small or moderate. Let l(σ, ξ) denote the log-likelihood function
for the estimation of the parameters of the generalized Pareto distribution.
Then lp(ξ) = maxσ l(σ, ξ) is the pro�le log-likelihood function for ξ. By instead
maximizing with respect to ξ, we get the pro�le log-likelihood function for
σ. From (9) it follows that σ may be expressed as a function of ξ and `2400
(assuming that ζu is deterministic with ζu = ζ̂u). Therefore, the generalized
Pareto distribution may be re-parameterized as having parameters ξ and `2400
which gives rise to a pro�le log-likelihood function for `2400. The calculated
con�dence intervals for the values of ξ, σ and `2400 are based on Theorem 2.6
in [3]. An approximate con�dence interval for the value of ξ (and similarly for
σ and `2400) stems from the fact that the deviance function Dp(ξ) = 2{l(σ̂, ξ̂)−
lp(ξ)} is approximately χ2

1-distributed if the sample of excesses is su�ciently
large. This is proven by Wilks in [13]. Therefore, {ξ : Dp(ξ) ≤ cα}, where cα is
the (1−α) quantile of the χ2

1-distribution, is an approximate (1−α) con�dence
interval for the unknown parameter value of ξ.

For small to moderate sample sizes these con�dence intervals may be im-
proved upon by introducing correction factors. In [6] Lawley introduces a
general method to calculate such factors given a sample size n. In view of
constructing pro�le log-likelihood con�dence intervals for a one-dimensional pa-
rameter θ, the method boils down to �nding εp(θ) such that (1−εp(θ))Dp(θ) has
the same moments as a χ2

1-distributed random variable if quantities of order
O(1/n2) are neglected. In [12] Tajvidi uses Lawley's results to �nd explicit
formulas for caluculating εp(ξ) and εp(σ) given ξ and n, for the parameters
ξ and σ in the generalized Pareto distribution (it turns out that both εp(ξ)
and εp(σ) are independent of σ). We do not use these correction factors when
constructing the pro�le log-likelihood con�dence intervals. However, to get a
better understanding of how large the correction factors are it is worth men-
tioning that for ξ = 0.2 and n = 40 we get εp(ξ) ≈ 0.191 and εp(σ) ≈ 0.275
using Tajvidi's formula. In this same paper Tajvidi also conducts a simulation
study which suggests that (for ξ = 0.2) a two-sided con�dence interval for ξ

10
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which should be on the 95% level for a large sample is approximately on the
92% level without correction factor, and on the 95% level with correction fac-
tor, if n = 40. The corresponding con�dence interval for σ is on the 95% level
without correction factor, and on the 97% level with correction factor.

The plots in Figures 5 and 6 suggest that the net liability value is in the
maximum domain of attraction of a Weibull distribution in case (i) and a
Fréchet distribution in case (iv), while case (ii) and (iii) could be Weibull,
Gumbel or Fréchet. One of the most important observations from these �gures
is that the right endpoint of the con�dence interval for `2400 increases rapidly
with the heaviness of the right tail (i.e., increases as ξ decreases). The value of
the right endpoint provides information about the degree of uncertainty in the
calculation of solvency capital requirements given that the model is correct.

The analysis presented above and the point estimates in Table 2 are valid
for the threshold value corresponding to 20% of the monthly net liability values
above the threshold. An obvious question is whether the conclusions are robust
or not to changes in the threshold value. The answer to that question is pro-
vided by Figures 7 and 8 which show estimates of ξ, σ, and `2400 as functions
of the threshold value. From these �gures we draw the conclusion that the
exposure to foreign-currency interest-rate swaps is the main driver of extreme
risk for the net asset value of the insurer. The initial choice of threshold value is
in fact a choice that may underestimate the risk of near insolvency: increasing
the threshold value (moving further into the tail) leads to higher estimates of
`2400 in the setting (iv) with a large exposure to swap-spread risk.

Although the approximate con�dence intervals for ξ, σ and `2400 in Fig-
ures 5 and 6 are based on well-established statistical methodology, a sound
scepticism to the accuracy of the approximation of the deviance function by a
χ2

1-distributed random variable may call for alternative approaches to assessing
the values of ξ, σ and `2400. Figure 9 shows histograms of point estimates of
ξ, σ and `2400 based on parametric bootstrap for settings (i)�(iv). The sample
in each of the plots is formed by drawing with replacement 196 times from
the original sample of multivariate historical risk-factor changes to form a new
sample, on which the peaks-over-threshold method is applied by �tting a gener-
alized Pareto distribution to the excesses corresponding to the worst 20% of
the sample. The conclusions drawn from Figure 9 turns out to be completely
compatible with those drawn from Figures 5 and 6.

The �ndings so far can be summarized as follows. By taking a position
in foreign-currency interest-rate swaps as the �xed-rate receiver, the insurer
can reduce the sensitivity of the net asset value to �uctuations in the domestic
zero-rate curve. This is common practice for insurers. However, the fact that
the foreign-currency interest-rate swap zero rates do not move in tandem with
domestic zero rates introduces a swap-spread risk, and to a lesser extent an
exchange-rate risk. Although the use of such swaps stabilize �uctuations in the
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insurer's solvency ratio over time it can increase the risk of extreme drops in
the net asset value that threatens the solvency of the insurer. The result is
very much in line with the conclusions drawn from Figures 5 and 6.

4 Key risk factors and extreme scenarios
In Section 3 the historical data set of risk-factor changes was transformed into
a parametric family of empirical distributions of future net asset values with
the portfolio setting (ASt

0 ,K, N0) as parameter vector, where ASt
0 is the initial

market value of stocks, K the initial amount of cash, and N0 the size of the
swap position. Given that (ASt

0 ,K) was chosen to be either (40, 0) or (0, 40), we
treated N0 as the single parameter. Extreme-value analysis of these empirical
distributions led to a better understanding of which factors drive extreme risk,
and quanti�ed extreme risk in terms of return-level estimates. The domestic
government zero-rate curve and the foreign-swap zero-rate curve were formed
from vectors of zero rates using interpolation. Here we replace the domestic
zero-rate curve by a domestic yield - a �at term structure. Moreover, we replace
the 'spread curve' by a single yield spread that represents the spread between
the domestic yield and the foreign yield. The reason for this simpli�cation
is that we want to clarify the key risk drivers and illustrate the dependence
among them.

Given a domestic zero-rate curve, the market values AB and L of the in-
surers bond portfolio and liability portfolio, respectively, can be calculated.
Since it is assumed that the present values of the bond portfolio and that of
the liabilities are equal, the domestic yield r and the yield spread s are obtained
as the solution to

0 =
n∑

k=1

(
cB
k/2e

−rk/2 − cL
k/2e

−(1−T )rk/2
)

,

0 = c
m∑

k=1

e−(r+s)k + e−(r+s)m − 1.

The values of cB
t and cL

t are given in (4)�(7). Therefore, n = 109, m = 5, and
c = 0.01740 give r = 0.01695, s = 0.00030. Let ∆t = 1/12 (in one month) and
denote by X1 the change in the domestic yield from time 0 to time ∆t, by X2

the change in the yield spread, by X3 the exchange-rate log return, and by X4

the stock-index log return. Then the net asset value at time ∆t is given by

12



�paper2� � 2013/2/13 � 13:24 � page 13 � #13

f(X), where

f(x) =
n∑

k=1

cB
k/2e

−(r+x1)k/2 −
n∑

k=1

cL
k/2e

−(1−T )(r+x1)k/2 + ASt
0 ex4 + K

+ N0e
x3

(
c

m∑

k=1

e−(r+x1+s+x2)(k−∆t) + e−(r+x1+s+x2)(m−∆t) − 1

− d
2m∑

k=1

e−(r+x1+s+x2)(k/2−∆t)
)

From the samples of future net values of the bond portfolio and the liabilities,
a sample of size 196 of X1-values is produced. Given this sample and a sample
of future values of the swap position, a sample of X2-values is produced. By
also including log returns of the exchange rate and stock index, a sample of
size 196 of values of vectors (X1, X2, X3, X4) is produced. The corresponding
samples of net asset values f(X) are the same as those analyzed in Section 3,
i.e., the settings (i)�(iv) in (10).

The sample mean and sample covariance of the vector of risk factor changes
(the Xks) are given by µ̂ and Σ̂ = DRD, respectively, where D is a di-
agonal matrix of sample standard deviations and R is the sample correla-
tion matrix. The estimates are µ̂ ≈ 10−4(−4.21, 1.41,−2.10, 54.4)T, D ≈
10−3diag(2.46, 1.92, 17.4, 63.4), and

R ≈




1 −0.52 −0.09 0.10
−0.52 1 0.09 0.23
−0.09 0.09 1 −0.29

0.10 0.23 −0.29 1


 .

By looking at the the sample means and comparing them to the sample stan-
dard deviations we can say that µ ≈ 0 appears reasonable. The sample stan-
dard deviations for the yield and foreign-domestic yield-spread data are far
smaller then those for the exchange rate and stock index. However, the bond
portfolio and liability cash �ow have long durations and therefore the e�ect
of the variability in the yield and yield spread has a similarly large e�ect on
the future net asset value as that of the stock index, see (11) below and also
Figure 2 for a graphical illustration. The e�ect of the variability in the ex-
change rate is rather small and we see from the expression for f above that it
is necessary to have a simultaneous increase in both the exchange rate and the
foreign-domestic yield spread in order to achieve an outcome that is negative
for the insurer. From the sample correlations and the scatter plots in Figure 10
we can really only say that there are strong indications that the yield changes
and yield-spread changes are negatively correlated. Such a negative correlation
is bad news for the insurer since it indicates that a simultaneous drop in the
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domestic yield (reduces the net value of the bond portfolio and liabilities) and
a rise in the swap yield spread (reduces the value of the swap position for the
�xed-rate receiver) is rather likely.

The sensitivity of the net asset value to changes in the risk factors can be
investigated by linearizing f(x) in a neighborhood of µ = 0,

f(X) ≈ f(0) +∇fT(0)X,

and computing ∇fT(0) for settings (i)�(iv), i.e., the triple (ASt
0 ,K, N0) equals

(40, 0, 0), (40, 0, 178), (0, 40, 0) and (0, 40, 178), respectively. We �rst need to
compute the partial derivatives of f with respect to the xks.

∂f

∂x1
(x) = −

n∑

k=1

k

2

(
cB
k/2e

−(r+x1)k/2 − cL
k/2(1− T )e−(1−T )(r+x1)k/2

)

−N0e
x3

(
c

m∑

k=1

(k −∆t)e−(r+x1+s+x2)(k−∆t)

+ (m−∆t)e−(r+x1+s+x2)(m−∆t)

− d
2m∑

k=1

(k/2−∆t)e−(r+x1+s+x2)(k/2−∆t)
)
,

∂f

∂x2
(x) = −N0e

x3

(
c

m∑

k=1

(k −∆t)e−(r+x1+s+x2)(k−∆t)

+ (m−∆t)e−(r+x1+s+x2)(m−∆t)

− d
2m∑

k=1

(k/2−∆t)e−(r+x1+s+x2)(k/2−∆t)
)
,

corresponding to changes in the yield and swap-yield spread, respectively, and

∂f

∂x3
(x) = N0e

x3

(
c

m∑

k=1

e−(r+x1+s+x2)(k−∆t) + e−(r+x1+s+x2)(m−∆t) − 1

− d
2m∑

k=1

e−(r+x1+s+x2)(k/2−∆t)
)
,

∂f

∂x4
(x) = ASt

0 ex4 ,

corresponding to e�ects due to log returns of the exchange rate and stock
index, respectively. Inserting initial values for the risk factors and those for the
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cash-�ow structure in the four di�erent settings yields

∇fT(0) ≈





(835.4, 0, 0, 40), (ASt
0 ,K, N0) = (40, 0, 0),

(−6.611,−842.0,−1.444, 40), (ASt
0 ,K, N0) = (40, 0, 178),

(835.4, 0, 0, 0), (ASt
0 ,K, N0) = (0, 40, 0),

(−6.611,−842.0,−1.444, 0), (ASt
0 ,K, N0) = (0, 40, 178).

Relevant measures of the sensitivities of the net asset value to unfavorable
deviations of the Xks away from 0 are obtained by computing ∂f(0)/∂xkF−1

Xk
(p)

for, say, p = 0.05 if ∂f(0)/∂xk > 0 and p = 0.95 if ∂f(0)/∂xk < 0. For settings
(i)�(iv), the vectors y = y(ASt

0 ,K, N0) of such sensitivities are

y ≈ −





(23.63, 0, 0, 5.00), (ASt
0 ,K, N0) = (40, 0, 0),

(0.02, 2.32, 0.03, 5.00), (ASt
0 ,K, N0) = (40, 0, 178),

(23.63, 0, 0, 0), (ASt
0 ,K, N0) = (0, 40, 0),

(0.02, 2.32, 0.03, 0), (ASt
0 ,K, N0) = (0, 40, 178).

(11)

We see above that adding an appropriate swap position e�ectively removes
much of the portfolio's sensitivity to yield changes in the way described by
many text books. However, instead we get a large sensitivity to spread changes.

A peaks-over-threshold analysis of the four Xk samples, similar to that pre-
sented in Section 3, reveals that only the X2 sample has excesses over high
thresholds that �ts well to a generalized Pareto distribution with a positive
parameter ξ. This statement remains valid when the threshold is varied over a
range of reasonable threshold values. In particular, for more extreme deviations
away from 0 of the Xks than those corresponding to 5% or 95% quantile values,
extreme drops in the net asset value are rather likely to be due to large un-
favorable outcomes of the swap spread. This �nding is in line with the �ndings
in Section 3.

4.1 Extreme scenarios and outcomes
There is an increasing attention of regulators to complement internal model
building for estimation of solvency capital with scenario analysis. Most relevant
is to identify scenarios that lead to insolvency or near insolvency and to identify
the most likely scenarios in such a set of extreme scenarios. The di�culty lies
in developing a structured and credible approach to identifying sets of equally
likely extreme scenarios.

We want to determine the minimizer x∗ of f(x) over a set of scenarios
that in some appropriate sense are equally likely. Under the assumption that
X is elliptically distributed with stochastic representation X d= µ + ARU,
where R ≥ 0 and U are independent, and U is uniformly distributed on the
unit sphere, an appropriate set of equally likely scenarios is given by a set of
scenarios of the form x = x(u) = µ + Aλu with u an element on the unit
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sphere. The matrix A satis�es AAT = Σ, where Σ is the covariance matrix of
X. This scenario set is the ellipsoid {x : (x−µ)TΣ−1(x−µ) = λ2}, where the
severity parameter λ represents a suitably extreme quantile value of R. Scenario
generation via ellipsoidal and more general scenario sets are well studied, see,
e.g., [1], [8], and [11]. If the stock-cash position (ASt

0 ,K) is �xed, then for
a given nominal amount N0 of the swap position and a severity value λ we
can determine the minimizer u∗(N0, λ) = argminuf(x(u)) that corresponds to
the worst case scenario x(u∗), and investigate how x(u∗) varies with the swap
position size N0 and the severity value λ. The essential question at this point
is whether ellipsoidal scenario sets are relevant for describing extreme scenarios
for the insurer's risk factors X1, . . . , X4. A peaks-over-threshold analysis shows
that the right (and left) tail of the distribution of X2 (changes in the yield
spread) appears to be heavier than those of the other variables. This is not
consistent with assuming that X has an elliptical distribution. That X is
elliptically distributed, P(X = µ) = 0, and has an invertible dispersion matrix
is equivalent to Y/|Y|, where Y = A−1(X−µ), being uniformly distributed on
the unit sphere. In particular, we may test for ellipticality by transforming the
4-dimensional sample points accordingly and checking how well the transformed
sample �ts to the uniform distribution on the sphere. Here, the �t is good
enough to accept the assumption of an elliptical distribution as a reasonably
accurate approximation.

Under the assumption that (ASt
0 ,K) = (0, 40) and either N0 = 0 or N0 =

178, i.e., settings (iii) or (iv) in (10), f(x) represents the net asset value in one
month as a result of a parallel shift x1 in the (�at) zero curve and x2 in the
(�at) spread curve, and a log return x3 of the exchange rate. Based on 196
monthly yield changes, yield-spread changes, and exchange-rate log returns,
the covariance matrix Σ−4 of (X1, X2, X3)T is estimated and the Cholesky
decomposition of Σ−4 yields an estimate of A−4 satisfying A−4A

T
−4 = Σ−4:

Σ−4 ≈ 10−6




6.03 −2.46 −3.64
−2.46 3.67 3.13
−3.64 3.13 302.48




Any element u ∈ R3 with uTu = 1 corresponds to a unique pair (θ1, θ2) ∈
[0, π]× [0, 2π) such that (u1, u2, u3) = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1). In par-
ticular, to any x = x(u) there is a pair (θ1, θ2) such that

x =




x1

x2

x3


 ≈ λ10−3




2.46 0 0
−1.00 1.63 0
−1.48 1.01 17.30







sin θ1 cos θ2

sin θ1 sin θ2

cos θ1




Given a swap position N0 and a severity λ, we de�ne the worst area at level
α ∈ (0, 1) as

Qα = {(θ1, θ2) ∈ [0, π]× [0, 2π) : f(x(θ1, θ2)) ≤ qα},
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where qα is chosen so that
∫

Qα
sin θ1dθ1dθ2 = 4πα. The worst area Qα is to be

interpreted as the set of equally extreme directional scenarios, that correspond
to risk-factor scenarios x(θ1, θ2) = λAu(θ1, θ2) for (θ1, θ2) ∈ Qα, that are most
likely to lead to bad outcomes f(x(θ1, θ2)) for (θ1, θ2) ∈ Qα. This interpretation
only makes sense if Qα is rather stable when varying λ. For small α we may
determine the location of the set Qα on the unit sphere by considering the limit
set limα→0 Qα. For most functions f one is likely to encounter in practice, this
limit set exists and consists of the point argmin(θ1,θ2)f(x(θ1, θ2)). Notice that
if f(x) is linear in x, then the limit limα→0 Qα does not depend on λ. Here, the
approximation f(x) ≈ f(0) +∇fT(0)x is reasonably accurate for the λ-values
that correspond to the sample points that are most unfavorable to the insurer's
future net asset value.

Figure 11 shows the worst area at level 0.01 as a gray region, and contour
lines of the type f(x(θ1, θ2)) = const., when λ = 2, 5. The two lower rows
of plots correspond to settings (iii) and (iv) treated above. The values of
q0.01 = q0.01(λ) are shown in Table 3. The angles (θ1 and θ2) corresponding to
the four worst observations are marked with crosses in Figure 11. The severity
and future net asset value of each of these observations are shown in Table 4.

Now suppose that X3 = 0, corresponding to no change in the exchange rate,
and the settings (i) and (ii), i.e., (ASt, K,N0) is either (40, 0, 0) or (40, 0, 178).
The covariance matrix Σ−3 of (X1, X2, X4) is estimated by

Σ−3 ≈ 10−6




6.03 −2.46 14.91
−2.46 3.67 28.05
14.91 28.05 4019.78


 ,

and the worst area, contour lines and angles of the four worst observations are
seen in the two upper rows of Figure 11. The shape of the worst area is rather
stable when varying λ, but the location changes slightly towards smaller values
of θ1 as λ increases. The values of q0.01 are shown in Table 3, and the four
worst observations are shown in Table 4.

An interesting remark is that q0.01 increases, and hence the risk decreases,
for λ = 5 (see Table 3) when increasing the swap position. This is the opposite
of what we saw in Section 3 where increasing the swap position lead to a heavier
tail of the net-asset-value distribution. The reason for this is that the assump-
tion of elliptical distribution forces the tails of the Xks to be equivalent up to
a�ne transformations which here leads to an underestimate of the heaviness of
the tail of the spread distribution.

The gray area Q0.01 in Figure 11 tells us where we are most likely to �nd
bad outcomes (in terms of a low future net asset value) given a severity λ.
Essentially this area consists of the worst combinations of risk-factor move-
ments. To get a grasp of the worst combinations in this elliptical model we
map one pair of angles (θ1, θ2) in the gray region into a point u = (u1, u2, u3)T

17
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(ASt
0 ,K, N0) q0.01(2) q0.01(5)

(40, 0, 0) 33.32 22.92
(40, 0, 178) 33.45 25.91
(0, 40, 0) 35.63 27.56
(0, 40, 178) 35.30 29.74

Table 3: Values of q0.01 = q0.01(λ) for settings (i)�(iv) and λ = 2, 5.

on the unit sphere for each setting (i)�(iv). In setting (i), (3π/4, π) is mapped
to u ≈ (−0.71, 0,−0.71)T corresponding to x ≈ λ10−2(−0.17, 0.07,−4.64)T.
Here the worst combination is falling yield and falling stock index. In setting
(ii), (5π/6, 5π/6) is mapped to u ≈ (−0.43, 0.25,−0.87)T corresponding to
x ≈ λ10−2(−0.11, 0.08,−4.90). Here the worst combination is falling yield,
rising spread and falling stock index. In setting (iii), (π/2, π) is mapped to
u ≈ (−1, 0, 0)T and x ≈ λ10−2(−0.25, 0.10, 0.15)T. Here only falling yield
matters. And in setting (iv), (π/2, 3π/4) is mapped to u ≈ (−0.71, 0.71, 0)T

corresponding to x ≈ λ10−2(−0.17, 0.19, 0.18)T. Here falling yield and rising
spread is the worst combination and changes in the exchange rate are essentially
irrelevant.

In reality a bad outcome may be due to a large λ paired with a bad combi-
nation of risk-factor movements. This is the case for most of the observations
in Table 4. However, a bad outcome may also be due to a very large λ paired
with a not-as-bad combination of risk-factor movements. This is the case es-
pecially for the second observation in setting (ii), where the very large yield
and spread movements dwarf the 7% stock index rise. In settings (iii) and (iv),
this becomes the worst observation since we remove the damping stock-index
movement. In these settings we have both a very large λ and a bad risk-factor
combination. Classical large-deviation heuristics says that very small future
net asset values are due to the most likely extreme (unfavorable) scenarios.
Under the assumption of an elliptical distribution for the vector X of risk-
factor changes, the heuristics says that if the radial variable R in the stochastic
representation of X is light-tailed, then a bad risk-factor combination (corre-
sponding to an extreme directional scenario in the set Qα) is required to obtain
a bad outcome for the future net asset value. However, if R is heavy-tailed,
then a bad risk-factor combination is unlikely to be the cause of a very small
future net asset value.

As mentioned above, the approach we have considered to the analysis of
extreme scenarios is based on an assumption of an elliptical distribution, an
assumption which is only partially supported by the data. Other approaches
exist, but none of them o�er simple alternatives that are more appropriate here.
If the tails of the distributions of the Xks were found to �t well to regularly
varying distributions with similar tail indices, than it would be reasonable to
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(ASt,K, N0) = (40, 0, 0)
λ θ1 θ2 x1 x2 (x3) x4 f(x)

3.928 2.055 1.836 −0.224 −0.456 (1.131) −18.466 31.310
2.650 2.491 2.480 −0.311 −0.034 (1.336) −15.387 31.553
2.655 2.158 2.318 −0.369 −0.114 (−0.397) −13.060 31.816
2.299 2.331 2.966 −0.403 0.117 (0.840) −11.032 32.211

(ASt,K, N0) = (40, 0, 178)
λ θ1 θ2 x1 x2 (x3) x4 f(x)

3.953 2.606 1.320 0.123 0.269 (1.229) −15.845 30.430
5.337 1.548 2.287 −0.860 1.008 (−2.829) 7.029 31.875
2.567 2.678 2.374 −0.203 0.213 (3.348) −12.505 32.013
3.294 2.005 2.091 −0.365 0.572 (2.679) −3.739 32.104

(ASt,K, N0) = (0, 40, 0)
λ θ1 θ2 x1 x2 x3 (x4) f(x)

5.760 1.957 2.287 −0.860 1.008 −2.829 (7.029) 31.649
3.217 1.932 3.022 −0.734 0.241 −1.558 (4.138) 33.030
3.494 0.829 2.764 −0.588 0.085 4.345 (0.442) 34.558
2.390 1.760 2.861 −0.554 0.120 −0.509 (−3.455) 34.903

(ASt,K, N0) = (0, 40, 178)
λ θ1 θ2 x1 x2 x3 (x4) f(x)

5.760 1.957 2.287 −0.860 1.008 −2.829 (7.029) 29.037
3.247 1.169 2.091 −0.365 0.572 2.679 (−3.739) 33.486
2.460 2.023 2.682 −0.487 0.359 −1.466 (−3.509) 35.214
2.503 2.062 2.704 −0.491 0.353 −1.651 (7.584) 35.258

Table 4: The four worst observations for settings (i)�(iv). The xk-values are in
% and the values appearing as (·) have no in�uence on the net asset value in
the rightmost column for the particular portfolio setting.

assume that the vector X is multivariate regularly varying, see e.g. [9], with a
non-degenerate limit measure, which is a good starting point for multivariate
extreme-value statistics. Here, such an assumption is not supported by the
data. The right tail of the distribution of X2 appear heavier than those of the
other Xks. However, large values of the vector X are not likely to be due to
large values of X2 and average-size values of the other Xks. A multivariate
method of threshold exceedances, similar in spirit to the peaks-over-threshold
method and based on a multivariate generalized Pareto distribution, could
be useful for analyzing extreme scenarios. Although multivariate generalized
Pareto distributions have been studied, see e.g. [10], the application to the 3- or
4-dimensional setting considered here is not straightforward. Other approaches
are found in Chapter 8 in [4] and in [7], but the statistical analysis needed to
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successfully apply these approaches here is beyond the scope of this paper.

5 Conclusions and discussion
We have considered an insurer with purely domestic business whose liabilities
to policy holders have long durations. The relative shortage of domestic govern-
ment bonds with long maturities makes the net asset value sensitive to �uctu-
ations in the zero rates that are used for valuation of the insurer's liabilities.
Therefore, the insurer wants to take a suitable position as the �xed-rate re-
ceiver in an interest-rate swap. We have assumed that this is not possible
in the domestic currency but in a foreign currency supporting a larger mar-
ket of interest-rate swaps. Monthly data over 16 years have been used as
the basis for investigating the risks to the net asset value of the insurer from
using foreign-currency interest-rate swaps as a proxy for domestic ones in asset-
liability management.

Fluctuations in domestic zero rates and returns on stocks, a part of the
insurer's asset portfolio, are obviously responsible for much of the uncertainty
in the future net asset value. However, positions in foreign-currency interest-
rate swaps introduces new risk factors: �uctuations in the spread between the
domestic zero-rate curve and the foreign-currency-swap zero-rate curve, and
also �uctuations in the exchange rate. Whereas the latter is seen to be of very
little importance, the former is not. Although a suitable swap position reduces
signi�cantly the standard deviation of the future net asset value, it also has the
unpleasant side e�ect of making the left tail of the distribution of the future
net asset value substantially heavier.

In view of the Solvency II framework, a point estimate of the solvency
capital requirements (SCR) may be expressed as ˆSCR = A0−L0 + ˆ̀

2400, where
A0 and L0 are present values of assets and liabilities, respectively, and `2400
denotes a value that the net liability value in one month exceeds on average
once every 200× 12 months. Since A0 and L0 are known, we get a con�dence
interval of SCR directly from the pro�le log-likelihood con�dence interval of
`2400 (see Figure 5).

It is reasonable to use a point estimate as a basis for solvency capital require-
ment if `2400 could be estimated with acceptable accuracy. As seen in Figures 5
and 6, and Table 5, this may be the case in setting (i), but certainly not in
setting (iv). The heavy right tail of the spread-change distribution makes the
con�dence interval for `2400, and hence SCR, wider when increasing the swap
position. Although di�erent settings of the insurer's asset portfolio leads to
somewhat similar point estimates of `2400, the con�dence intervals for `2400 are
very di�erent.

A risk measure that takes the uncertainty of the return-level estimate into
account can be constructed by using the upper bound of a con�dence inter-
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val instead of a point estimate. Such a measure would discourage investment
strategies heavily exposed to tail risk. More research is needed to �nd out
the details about how this measure should be de�ned in order to have sound
theoretical properties and be useful in practice. Due to the limited amount of
data, one probably have to choose m lower than 2400 for the return level `m,
and a con�dence level lower than the 95% used in this paper.

(ASt,K, N0) ˆSCR ( ˆSCR
lower

, ˆSCR
upper

)
(40, 0, 0) 9.00 (8.60, 12.90)

(40, 0, 178) 8.39 (7.29, 17.69)
(0, 40, 0) 9.80 (7.40, 29.30)

(0, 40, 178) 11.09 (6.19, 66.39)

Table 5: Point estimates and con�dence intervals of SCR for settings (i)�(iv).
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Figure 1: Left: Liability cash �ows (upper dots) and their corresponding tax-
adjusted 'market values' (lower dots). Right: Bond cash �ows and their corre-
sponding market values.
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Figure 2: Empirical distribution of future net asset value A∆t − L∆t for the
benchmark portfolio for N0 = 100 (upper left), and the benchmark portfolio
with no investment in stocks and the amount 40 held in cash for N0 = 0, 100, 200
(upper right, lower left and lower right, respectively).
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Figure 3: Estimates of standard deviations for the future net value with swap
position size N0, with and without investments in the stock index. The minima
are obtained for N0 = 210 and N0 = 140, respectively.
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Figure 4: Left: Maximum likelihood estimates of ξ, σ and `2400, respectively,
for an insurer with 40 in stocks, no cash and a swap position of size N0. Right:
Corresponding plots for an insurer with no stocks and the amount 40 held in
cash.
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Figure 5: Portfolio settings (i) and (ii). Upper left: QQ plot for generalized
Pareto distribution with ML parameters. Upper right: Pro�le log-likelihood for
ξ. Lower left: Pro�le log-likelihood for σ. Lower right: Pro�le log-likelihood for
`2400. The horizontal lines represent the boundary for 95% con�dence intervals,
the crosses are ML point estimates.
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Figure 6: Portfolio settings (iii) and (iv). Upper left: QQ plot for generalized
Pareto distribution with ML parameters. Upper right: Pro�le log-likelihood for
ξ. Lower left: Pro�le log-likelihood for σ. Lower right: Pro�le log-likelihood for
`2400. The horizontal lines represent the boundary for 95% con�dence intervals,
the crosses are ML point estimates.
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Figure 7: ML estimates of ξ, σ, and `2400 as functions of the number of ex-
ceedances k. The threshold is set to the mean of the kth and (k + 1)th largest
net liability value. The three upper plots correspond to setting (i), and the
three lower plots correspond to setting (ii) in (10).
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Figure 8: ML estimates of ξ, σ, and `2400 as functions of the number of ex-
ceedances k. The threshold is set to the mean of the kth and (k + 1)th largest
net liability value. The three upper plots correspond to setting (iii), and the
three lower plots correspond to setting (iv) in (10).
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Figure 9: Histograms of ML estimates of ξ, σ, and `2400 from parametric
bootstrap. The plots in the �rst row (counting from the top) correspond to
setting (i), the plots in the second row correspond to setting (ii), the plots
in the third row correspond to setting (iii), and the plots in the fourth row
correspond to setting (iv) in (10).
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Figure 10: Scatter plots corresponding to (x1, x2), (x1, x3), (x1, x4), (x2, x3),
(x2, x4), (x3, x4).
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Figure 11: Worst areas for settings (i)�(iv). The plots in the uppermost row
correspond to (i), the second uppermost row correspond to (ii), and so on. The
plots show contour lines and worst area at level 0.01 (gray region); plots to the
left correspond to λ = 2 and plots to the right correspond to λ = 5.
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