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Abstract

When faced with the problem of learning a strategy for social interaction in
a multiagent environment, it is often difficult to satisfactorily define clear
goals, and it might not be clear what would constitute a “good” course of
action in most situations. In this case, by using a computational model
of emotion to provide an intrinsic reward function, the task can be shifted
to optimisation of emotional feedback, allowing more high-level goals to be
defined. While of most interest in a general, not necessarily competitive,
social setting on a continuing task, such a model can be better compared
with more conventional reward functions on an episodic competitive task,
where its benefit is not as readily visible.

A reinforcement-learning system based on the actor-critic model of
temporal-difference learning was implemented using a fuzzy inference system
functioning as a normalised radial-basis-function network capable of dynam-
ically allocating computational units as needed and to adapt its features to
the actual observed input. While adding some computational overhead, such
a system requires less manual tuning by the programmer and is able to make
better use of existing resources.

Tests were carried out on a small-scale multi-agent system with an ini-
tially hostile environment, with fixed learning parameters and separately
with modulated parameters that were allowed to deviate from their base val-
ues depending on the emotional state of the agent. The latter approach was
shown to give marginally better performance once the hostile elements were
removed from the environment, indicating that emotion-modulated learning
may lead to somewhat closer approximation of the optimal policy in a dif-
ficult environment by focusing learning on more useful input and increasing
exploration when needed.
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Chapter 1

Introduction

An autonomous agent that has to accomplish some task in an environment is
faced with the challenge of learning how to select, at each state, among the
actions it has at its disposal. One form of machine learning concerned with
this type of problem is reinforcement learning, which uses a trial-and-error
approach to learn an optimal policy for action selection. The reinforcement
learning problem, however, is complicated when extended to a multiagent
environment, in which several agents individually are trying to optimise. In
this case, better performance might be achieved by introducing a model of
emotion and shifting the goal to optimisation of emotional feedback. Another
use of emotion might be in a social environment, where it is difficult to define
clear goals or what constitutes a “good” course of action in most cases. Here,
emotion can provide an intrinsic reward function and allow for the definition
of more high-level goals desirable in the case of social interaction.

1.1 Background

In reinforcement learning, the agent explores different courses of action and
receives at each state transition a reward, a single scalar which is used to
reinforce the choices leading to that state. It is the geometrically discounted
estimated cumulative reward, given by the value function, that the agent is
trying to maximise by adjusting its policy for action selection. Temporal-
difference (TD) learning is the most popular class of reinforcement learning
algorithms used today, with Q-learning being the most widely used. Other
TD-learning variants include SARSA, TD(λ) and the actor-critic model.

Although the value function can be stored exactly as a table with one
value per possible state, this leads to the curse of dimensionality as complex-
ity increases exponentially with the dimensionality of the state set. To rem-
edy this problem, some form of function approximation is required. Function
approximation is usually carried out by performing gradient descent over a
parameterisation of the value function, but one then faces the problem of
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convergence to a local optimum, which might be quite far from the ideal
global optimum. The most commonly used function approximation schemes
include linear models such as coarse coding, CMAC or radial basis functions,
and non-linear models like multilayer-perceptron artificial neural networks,
decision trees and Bayesian networks.

Social interaction between agents can be particularly difficult to model,
as there is no clear definition of what constitutes a desirable outcome, making
it difficult to specify a reward function. In this case, it might be useful to
employ some model of emotion to indirectly provide an intuitive measure of
reward.

Several of the main signal substances responsible for modulating learning
and controlling the reward system in the brain are also known to give rise to
emotions, which more immediately modify behaviour. It is therefore clear
that there exists a deeply rooted connection between emotion and learning
in biological agents. In a reinforcement learning system aiming to model
biological agents having emotions, emotion may be utilised to provide an
intrinsic reward function, and having agents thus optimise emotional feed-
back one might hope to achieve realistic behaviour. However, the role of
neuromodulators is not limited to reward, but includes controlling the rate
of learning and forgetting, the time scale of state evaluation and the degree
of exploration. Dynamic modulation of these parameters is of particular
interest in non-stationary environments such as multi-agent systems, where
state transition probabilities may change during the course of learning and
the agent needs to continually adapt to changing conditions.

1.2 Objective

This thesis aims to evaluate the utility of modulating the learning parameters
of a reinforcement learning algorithm using the agent’s simulated emotions,
in a small-scale multi-agent environment. The performance of such a system
should be evaluated through fair comparison with the same algorithm using
fixed parameters. Learning should be driven by emotional feedback and
function in the presence of other agents and, preferably, human users.

1.3 Limitations

Despite being of considerable interest in multiagent reinforcement learning,
due to time constraints and a wish to keep the model simple, game-theoretic
approaches to multiagent systems have not been included in this report.
Readers who wish to acquire a foundation on the subject are directed to
Shoham and Leyton-Brown (2009) and Vidal (2010).

Artificial neural networks other than radial-basis-function networks are
not treated in this work; the interested reader is recommended Rojas (1996).
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While Wang et al. (2007) suggest using evolutionary algorithms for para-
meter tuning of the fuzzy radial-basis-function network, and such an al-
gorithm was implemented and tried for this purpose (albeit with limited
success), the subject was not deemed relevant enough for inclusion in the
thesis. The theory of evolutionary algorithms is described in Yu and Gen
(2010) and Weise (2009).

Although appraisal theory were not used in the final implementation of
the system, models based on such theories were at an early stage considered
for use, and the corresponding section included in the thesis to provide some
insight into alternative models of emotion.

1.4 Previous Work

Reinforcement learning as a concept in psychology has a long history, but
the computational theory in machine learning stems from early work in dy-
namic programming by Richard Bellman (Bellman, 1957b,a) on the one hand
and Monte-Carlo methods, developed by a team of scientists including Stan-
isław Ulam, John von Neumann and Nicholas Metropolis during the work
on nuclear weapons at Los Alamos in the 1940s, on the other.

Temporal-difference learning likewise has old roots, but should be at-
tributed to Sutton (1988). Eligibility traces (TD(λ)) was introduced in the
same work. Q-learning, probably the most popular version of TD-learning
and reinforcement learning in general in use today, is due to Watkins (1989).
The actor-critic architecture was introduced by Sutton (1984).

Function approximation with artificial neural networks of the multilayer
perceptron type has been applied successfully to the reinforcement lear-
ning problem by several authors, notably by Tesauro (1992, 1994, 1995)
for the backgammon-playing program TD-Gammon using Sutton’s TD lear-
ning. Radial-basis-function networks seem to have been first introduced in
Broomhead and Lowe (1988), although Moody and Darken (1989), wherein
the normalised architecture was also first suggested, is more often cited as
the source of this type of neural networks (to be fair it appears they were
published independently of each other). In the following years, authors such
as Poggio and Girosi (1989, 1990) advanced the theory of RBFNs. Using
ideas from pioneering authors such as Platt (1991), Cheng et al. (2004) cre-
ated an actor-critic normalised RBFN capable of allocating computational
units as they are needed.

Fuzzy logic was developed by Zadeh (1973) and generalised to allow func-
tions as conclusions by Takagi and Sugeno (1985). Takagi-Sugeno fuzzy
inference systems were proven by Jang and Sun (1993) to be functionally
equivalent, under some restrictions, to radial-basis-function networks. Wang
et al. (2007) applied these results to the work of Cheng et al. (2004) to
create a resource-allocating fuzzy inference system working as an NRBFN.
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An algorithm for parameter and structure learning of neural-network fuzzy
inference systems had previously been described by Lin and Lee (1994).

Emotion-derived reward functions have been used in reinforcement lear-
ning by a number of researchers. Malfaz and Salichs (2006) is a noteworthy
example of the use of emotion in multi-agent reinforcement learning. Ap-
praisal theory, in which much important work has been done by Scherer
(see e.g. Scherer (2001)), was related to reinforcement learning by au-
thors such as Marinier and Laird (2007); Marinier et al. (2008). Gratch
and Marsella (2004); Marsella and Gratch (2009), although not working in
reinforcement learning, developed and implemented computational models of
emotion based on appraisal theory. Gadanho (1999); Gadanho and Hallam
(2001); Gadanho (2003) explore the utility of emotion in a reinforcement-
learning setting for robotic control.

Doya (2000, 2002), expanding on previous work by, among others, Montague
et al. (1996) and Schultz et al. (1997), investigates the modulating effect of
emotion on learning in the human brain, and attempts to relate the observed
effects to reinforcement learning in the sphere of machine learning. He con-
siders the TD error δ and what he terms metaparameters, referring to the
learning rate α, the discount factor γ and the inverse Gibbs/Boltzmann tem-
perature τ−1, and how they are controlled in the brain by neuromodulators.

The exact relationships between the various neurotransmitters and emo-
tions are not entirely understood, but a number of models exist; recently,
Lövheim (2012) proposed a model where the three main monoamine neuro-
transmitters serotonin, dopamine and noradrenaline form the axes of a three-
dimensional coordinate system, in which the eight basic emotions (following
Tomkins and McCarter (1964)) fit into the corners of the resulting cube.
While the validity of the model remains unverified as of yet, if valid it would
allow direct extraction of emotions from given combinations of the monoam-
ines (and possibly vice versa).

An attempt to implement the ideas expounded upon in Doya (2002), by
mapping neuromodulators to single specific emotions and thus modulating
the learning parameters in a reinforcement learning system using Q-learning,
is described in Akiguchi and Maeda (2006).

The Virtual Alter Egos/Video Agents system, and its predecessors, is
described in Asai et al. (2005, 2007); Kitamura et al. (2008); Rong et al.
(2010) and Rong (2011), and the project web site can be found at http:
//www.icd.riec.tohoku.ac.jp/project/vae/index.html.
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Chapter 2

Reinforcement Learning

The class of machine learning algorithms concerned with maximising some
form of reward for an agent in an environment by learning how to best select
among a set of actions is called reinforcement learning.

In the reinforcement learning problem, the agent acts upon an enviroment
described by a set of discrete states S. The agent has at its disposal a set of
actions A, which could be anything from voltages to apply to a motor to chess
moves. As the agent selects an action at state st, the environment makes
a transition to the next state st+1 according to some, possibly stochastic,
transition rules S → S depending in part on the agent’s action. During this
transition, the agent receives a reward r ∈ <, which it uses to update the
action selection policy before the next state. Thus, the interface between the
agent and the environment consists solely of a state and a reward provided
by the environment and an action provided by the agent.

Methods for solving the RL problem are based on ideas from dynamic
programming (see for example Bellman (1957a) or Barto et al. (1995)) and
Monte-Carlo methods which, while directly applicable on reinforcement lear-
ning, are impractical for use on large problems. While the methods and al-
gorithms presented herein should be understandable without in-depth know-
ledge of dynamic programming or Monte-Carlo methods, the interested reader
is directed to Sutton and Barto (1998).

2.1 Markov Decision Processes

The environment in classical reinforcement learning is defined as a Markov
Decision Process (MDP). An MDP is a reinforcement learning task that
satisfies the Markov property ; that the transition from any state to the next
depends only on the current state and the agent’s action, and not on any
previous states or actions. Then, the state transition probability Pass′ from
state s to state s′ at time step t can be completely specified as

Pass′ = Pr
{
st+1 = s′ |st = s, at = a

}
. (2.1)
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If Pass′ is given by the transition function T (s, a, s′), the MDP can be defined
as consisting of an initial state s1 drawn from the set of all states S, T (s, a, s′)
and a reward function r : S → < (Vidal, 2010).

An extension of Markov chains, MDPs model processes in which the
transition probabilities are in part stochastic (or at least appear stochastic
to the system, which may or may not have knowledge about transition mech-
anics) and in part depend on the selected action. The action selection prob-
abilities, in turn, depend on the rewards received on state transitions, as the
system tries to maximise long-term reward1. In reinforcement learning, the
rewards and transition probabilities of the stationary system are not known
a priori, and the policy has to be updated incrementally based on sample
observations of state transitions and received rewards.

In the field of reinforcement learning, MDPs are usually classified as
either episodic, having one or more designated terminal states, or continuing,
in which case the process never terminates naturally. This terminology is
used in e.g. Sutton and Barto (1998), whereas in MDP literature the terms
finite-horizon, indefinite-horizon and infinite-horizon tasks are more widely
used. It should be sufficient to note that indefinite-horizon and infinite-
horizon tasks correspond to episodic and continuing tasks, respectively2,
and are often used interchangeably in RL literature; for a more detailed
treatment, see Sutton and Barto (1998, 3.11).

A Markov decision process extended to the multi-agent case is known as
a stochastic game; conversely, an MDP is the special case of a one-player
stochastic game (Bowling and Veloso, 2000).

2.2 The Value Function

The main problem in reinforcement learning is trying to maximise the so-
called state-value function, defined as

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s

}
, (2.2)

where γ ∈ [0, 1] (or [0, 1) for continuing tasks) is a discounting factor, assign-
ing more weight to future states as it approaches 1. Thus, the state-value
function denotes the expected cumulative discounted reward (the return)
starting in state s and following the policy π. Under an optimal policy π∗,
and assuming that the MDP has a finite number of states, the optimal value
function, denoted V ∗, is the unique solution to the MDP’s Bellman equation
(Sutton and Barto, 1998; Baird, 1995).

1Sometimes, as in for example Bellman (1957a), instead of maximising reward one is
trying to minimise the cost, which is just negative reward.

2The third class, finite-horizon tasks, refers to tasks in which interaction terminates
after a fixed number of steps, and is usually of little interest in reinforcement learning.
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Another important function is the action-value function, giving the ex-
pected return for taking action a in state s and thereafter following the
policy π. Equation (2.3) gives the action-value function defined in terms of
the state-value function:

Qπ(s, a) = E {rt+1 + γV π(st+1)| st = s} (2.3)

Reinforcement learning methods that aim to estimate the optimal policy by
directly approximating the optimal action-value function Q∗ are called con-
trol methods, as opposed to prediction methods concerned with estimating
the state-value function V π for a given policy π (Sutton and Barto, 1998).

2.3 The Policy

The agent stores a mapping from each state-action pair {s, a} to the prob-
ability π (s, a) of taking action a when in state s known as the policy. This
policy can be implemented in various ways, and is often stochastic. In the
simplest case, called the greedy policy, the agent simply selects the action
with the highest value at each state. However, this is not as good an idea as
it might seem at first glance, as it does not allow the agent to try new ac-
tions with apparently low value that could actually lead to better unexplored
states. Finding a good balance between exploiting the current knowledge of
the environment and exploring new states to gain additional knowledge is
a difficult and important problem in on-line reinforcement learning, and is
known as the exploration vs. exploitation dilemma.

2.3.1 Exploration vs. exploitation

Several methods have been proposed to handle the exploration vs. exploit-
ation problem, but the most widely used ones are ε-greedy and Gibbs, or
Boltzmann, softmax action selection. Using ε-greedy action selection, with
probability ε a random action is chosen, else the greedy action is chosen.
As learning progresses and the agent gains more accurate knowledge of the
environment, ε should preferably be gradually decreased (Sutton and Barto,
1998). A Gibbs softmax policy selects actions using equation (2.4):

π (s, a) = Pr(a|s) =
eQ(s,a)/τ∑

b∈A(s) e
Q(s,b)/τ

, (2.4)

where τ is the temperature, a parameter specifying the amount of exploration
the agent should do. This scheme assigns higher selection probabilities to
actions with higher estimated value, and there is always a small chance of
even a very lowly valued action being selected. A higher temperature means
the difference in selection probabilities decrease, approaching equiprobable
selection for all actions in the limit. As with ε in ε-greedy selection, it is often
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a good idea to decrease the temperature parameter over time to maximise
reward.

2.4 Temporal-Difference Learning

In many cases it might be undesirable to wait until the end of the episode
before performing an update of the value function; for example, one might
want the agent to learn while interacting with the environment, or the task
might not be episodic at all, but continuing. In such a task, off-line learning
would not make sense, as the agent would continue on forever, or at least until
terminated, without reaching a natural terminal state where it could backup.
In these cases, one has to turn to on-line learning algorithms, which perform
smaller updates after every state transition based on the current knowledge
of the environment. Such on-line algorithms make use of a method called
temporal-difference learning. The ideas behind temporal-difference, or TD,
learning are old, but the method was formalised and thus named by Sutton
(1988).

The main underlying innovation in TD learning is the use of a quantity
called the TD error, the difference between the expected reward based on
the current value function and the actual received reward. At every time
step, then, the value function is updated in the direction of the TD error
towards the actual observation. The TD error δt for time step t is defined as

δt = rt+1 + γVt(st+1)− Vt(st), (2.5)

where Vt(s) is the value function at time t and γ the usual discounting factor.
Then, in the simplest TD method, called TD(0) and introduced in Sutton
(1988), the value function is updated according to the following equation:

Vt+1(s) = Vt(s) + αδt, (2.6)

where α ∈ (0, 1) is a step-size parameter called the learning rate.
Note that these updates can be saved and performed in batches, such

as in the Least-Squares TD method presented in Bradtke and Barto (1996),
or all at once at the end of the episode, in which case one gets an off-line
algorithm (Sutton and Barto, 1998).

From the above, the TD-learning algorithm (after Sutton and Barto
(1998)) is given by algorithm 2.1.

2.4.1 Q-learning

One of the most popular and important TD-learning approaches is so-called
Q-learning, first introduced by Watkins (1989). Q-learning attempts to dir-
ectly learn the optimal action-value function Q∗(s, a), using the update rule
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Algorithm 2.1 TD Learning
Initialise V (s) arbitrarily
for each episode do
s← initial state
repeat {for each step of episode}
a← action selected by π for s
Execute action a; observe reward r and next state s′

δ ← r + γV (s′)− V (s)
V (s)← V (s) + αδ
s← s′

until s is terminal
end for

(for one-step Q-learning)

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (2.7)

Since the update is independent of the policy, Q-learning is termed an off-
policy TD control algorithm. This means that one can follow a policy de-
signed to ensure a good level of exploration while still updating towards the
optimal policy.

Algorithm 2.1 adapted for Q-learning is given by algorithm 2.2, also after
Sutton and Barto (1998).

Algorithm 2.2 Q-Learning
Initialise Q(s, a) arbitrarily
for each episode do
s← initial state
repeat {for each step of episode}
a← action selected by policy derived from Q
Execute action a; observe reward r and next state s′

Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′

until s is terminal
end for

2.4.2 Actor-Critic Methods

Learning the action-value function, the agent can implicitly derive a greedy
policy by selecting the action with the highest Q-value at each state. This
approach has several benefits, such as being easy to combine with function
approximation (chapter 3). Another approach, introduced in Sutton (1984),
is the actor-critic architecture, which explicitly stores the policy in a separate
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Value function Policy

Environment

State

Reward Action

TD error Agent

ActorCritic

Figure 2.1: The Actor-Critic architecture

data structure, called the actor. The actions chosen by the actor is then
criticised by the value function, known as the critic. Critique is in the form
of the TD error (2.5); if positive, the action was a good one, and its selection
probability should be strengthened. Conversely, the probability of selection
should be weakened if the TD error is negative.

The policy can, for example, be stored as a vector of preferences P (s, a)
for selecting action a when in state s, and action selection probabilities be-
ing generated using a form of the Gibbs softmax method (equation (2.4)),
replacing the Q-values with the preferences:

π (s, a) = Pr(a|s) =
eP (s,a)/τ∑

b∈A(s) e
P (s,b)/τ

, (2.8)

Since the policy is stored explicitly, the actor-critic architecture allows for
example an explicitly stochastic policy to be stored. This is useful in com-
petitive multiagent environments, where in a given state there might not be
a single best action, but rather a best probability distribution over available
actions, in game theory known as an optimal mixed strategy (Shoham and
Leyton-Brown, 2009).

The actor-critic architecture is illustrated in figure 2.1.
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2.4.3 Eligibility Traces

Since TD-learning algorithms update their predictions incrementally based
on the most recent observations in a bootstrapping procedure, the value
predictions for recently visited states are likely to be more accurate than
those for more distant states. A way of making use of the latest knowledge
to backup previous states instead of waiting until they are encountered again
is eligibility traces. The idea is that the values for previously visited states
are eligible for alteration such that value predictions of more recently visited
states are changed more, using the weighting λk (for λ ∈ [0, 1]) for an update
of a state visited k steps in the past (Sutton, 1988). To denote the use of
eligibility traces, therefore, such algorithms are called e.g. TD(λ) or Q(λ).

In the case of TD(λ), due to Sutton (1988), the eligibility traces are
updated as

et(s) =

{
γλet−1(s) + 1 if s = st and
γλet−1(s) otherwise.

(2.9)

This gives the update rule

∀s ∈ S, Vt+1(s) = Vt(s) + αδtet(s) (2.10)

Note that λ = 0 gives exactly the update in (2.6). Extending algorithm 2.1
to include the use of eligibility traces produces algorithm 2.3.

Algorithm 2.3 TD(λ)
Initialise V (s) arbitrarily
e(s)← 0,∀s ∈ S
for each episode do
s← initial state
repeat {for each step of episode}
a← action selected by π for s
Execute action a; observe reward r and next state s′

δ ← r + γV (s′)− V (s)
e(s)← e(s) + 1
for all s do
V (s)← V (s) + αδe(s)
e(s)← γλe(s)

end for
s← s′

until s is terminal
end for

Although equation (2.10) requires value estimates and eligibility traces
to be updated for every state on every time step, it is clear that such an
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implementation would not be feasible for any realistic application on a serial
computer. However, as noted by Sutton and Barto (1998), it is not neces-
sary to perform updates for all states, as almost all states will have eligibility
traces very close to zero. Those states, then, would not need to be updated,
saving considerable computation time. Furthermore, using function approx-
imation, the added complexity from eligibility traces becomes significantly
smaller.

There exist several variations on the update given in equation (2.9); for
example, Singh and Sutton (1996) suggest using so-called replacing traces,
which instead of incrementing the trace by 1 when a state is encountered
again sets it to 1.

Finally, it might be worth noting that eligibility traces, by introducing a
memory effect, can interfere with learning in non-stationary systems such as
multi-agent systems, where transition probabilities might have changed the
next time a state is encountered (Geist and Pietquin, 2010).

2.5 Parameter Modulation

Tuning the learning rate, discount factor and, when using softmax action
selection, the temperature, is often done manually by the programmer spe-
cifically for the application at hand. In many environments, however, it is
desirable to let some of the parameters change as learning progresses. As will
be discussed in section 3.1, approximations based on gradient descent will
converge slowly for small values of α, while high values will cause oscillation
around the optimum. Therefore, the learning rate should be relatively high
at the onset of learning in order to quickly bring the approximation close to
the optimum, but approach zero in the limit to assure convergence; in fact,
convergence proofs are predicated on the latter condition being satisfied. In
particular, the convergence proof for stochastic approximation in Robbins
and Monro (1951) requires

∞∑
k=1

αk(a) =∞ and
∞∑
k=1

α2
k(a) <∞, (2.11)

where αk(a) denotes the learning rate used following the kth selection of
action a, following the presentation in Sutton and Barto (1998). However,
it should be noted that algorithms fulfilling condition 2.11 are seldom used
in practice, as they assume a stationary environment; an assumption that
rarely holds in real systems.

As explained in section 2.3.1, whether ε-greedy or Gibbs softmax action
selection is used, it is necessary to decrease the relevant parameter in order
for learning to converge. High randomness in selecting actions is useful for
exploring unknown courses of action, while in later stages of learning it
interferes with exploitation of gained knowledge.
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Commonly, simple heuristics are employed to have the temperature and
sometimes also learning rate parameters decay over time. Although such
algorithms usually suffice for stationary environments, they will cause prob-
lems if applied to non-stationary environments, where state transition prob-
abilities can change during learning. However, also in non-stationary envir-
onments there may be benefit in adapting the parameters to the dynamics
of the environment. For example, if the value function is found likely to
be inaccurate, learning rate should be increased to compensate; conversely,
if predictions are good, learning rate can be gradually decreased to further
improve the approximation of the value function. An algorithm that learns
parameters of an underlying learning algorithm is termed a meta-learning
algorithm.

The Incremental Delta-Bar-Delta (IDBD) algorithm (Sutton, 1992) finds
the optimal learning rate for a linear base learning system through on-line
gradient descent. Ishii et al. (2002) describe a method for modulating the
temperature parameter by using a model-based RL method where the en-
vironment is estimated using Bayes inference. A more general approach for
control of any learning parameter is presented in Schweighofer and Doya
(2003), who expand on the Stochastic Real Value Units (SRV) reinforce-
ment learning algorithm by Gullapalli (1990) to achieve meta-learning with
stochastic gradients.
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Chapter 3

Function Approximation

For small toy problems, the value function can be stored explicitly in a table
of values for each state. This is known as the tabular case, and allows con-
vergence to the true value function. However, it is obvious that the potential
size of the table will increase enormously with the dimensionality of the state
space, due to the curse of dimensionality (Bellman, 1957b; Sutton and Barto,
1998). Therefore, in order to decrease memory usage and computation time,
some form of function approximation is usually desired.

An approximated value function (being, after all, an approximation) does
not generally compute the exact value of a state or state-action pair; while
potentially affecting the accuracy of convergence (see Sutton (1996) for a
discussion and some reassuring results), this is not necessarily detrimental
to learning speed. Rather, using value function approximation can speed up
learning as one gets some degree of generalisation between similar points in
state space, allowing the system to generalise from and make use of previous
knowledge of the environment.

3.1 Gradient Descent

For a parameter vector θ and a (continuous, differentiable) function f(θ), the
gradient of f with respect to θ is defined as the vector of partial derivatives

∇θf(θ) =

[
δf(θ)

δθ1
,
δf(θ)

δθ2
, . . . ,

δf(θ)

δθn

]T
. (3.1)

The gradient is thus a vector field that in any point points in the direction
in which f increases fastest with length proportional to the rate of increase,
as illustrated in figure 3.1. Then, gradient descent is performed by going in
the direction of the negative gradient with some small step size α:

θt+1 = θt − α∇θtf(θ) (3.2)
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Figure 3.1: The gradient of the function f(x, y) = 0.3 sinx sin y as a vector
field plotted over a density map of f .

α should be set to a value less than 1 in order to guarantee convergence,
as adjusting the parameter vector by the full length of the gradient will
lead to oscillation around the optimum without converging to a single point.
Still, the step size should not be set too low, or learning will take too long
time. (Rojas, 1996, ch. 7-8) shows examples of oscillation around the op-
timum and discusses methods to increase learning rate while still keeping
good bounds on convergence in the chapters on backpropagation, a popular
learning algorithm based on gradient descent for artificial neural networks1.

If, instead of minimising, one wants to maximise f , the parameter vector
is adjusted in the positive direction of the gradient. The method is then
called gradient ascent.

In reinforcement learning, the objective function is usually the mean
squared error of the parameters, defined as

MSE(θt) =
1

2

∑
s∈S

P (s) [V π(s)− Vθt(s)]
2 . (3.3)

Here, P is a distribution over the state set used to produce a weighted
average of the errors. As Sutton and Barto (1998) explains, this distribution
is important as one can generally not hope to reduce the error to zero for
all states. Usually, this distribution is the on-policy distribution obtained
by using on-policy sampling of the state space, meaning the states actually
visited following the policy π up to time step t are used.

1More accurately, backpropagation is a way of computing the gradient of the network
weights by running the network “backwards”, and learning is then achieved through gradi-
ent descent.
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However, since the true value function V π is not known beforehand, one
usually has to use some estimate of it. For the example of TD-learning,
equation (3.2) becomes

θt+1 = θt + αδt∇θtVt(st),

giving algorithm 3.1, once again adapted from Sutton and Barto (1998).

Algorithm 3.1 Gradient-Descent TD(λ)
Initialise θ arbitrarily
for each episode do
e← 0
s← initial state
repeat {for each step of episode}
a← action selected by π for s
Execute action a; observe reward r and next state s′

δ ← r + γV (s′)− V (s)
e← γλe+∇θV (s)
θ ← θ + αδe
s← s′

until s is terminal
end for

3.1.1 Global and Local Optima

The ideal goal of any function approximator is to find a global optimum,
defined by Sutton and Barto (1998) as a parameter vector θ∗ such that
∀θ,MSE(θ∗) ≤ MSE(θ). However, in most cases, it is too optimistic to
expect to find a global optimum, and the best one can hope for without
searching the entire parameter space is to converge to a local optimum. A
locally optimal parameter vector θ∗ fulfils MSE(θ∗) ≤ MSE(θ) for all θ for
some δ such that ‖θ − θ∗‖ ≤ δ. As a local optimum can be quite far from the
global optimum (or, possibly, optima), a guarantee merely of convergence to
a local optimum is usually of little comfort. Fortunately, this is not a problem
when using linear function approximation, treated in the following section.

3.2 Linear Methods

A method for function approximation is said to be linear, or linear in the
parameters, if the approximate function can be written as a linear combin-
ation of the parameters. If the approximate value function V is a linear
function of the parameter vector θ, one gets

Vt(s) = θt · φs =

n∑
i=1

θtiφsi,
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Figure 3.2: The shape of the Gaussian radial basis function in two dimensions
centred at [0, 0]T with unit width.

where φs is a feature vector constructed from the state s by some method for
function approximation using a set of basis functions φ1(s), φ2(s), . . . , φn(s)
(Doya, 2002; Sutton and Barto, 1998). In this case, the gradient can be
written as

∇θtVt(s) = φs.

A major advantage of linear approximation is that there exists only one
optimum, or at least a set of equally good optima, avoiding the problem of
convergence to local optima (Sutton and Barto, 1998).

3.2.1 Radial-Basis-Function Networks

Hartman et al. (1990) define radial basis functions as the set of functions
ϕ : <n → <, ϕ(x) = Φ(‖x − µ‖), where µ is the centre of the radial basis
function in input space. In words, any function of the distance between the
input vector and the centre vector is a radial basis function.

For the common case of a Gaussian basis function, the activation in the
point x is given by

ϕ(x) = exp

(
−‖x− µ‖

2

2σ

)
, (3.4)

where σ is the width of the radial basis function (Jang and Sun, 1993). The
shape of this function in two dimensions is shown in figure 3.2.

The first use of radial basis functions with the semantic meaning of ar-
tificial neural networks for function approximation is variously ascribed to
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Figure 3.3: The topology of a radial-basis-function network.

Broomhead and Lowe (1988) and Moody and Darken (1989), and the the-
ory of such radial-basis-function networks (RBFN) were developed in the
following years by authors such as Poggio and Girosi (1989, 1990). They
have since become one of the most important classes of ANN for function
approximation, much due to the fact that they learn fast and are linear in
the parameters, allowing guarantees to be made on convergence to a global
optimum.

The structure of an RBF network is shown in figure 3.3; the network is
layered with a single hidden layer, containing h computational units. Each
hidden unit j computes its output for an input vector x = [x1, x2, . . . , xn]T

using a radial basis function ϕj(x). The output from the hidden layer is
linearly combined at each output unit yk with weights wjk:

yk =

h∑
j=1

wjkϕj(x). (3.5)

RBF networks with one hidden layer have been shown by Park and Sandberg
(1991) to be capable of universal function approximation on a compact sub-
set of <n. At about the same time, Hartman et al. (1990) proved universal
approximation capability of RBF networks with a single layer of Gaussian
units, the most common form of RBFN. Lippman (1989), in a review of dif-
ferent types of neural networks for pattern classification, reports that RBF
classifiers typically learn a lot faster than classifier networks using back-
propagation, while achieving similar error rates at the cost of just a few
times as many connection weights.
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Figure 3.4: The topology of a normalised radial-basis-function network.

Normalised RBFN

The output of each hidden unit in a normalised radial-basis-function network
is described by

φj(x) =
ϕj(x)∑h
j′=1 ϕj′(x)

, (3.6)

as illustrated in figure 3.4. Note that ∀x,
∑h

j=1 φj(x) = 1. Similarly to
equation (3.5), the output at unit yk in the output layer is given by

yk =
h∑
j=1

wjkφj(x). (3.7)

The shape of two normalised radial basis functions for a single input dimen-
sion can be seen in figure 3.5.

Normalisation of radial basis functions was suggested by Moody and
Darken (1989), and normalised RBFN were shown by Benaim (1994) to
be satisfactorily capable of function approximation. The main reason for
normalisation, as given in Shorten and Murray-Smith (1994, 1996) is that
it results in a partition of unity across the input space, making the RBFN
less sensitive to poor selection of the centre and width parameters as the
basis functions sum to unity at every point in input space, thus equally
covering all points. Wang et al. (2007) also note that normalisation gives
better interposition performance at points located in overlapping receptive
fields of the basis functions. However, Shorten and Murray-Smith (1994,
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Figure 3.5: Two normalised Gaussian radial basis functions in one input
dimension.

1996) go on to warn that normalising non-compact basis functions leads
to certain side effects such as stability problems at the edges of the input
space, shifting of unit maxima away from the centres (visible in figure 3.6)
and reactivation of units far away from their centres, possibly leading to
unpredictable behaviour.

Fuzzy RBFN

The functional equivalence of Gaussian radial-basis-function networks and
Takagi-Sugeno fuzzy inference systems (due to Takagi and Sugeno (1985);
fuzzy logic is due to Zadeh (1973)) was proven by Jang and Sun (1993), whose
results were later generalised and expanded upon by Hunt et al. (1996). Rules
in a Takagi-Sugeno model are of the form

Rj : if x1 is Aj1∧x2 is Aj2∧ . . .∧xn is Ajn then yj = fj(x1, x2, . . . , xn),

where fj(x1, x2, . . . , xn) is usually a linear function, so that yj = aj0+aj1x1+
. . .+ ajnxn.

Inference is performed by first computing the truth value, or firing strength
|y = yj | of the premise y = yj :

|y = yj | = µAj1(x1) ∧ µAj2(x2) ∧ . . . ∧ µAjn(xn),

where µAi is the membership function of the fuzzy set Ai and ∧ is a t-norm
(triangular norm) fuzzy conjunction operator, usually multiplication or the
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Figure 3.6: An example of the side effects of normalisation of radial basis
functions. Note how the functions have been distorted, and the maximum of φ2
has been shifted from the centre, compared to the corresponding unnormalised
function ϕ2.

min operator such that

µAi(xi) ∧ µAi′ (xi′) =

{
µAi(xi)µAi′ (xi′) or
min(µAi(xi), µAi′ (xi′)).

While Takagi and Sugeno (1985) use the min conjunction operator, in order
to achieve functional equivalence with radial-basis-function networks, the
multiplication operator must be used (Jang and Sun, 1993; Hunt et al.,
1996). The full list of conditions given in Hunt et al. (1996) for functional
equivalence between Gaussian RBF networks (including a more generalised
class of networks than the model presented here) and the T-S fuzzy inference
model is:

1. The number of RBF units is equal to the number of fuzzy if-then rules.

2. Gaussian basis functions are used as membership function within each
rule.

3. The multiplication operator is used to compute each rule’s firing strength.

4. The same method (normalised or unnormalised calculation) is used in
both the RBF network and the fuzzy inference system to compute their
overall output.
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Hence, the ith membership function of the jth rule in a fuzzy RBF net-
work is described by equation (3.8). To avoid confusion with the centre µ
and its elements, the membership function µ(x) has been relabelled MF(x),
following the example of Wang et al. (2007).

MFij(xi) = exp

(
−(xi − µij)2

2σ2ij

)
(3.8)

Then, the output of unit j is given by

ϕj(x) =

n∏
i=1

MFij(xi) = exp

(
−

n∑
i=1

(xi − µij)2

2σ2ij

)
. (3.9)

To compute the overall output of the network, equation (3.5) is used like in
a normal RBF network, or the network can be normalised using equation
(3.6) and (3.7).
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Chapter 4

Modelling Emotion

Many computational models of emotion have been proposed, although due
to the difficulty of conducting experiments to verify them and the problems
of relating such a complex phenomenon as emotions to a set of functions,
real-valued or otherwise, the field is still far from maturity. In the field of
reinforcement learning, Malfaz and Salichs (2006) apply a categorical model,
keeping a set of basic emotional and physical parameters which are computed
from the agent’s observations of the environment, to agents in a multiagent
setting to provide an intrinsic reward function, while on the other hand
Marinier and Laird (2007); Marinier et al. (2008) base their work on appraisal
theory. Both approaches will be expounded upon in the following sections.

4.1 Categorical Models

In computational models of emotion, categorical approaches that define a set
of discrete emotions that each can vary in intensity are commonly employed.
Tomkins and McCarter (1964) identifies eight basic affects, defined by the
authors as the outer bodily responses, primarily facial behaviours, to emo-
tions. These eight primary affects, as given in Tomkins and McCarter (1964),
are recounted below. Each affect has been named also at high intensity, so
Interest, for example, at high intensity is labelled Excitement.

• Interest - Excitement

• Enjoyment - Joy

• Surprise - Startle

• Distress - Anguish

• Fear - Terror

• Shame - Humiliation
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• Contempt - Disgust

• Anger - Rage

Ekman and Friesen (1969) later narrowed the above list of primary affects
down to a suggested seven:

• Happiness

• Surprise

• Fear

• Sadness

• Anger

• Disgust

• Interest.

Although Ekman and Friesen (1969) note that their list might be incom-
plete, and Ekman (1999) proposes a revision and expansion to fifteen basic
“emotion families”, it is still the above list that is most commonly used in
computational models of emotion.

4.2 Appraisal Models

Appraisal theories of emotion posit that emotion emerges as a result of a
person’s appraisal of a situation rather than as a function of the situation
itself. This process of assessing a situation takes into account future goals
as well as physiological response and personality traits.

Computational models of emotion based on appraisal theory make use of
some set of so-called appraisal dimensions (also called appraisal variables),
computed for each event (or for events with an absolute utility larger than
a small threshold value, as suggested by Gratch and Marsella (2004)) and
stored in a data structure known as an appraisal frame. For the current
state, an emotion frame is computed, but since emotion can fluctuate wildly
depending on the state, it is combined with a moving history of emotion
termed mood to create a feeling frame, which is what the agent actually
“feels”. Mood is “pulled” towards the current emotion, and at the same time
decays by a small factor at each transition, so that were there no emotion,
all dimensions in the mood frame would eventually approach zero (neutral).

Marinier and Laird (2007); Marinier et al. (2008), basing their work on
Scherer (2001), use a set of eleven appraisal dimensions, listed in table 4.1.
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Dimension Range
Suddenness [0, 1]
Relevance [0, 1]
Intrinsic pleasantness [−1, 1]
Conduciveness [−1, 1]
Control [0, 1]
Power [0, 1]
Unpredictability [0, 1]
Discrepancy from expectation [0, 1]
Outcome probability [0, 1]
Causal agent {Self,Other,Environment}
Causal motive {Intentional,Negligence,Chance}

Table 4.1: Appraisal dimensions

To combine two appraisal dimensions v1 and v2, Marinier and Laird
(2007) use the following function, developed from a similar function for com-
bination of intensity values proposed by Neal Reilly (2006):

C(v1, v2) = 0.1Sign(S) logb(|S + Sign(S)|), (4.1)

where

S =

2∑
i=1

Sign(vi)(b
10|v1| − 1),

Sign(v) =

{
1 if v ≥ 0 and
−1 otherwise

,

and b =

{
e if Sign(v1) = Sign(v2) and
1.1 otherwise.

The intensity I of an appraisal frame, using the dimensions given in table
4.1, is then computed using the function

I = [(1−OP)(1−DE) + (OP ·DE)]

·
S + UP + |IP |

2 +GR+ Cond+ |Ctrl|
2 + |P |

2

7
,

where [(1−OP)(1−DE) + (OP ·DE)] is called a “surprise term” by Mar-
inier and Laird, and the remaining term is an average of the appraisals.

4.2.1 Emotion as Reward

For emotion to be of use in learning, it should serve as a reinforcement
signal. As the appraisal model derives its dimensions with regards to the
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Neuromodulator Likely RL equivalent
Dopamine TD error δ
Serotonin Discount factor γ
Noradrenaline Inverse temperature τ−1

Acetylcholine Learning rate α

Table 4.2: The four main neuromodulators and the reinforcement-learning
parameters they have been indicated to control.

goals and estimations of the agent, it seems intuitive that it should be fit
for generating reward for reinforcement learning. Marinier and Laird (2007)
suggests computing reward by multiplying the feeling intensity IF with the
Conduciveness dimension, yielding

R = IF · Conduciveness. (4.2)

However, it is important to note that, since the feeling is produced by com-
bining emotion (which is a function of only the current state) and mood
(which depends on the history of previously visited frames), the environment
loses the Markov property. Hence, the theory of classical reinforcement lear-
ning cannot be effectively applied, and convergence proofs are not available.
It might, however, be possible that this property helps the agent cope with
an already non-Markovian environment such as in a competitive task by
keeping the agent from being sidetracked by events it cannot exert control
over.

4.3 Effect of Emotion on Learning

Doya (2000, 2002), relating to previous work by, among others, Montague
et al. (1996) and Schultz et al. (1997), discusses the effect of emotion on
learning in the human brain and attempts to relate the observed effects to
reinforcement learning in the machine-learning sense. He considers the TD
error δ and what he terms metaparameters, referring to parameters such as
the learning rate α, discount factor γ and Gibbs/Boltzmann temperature
τ , and how they are controlled by so-called neuromodulators in the human
brain during the process of reinforcement learning. The main findings of
Doya are summarised in table 4.2.

Ishii et al. (2002) relate their algorithm for modulating the temperat-
ure parameter to Doya (2000) and investigate a possible implementation of
exploration/exploitation balance control by the noradrenaline system in the
brain. A more in-depth analysis of the role of noradrenergic neurons in the
locus coeruleus in controlling the level of selective attention can be found in
Usher et al. (1999).
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Chapter 5

System Design

The proposed algorithm was implemented on the Virtual Alter Egos (VAE)
platform, previously called Video Agents (Asai et al., 2007; Kitamura et al.,
2008; Asai et al., 2005); specifically, a rewritten and updated version of the
system presented in Rong et al. (2010) was used. Put briefly, the VAE system
allows users to easily create autonomous virtual agents in their own likeness
that “live” and interact with each other, the environment and the users in a
virtual world, as illustrated in figure 5.1.

5.1 Learning

Because of its theoretical advantages in stochastic and multiagent envir-
onments, the actor-critic model was chosen instead of the more common
Q-learning or SARSA. The Fuzzy Actor-Critic Reinforcement Learning Net-
work (FACRLN) by Wang et al. (2007) is used for function approximation
of the state-value function and the policy. This algorithm builds on pre-
vious work in Cheng et al. (2004) and makes use of a normalised fuzzy
radial-basis-function network. As shown in figure 5.2 (simplified to show a
radial-basis-function network; the radial basis functions are computed using
equation (3.9)), the state vector s is input to the network, whose output
consists of action preferences Ak(s) and the estimated value V (s) for state s.
The usefulness of the algorithm stems in large part from its ability to adapt-
ively add and remove computational units, as well as adapt the centre and
width parameters of the radial basis functions during the learning process as
required by the task at hand.

For a detailed description of the FACRLN algorithm, the reader is dir-
ected to Wang et al. (2007).
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Figure 5.1: A scene from Virtual Alter Egos: Osaka Developing Story (Rong
et al., 2010), used for testing the proposed algorithm.

5.1.1 Merging and Deletion of Units

Because of the added computational complexity of the subroutine for merging
similar computational units, disproportionate to the observed frequency of
calls using reasonable parameter settings, this functionality was left out of
the finished system. Another related technique for keeping the size of the
network, and in extension learning and computation time, to a minimum as
given in Cheng et al. (2004) is to remove inactive units that does not exceed a
certain small activation threshold for a specified number of time steps. This
technique seems to be more effective in removing non-contributing units, as
well as less computationally demanding than determining when to merge
units, but it is difficult to know beforehand what is a suitable period of
inactivity before the unit is removed.

5.1.2 Action Selection

The softmax action selection scheme suggested by Cheng et al. (2004) and
Wang et al. (2007), adding a random number from a normal distribution
to each output value At(s) of the actor and selecting the action with the
greatest sum, is not used. Although useful in theory, as the width σV (t) of
the normal distribution from which the noise term is drawn depends on the
estimated value of the current state st according to σV (t) = 1

1+exp(2V (st))
,

better empirical results were obtained using simple Gibbs softmax selection
(equation (2.8)), wherefore the latter scheme is used instead.

Li et al. (2009), implementing a system similar to the one described in
Cheng et al. (2004), use a directed form of Gibbs softmax selection that is
more likely to select actions that have not been tried as many times pre-
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Figure 5.2: The topology of the actor-critic normalised radial-basis-function
network.

viously. Despite its theoretical benefits, however, that variant was also dis-
carded as it introduces additional parameters that need to be selected before-
hand, already a problem in radial-basis-function networks for reinforcement
learning.

5.1.3 Extensions

The algorithm was extended by the author so that, instead of merely using
a single learning rate αA for the actor, each computational unit j has a set
of parameters αjk, one for every action ak. At every state transition, the
actor weights are updated with ∆wjk = αjkαAδφj(s) and the corresponding
stepsize parameters, each initialised to 1, according to αjk ← αjk(1− βφj),
where β is a small positive number. The motivation for this is that (in a
stationary environment) the learning rate should fulfil condition 2.11.

5.2 Emotional Model

Each agent keeps a set of primitive physiological, mental and emotional para-
meters as listed in table 5.1. Each parameter can take values in [0, 1]. The
choice of emotional parameters follows Ekman and Friesen (1969), although
Interest for practical reasons has been classified as a physiological parameter.
The physiological parameters can be directly influenced by interaction with
the environment: eating food reduces hunger, resting reduces fatigue, and
interacting with other agents reduces interest. The mental parameters are
hidden from the user, but represent the agent’s conscious or unconscious
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Table 5.1: Agent internal parameters.

Physiological Mental Emotional
Hunger Comfort Happiness
Fatigue Satisfaction Sadness
Interest Caution Anger

Impression Surprise
Stress Fear
Unexpected Disgust

assessment of received stimuli with regards to its current goals and model
of the environment. As such, they function as an intermediary step between
the physiological and emotional parameters, as the latter are computed ex-
clusively from the mental parameters using fuzzy logic.

5.3 Interaction with the Environment

The actor can choose between four basic actions: picking up food, socially
interacting with another agent, resting, or doing nothing, which in practice
translates to randomly walking aimlessly or playing an animation suitable
for their current mood. Whether or not all actions are available depends on
the observed state; for example, the agent can obviously not pick up food
if there is no food available. Actions may result in failure if, for example,
the agent is interrupted by a nearby event, the item targeted for retrieval
is taken first by another agent, or if the other party declines a request for
social interaction. Failure will have negative emotional impact on the agent,
although the magnitude depends on various factors such as the reason for
failure and the estimated reward missed out on.

A new state is obtained upon completion, or interruption, of an action,
and hence different agents operate in different time frames. The internal
state is represented in a rather minimalistic fashion as detailed in table 5.2.
The agent is often not aware of the full true state of the environment, but
creates an internal state from what it can perceive at that time. Therefore,
and considering the unpredictable risk of action failure, the environment can
be seen as a noisy partially observable Markov decision process (POMPD).

Reward is computed by taking the difference between current and previ-
ous values of the Happiness parameter as sampled at state transitions; hence,
the reward rt at the transition from state t− 1 to t is given by

rt = ∆Happiness = Happinesst −Happinesst−1.

A penalty is subtracted from the reward if the previous action would have
caused a physiological parameter to drop below zero, to prevent the agent
from learning e.g. to rest even when not tired.
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Table 5.2: The internal state representation.

Dimension Possible values
Hunger [0, 1]
Fatigue [0, 1]
Interest [0, 1]
Other agent present {0, 1}
Food present {0, 1}

Table 5.3: Modulation of learning parameters.

Parameter Modulating emotion
Learning rate α 1− Surprise
Discounting factor γ 1− Fear
Temperature τ Anger

5.3.1 Modulation of Learning Parameters

The parameters whose modulation is of interest are the learning rate α,
the discount factor γ and the Gibbs/Boltzmann temperature τ . While the
approach described in Akiguchi and Maeda (2006) was tried, as was one
directly inspired by Doya (2002), neither approach produced satisfactory
results. This should, however, be blamed on differences in the emotional
model and incomplete implementation, respectively, rather than any flaws
in the cited works. Instead, the method shown in table 5.3 was settled upon
for metaparameter modulation; each parameter is linearly interpolated by
the amount of the modulating value between a maximum and a minimum
value set by the programmer.

The choice of 1− Surprise rather than simply Surprise for modulation of
the learning rate may warrant further explanation, as it may seem wiser to
take high Surprise to mean learning rate should be increased to compensate
for the observed discrepancy between the actual and the expected outcome.
This is likely to be the case in a truly Markovian environment if Surprise were
derived from a continually updated estimation of state-transition probabilit-
ies based on observed transitions (the critic would be a prime candidate) or
if conditioning by the user was primarily desired, but in this case Surprise
is increased by a static function upon action failure. As failure depends on
unpredictable factors upon which the agent can exert little or no control,
excessively updating the value function and policy to adjust for surprising
outcomes is likely to interfere with learning. In a sense, surprising outcomes
really are surprising, and should therefore to some extent be ignored.
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Chapter 6

Results

Based on the theory and ideas expounded in the previous chapters, a system
was implemented aiming to achieve efficient learning in the face of com-
petition while driven by emotional feedback. In the following sections, the
implementation details, particulars of the experiment enacted in order to test
the system, as well as analysis and discussion of the results and suggestions
of future work are presented.

6.1 Experiment Design

In order to test the performance of the proposed algorithm, a script was
written for execution on the Virtual Alter Egos system. The script was
designed to at all times provide a single item of food for the agents; upon
consumption of one item of food, another was spawned at a random location.
Each experiment round lasted for 2000× 5 seconds; during the first 1500× 5
seconds, at each update there was a small probability of fire spawning at
a random location, forcing nearby agents to abandon their current actions
and escape. Being too close to a fire inflicts significant stress upon an agent,
which will also be fatigued by running away. This introduced an additional
element of randomness into the experiment, for the purpose of testing the
robustness of the behavioural models. The spawn probability was set to give
an expected value of 30 seconds between fires.

The experiment was performed with four agents all using the same char-
acter so as to avoid such problems as discrepancies in action execution speed
due to animations differing between characters. The average of the values of
the happiness parameter of all four agents was recorded every five seconds.
First, the experiment was run 20 times without emotional feedback; then,
20 times with the emotional feedback loop activated. The sampled data sets
were then averaged separately over both sets of 20 runs, and the resulting
graphs evaluated.
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6.1.1 Parameter Settings

While the fuzzy radial-basis-function network described in Wang et al. (2007)
has the capability of self-allocating computational units, a network with
preallocated blank units was used for the experiment to simplify compar-
ison of the results; however, the network could add additional units during
learning as deemed necessary. As the use of eligibility traces may inter-
fere with learning in non-stationary systems such as multi-agent systems, as
noted by Geist and Pietquin (2010), the eligibility parameter λ was set to
zero. For similar reasons, and so as not to interfere with the experiment, the
learning-rate decay parameter β, described in section 5.1.3, was also set to
zero, turning also that functionality off.

In order to allow for fair comparison of the two algorithms, the fixed
parameters of the unmodulated algorithm were set equal to the “base” val-
ues (i.e. the values taken when Surprise, Fear and Anger are all zero) as-
signed to the modulated algorithm. The settings αA = 0.2, αC = 0.1, γ =
0.3, τ = 0.01, where αA and αC are the learning rates for the actor and
the critic, respectively, were empirically found to give good results, and were
thus chosen as base values. The modulated algorithm was allowed the ranges
αA ∈ [0.05, 0.2] , αC ∈ [0.01, 0.1] , γ ∈ [0.1, 0.3] and τ ∈ [0.01, 0.1].

6.2 Outcome

The experiment results are shown in figure 6.1. The sharp increase in both
curves at t = 1500 is due to the cessation of disturbing elements in the form
of fires at this point. The emotion-modulated algorithm can be seen to per-
form slightly better than its unmodulated counterpart following the removal
of fires; while the advantage is slight, is was consistent across experiment
rounds. This seems to hint that a better policy was learnt compared to that
of the unmodulated algorithm, which still expects otherwise optimal actions
to sometimes be interrupted by fires and thus assigns them lower prefer-
ences, instead sometimes choosing actions whose interruption would cause
less disappointment.

The modulated algorithm appears to be learning somewhat slowlier in the
beginning, which might be attributed to the higher value of the temperature
parameter early on, leading to greater exploration and thus less greedy action
selection.

6.3 Conclusion

An algorithm implementing the actor-critic model of reinforcement learning
was employed in an environment with four individually optimising and po-
tentially conflicting agents, who could be interrupted and disturbed by fires
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Figure 6.1: Average values of the Happiness parameter over all four agents
using the fixed-parameter and the parameter-modulation scheme, plotted over
time. Averaged over 20 runs.

randomly spawning near them at any time. With learning thus interfered
with until fires were turned off after a set time towards the end of each test
run, a parameter modulation scheme that would adjust the reinforcement-
learning parameters depending on the current emotional state of the agent
was evaluated and compared to a fixed-parameter scheme otherwise using
identical settings.

Altough the increase in performance over the fixed-parameter algorithm
using the emotion-modulated algorithm was minor, it is nevertheless appar-
ent and indicates that some advantage could be gained in the test environ-
ment by using the proposed algorithm. The reason is believed to be mainly
that the modulation scheme allows learning to focus on more useful input by
assigning less weight to input that is considered less useful and that might
interfere with learning, although increased exploration following unsatisfact-
ory outcomes may also have contributed in the long run by keeping the agent
from pursuing suboptimal strategies.

6.4 Future work

The principal weakness of the proposed algorithm is that it assumes a more or
less correct evaluation of the input state as basis for the emotional feedback;
this requires more domain knowledge than is generally available. It would
be desirable to design an algorithm that makes use of the approximated
state evaluation function already available through the critic to generate
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emotion, preferably through appraisal. Such a method would likely require
a somewhat different approach to modulation than is presented in this paper,
so the modulating algorithm would need adjustment as well.

Furthermore, it would be interesting to attempt to make a more real-
istic implementation of the mechanisms described in Doya (2002), perhaps
coupled with the model proposed by Lövheim (2012) to generate emotions
from simulated neurotransmitters.
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