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ABSTRACT

This report presents the results of some investigations performed at Chalmers Uni-
versity of Technology within the Nordic Thermal-Hydraulic Network (NORTHNET) in
the area of stability of Boiling Water Reactors (BWRs). Such systems are known to pos-
sibly become unstable under certain conditions, and thus the characterization of their
stability properties is of prime importance. Due to the complexity of the problem at
hand, a Reduced-Order Model (ROM) was developed, as an alternative to using three-
dimensional solvers. The main advantage of using a ROM is that ROMs represent fast
running models aimed at catching in a qualitative manner the physical phenomena of im-
portance. In addition, the relative simplicity of ROMs compared with three-dimensional
solvers leads to the possibility of providing some physical insight into the stability mech-
anisms. The ROM developed in this project is unique since it has the ability to model
global, regional, and local oscillations, and it is based on four heated channels. The four
heated channels are necessary to properly represent the possible excitation of the two
first azimuthal modes in case of regional oscillations. A careful examination of the ROM
demonstrated that the stability behavior of the system is entirely defined by so-called
Cmn-coefficients (assuming that there is no pure density wave oscillation). These coef-
ficients represent the effect of a change of the void fraction on pairs of eigenmodes of
the nuclear core. When these coefficients are positive, the system is clearly unstable be-
cause of the corresponding positive void feedback. When negative, it was demonstrated,
both using the developed ROM and SIMULATE-3K, that the system becomes less stable
for Cmn coefficients becoming more negative. A closer examination of the dependence
of the Decay Ratio (DR) on the Cmn coefficients using the ROM also demonstrated that
for small negative values of the coefficients, a non-monotonic relationship between the
DR and the Cmn coefficients exists. Nevertheless, for realistic values of the void reactivity
feedback, such a non-monotonic behavior cannot be noticed, because theCmn coefficients
are sufficiently negative. As a consequence, the estimation of the Cmn coefficients opens
up the possibility of using such coefficients as a qualitative measure of core stability in
a predictive manner. This could be used for instance as a means to compare the relative
stability of several core loadings without the need of running lengthy time-dependent
three-dimensional core calculations, and could be of great help to nuclear engineers when
designing cores.

Keywords: boiling water reactor stability, decay ratio, space-dependent neutron noise,
reduced order models, density wave oscillations





Contents

List of publications 1

1 INTRODUCTION 3

2 DEVELOPMENT OF A NUMERICAL TOOL FOR ESTIMATING NEUTRONIC
RESPONSES TO GLOBAL/REGIONAL/LOCAL OSCILLATIONS 5
2.1 Description of the neutronic models . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Neutron transport modelling . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Algorithm used for the spatial discretisation . . . . . . . . . . . . . 7

2.2 Modelling of static core configurations . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Subcritical systems with source . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Critical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Modelling of dynamic core configurations . . . . . . . . . . . . . . . . . . . 19
2.3.1 Subcritical systems with source . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Critical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Use and demonstration of the tool . . . . . . . . . . . . . . . . . . . . . . . 24

3 MODELING OF GLOBAL AND REGIONAL INSTABILITIES VIA ROM 27
3.1 Neutron kinetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Heat transfer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Thermo-hydraulic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Single-phase region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Two-phase region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 ROM modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Adjustment of the homogeneous equilibrium model to a higher or-

der model (drift flux model) . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Introduction of a non-uniform power profile . . . . . . . . . . . . . 33
3.4.3 Iterative procedure for steady-steady state calculations . . . . . . . 33

3.5 Analysis of the numerical results . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Case of a stable system . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Case of a global instability . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.3 Case of a combined instability . . . . . . . . . . . . . . . . . . . . . 38

III



Contents

4 MODELING OF LOCAL INSTABILITIES VIA ROM 43
4.1 ROM modifications to account for the effect of local instabilities . . . . . . 43
4.2 Analysis of the measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 ROM simulation of the local instabilities . . . . . . . . . . . . . . . . . . . . 47

5 INVESTIGATION OF BWR STABILITY INDICATORS OTHER THAN THE DE-
CAY RATIO 53
5.1 Qualitative analysis of the stability properties as a function of Cmn coeffi-

cients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Quantitative analysis of the stability properties as a function of Cmn coef-

ficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Dependence of the decay ratio on the reactivity coefficients (Cmn

coefficients) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Estimation of the dynamical properties of the system (amplitude,

phase, frequency and decay ratio) . . . . . . . . . . . . . . . . . . . 56

6 Conclusions 59

Acknowledgements 61

Nomenclature 63

References 65

IV



LIST OF PUBLICATIONS

This report is based on several peer-reviewed journal articles, conference proceedings,
and reports that have been produced via the NORTHNET support received for the project.
Such publications are listed in chronological order as follows:

• Dykin V., “The effect of different perturbations on the stability analysis of Light
Water Reactors,” Licentiate Dissertation, CTH-NT-235, Chalmers University of Tech-
nology, Sweden (2010).

• Dykin V. and Demazière C., “Development of a Reduced Order Model and its ap-
plication to the Forsmark-1 instability event of 1996/1997,” CTH-NT-236, Chalmers
University of Technology (2010).

• Demazière C., “CORE SIM: A multi-purpose neutronic tool for research and educa-
tion,” XV Mtg. Reactor Physics Calculations in the Nordic Countries, Helsinki, Finland,
April 12-13, 2011 (2011).

• Dykin V., Demazière C., Lange C. and Hennig D., “Simulation of local instabili-
ties with the use of Reduced Order Models,” Proc. Int. Conf. on Mathematics and
Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), Rio
de Janeiro, RJ, Brazil, May 8-12, 2011, Latin American Section/American Nuclear
Society (2011).

• Demazière C., “CORE SIM: A multi-purpose neutronic tool for research and edu-
cation,” Annals of Nuclear Energy, 38 (12), pp. 2698-2718 (2011).

• Demazière C., “Description of the models and algorithms used in the CORE SIM
neutronic tool,” CTH-NT-241, Chalmers University of Technology (2011).

• Demazière C., “Validation and demonstration of the CORE SIM neutronic tool,”
CTH-NT-242, Chalmers University of Technology (2011).

• Demazière C., “User’s manual of the CORE SIM neutronic tool,” CTH-NT-243,
Chalmers University of Technology (2011).

• Dykin V. and Demazière C., “Development of a fully-consistent Reduced Order
Model to study instabilities in Boiling Water Reactors,” Proc. Int. Conf. on Ad-
vances in Reactor Physics - Linking Research, Industry, and Education (PHYSOR 2012),
Knoxville, TN, USA, April 15-20, 2012, American Nuclear Society (2012).

1



• Lange C., Hennig D., Hurtado A., Dykin V. and Demazière C., “Comments on local
power oscillation phenomenon at BWRs,” Progress in Nuclear Energy, 60, pp. 73-88
(2012).

• Dykin V., “Noise applications in Light Water Reactors with traveling perturba-
tions,” PhD thesis, CTH-NT-263, Chalmers University of Technology, Gothenburg,
Sweden (2012).

• Dykin V., Demazière C. and Vinai P., “On the possible dependence of the Decay
Ratio on the void reactivity feedback,” Transactions of the American Nuclear Society,
107, San Diego, CA, USA, November 11-15, 2012 (2012).

• Dykin V., Demazière C., Lange C. and Hennig D., “Investigation of global and re-
gional instabilities with a four heated-channel Reduced Order Model,”Annals of Nu-
clear Energy, 53, pp. 381-400 (2013).

• Dykin V., Demazière C., Lange C. and Hennig D., “Investigation of local BWR insta-
bilities with a four-heated channel Reduced Order Model,”Annals of Nuclear Energy,
53, pp. 320-330 (2013).

2



Chapter 1
INTRODUCTION

A specificity of Boiling Water Reactors (BWRs) is the very strong coupling between the
neutron kinetics and the thermal-hydraulics, and the resulting instabilities that can arise.
BWRs can experience unstable conditions during start-up, i.e. at reduced core flow and
relatively high power level, as well as during nominal operating conditions in case of an
abnormal event (equipment malfunction). Calculations are thus performed via adequate
coupled neutronic/thermal-hydraulic codes to verify conditions under which the reactor
becomes unstable. If the margin to instabilities is not large enough, a new core loading
should be designed, or an exclusion zone should be defined, i.e. a set of operating con-
ditions that the reactor operator should always avoid should be determined. During the
start-up tests of the reactor, measurements of the in-core neutron noise are usually per-
formed. The goal of these measurements is to verify that there is a good agreement with
the calculations. One parameter of interest is the Decay Ratio (DR), which characterizes
the stability of BWRs.

Despite all these precautions, many instability events have occurred in the past in
BWRs worldwide. The occurrence of these instability events might be attributed to two
main deficiencies in the actual way to analyze and predict the stability of BWRs. The first
one is simply related to the lack of proper understanding of some of the key phenomena.
The second one is related to the inadequacy of the actual system codes to reproduce
complicated instability patterns.

In Sweden, one of the most spectacular events was the Oskarshamn-3 in-phase insta-
bility oscillation in February 1998, where very large power oscillations (more than 40%
of the nominal power from peak to peak) were undetected by the reactor operator before
the plant protection system automatically shut the reactor down [1].

Another example is the Forsmark-1 channel instability event in 1996/1997. The cu-
riosity of that event was that an analysis of the decay ratios, as calculated from the indi-
vidual LPRMs (Local Power Range Monitors), showed a large spatial variation of the DR,
with one half of the core appearing to be stable (DR ≈ 0.6) and the other half appearing
to be unstable (DR > 0.9) [2]. Stability calculations could not reproduce such spatially-
dependent DR and furthermore could not at all predict an unstable core configuration.
The corresponding operating point in the power-flow map was thus excluded and the
reactor was run until its expected end of cycle. Thereafter, a visual inspection of some of
the fuel assemblies revealed that there was one unseated fuel assembly. Post-calculations
showed that this unseated fuel assembly could drive a Density Wave Oscillation (DWO),
a purely thermo-hydraulic type of instability. There are indications that other fuel assem-
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Chapter 1. INTRODUCTION

blies were unseated, but no visual inspection of those could be performed.
Further, it was demonstrated during some stability tests performed in 1990 at Ringhals-

1 that relying on the decay ratio for predicting the margin to instabilities was unreli-
able [3]. Two neighboring operating points on the power-flow map could have very
different DRs. It is thus hazardous to use the decay ratio as a means to characterize the
core stability, since a slight change in the operating conditions from a stable core configu-
ration could result in an unstable configuration. Combined modes of oscillations are also
complicating the determination of the core stability, since a close-to-unstable mode can
be shadowed by a stable mode having a larger amplitude.

Clearly, the modeling of instability events with system codes is a very challenging
task. Although system codes represent state-of-the-art modeling techniques, the com-
plexity of the models, algorithms, and systems considered makes it very difficult to un-
derstand the possible root-cause of given instability events. In addition, gaining physical
understanding of the possible oscillations predicted by such codes is also limited. This
is why complementing such codes by models/tools that are simple enough but still al-
low catching the main physical phenomena occurring in BWR instabilities is of prime
interest. During the past years, Reduced-Order Models (ROMs) have been developed
with this objective in mind, and several ROMs exist (see for instance [4–6]). The most
advanced models of the earlier developed ROMs are able to represent the effect of global
oscillations, as well as regional oscillations not involving any rotation of the so-called
symmetry line (i.e. the line delimiting the positive from the negative lobes of the az-
imuthal neutronic mode).

In this project, the intention was to develop an as general as possible ROM able to
represent all stability patterns encountered in BWRs. In addition to the above mentioned
types of instabilities (global and regional), local oscillations might also be encountered.
Furthermore, some past instabilities events also demonstrated that regional oscillations
might exhibit a rotation of the symmetry line. As a consequence, the ROM developed
hereafter is able to simulate global, regional (with or without rotation of the symmetry
line), and local oscillations, as well as their interdependence. The developed ROM rep-
resents the only ROM capable of accounting for these three types of oscillations, and can
thus be used to gain physical insight into the complex phenomena occurring in BWR
instabilities. Moreover, the developed ROM can also be used to either investigate the
dependence of the dynamical behavior of the system on different system parameters, or
to possibly derive new stability indicators. The latter was actually the original purpose
of the project, and an attempt to propose a new stability indicator was also made in this
project.

It has to be emphasized that ROMs should only be used to provide a qualitative be-
havior of the system in case of BWR oscillations, and cannot provide a quantitative eval-
uation of any stability parameter.

The present report is structured as follows. First, the numerical tools and methods
necessary to estimate the pure neutronic response to global, regional, and local oscilla-
tions are presented. Thereafter, a ROM capable of accounting for the effect of both global
and regional oscillations, with the latter possibly exhibiting a rotating symmetry line, is
described. Its extension to represent the effect of local oscillations is then touched upon.
Finally, the possibility of using another stability indicator than the DR for predictive core
stability evaluation is investigated.
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Chapter 2
DEVELOPMENT OF A NUMERICAL
TOOL FOR ESTIMATING
NEUTRONIC RESPONSES TO
GLOBAL/REGIONAL/LOCAL
OSCILLATIONS

A tool, named CORE SIM, aimed at estimating the relevant neutronic responses in case
of global, regional, and local oscillations was developed and is reported hereafter. The
two first types of oscillation patterns require the determination of the so-called neutronic
eigenfunctions of the considered nuclear core, whereas the neutron fluctuations induced
a local oscillation requires the estimation of the Green’s function of the system. In this
chapter, the neutronic models are first described, with emphasis on the equations solved
and the spatial discretization scheme adopted. Thereafter, the modelling of static core
configurations is considered, followed by the modelling of dynamic core configurations.
In both cases, subcritical systems with source and critical systems are respectively con-
sidered.

2.1 Description of the neutronic models

In this section, the equations governing the modelling of neutron transport are presented,
together with the spatial discretisation scheme implemented in the tool.

2.1.1 Neutron transport modelling

The tool is based on diffusion theory with two energy groups and one group of delayed
neutrons. In this formalism, the time- and space-dependent fast neutron flux, thermal
neutron flux, and precursor density, can be expressed, respectively, as:

1
v1

∂
∂tϕ1 (r, t) = ∇ · [D1,0 (r)∇ϕ1 (r, t)] + [(1− β) υΣf,1 (r, t)− Σa,1 (r, t)− Σr (r, t)]ϕ1 (r, t)

+ (1− β) υΣf,2 (r, t)ϕ2 (r, t) + λC (r, t) + S1 (r, t)
(2.1)
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Chapter 2. DEVELOPMENT OF A NUMERICAL TOOL FOR ESTIMATING
NEUTRONIC RESPONSES TO GLOBAL/REGIONAL/LOCAL OSCILLATIONS

1

v2

∂

∂t
ϕ2 (r, t) = ∇·[D2,0 (r)∇ϕ2 (r, t)]+Σr (r, t)ϕ1 (r, t)−Σa,2 (r, t)ϕ2 (r, t)+S2 (r, t) (2.2)

∂C (r, t)

∂t
= βυΣf,1 (r, t)ϕ1 (r, t) + βυΣf,2 (r, t)ϕ2 (r, t)− λC (r, t) (2.3)

and where the macroscopic removal cross-section is defined as:

Σr (r, t) = Σs0,1→2 (r, t)−
Σs0,2→1 (r, t)ϕ2 (r, t)

ϕ1 (r, t)
(2.4)

In the previous equations, all the symbols have their usual meaning. The equations were
obtained by assuming that both the prompt and delayed neutrons only contribute to the
fast energy group. S1 (r, t) and S2 (r, t) represent possible external neutron sources in
the fast and thermal groups, respectively, and as such, the tool has the ability to model
both critical systems, for which S1 (r, t) = 0, ∀ (r, t) and S2 (r, t) = 0, ∀ (r, t), or subcritical
systems with external sources. All the macroscopic cross-sections and possible external
neutron sources might be time-dependent. It was earlier demonstrated in [8] that allow-
ing the diffusion coefficients to be time-dependent lead to dynamical results essentially
identical to keeping such diffusion coefficients time-independent. Since the computa-
tional burden introduced by letting the diffusion coefficients vary with time increases
drastically, the diffusion coefficients are kept time-independent in the tool reported here-
after.

In case of non-steady-state conditions, the time-dependent terms, generically expressed
as X (r, t), can be split into a mean value X0 (r) (corresponding to the steady-state con-
figuration of the system) and a fluctuating part δX (r, t) around the mean value as:

X (r, t) = X0 (r) + δX (r, t) (2.5)

The dynamic configurations are investigated in the frequency-domain. The equations
describing the dynamic behavior are obtained by removing the static equations from
the dynamic ones, then performing a temporal Fourier-transform, and finally neglecting
second-order terms (linear theory).

In many occurrences, the determination of the solution to an adjoint problem associ-
ated to the direct or forward static problem, frequency-dependent dynamic problem, re-
spectively, is of high interest. In order to properly define the concept of adjoint, the space
on which the previous quantities were defined needs to be given an inner product. In
two-group theory, any space-dependent function can be represented as a column vector,
where the first component corresponds to the fast energy group, and the second compo-
nent corresponds to the thermal energy group. One can then define the inner product
of two space-dependent functions ψ̄ (r̄) = [ψ1 (r̄) ψ2 (r̄)]

T and φ̄ (r̄) = [φ1 (r̄) φ2 (r̄)]
T ,

where the superscript T represents the transpose operator, as the integral of the scalar
product between the two vectors ψ (r) and φ (r) on the whole volume V of the system.
This reads as:(

ψ̄, φ̄
)
=

∫
V

ψ̄T (r̄) · φ̄ (r̄) dr̄ =

∫
V

[ψ1 (r̄)φ1 (r̄) + ψ2 (r̄)φ2 (r̄)]dr̄ (2.6)

Operators to any function defined on the previous space can be formally considered as
2x2 matrices, and the application of such operators on any space-dependent function
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2.1. Description of the neutronic models

(considered as a vector), can be regarded as the multiplication of a matrix and a vec-

tor. The adjoint L
+

of any operator L can then be defined as the one which satisfies the
relationship:

(
ψ̄ + , L× φ̄

)
=
(
L

+
× ψ̄ + , φ̄

)
(2.7)

whereψ+ andφ, which are the adjoint and forward or direct functions respectively, satisfy
certain boundary and continuity conditions. In two-group diffusion theory, it could be
further demonstrated that the adjoint operator is the transposed of the direct operator [9],
that is:

L
+
= L

T
(2.8)

2.1.2 Algorithm used for the spatial discretisation

In the developed tool, any three-dimensional system is assumed to be made of adjacent
volumes or nodes. In a cartesian coordinate system, a given node n can be represented
by the triplet of indexes (I, J,K), where the indexes I , J , and K refer to the x−, y−,
and z−directions, respectively. With the notations and conventions used throughout this
section and defined in Figs. 2.1 and 2.2, the equations presented in Section 2.1.1 are
spatially-averaged on each of these nodes.

Figure 2.1: Principles and conventions used for the spatial discretisation of a node n.
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Chapter 2. DEVELOPMENT OF A NUMERICAL TOOL FOR ESTIMATING
NEUTRONIC RESPONSES TO GLOBAL/REGIONAL/LOCAL OSCILLATIONS

Figure 2.2: Generic notations relative to a node n used in the spatial discretisation along a direc-
tion ℵ.

One then introduces the following node-averaged quantities:

ϕg,n (t) =
1

Vn

∫
Vn

ϕg (r, t) dr (2.9)

Σg,n (t) =

1
Vn

∫
Vn

Σg (r, t)ϕg (r, t) dr

ϕg,n (t)
(2.10)

Sg,n (t) =
1

Vn

∫
Vn

Sg (r, t) dr (2.11)

with Σg having the generic meaning of a macroscopic cross-section, and with Vn repre-
senting the volume of the node n. This way of defining the node-averaged data, which
preserves the actual reaction rates per node, is consistent with the group constants pro-
vided by any static core calculator. Using a spatial discretisation scheme based on fi-
nite differences and assuming that the scalar neutron flux in the middle of the nodes is
equal to the node-averaged scalar neutron flux (box-scheme), the node-averaged stream-
ing terms can be approximated as [10]:

1

Vn

∫
V

∇̄ ·
[
Dg,0 (r, t) ∇̄ϕg (r, t)

]
dr = −

∑
ℵ=x,y,z

Jℵ
g,n (t)− Jℵ

g,n−1 (t)

∆ℵ

= −
∑

ℵ=x,y,z

[
aℵg,n (t)ϕg,n (t) + bℵg,n (t)ϕg,n+1 (t) + cℵg,n (t)ϕg,n−1 (t)

] (2.12)

In this equation, ℵ represents the direction x, y, or z, ∆ℵ is the node width in the ℵ-
direction. In the following, the subscripts “+1” and “-1” represent the nodes adjacent to
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2.1. Description of the neutronic models

the node n along the ℵ-direction for increasing, decreasing, respectively, ℵ values (see
Fig. 2.2). In this equation, the surface-averaged net neutron current relative to the node
n in the ℵ-direction, with n+

ℵ being the outward normal relative to node n (as represented
in Fig. 2.2), is defined as:

Jℵ
g,n =

1

∆ℑ ·∆℘

∫ ∆ℑ/2

−∆ℑ/2

∫ ∆℘/2

−∆℘/2
Jg (rℵ) · n +

ℵ dℑd℘ (2.13)

with rℵ representing the position of any point belonging to the surface normal to n+
ℵ and

defined as: 
ℵ = ∆ℵ/2

ℑ ∈ [−∆ℑ/2,∆ℑ/2]
℘ ∈ [−∆℘/2,∆℘/2]

The expressions of the coupling coefficients aℵg,n (t), bℵg,n (t), and cℵg,n (t) are given in
Table 2.1. At the boundary of the system, Marshak boundary conditions are used, which
in the case of multigroup diffusion theory, read as:

Jg (rℵ) · nℵ =
1

2
φb
g (2.14)

where rℵ represents a spatial point on the boundary with nℵ being the outward normal to
the boundary and φb

g represents the scalar neutron flux at the boundary. The derivation
of the coupling coefficients is detailed in [11].

Table 2.1: Coupling coefficients in the ℵ-direction used for the spatial discretisation.

aℵg,n (t) bℵg,n (t) cℵg,n (t)

If the node
n− 1
does not exist

2Dg,0,nDg,0,n+1

(∆ℵ)2(Dg,0,n+Dg,0,n+1)

+ 1/2

∆ℵ+ (∆ℵ)2

4Dg,0,n

− 2Dg,0,nDg,0,n+1

(∆ℵ)2(Dg,0,n+Dg,0,n+1)
0

If the nodes
n−1 and n+1
both exist

2Dg,0,n−1Dg,0,n

(∆ℵ)2(Dg,0,n−1+Dg,0,n)

+
2Dg,0,nDg,0,n+1

(∆ℵ)2(Dg,0,n+Dg,0,n+1)

− 2Dg,0,nDg,0,n+1

(∆ℵ)2(Dg,0,n+Dg,0,n+1)
− 2Dg,0,n−1Dg,0,n

(∆ℵ)2(Dg,0,n−1+Dg,0,n)

If the node
n+ 1
does not exist

2Dg,0,n−1Dg,0,n

(∆ℵ)2(Dg,0,n−1+Dg,0,n)

+ 1/2

∆ℵ+ (∆ℵ)2

4Dg,0,n

0 − 2Dg,0,n−1Dg,0,n

(∆ℵ)2(Dg,0,n−1+Dg,0,n)

After spatial discretisation, the time- and space-dependent fast neutron flux, thermal
neutron flux, and precursor density, can be expressed, respectively, as:

1

v1

∂

∂t
ϕ1,n (t) = −

∑
ℵ=x,y,z

[
aℵ1,n (t)ϕ1,n (t) + bℵ1,n (t)ϕ1,n+1 (t) + cℵ1,n (t)ϕ1,n−1 (t)

]
+ [(1− β) υΣf,1,n (t)− Σa,1,n (t)− Σr,n (t)]ϕ1,n (t) + (1− β) υΣf,2,n (t)ϕ2,n (t)

+λCn (t) + S1,n (t)

(2.15)
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1

v2

∂

∂t
ϕ2,n (t) = −

∑
ℵ=x,y,z

[
aℵ2,n (t)ϕ2,n (t) + bℵ2,n (t)ϕ2,n+1 (t) + cℵ2,n (t)ϕ2,n−1 (t)

]
+Σr,n (t)ϕ1,n (t)− Σa,2,n (t)ϕ2,n (t) + S2,n (t)

(2.16)

∂Cn (t)

∂t
= βυΣf,1,n (t)ϕ1,n (t) + βυΣf,2,n (t)ϕ2,n (t)− λCn (t) (2.17)

2.2 Modelling of static core configurations

2.2.1 Subcritical systems with source

If the system contains an external neutron source (case of a subcritical system driven by
an external neutron source), Eqs. (2.1) - (2.3) written in steady-state conditions reduce to
the following matrix equation:[

∇ ·D (r)∇+Σsta (r)− F (r)
]
×
[
ϕ1,0 (r)
ϕ2,0 (r)

]
= −

[
S1,0 (r)
S2,0 (r)

]
(2.18)

with

D (r) =

[
D1,0 (r) 0

0 D2,0 (r)

]
(2.19)

Σsta (r) =

[
−Σa,1,0 (r)− Σr,0 (r) 0

Σr,0 (r) −Σa,2,0 (r)

]
(2.20)

F (r) =

[
−νΣf,1,0 (r) −νΣf,2,0 (r)

0 0

]
(2.21)

and where the subscript 0 refers to the static values of the different variables.
An adjoint problem associated with the forward problem as given by Eq. (2.18) can

then be formally written as:[
∇ ·D (r)∇+Σ

T

sta (r)− F
T
(r)

]
×
[
ϕ1,0

† (r)

ϕ2,0
† (r)

]
= −

[
S1,0

† (r)

S2,0
† (r)

]
(2.22)

From a mathematical viewpoint, the static forward problem of a subcritical source-
driven system as given by Eq. (2.18) is represented by a non-homogeneous equation.
Likewise, the corresponding adjoint problem as given by Eq. (2.19) is also represented by
a non-homogeneous equation.

After spatial discretisation, both equations reduce to:

M
sub

sta × ϕ0 = S0 and M
sub

sta

†
× ϕ0

†
= S0

† (2.23)

Due to the very large number of nodes used in reactor calculations, the direct deter-

mination of the inverse of M
sub

sta and M
sub

sta

†
is usually impossible. Instead, the matrices

M
sub

sta and M
sub

sta

†
, which are sparse, are first factorized into unit lower triangular matrices

L and L
†
, and upper triangular matrices U and U

†
, such that:

L× U = P ×M
sub

sta ×Q and L
†
× U

†
= P

†
×M

sub

sta

†
×Q

†
(2.24)

10



2.2. Modelling of static core configurations

where P and P
†

are row permutation matrices, and Q and Q
†

are column reordering
matrices. The matrix factorization as given by Eq. (2.23) is directly performed in MatLab
via the built-in UMFPACK package [12]. The factorization is carried out while preserving
as much as possible the sparsity of the matrices. Once the factorization of the matrices
has been performed, the solution to the problem can be readily obtained by forward and
backward substitutions as:

ϕ̄0 = Q×
{
U\
[
L\
(
P × S0

)]}
and ϕ̄†0 = Q

†
×
{
U

†
\
[
L
†
\
(
P

†
× S0

†
)]}

(2.25)

Further details about the procedure used in the tool to solve non-homogeneous equations
can be found in [11].

In order to benchmark the numerical algorithms used for estimating the solution to
non-homogeneous equations, a one-dimensional one-region subcritical system was con-
sidered. The size of the system was set to 2a = 300 cm, and the homogeneous macro-
scopic cross-sections and diffusion coefficients were chosen to be representative of a
typical LWR. The subcriticality was then obtained by decreasing the macroscopic fis-
sion cross-section in the thermal group. The material data thus used in the benchmark
are given in Table 2.2. An external fast neutron source was introduced as a point-like
source located at z′ = −50 cm. The numerical solution was estimated with a node size of
∆z = 1 cm.

Table 2.2: Values of the material data used in the static benchmark in case of a one-dimensional
one-region subcritical system.

D1,0

[cm]
D2,0

[cm]
Σa,1,0

[cm−1]
Σa,2,0

[cm−1]
Σr

[cm−1]
υΣf,1,0

[cm−1]
υΣf,2,0

[cm−1]
1.4376 0.3723 0.0115 0.1019 0.0151 0.0057 0.1283

The reference solution to the forward problem [i.e. Eq. (2.18)], defined on z ∈ [−aext; aext],
was derived from [13, 14] and is given by:[

ϕ1,0 (z)
ϕ2,0 (z)

]
=

[
1
cµ

]
Gµ

(
z, z′

)
+

[
1
cν

]
Gν

(
z, z′

)
(2.26)

with

Gµ

(
z, z′

)
=

{
E− × sin {µ× [z + aext]} , for z < z′

E + × sin {µ× [z − aext]} , for z > z′
(2.27)

Gν

(
z, z′

)
=

{
F0 × sinh {ν × [z + aext]} , for z < z′

F + × sinh {ν × [z − aext]} , for z > z′
(2.28)

with the extrapolated distance aext defined as:

aext = a+ 2D1,0 (2.29)

The coupling coefficients cµ and cν are expressed as:

cµ =
Σr,0

Σa,2,0 +D2,0µ2
and cν =

Σr,0

Σa,2,0 −D2,0ν2
(2.30)

11



Chapter 2. DEVELOPMENT OF A NUMERICAL TOOL FOR ESTIMATING
NEUTRONIC RESPONSES TO GLOBAL/REGIONAL/LOCAL OSCILLATIONS

with

µ2 =
1

2

−( 1

l21
+

1

l22

)
+

√(
1

l21
+

1

l22

)2

+
4 [α− 1]

l21 · l22

 (2.31)

ν2 =
1

2

( 1

l21
+

1

l22

)
+

√(
1

l21
+

1

l22

)2

+
4 [α− 1]

l21 · l22

 (2.32)

and

l21 =
D1,0

Σa,1,0 +Σr,0 − υΣf,1,0
(2.33)

l22 =
D2,0

Σa,2,0
(2.34)

α =
Σr,0 × υΣf,2,0

(Σa,1,0 +Σr,0 − υΣf,1,0)× Σa,2,0
(2.35)

The coefficients E-, E+, F-, and F+ are solutions of the following equation:


sinµ [z′ − aext] − sinµ [z′+ aext] sinh ν [z′ − aext] − sinh ν [z′+ aext]
cµ sinµ [z′ − aext] −cµ sinµ [z′+ aext] cν sinh ν [z′ − aext] −cν sinh ν [z′+ aext]
µ cosµ [z′ − aext] −µ cosµ [z′+ aext] ν cosh ν [z′ − aext] −ν cosh ν [z′+ aext]
cµµ cosµ [z′ − aext] −cµµ cosµ [z′+ aext] cνν cosh ν [z′ − aext] −cνν cosh ν [z′+ aext]



×


E +
E−
F +
F−

 =


0
0

−1/D1,0

0


(2.36)

The analytical and numerical solutions are given in Fig. 2.3. Although the results are
presented in arbitrary units, the analytical and numerical solutions were not scaled be-
tween each other. A very good agreement can be noticed in terms of the computed space-
dependence of the fast and thermal static neutron fluxes, as well as of the computed
eigenvalue (for which the solution procedure is explained in Section 2.2.2). The exponen-
tial decrease of the static neutron away from the neutron source is typical of subcritical
systems.

12



2.2. Modelling of static core configurations
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Figure 2.3: Results of the static benchmark in case of a one-dimensional one-region subcritical
system (forward problem).

2.2.2 Critical systems

If the system does not contain any external neutron source, a steady-state solution to Eqs.
(2.1) - (2.3) only exists if the system is critical. Eqs. (2.1) - (2.3) written in steady-state
conditions then reduce to the following matrix equation:[

∇ ·D (r)∇+Σsta (r)
]
×
[
ϕ1,0 (r)
ϕ2,0 (r)

]
= F (r)×

[
ϕ1,0 (r)
ϕ2,0 (r)

]
(2.37)

If the system is not critical, a steady-state solution can still be obtained by re-normalizing
the fission source terms by a factor km, and thus Eqs. (2.1) - (2.3) reduce to:[

∇ ·D (r)∇+Σsta (r)
]
×
[
ϕ1,m (r)
ϕ2,m (r)

]
=

1

km
F (r)×

[
ϕ1,m (r)
ϕ2,m (r)

]
(2.38)

Both the eigenfunctions ϕ1,m (r) and ϕ2,m (r) and the corresponding eigenvalue 1 /km
have to be determined. There is an infinite number of solutions, i.e. an infinite number of
pairs of solutions

[
ϕ1,m (r) ϕ2,m (r)

]
and km, where the index m represents the mode

number. The eigenfunctions having the same sign throughout the entire system corre-
sponds to the static fluxes denoted as

[
ϕ1,0 (r) ϕ2,0 (r)

]
(fundamental mode) and the

associated factor k0 is then the effective multiplication factor of the system, i.e.

k0 = keff (2.39)

All other eigenfunctions change sign throughout the system, and their associated factor
km is strictly smaller than keff . It is customary to order the eigenmodes in increasing
order of their eigenvalue 1 /km (thus in decreasing order of the factor km):

keff = k0 > k1 > k2 > ... > km (2.40)

It has to be noted that Eq. (2.37) is a sub-case of Eq. (2.38) obtained with k0 = keff = 1.
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Chapter 2. DEVELOPMENT OF A NUMERICAL TOOL FOR ESTIMATING
NEUTRONIC RESPONSES TO GLOBAL/REGIONAL/LOCAL OSCILLATIONS

As before, an adjoint problem associated with the forward problem as given by Eq.
(2.38) can be formally written as:[

∇ ·D (r̄)∇+Σ
T

sta (r̄)

]
×

[
ϕ†1,m (r̄)

ϕ†2,m (r̄)

]
=

1

k†m
F

T
(r̄)×

[
ϕ†1,m (r̄)

ϕ†2,m (r̄)

]
(2.41)

It could be demonstrated that in two-group diffusion theory [9]:

km
† = km (2.42)

From a mathematical viewpoint, the static forward problem of a critical system as
given by Eq. (2.38) is represented by an eigenvalue equation. Likewise, the correspond-
ing adjoint problem as given by Eq. (2.41) is also represented by an eigenvalue equation.

After spatial discretisation, both equations reduce to:

M
crit

sta × ϕm =
1

km
F × ϕm and M

crit

sta

†
× ϕm

†
=

1

km
†F

T
× ϕm

† (2.43)

Iterative techniques are required to solve the above problems, which can be generically
rewritten as:

A× xm = λmxm (2.44)

with
A =M crit −1

sta × F orA =M crit† −1
sta × F

T
(2.45)

λm = km or λm = km
† (2.46)

and
xm = ϕm or xm = ϕm

† (2.47)

As earlier explained in Section 2.2.1, the calculation of the inverse of M
crit

sta or M
crit

sta

†

is avoided by first performing a LU factorization will full pivoting as:

L× U = P ×M
crit

sta ×Q or L
†
× U

†
= P

†
×M

crit

sta

†
×Q

†
(2.48)

leading for Eq. (2.44) to:

Q×
{
U\
[
L\
(
P × F × xm

)]}
= λmxm or Q

†
×
{
U

†
\
[
L
†
\
(
P

†
× F

†
× xm

)]}
= λmxm

(2.49)
In the developed computational tool, two techniques have been implemented in order
to be able to determine any eigenmode m (not only the fundamental mode). Namely,
the explicitly-restarted Arnoldi method and the power iteration method with Wielandt’s
shift have been used.

Explicitly-restarted Arnoldi method

Some of the most efficient techniques to solve eigenvalue problems are based on
Krylov subspace methods. The explicitly-restarted Arnoldi method belongs to this class
of techniques [15]. The Arnoldi method is based on the fact that useful information is
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2.2. Modelling of static core configurations

lost during the application of the classical power iteration method. Namely, only the lat-
est estimates of the eigenvector and eigenvalue are used for subsequently calculating a
new estimate of the eigenvector and eigenvalue. In the Arnoldi method instead, a Krylov
subspace containing an estimate of the eigenvectors of the matrix A obtained during the
application of the power iteration method during t iterations is first constructed, i.e. the
following space is constructed:

ℜt

(
A, v̄

)
= span

{
v̄, A× v̄, A

2
× v̄, ..., A

t−1
× v̄

}
(2.50)

with
t≪ dimension of A (2.51)

Thereafter, an orthonormal basis of this subspace is estimated. Finally, the eigenvec-
tors/eigenvalues of this orthonormal basis are determined. The eigenvectors of the ma-
trix representing the projection of the original matrix on the Krylov subspace can be used
for determining the eigenvectors of the original matrix, and therefore the eigenvectors of
A can be estimated from the eigenvectors of the matrix representing the projection of the
original matrix on the Krylov subspace. The main advantage of this procedure is the fact
that the projection matrix is an Hessenberg matrix of size t x t, i.e. much smaller than
the size of the original matrix. Consequently, the determination of the t eigenvectors and
corresponding eigenvalues is relatively easy.

The iterative scheme of the explicitly-restarted Arnoldi method can be sketched as
follows [16, 17]:

• First, an orthogonal basis of ℜt

(
A, v

)
using the Gram-Schmidt orthogonalization

process is constructed. This results in the construction of the matrix V t = (v:,1, v:,2, ..., v:,t)

representing an orthogonal basis of ℜt

(
A, v

)
, as well as a reduced Hessenberg ma-

trix Hr, such that one has:

V
T

t ×A× V t = Hr (2.52)

• Thereafter, the pairs of eigenvectors x:,j and eigenvalues Λj of the reduced Hessen-
berg matrix Hr (for 1 ≤ j ≤ t) are determined, resulting in:

Hr ×X = X × Λ (2.53)

with
X = (x:,1, x:,2, ..., x:,t) (2.54)

and

Λ =


Λ1 0 ... ... 0
0 Λ2 0 ... ...
... 0 ... 0 ...
... ... 0 Λt−1 0
0 ... ... 0 Λt

 (2.55)

Since the reduced Hessenberg matrix is chosen to be of small size, the determina-
tion of its eigenvectors and eigenvalues is relatively easy. Such a determination is
directly carried out in MatLab via the built-in LAPACK package [18].
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NEUTRONIC RESPONSES TO GLOBAL/REGIONAL/LOCAL OSCILLATIONS

• One could then demonstrate that the eigenvectors of A are given by the columns of
V t ×X and the corresponding eigenvalues are Λ.

• Since the eigenvalues of the reduced Hessenberg matrix Hr might be bad approx-
imations of the eigenvalues of the original matrix A, especially if the subspace di-
mension t is kept small, the algorithm is (explicitly) restarted with a linear combi-
nation of the eigenvectors of A until some convergence criteria on the eigenvectors
are fulfilled.

Further details about the Arnoldi method implemented in the numerical tool can be
found in [11]. The explicitly-restarted Arnoldi method is an extremely efficient method
for calculating the eigenfunctions/eigenvalues in a minimum computational time, since
several eigenmodes can be estimated simultaneously. Nevertheless, it cannot be proved
that the eigenvalues of Hr will converge to the extreme eigenvalues of A when A is non-
symmetric (even if such a convergence is usually observed) [19]. In order to circumvent
possible convergence problem, a power iteration method using Wielandt’s shift tech-
nique was also implemented in the numerical tool, and is explained in the following.

Power iteration method with Wielandt’s shift technique

The basic idea in Wielandt’s shift technique is to modify the original problem as given
by Eq. (2.43) into the following one [10]:(

M − 1

kest
F

)
× ϕ̄m =

(
1

km
− 1

kest

)
F × ϕ̄m

and
(
M

†
− 1

kest
F

T
)
× ϕ̄†m =

(
1

km
† − 1

kest

)
F

T
× ϕ̄†m

(2.56)

where kest is a known (input) parameter. The above problems can be generically rewrit-
ten as:

AW × xm = αmxm (2.57)

with

AW =

(
M − 1

kest
F

)−1

× F or AW =

(
M

†
− 1

kest
F

T
)
× F

T
(2.58)

1

αm
=

1

km
− 1

kest
or

1

αm
=

1

km
† − 1

kest
(2.59)

and
xm = ϕm or xm = ϕm

† (2.60)

As earlier explained in Section 2.2.1, the calculation of the inverse of M − 1
kest

F or

M
†
− 1

kest
F

T
is avoided by first performing a LU factorization will full pivoting as:

L× U = P ×
(
M − 1

kest
F

)
×Q or L

†
× U

†
= P

†
×
(
M

†
− 1

kest
F

T
)
×Q

†
(2.61)

leading for Eq. (2.57) to:

Q×
{
U\
[
L\
(
P × F × x̄m

)]}
= αmx̄m or Q

†
×
{
U

†
\
[
L
†
\
(
P

†
× F

†
× x̄m

)]}
= αmx̄m

(2.62)
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2.2. Modelling of static core configurations

The power iteration method applied to the modified equation (2.57) leads to the fol-
lowing iterative scheme:

x(p)m =
1

α
(p−1)
m

AW × x(p−1)
m (2.63)

and

α(p)
m =

x
(p−1),T
m ×

[
AW × x

(p−1)
m

]
x
(p−1),T
m × x

(p−1)
m

= α(p−1)
m

x
(p−1),T
m × x

(p)
m

x
(p−1),T
m × x

(p−1)
m

(2.64)

The iterative scheme given by Eqs. (2.63) and (2.64) completely defines the power
iteration method using Wielandt’s shift technique. It could be demonstrated that this it-
erative scheme converges to the eigenvector of the matrixA having the eigenvalue closest
to kest [see for instance [11]]. The convergence of this method is directly related to how
close to one of the existing eigenvalues kest actually is. In the developed computational
tool, a first guess of the different eigenvalues is obtained by applying the Arnoldi method
outlined above without performing any restart. Thereafter, each of these estimated eigen-
values is used as the parameter kest in the power iteration method with Wielandt’s shift.

Further details about the procedure used in the tool to solve eigenvalue equations can
be found in [11].

In order to benchmark the numerical algorithms used for estimating the solution to
eigenvalue equations, a one-dimensional two-region system near to criticality was con-
sidered. The system was made of a central active core region of size 2b = 322.5 cm,
surrounded on both sides by a reflector of thickness a − b = 118.25 cm. The macro-
scopic cross-sections and diffusion coefficients were chosen to be representative of a typ-
ical LWR. The material data used in the benchmark are given in Table 2.3. The numerical
solution was estimated with a node size of ∆z = 0.5375 cm.

Table 2.3: Values of the material data used in the static/dynamic benchmark in case of a one-
dimensional two-region system near to criticality 1.

D1,0

[cm]
D2,0

[cm]
Σa,1,0

[cm−1]
Σa,2,0

[cm−1]
Σr

[cm−1]
υΣf,1,0

[cm−1]
υΣf,2,0

[cm−1]
core 1.4376 0.3723 0.0115 0.1019 0.0151 0.0057 0.1425
reflector 1.3116 0.2624 -0.0098 0.0284 0.0238 0 0
1 The negative value of the macroscopic absorption cross-section for the reflector region is the result of

the homogenization of the material data from a three-dimensional heterogeneous system into a one-
dimensional two-region system.

The reference solution, defined on z ∈ [−a− b; a+ b], is given by [20]:

[
ϕ1,2m (z)
ϕ2,2m (z)

]
=


A1

[
1

cµ2m

]
cos (µ2mz) +A2

[
1

cη2m

]
cosh(ν2mz)
cosh(ν2mb) for − b 6 z 6 b

A3

[
1
cκ

]
sinh[κ1(|z|−a)]
sinh[κ1(b−a)] +A4

[
0
1

]
sinh[κ2(|z|−a)]
sinh[κ2(b−a)] for b < |z| < a

(2.65)[
ϕ1,2m+1 (z)
ϕ2,2m+1 (z)

]
=


A1

[
1

cµ2m+1

]
sin (µ2m+1z) +A2

[
1

cη2m+1

]
cosh(ν2m+1z)
cosh(ν2m+1b)

for − b 6 z 6 b

A3

[
1
cκ

]
sinh[κ1(|z|−a)]
sinh[κ1(b−a)] +A4

[
0
1

]
sinh[κ2(|z|−a)]
sinh[κ2(b−a)] for b < |z| < a

(2.66)

17
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for the forward problem [i.e. Eq. (2.38)]. Eq. (2.65) is written for the even-order eigen-
functions, whereas Eq. (2.66) is written for the odd-order eigenfunctions. In the previous
equations, the different coefficients are given as:

µ2m =
1

2

−( 1

l21,m
+

1

l22

)
+

√√√√( 1

l21,m
+

1

l22

)2

+
4 [αm − 1]

l21,m · l22

 (defined for |z| < b) (2.67)

ν2m =
1

2

( 1

l21,m
+

1

l22

)
+

√√√√( 1

l21,m
+

1

l22

)2

+
4 [αm − 1]

l21,m · l22

 (defined for |z| < b) (2.68)

κ1 =

√
Σa,1,0 +Σr,0

D1,0
(defined for b < |z| < a) (2.69)

κ2 =

√
Σa,2,0

D2,0
(defined for b < |z| < a) (2.70)

with

l21,m =
D1,0

Σa,1,0 +Σr,0 − υΣf,1,0 /km
(defined for |z| < b) (2.71)

l22 =
D2,0

Σa,2,0
(defined for |z| < b) (2.72)

αm =
Σr,0 × υΣf,2,0 /km

(Σa,1,0 +Σr,0 − υΣf,1,0 /km )× Σa,2,0
(defined for |z| < b) (2.73)

The coupling coefficients are defined as:

cµm =
Σr,0

Σa,2,0 +D2,0µ2m
(defined for |z| < b) (2.74)

cνm =
Σr,0

Σa,2,0 −D2,0ν2m
(defined for |z| < b) (2.75)

cκ =
Σr,0

D2,0 ×
(
κ22 − κ21

) (defined for b < |z| < a) (2.76)

The coefficients A1 - A4 are solutions of four algebraic homogeneous equations express-
ing the interface conditions at z = ±b (continuity of the flux and of the corresponding
current, for both the fast and thermal groups). The determinant of the corresponding
systems of equations thus needs to be equal to zero, from which km can be determined
numerically.

The analytical and numerical solutions are given in Fig. 2.4, where a very good agree-
ment can be noticed in terms of the computed space-dependence of the fast and thermal
static neutron fluxes, as well as of the computed eigenvalue. The reflector peaks are
clearly visible in the thermal group.
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Figure 2.4: Results of the eigenfunction benchmark in case of a one-dimensional two-region criti-
cal system (forward problem); the results are only given for the fifth mode.

2.3 Modelling of dynamic core configurations

2.3.1 Subcritical systems with source

If the system is subcritical and driven by an external neutron source, using Eq. (2.5) for all
time-dependent terms in Eqs. (2.1) - (2.3), removing the static equations [i.e. Eq. (2.18)],
performing a temporal Fourier-transform, and neglecting second-order terms (linear the-
ory), the following matrix equation is obtained:[
∇ ·D (r)∇+Σ

sub

dyn (r, ω)

]
×
[
δϕ1 (r, ω)
δϕ2 (r, ω)

]
= −

[
δS1 (r, ω)
δS2 (r, ω)

]
+ ϕr (r) δΣr (r, ω) + ϕa (r)

[
δΣa,1 (r, ω)
δΣa,2 (r, ω)

]
+ ϕ

sub

f (r, ω)

[
δυΣf,1 (r, ω)
δυΣf,2 (r, ω)

]
(2.77)

with

Σ
sub

dyn (r, ω) =

 −Σsub
1 (r, ω) υΣf,2,0 (r)

(
1− iωβ

iω+λ

)
Σr,0 (r) −

(
Σa,2,0 (r) +

iω
v2

)  (2.78)

ϕr (r) =

[
ϕ1,0 (r)
−ϕ1,0 (r)

]
(2.79)

ϕa (r) =

[
ϕ1,0 (r) 0

0 ϕ2,0 (r)

]
(2.80)

ϕ
sub

f (r, ω) =

[
ϕ1,0 (r)

(
1− iωβ

iω+λ

)
−ϕ2,0 (r)

(
1− iωβ

iω+λ

)
0 0

]
(2.81)

and with

Σsub
1 (r, ω) = Σa,1,0 (r) +

iω

v1
+Σr,0 (r)− υΣf,1,0 (r)×

(
1− iωβ

iω + λ

)
(2.82)
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The right-hand side of Eq. (2.77) gives the neutron noise source, resulting from either
the fluctuations of the external neutron source around its mean value, or from the fluctu-
ations of the macroscopic cross-sections (removal, absorption, and fission) around their
mean value. Although the effect of the fluctuations of the macroscopic fission cross-
sections and of the macroscopic absorption cross-sections are given by two separate terms
in Eq. (2.77), any fluctuation in the macroscopic fission cross-section has also an impact
on the macroscopic absorption cross-section (since fission is a special type of absorption).

An adjoint problem associated with the forward problem as given by Eq. (2.77) can
then be formally written as:

[
∇ ·D (r̄)∇+Σ

sub†
dyn (r̄, ω)

]
×

[
δϕ†1 (r̄, ω)

δϕ†2 (r̄, ω)

]
= −

[
δS†

1 (r̄, ω)

δS†
2 (r̄, ω)

]
(2.83)

where

Σsub†
dyn (r, ω) = Σ

sub,T

dyn (r, ω) (2.84)

From a mathematical viewpoint, the dynamic forward problem of a subcritical source-
driven system and the corresponding adjoint problem, as given by Eqs. (2.77) and (2.83),
respectively, are represented after spatial discretisation by non-homogeneous equations
as:

M
sub

dyn × δϕ = δS and M sub†
dyn × δϕ

†
= δS

† (2.85)

The same techniques as the ones described in Section 3.1 can be used to solve such equa-
tions.

2.3.2 Critical systems

If the neutron noise is induced by perturbations of the macroscopic cross-sections and
if there is no external neutron source, then splitting the time-dependent parameters into
mean values and fluctuations according to Eq. (2.5), removing the static equations [i.e.
Eq. (2.38) taken with n = 0], performing a temporal Fourier-transform, and neglecting
second-order terms (linear theory), the following matrix equation is obtained:[

∇ ·D (r̄)∇+Σ
crit

dyn (r̄, ω)

]
×
[
δϕ1 (r̄, ω)
δϕ2 (r̄, ω)

]
= ϕ̄r (r̄) δΣr (r̄, ω) + ϕa (r̄)

[
δΣa,1 (r̄, ω)
δΣa,2 (r̄, ω)

]
+ ϕ

crit

f (r̄, ω)

[
δυΣf,1 (r̄, ω)
δυΣf,2 (r̄, ω)

] (2.86)

When deriving this equation for the neutron noise, the system is assumed to be critical
without source, since the system is supposed to be stationary. This means that Eq. (2.38) is
assumed to be verified with k0 = keff = 1 for m = 0. In reality, it is very unlikely that the
eigenvalue of the first eigenmode is exactly equal to unity. Furthermore, Eq. (2.86) has to
be spatially discretized, and such a spatial discretisation might also lead to a discretized
system deviating from criticality, even if the non-discretized system was exactly critical.
One way to cope with this difficulty is to re-normalize the macroscopic fission cross-
sections with keff , i.e. to replace in all equations υΣf,g (r, t) by υΣf,g (r, t) /keff . This re-
normalization guarantees that the discretized system is stationary. Therefore, the matrix

20



2.3. Modelling of dynamic core configurations

Σ
crit

dyn is defined as:

Σ
crit

dyn (r̄, ω) =

 −Σcrit
1 (r̄, ω)

υΣf,2,0(r̄)
keff

(
1− iωβ

iω+λ

)
Σr,0 (r̄) −

(
Σa,2,0 (r̄) +

iω
v2

)  (2.87)

with

Σcrit
1 (r, ω) = Σa,1,0 (r) +

iω

v1
+Σr,0 (r)−

υΣf,1,0 (r)

keff

(
1− iωβ

iω + λ

)
(2.88)

and the matrix ϕ
crit

f is given as:

ϕ
crit

f (r, ω) =

[
−ϕ1,0(r)

keff

(
1− iωβ

iω+λ

)
−ϕ2,0(r)

keff

(
1− iωβ

iω+λ

)
0 0

]
(2.89)

The expressions for ϕr (r) and ϕa (r) are identical to the ones given by Eqs. (2.79) and
(2.80), respectively. The right-hand side of Eq. (2.86) gives the neutron noise source, re-
sulting from the fluctuations of the macroscopic cross-sections (removal, absorption, and
fission) around their mean value. Although the effect of the fluctuations of the macro-
scopic fission cross-sections and of the macroscopic absorption cross-sections are given
by two separate terms in Eq. (2.86), any fluctuation in the macroscopic fission cross-
section has also an impact on the macroscopic absorption cross-section (since fission is a
special type of absorption).

An adjoint problem associated with the forward problem as given by Eq. (2.86) can
then be formally written as:[

∇ ·D (r)∇+Σcrit
dyn

†
(r, ω)

]
×
[
δϕ1

† (r, ω)

δϕ2
† (r, ω)

]
= −

[
δS1

† (r, ω)

δS2
† (r, ω)

]
(2.90)

where
Σcrit†
dyn (r, ω) = Σ

crit,T

dyn (r, ω) (2.91)

From a mathematical viewpoint, the dynamic forward problem of a critical system
and the corresponding adjoint problem, as given by Eqs. (2.86) and (2.90), respectively,
are represented after spatial discretisation by non-homogeneous equations as:

M
crit

dyn × δϕ = δS and M
crit

dyn

†
× δϕ

†
= δS

† (2.92)

The same techniques as the ones described in Section 2.2.1 can be used to solve such
equations.

Although the numerical algorithms used for estimating the solution to non-homogeneous
equations were already benchmarked (see Section 2.2.1), an additional dynamic bench-
mark is presented hereafter, since the dynamic capabilities of the tool in the frequency-
domain makes the tool rather unique. The benchmark actually corresponds to the mod-
elling of shell-mode core barrel vibrations at 20 Hz in Pressurized Water Reactors (fur-
ther details about the modelling of such vibrations can be found in [21, 22]). A one-
dimensional two-region system near to criticality was considered. The system was made
of a central active core region of size 2b = 322.5 cm, surrounded on both sides by a reflec-
tor of thickness a − b = 118.25 cm. The macroscopic cross-sections and diffusion coeffi-
cients were chosen to be representative of a typical LWR, and were already given in Table
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2.2. The additional kinetic data required to perform the dynamic calculations are given
in Table 2.4. The numerical solution was estimated with a node size of ∆z = 0.05 cm.

Table 2.4: Values of the kinetic data used in the dynamic benchmark in case of a one-
dimensional two-region system near to criticality.

v1 [cm.s−1] v2 [cm.s−1] β [pcm] λ [s−1]
1.82304x107 4.13067x105 535 0.08510

The reference solution to the forward problem [i.e. Eq. (2.86)], defined on z ∈ [−a− b; a+ b]
and for two identical point-like 20 Hz perturbations located at the interfaces core/reflector
in z′ = ±b, is given by [21]:

[
δϕ1 (z, ω)
δϕ2 (z, ω)

]
=


A1

[
1

cµ (ω)

]
cos [µ (ω) z] +A2

[
1

cη (ω)

]
cosh[ν(ω)z]
cosh[ν(ω)b] for − b 6 z 6 b

A3

[
1

cκ (ω)

]
sinh[κ1(ω)(|z|−a)]
sinh[κ1(ω)(b−a)] +A4

[
0
1

]
sinh[κ2(ω)(|z|−a)]
sinh[κ2(ω)(b−a)] for b < |z| < a

(2.93)
In the previous equations, the different coefficients are given as:

µ2 (ω) =
1

2

−( 1

l21 (ω)
+

1

l22 (ω)

)
+

√(
1

l21 (ω)
+

1

l22 (ω)

)2

+
4 [k (ω)− 1]

l21 (ω) · l22 (ω)

 (defined for |z| < b)

(2.94)

ν2 (ω) =
1

2

( 1

l21 (ω)
+

1

l22 (ω)

)
+

√(
1

l21 (ω)
+

1

l22 (ω)

)2

+
4 [k (ω)− 1]

l21 (ω) · l22 (ω)

 (defined for |z| < b)

(2.95)

κ1 (ω) =

√
Σa,1,0 +Σr,0 +

iω
v1

D1,0
(defined for b < |z| < a) (2.96)

κ2 (ω) =

√
Σa,2,0 +

iω
v2

D2,0
(defined for b < |z| < a) (2.97)

with

l21 (ω) =
D1,0

Σa,1,0 +Σr,0 +
iω
v1

− υΣf,1,0

keff
×
(
1− iωβ

iω+λ

) (defined for |z| < b) (2.98)

l22 (ω) =
D2,0

Σa,2,0 +
iω
v2

(defined for |z| < b) (2.99)

k (ω) =
Σr,0 ×

υΣf,2,0

keff
×
(
1− iωβ

iω+λ

)
[
Σa,1,0 +Σr,0 +

iω
v1

− υΣf,1,0

keff
×
(
1− iωβ

iω+λ

)]
×
(
Σa,2,0 +

iω
v2

) (defined for |z| < b)

(2.100)
The coupling coefficients are defined as:

cµ (ω) =
Σr,0

Σa,2,0 +
iω
v2

+D2,0µ2 (ω)
(defined for |z| < b) (2.101)
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cν (ω) =
Σr,0

Σa,2,0 +
iω
v2

−D2,0ν2 (ω)
(defined for |z| < b) (2.102)

cκ (ω) =
Σr,0

D2,0 ×
[
κ22 (ω)− κ21 (ω)

] (defined for b < |z| < a) (2.103)

The coefficientsA1 -A4 are solutions of the following equation, where the explicit depen-
dence on frequency was dropped for the sake of clarity:


− cos (µb) −1 1 0
−cµ cos (µb) −cν cκ 1
µDc

1,0 sin (µb) −νDc
1,0 tanh (νb) κ1D

r
1,0 coth [κ1 (b− a)] 0

cµµD
c
2,0 sin (µb) −cννDc

2,0 tanh (νb) cκκ1D
r
2,0 coth [κ1 (b− a)] κ1D

r
2,0 coth [κ1 (b− a)]



×


A1

A2

A3

A4

 =


0
0
δS1
δS2


(2.104)

In this equation,Dc
1,0 andDc

2,0 represent the static diffusion coefficients in the core region,
for the fast and thermal groups, respectively, whereas Dr

1,0 and Dr
2,0 represent the static

diffusion coefficients in the reflector region, for the fast and thermal groups, respectively.
The parameters δS1 and δS2 allow expressing the relative strength of the point-like noise
sources in the fast and thermal problems, respectively, and are defined as the difference
between the material data of the core and of the reflector (see [21, 22] for further details).
Such a definition of the noise sources allows representing the moving core/reflector in-
terfaces.

The comparison between the semi-analytical and numerical solutions for one half of
the core is given in Fig. 2.5, where a very good agreement can be noticed between both
solutions, both for the amplitude and phase of the fast and thermal neutron noise. Al-
though the results are presented in arbitrary units, the analytical and numerical solutions
were not scaled between each other. The reason of the out-of-phase behavior of the lo-
cal component of the thermal neutron noise that can be observed lies with the fact that
an increase of the size of the core region (and thus a decrease of the size of the reflec-
tor region) is accompanied by increased production of neutrons by fissions (leading to a
positive reactivity effect), but at the same time by increased thermal absorptions. Since
the core-wise neutron noise is related to the point-kinetic component (i.e. reactivity term)
of the neutron noise, the local component of the thermal neutron noise thus exhibits an
out-of-phase behavior compared to the core-wise neutron noise. Further explanations of
this effect can be found in [21].
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Figure 2.5: Results of the dynamic benchmark in case of a one-dimensional two-region critical
system (forward problem).

2.4 Use and demonstration of the tool

The computational tool presented above is delivered with a complete user’s guide [23]
explaining the required software/hardware, what the code package contains, the file ar-
chitecture and required input, the created output, the format of the input and output
variables, the variables necessary in the input files, the available variables in the output
file, and how to use the code. Some examples are also available within the package.

The main feature of the computational tool is its flexibility and its simplicity in use,
since there is no need of writing any input deck. Data input should be provided by
the user in a few data files describing the three-dimensional distributions of the macro-
scopic cross-sections throughout the system, as well as its geometry. Some additional
optional files should also be provided for defining possible external neutron sources and
their possible fluctuations, for defining possible sources in the static and dynamic adjoint
problems, as well as for defining some additional kinetic data necessary for calculating
the neutron noise. The presence of such files automatically triggers the corresponding
optional calculations.

Prior to use the tool, the user might want to change some default settings and/or fine-
tune some parameters related to the numerical techniques implemented in the code. For
the latter, the parameters are mostly related to the explicitly-restarted Arnoldi method
and to the power iteration method with Wielandt’s shift technique. These parameters
might need to be changed in case of convergence problems.
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After the successful run of the tool, a GUI can be used for visualizing both input
and output variables in a rather intuitive manner. The input data include the static two-
group macroscopic cross-sections, the possible external neutron sources, and the possible
noise sources defined as perturbations of these cross-sections/neutron sources. The out-
put data include the static neutron flux, the different eigenmodes, the induced neutron
noise, their adjoints, and the different eigenvalues. Due to the three-dimensional nature
of the system, the visualization of the input and output data has to be very flexible, so
that the input and output data can be visualized at different locations through the sys-
tem in a rather intuitive manner. A snapshot of the GUI is presented in Fig. 2.6. A
panel allows choosing the row, column, and level at which cross-sections of the chosen
input or output variable will be plotted. Furthermore, since the neutron noise is evalu-
ated in the frequency domain and some quantities might thus be complex, the user has
to choose whether the magnitude or the phase has to be plotted. An automatic sweep
through the whole system can also be performed, in order to find possible local effects
corresponding to the computed case. Three plots are given: a three-dimensional plot on
the left-hand side (with planar cross-sectional cuts at the chosen row, column, and level),
a two-dimensional plot in the middle (at the chosen level), and a one-dimensional plot
on the right-hand side (at the chosen row and column).

Figure 2.6: Overview of the Graphical User Interface (GUI) for the visualization of both input and
output data in the computational tool.
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Chapter 3
MODELING OF GLOBAL AND
REGIONAL INSTABILITIES VIA
ROM

A cursory description of the four heated channel reduced order model developed in this
project and consisting of three separate submodels for the neutron transport, heat transfer
and flow transport, is given hereafter. Some details regarding the development of the
ROM are touched upon. Careful attention is payed to the new features implemented,
compared to already existing models. Some results of the applications of the ROM to
study core-wide instabilities are also discussed.

3.1 Neutron kinetic model

This Section gives a brief overview of the neutron-kinetic model, implemented in the
ROM. First, the procedure, which is applied to derive the ordinary differential equa-
tions from the 3D partial differential reactor-dynamic equations and the assumptions
which are needed to be made, are described. One starts with the three-dimensional time-
dependent two-energy group diffusion equations, written in the operator (matrix) form
as [4, 27]:

¯̄v∗−1 · ∂Ψ̄
∗(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄F ∗(r̄∗, t∗)− ¯̄L∗(r̄∗, t∗)] · Ψ̄∗(r̄∗, t∗)

+

6∑
l=1

λ∗l · C∗
l (r̄

∗, t∗) · X̄, (3.1)

∂C∗
l (r̄

∗, t∗)

∂t∗
· X̄ = β∗l · ¯̄F ∗(r̄∗, t∗) · Ψ̄∗(r̄∗, t∗)− λ∗l · C∗

l (r̄
∗, t∗) · X̄, (3.2)

where Ψ̄∗(r̄∗, t∗) is the neutron flux vector which consists of the fast Ψ∗
1(r̄

∗, t∗) and ther-
mal Ψ∗

2(r̄
∗, t∗) neutron fluxes, ¯̄L(r̄, t) is the net loss matrix operator, which represents

the neutron leakage through diffusion, scattering and absorption, ¯̄F (r̄, t) is the fission
production matrix operator, which represents the neutron production through fission re-
actions, C∗

l (r̄
∗, t∗) is the concentration for the lth delayed neutron precursor group and X̄
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is a unit vector. The rest of the notations are standard. From now on, an asterisk stands
for the dimensional quantities, otherwise they are considered to be dimensionless.

Applying first-order perturbation theory, namely assuming small fluctuations of the
neutron flux Ψ̄∗(r̄∗, t∗) and C∗

l (r̄
∗, t∗) around their steady state values, due to perturba-

tions in both the fission ¯̄F ∗(r̄∗, t∗) and net loss ¯̄L∗(r̄∗, t∗) operators and taking into ac-
count static equations, the following equations for the fluctuating parts ¯δΨ

∗
(r̄∗, t∗) and

δC∗
l (r̄

∗, t∗) can be obtained:

¯̄v∗−1 · ∂
¯δΨ

∗
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄δF ∗(r̄∗, t∗)− ¯̄δL∗(r̄∗, t∗)] · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗))

+λ · δC∗
l (r̄

∗, t∗) · X̄ + [(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗
(r̄∗, t∗), (3.3)

∂δC∗
l (r̄

∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗))

−λ · δC∗
l (r̄

∗, t∗) · X̄ + β∗ · ¯̄F ∗
0 (r̄

∗) · ¯δΨ
∗
(r̄∗, t∗). (3.4)

Next, one expands both the space-time dependent neutron flux ¯δΨ∗(r̄∗, t∗), as well as
the space-time dependent concentration of the delayed neutron precursors δC∗

l (r̄
∗, t∗) in

terms of lambda (reactivity) modes as:

¯δΨ∗(r̄∗, t∗) =

∞∑
n=0

¯̄P ∗
n(t

∗) · Φ̄∗
n(r̄

∗), (3.5)

δC∗
l (r̄

∗, t∗) · X̄ =

∞∑
n=0

C∗
nl(t

∗) · ¯̄F ∗
0 (r̄

∗) · Φ̄∗
n(r̄

∗) · Λ∗
n, (3.6)

where Φ̄∗
n(r̄

∗) is the eigenvector, satisfying the corresponding λ eigenvalue problem.
Substituting Eqs. (3.5) and (3.6) into Eqs. (3.3) and (3.4), multiplying the resulting

equation by the adjoint eigenmode Φ̄∗†
m(r̄∗), assuming one group of delayed neutron pre-

cursors, after integration and some rearrangements, one gets the following dimensionless
point-kinetic equations:

dPm(t)

dt
=

1

Λm
(ρsm − β)Pm(t) +

1

Λm

2∑
n=0

ρFmn(t)Pn(t) + λCm(t), (3.7)

dCm(t)

dt
=

β

Λm
Pm(t)− λCm(t), (3.8)

where m = 0, 1, 2 is the mode number, ρsm is the static reactivity, ρFmn are the dynamic
feedback reactivities and Λm = Λmm (for m = 0 Λm gives the prompt neutron generation
time). The dynamic feedback reactivities ρFmn reflect the feedback mechanism between
the neutron kinetics and thermal-hydraulics in terms of void fraction and fuel tempera-
ture. In the linear approximation, the feedback reactivities for both void fraction and fuel
temperature can be expressed, respectively, as:

ρFmn(t) = ρVmn(t)|Tf (t)=const + ρDmn(t)|α(t)=const

=

4∑
l=1

CV
mn,l(αl(t)− α0) +

4∑
l=1

CD
mn,l(Tf,l(t)− Tf0), (3.9)
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where l stands for the channel number and α0 and Tf0 are the steady-state void fraction
and fuel temperature, correspondingly. The reactivity coupling coefficients C∗V,T

mn,l were
estimated numerically utilizing the cross-section data from SIMULATE-3 and spatial dis-
tribution of the eigenmodes from CORE SIM. A more detailed derivation can be found
in [25, 26].

3.2 Heat transfer model

In the following, the main steps needed to be undertaken to convert the partial differ-
ential equations, describing the heat conduction in the fuel rod, into the corresponding
ordinary differential equations, are described. The necessary assumptions and mathe-
matical tricks which have to be applied are also discussed. To begin with, the general
three-dimensional time-/space-dependent energy balance equation, written for a single
fuel rod, reads as [4, 24]:

ρ∗c∗p
∂

∂t∗
T ∗(r̄∗, t∗) = q∗

′′′
(r̄∗, t∗)− ∇̄∗ · q̄∗′′(r̄∗, t∗), (3.10)

where ρ∗ is the density of the rod fuel, c∗p is the specific heat of the fuel rod at constant
pressure, q∗

′′′
(r̄∗, t∗) is the volumetric heat production per unit time and per unit fuel rod

volume, and q̄∗
′′
(r̄∗, t∗) is the heat flux from the fuel rod surface area.

Next, neglecting the axial heat conduction and assuming azimuthal symmetry, the
fuel pellet temperature distribution can be approximated through two piece-wise quadratic
spatial functions with time-dependent expansion coefficients, written as:

Θp(r, t) =


T1(t) + η1(t)r + η2(t)r

2 if 0 < r < rd,

T2(t) + σ1(t)r + σ2(t)r
2 if rd < r < rp.

(3.11)

Here, one notes that the time dependent expansion coefficients ηi(t) and σi(t), i = 1, 2
can be expressed through the Ti(t), i = 1, 2 and system (design) parameters, utilizing the
discontinuity and boundary conditions.

Then, taking into account that there are three radial regions in the fuel rod (i.e. fuel
pellet 0 < r < rp, fuel gap rp < r < rg and fuel cladding rg < r < rp), after the
application of the variational principle, the following reduced differential equations for
Ti(t), describing the fuel rod conduction dynamics, are obtained:

dT1,l,jϕ(t)

dt
= p11,jϕT1,l,jϕ(t) + p21,jϕT2,l,jϕ(t) + p31,jϕcq

2∑
i=0

ξi(Pi(t)− P̃i), (3.12)

dT2,l,jϕ(t)

dt
= p12,jϕT1,l,jϕ(t) + p22,jϕT2,l,jϕ(t) + p32,jϕcq

2∑
i=0

ξi(Pi(t)− P̃i), (3.13)

where pij are complicated coefficients which depend on the design and operational pa-
rameters, jϕ stands for the single- (1ϕ) or two-phase (2ϕ) regions, l is the channel number
(varying between 1 and 4), and P̃0 is the steady state value of the fundamental mode.
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3.3 Thermo-hydraulic model

In this Section, the description of the thermal-hydraulic model for the present ROM is
given. Since there are two axial coolant regions assumed in the channel, namely single-
phase and two-phase regions, with a constant flow cross section, the description is per-
formed in two separate sections, respectively. Within the scope of this Section, the pro-
cedure to transform the PDEs, describing thermal-hydraulic processes, into simplified
ODEs, applying the variational method, is demonstrated.

3.3.1 Single-phase region

One starts with three local conservation equations written for mass, momentum and en-
ergy, respectively, as [4, 24]:

∂ρ∗(r̄∗, t∗)

∂t∗
+ ∇̄∗ · (ρ∗v̄∗)(r̄∗, t∗) = 0, (3.14)

∂(ρ∗v̄∗)

∂t∗
(r̄∗, t∗) + ∇̄∗ · (ρ∗v̄∗ ⊗ v̄∗)(r̄∗, t∗)

= ∇̄∗ · ¯̄τ∗(r̄∗, t∗)− ∇̄∗ · (P ∗(r̄∗, t∗) ¯̄I) + ρ∗(r̄∗, t∗)ḡ∗, (3.15)

∂(ρ∗e∗)(r̄∗, t∗)

∂t∗
+ ∇̄∗ · (ρ∗e∗v̄∗)(r̄∗, t∗) = −∇̄∗ · q̄∗′′(r̄∗, t∗)

+q̄∗
′′′
(r̄∗, t∗) + ∇̄∗ · (¯̄τ∗ · v̄∗)(r̄∗, t∗)− ∇̄∗ · (P ∗v̄∗)(r̄∗, t∗) + (ρ∗ḡ∗ · v̄∗)(r̄∗, t∗), (3.16)

where ⊗ stands for the tensor multiplication and ¯̄I is the unit tensor.
Further, assuming the coolant flow mainly in the axial direction (i.e. neglecting radial

flow), the time-dependent single-phase enthalpy h(z, t) can be expressed with a second
order polynomial as:

h(z, t) ≈ h2(z, t) = h(0, t) +

2∑
i=1

pi(t)z
i. (3.17)

Then, rewriting the energy balance equation in terms of enthalpy, after cross-section
averaging, the following dimensionless ODEs can be derived for the corresponding en-
thalpy time-dependent expansion coefficients pi(t) for each of the four heated channels:

dp1,l(t)

dt
=

6

µl(t)
[NρNrNpch,1ϕ,l(t)− vinlet,l(t)p1,n(t)]− 2vinlet,l(t)p2,l(t), (3.18)

dp2,l(t)

dt
= − 6

µ2l (t)
[NρNrNpch,1ϕ,l(t)− vinlet,l(t)p1,l(t)], (3.19)

where Nr and Nρ are dimensionless numbers, Fr is the Froude number and Npch,1ϕ(t) is
the so-called time dependent phase change number in the single-phase region which is
proportional to the wall heat flux q∗

′′
1ϕ and µ(t) is the boiling boundary (the axial elevation

in the reactor core where boiling starts).
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3.3.2 Two-phase region

Following the same procedure as in the single-phase region, one starts with the three
local conservation equations written for mass, momentum and energy for each coolant
phase region, respectively, as [4, 24]:

∂ρ∗k(r̄
∗, t∗)

∂t∗
+ ∇̄∗ · (ρ∗kv̄∗k)(r̄∗, t∗) = 0, (3.20)

∂(ρ∗kv̄
∗
k)

∂t∗
(r̄∗, t∗) + ∇̄∗ · (ρ∗kv̄∗k ⊗ v̄∗k)(r̄

∗, t∗)

= ∇̄∗ · ¯̄τ∗(r̄∗, t∗)− ∇̄∗ · (P ∗
k (r̄

∗, t∗) ¯̄I) + ρ∗k(r̄
∗, t∗)ḡ∗, (3.21)

ρ∗(r̄∗, t∗)
∂h∗(r̄∗, t∗)

∂t∗
+ (ρ∗v̄∗)(r̄∗, t∗) · ∇̄∗ · h∗(r̄∗, t∗)

= −∇̄∗ · q̄∗′′(r̄∗, t∗) + q∗
′′′
(r̄∗, t∗) + ¯̄τ∗(r̄∗, t∗) : [∇̄∗ ⊗ v̄∗(r̄∗, t∗)]

∂P ∗(r̄∗, t∗)

∂t∗
+

+v̄∗(r̄∗, t∗) · ∇̄∗P ∗(r̄∗, t∗), (3.22)

Here, k = l, v stands for the coolant phase: l for the liquid phase and v for the vapor
phase. Further, performing a radial space-averaging on the entire cross-sectional flow
area, assuming that both phases are in thermal equilibrium and using a mixture model
(homogeneous equilibrium model), replacing the time-dependent flow quality with the
following second order polynomial profile:

x(z, t) ≈ x2(z, t) = NρNr(d1(t)(z − µ(t)) + d2(t)(z − µ(t))2) (3.23)

and implementing the variational method to the resulting equations, after some rear-
rangements one gets the following dimensionless ODEs for the corresponding quality
time-dependent expansion coefficients di(t) for each of the four channels:

dd1,l(t)

dt
=

1

f2,l(t)
(f3,l(t)f1,l(t) + f4,l(t)) (3.24)

dd2,l(t)

dt
=

1

f5,l(t)
(f3,l(t)f1,l(t) + f6,l(t)) (3.25)

In the above, fi(t), i = 1, ..., 6 are complicated functions of time, depending on the design
and operational parameters, as well as phase variables, i.e. inlet velocity vinlet(t), pellet
temperature time-dependent coefficients Ti(t) , i = 1, 2, phase change number Npch,2ϕ,
mixture density ρm(z, t) and boiling boundaries µ(t).

The remaining two equations (3.15) and (3.21), written for the single- and two-phase
pressure drops, are used to derive the ODEs for the inlet velocity, using the pressure drop
balance and are not given here. We refer instead to [4–7].

3.4 ROM modifications

In the following, the major modifications of the present ROM, compared with other exist-
ing ROMs developed in the past, are pointed out. These modifications were performed
in order to improve the consistency of the ROM with the input data used and to better
model the physical behavior of instabilities. The list of the required input parameters for
the ROM simulations are given below:
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1. the design parameters of the system;

2. the thermal-hydraulic state variables, i.e. saturation temperature, densities, etc.;

3. the operational parameters or conditions, i.e. inlet flow, power, external pressure
drop and inlet temperature/enthalpy.

Some of these parameters were extracted from the static core simulator SIMULATE-3
output, providing a detailed description of the BWR core being studied. Others were
taken from the technical description of a BWR power plant and water tables.

3.4.1 Adjustment of the homogeneous equilibrium model to a higher order
model (drift flux model)

From the ROM analysis, it was found that the models currently used, where the homo-
geneous equilibrium model (HEM) [4, 24] is utilized, significantly overestimate the void
faction at the core exit, compared with the one calculated by SIMULATE-3. For compar-
ison, both void fraction profiles are demonstrated in the left plot of Fig. 3.1. From the
right plot of Fig. 3.1 where the results of the stability calculations performed with the
ROM are shown, one can conclude that the investigated system is very close to an unsta-
ble behavior, whereas a stable behavior of the system was proven by system codes where
the drift flux model (DFM) [5, 6, 24] is implemented.
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Figure 3.1: Axial void profile calculated by SIMULATE-3 (left figure, red line) and by the ROM
(left figure, black line) and the corresponding ROM stability analysis (right figure) with the origi-
nal value of cross-sectional flow area A∗

actual = 1.3811 · 10−4m2.

To overcome this inconsistency between the HEM and the DFM and not to further
complicate the ROM system, the cross-sectional flow area of the heated channel A∗

o was
artificially modified, so that the HEM can reproduce the void profile estimated by higher-
order models such as the DFM. The new cross-sectional flow area was estimated by
comparing the exit void fraction calculated from the ROM with HEM and the one from
SIMULATE-3 with DFM, i.e. the following relationship between the old and the new
cross-sectional flow areas was obtained:

A∗
o,ROMadj =

1

1+
1−α∗

exit,ROM
α∗
exit,ROM

ρ∗
l

ρ∗g

· (h∗g − h∗l )− h∗inlet + h∗l

1

1+
1−α∗

exit,SIM
α∗
exit,SIM

ρ∗
l

ρ∗g

· (h∗g − h∗l )− h∗inlet + h∗l
·A∗

o,SIM (3.26)
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A more detailed derivation of Eq. (3.26) is given in [25, 26]. The axial void profile as
calculated from the ROM with adjusted cross-sectional flow area A∗

o is shown in Fig. 3.2
(left figure). Comparing the ROM stability analysis using the actual cross-sectional flow
area A∗

actual [see Fig. 3.1, right figure] with the one performed using the adjusted flow
area A∗

o [see Fig. 3.2, right figure], one can notice that the adjustment of the flow area
stabilizes the system due to the reduction of the void fraction at the core outlet.
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Figure 3.2: Axial void profile calculated by SIMULATE-3 (left figure, red line) and by the ROM
with uniform power profile (left figure, black line) and result of the corresponding stability anal-
ysis (right figure) with the adjusted value of A∗

o = 2.049 · 10−4m2.

3.4.2 Introduction of a non-uniform power profile

Although the cross-sectional flow area utilized in the ROM was properly adjusted to
compensate for the use of the HEM, there is still a significant mismatch observed between
the void profile as calculated by the ROM with the correctedA∗

o and the one calculated in
SIMULATE-3. The reason for this mismatch can be explained by the fact that a uniform
axial power profile was assumed when calculating the ROM void profile. However, in
real commercial BWRs, the axial power profile is always bottom-peaked due to the better
moderation properties of the subcooled region. For this reason, a two-step power density
representing the separate power production in the single- and two-phase regions was
introduced into the ROM. This was achieved by replacing the uniform power density c∗q
with non-uniform ones c∗q,1 and c∗q,2 for the single- and two-phase regions, respectively,
utilizing the realistic axial power profile from the 3D core simulator CORE SIM. The
numerical method for estimating c∗q,1 and c∗q,2 is presented in [25, 26].

3.4.3 Iterative procedure for steady-steady state calculations

It is worth mentioning that the steady-state solution available from a commercial core
simulator together with all necessary input data and parameters for the calculations,
cannot be directly used in the ROM since such a steady-state solution will not satisfy
the corresponding ROM balance equations, i.e. neutron, heat and flow balance equa-
tions. The reason lies with the fact that the ROM equations are fundamentally different
from the ones used in core simulators, especially what regards the spatial discretization.
Consequently, a steady-state solution consistent with models implemented in the ROM
has to be found. For this purpose, an iterative procedure was developed to estimate the
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proper steady-state solution. A short description of this procedure is given below.
From the steady-state solution obtained from a commercial core simulator (i.e. SIMU-

LATE-3), the three-dimensional distributions of the macroscopic cross-sections were ob-
tained together with their relative changes due to either void fraction or fuel temperature
perturbations. These cross-section distributions were consequently used in CORE SIM
to calculate the static flux. Afterwards, using the boiling boundary estimated from the
commercial core simulator SIMULATE-3, the CORE SIM solution was used to estimate
the power produced in the single- and two-phase regions. Then, the dimensionless heat
transfer equations were correspondingly modified in order to account for a non-uniform
power profile.

Next, the fuel temperature and flow properties were estimated using the ROM ther-
mal hydraulic model at steady-state. Based on the computed thermal-hydraulic solution,
a new set of cross-sections as well as a new boiling boundary were calculated. The pro-
cess was then repeated until convergence. The results of the iterative procedure for esti-
mating the steady-state axial void profile are given in Fig. 3.3. It can be noticed that the
recalculated steady-state profile satisfactorily agrees with the SIMULATE-3 solution.
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Figure 3.3: Axial void profile calculated by SIMULATE-3 (red line) and by the ROM (black line)
for the nonuniform power profile after application of the recalculation procedure (update of the
cross-sections).

3.5 Analysis of the numerical results

In this Section, some of the results of the numerical integration of the resulting 42 ROM
ODEs, describing the dynamical behavior of a BWR, are demonstrated. A large number
of calculations were made from various artificial operational conditions, out of which
only the most interesting ones are shown and discussed below. The term artificial refers
to the fact that one of the parameters of the system, namely the cross-sectional flow area
A∗

o was adjusted in such a way that it is possible to simulate different oscillating patterns
keeping the other parameters as typical ones for a BWR. The present investigation is
mainly focused on the qualitative comparison of the ROM results between different op-
erational points, just to demonstrate the capabilities of the ROM to reconstruct different
stability behaviors. Emphasis is put on the coupling between different modes.

Depending on the stability properties of the modes, the following three cases were
investigated:
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1. both the fundamental and azimuthal modes are stable;

2. the fundamental mode is unstable and the azimuthal modes are stable;

3. both the fundamental and azimuthal modes are unstable (combined instability).

3.5.1 Case of a stable system

Here, the case of a completely stable system when all three modes decay relatively fast
is considered. The cross-sectional flow area was set to A∗

o = 2.249 · 10−4 m2. For better
visibility, the time evolution of the signals for the fundamental, the first and the second
azimuthal modes are shown separately in Fig. 3.4. One interesting feature which is ob-
served from these figures is the fact that the amplitude factors of the azimuthal modes
are several orders of magnitude smaller compared with the fundamental one. Such a
behavior can be explained by the fact that all modes except the fundamental one have
eigenvalues much smaller than unity and, hence, bring strongly negative reactivity. For
the purpose of comparison, one also shows the time evolution of the inlet velocities in
the first and the third channels in Fig. 3.5 which reconstruct the behavior of the corre-
sponding (fundamental) neutronic mode.
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Figure 3.4: Time evolutions of the fundamental (upper left figure), the first (upper right) and
the second (lower figure) modes for the case of a stable system, A∗

o = 2.249 · 10−4 m2, δvinlet =
0.125 [a.u.].
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Figure 3.5: Time evolutions of the inlet velocities for the first (left figure) and third (right figure),
respectively, heated channels for the case of a stable system, A∗

o = 2.249 · 10−4 m2, δvinlet =
0.125 [a.u.].

3.5.2 Case of a global instability

Next, one considers the case of a global instability [see Figs. 3.6-3.7] when only the fun-
damental mode is unstable. The cross-sectional flow area was set to A∗

o = 1.8 · 10−4 m2.
Similarly to the previous case, Fig. 3.6 shows the time evolution of each of the modes
separately. The figure clearly indicates the proper excitation of the in-phase oscillations
(i.e. the ones corresponding to the fundamental mode). The out-of-phase modes (i.e.
the azimuthal modes) also seem to oscillate, however, with amplitudes millions times
smaller compared with the amplitude of the fundamental modes. The latter can be in-
terpreted as the result of the coupling between the unstable fundamental mode and the
azimuthal modes which are apparently stable. In Fig. 3.7, the time evolution of the corre-
sponding inlet velocities in the first and third heated channels are also shown. It is clear
that inlet velocities oscillate in-phase with each other, thus, following the behavior of the
fundamental mode.
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Figure 3.6: Time evolutions of the fundamental (upper left figure), the first (upper right figure)
and the second (lower right) azimuthal modes for the case of global instability,A∗

o = 1.8 ·10−4 m2,
δvinlet = 0.05 [a.u.].

0 200 400 600 800
−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

am
pl

itu
de

 [a
.u

.]

Inlet velocity (channel 1)

 

 

0 200 400 600 800
−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

am
pl

itu
de

 [a
.u

.]

Inlet velocity (channel 3)

 

 

Figure 3.7: Time evolutions of the inlet velocities for the first (left figure) and third (right
figure), respectively, heated channels for the case of global instability, A∗

o = 1.8 · 10−4 m2,
δvinlet = 0.05 [a.u.].
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3.5.3 Case of a combined instability

Finally, the case of a combined instability, when all three modes are unstable, is discussed.
The cross-sectional flow area of the channel was chosen equal to A∗

o = 1.8 · 10−4 m2. In
order to excite both azimuthal modes, several additional modifications of the system
parameters were made, namely the criticality of the azimuthal modes was set to zero and
some of the reactivity coefficientsC∗V,D

mn were properly adjusted. Such modifications were
required by the fact that the investigated operating point did not exhibit any azimuthal
instabilities and, hence, such instabilities should be introduced artificially.

Similarly to the previous two cases, the time evolution of each of the modes is shown
in Fig. 3.8. The figure clearly demonstrates the proper excitation of the in-phase and
out-of-phase oscillations. The time evolution of the inlet velocities for the corresponding
heated channels is also given in Fig. 3.9. From this figure, it can be clearly seen that
two (the first and the third channels) out of four heated channels oscillate out-of-phase
compared with the other two (the second and the fourth ones), thus representing the
time-dependent behavior of the dominant (second) azimuthal mode. Thus, the stability
behavior in this particular case is driven by the second azimuthal mode. However, the
effect of the other two modes is also significant. The time evolution of the corresponding
inlet velocities for each of the four channels can be found in [25, 26].

It is interesting to compare the current case with earlier cases reported in the litera-
ture. For this purpose, in Fig. 3.10, the time evolution of all three modes for four different
cases (A, B, C and D) of mode inclusion is shown. The inclusion of different modes
was performed by proper adjustment of the reactivity coefficients C∗V,D

mn . From Fig. 3.10
several interesting features can be observed. In the first case (Case A) where the effect
of the first azimuthal mode is excluded (upper left plot of Fig. 3.10), the fundamental
mode exhibits monotonically oscillating behavior with an amplitude 3 times less than
the corresponding second azimuthal mode. On the other hand, in the second case (Case
B) where the effect of the second mode is excluded (upper right plot of Fig. 3.10), the
behavior of the fundamental mode is not so monotonic, namely it exhibits regular phase
jumps of 180◦ with amplitude 5 times less compared with the first azimuthal mode. Such
a peculiar behavior can be clarified by the different values of the C∗V,D

mn coefficients cor-
responding to different modes. From the comparison between these two cases (A and B)
and Case C (lower left plot of Fig. 3.10) where both azimuthal modes are excluded, it can
also be concluded that the inclusion of the azimuthal modes decreases the amplitude of
the fundamental mode almost four times. More details can be found in [25, 26].

An even more remarkable case is when both azimuthal modes are included simulta-
neously as shown in the lower right plot of Fig. 3.10 (Case D). Comparing this case with
the first two cases discussed above (Cases A and B), one can notice that in the studied
case the amplitude of the first azimuthal mode decreases by increasing the amplitude of
the other two modes (the fundamental and the second azimuthal modes). Such interfer-
ence effects between different modes are of particular importance since they affect the
stability characteristics of each of the modes and thus, can lead to an incorrect determi-
nation of the stability boundaries if no modal decomposition is applied. Moreover, from
this simple analysis one can demonstrate that the inclusion of different azimuthal modes
also results in earlier or delayed excitation of the fundamental mode.

To conclude this investigation, another interesting phenomenon, namely the oscil-
lating symmetry line between the first two azimuthal modes, modeled with the present
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Figure 3.8: Time evolutions of the fundamental (upper left figure), the first (upper right figure)
and the second (lower figure) azimuthal modes for the case of combined instability, ρs1 = ρs2 = 0,
modified reactivity coefficients C∗V,D

mn , A∗
o = 1.8 · 10−4 m2, δvinlet = 0.1 [a.u.].
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Figure 3.9: Time evolutions of the inlet velocities for the first/second (left figure) and third/fourth
(right figure), respectively, heated channels for the case of combined instability, ρs1 = ρs2 = 0,
modified reactivity coefficients C∗V,D

mn , A∗
o = 1.8 · 10−4 m2, δvinlet = 0.1 [a.u.].
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Figure 3.10: Time evolutions of the fundamental, the first and the second azimuthal modes for
the case of combined instability, ρs1 = ρs2 = 0, modified reactivity coefficients C∗V,D

mn , A∗
o =

1.8 · 10−4 m2, δvinlet = 0.1 [a.u.]; case A - upper left figure, case B - upper right figure, case C -
lower left figure and case D - lower right figure (the first azimuthal mode is not visible due to its
smallness compared with the other two modes).

ROM, is discussed. The oscillating symmetry line has already been observed in some past
instability events and several possible explanations of this phenomenon were proposed.
Such an oscillating pattern is usually observed when both azimuthal modes are excited
and oscillate with close but different frequencies. This difference in the frequencies thus
creates a time-dependent phase shift between the modes resulting in the oscillating sym-
metry line. Intuitively, it is clear that in order to simulate such a behavior, the properties
of the heated channels should be different. For this reason, in the ROM, the inlet k-losses
(pressure loss coefficients) were modified resulting in different flow rates in each channel
and creating the oscillating pattern. The result of this simulation is given in Fig. 3.11.
It should be emphasized that such a time-dependent phase shift between the modes can
also lead to an incorrect determination of the stability propertiesif no modal decomposi-
tion is performed.
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Figure 3.11: Time evolutions of the first and the second azimuthal modes for the case of combined
instability, ρs1 = ρs2 = 0, modified inlet pressure loss coefficients kinlet and reactivity coefficients
C∗V,D

mn , A∗
o = 1.8 · 10−4 m2, δvinlet = 0.1 [a.u.].
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Chapter 4
MODELING OF LOCAL
INSTABILITIES VIA ROM

A methodology used to model the effect of local instabilities (in particular, the ones
caused by density wave oscillations) in reduced order models is described [26, 28]. The
modified ROM is hereafter applied to analyze a realistic local instability event, i.e. the
Forsmark-1 instability event of 1996/1997. A qualitative comparison between the ROM-
simulated results and the corresponding power plant stability measurements is performed,
out of which some conclusions are drawn.

4.1 ROM modifications to account for the effect of local insta-
bilities

Throughout this study, it is assumed that the DWOs are self-sustained and only their
effect on the stability properties of the system is investigated. The effect of the core re-
sponse on the DWOs is thus neglected. Following similar steps as in the case of core-wide
instabilities, one starts with the general time- and space-dependent two-group diffusion
equations which, after the application of first order perturbation theory (i.e. considering
small fluctuations of all quantities around their mean values), can be converted to the
following noise equations (i.e. equations for the fluctuating parts):

¯̄v∗−1 · ∂
¯δΨ

∗
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄δF ∗(r̄∗, t∗)− ¯̄δL∗(r̄∗, t∗)] · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗))

+[(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗
(r̄∗, t∗) + λ · δC∗(r̄∗, t∗) · X̄, (4.1)

∂δC∗(r̄∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗)) + β∗ · ¯̄F ∗

0 (r̄
∗) · ¯δΨ

∗
(r̄∗, t∗)

−λ · δC∗(r̄∗, t∗) · X̄. (4.2)

Eqs. (4.1)-(4.2) describe the system response to any type of perturbations including both
the ones induced by core-wide and the ones induced by local perturbations. However,
one can study the effect of each perturbation separately using a similar approach in each
case. That can be achieved by introducing the corresponding noise sources into the cross-
section operators ¯̄δF ∗ and ¯̄δL∗, i.e.

¯̄δXS∗(r̄∗, t∗) = ¯̄δXS∗h(r̄∗, t∗) + ¯̄δXS∗i(r̄∗, t∗), (4.3)
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which give rise to the corresponding fluctuations in the neutron fluxes written as:

¯δΨ
∗
(r̄∗, t∗) = ¯δΨ

∗h
(r̄∗, t∗) + ¯δΨ

∗i
(r̄∗, t∗), (4.4)

δC∗(r̄∗, t∗) = δC∗h(r̄∗, t∗) + δC∗i(r̄∗, t∗), (4.5)

where i stands for inhomogeneous (i.e. local oscillations) and h for homogeneous (core-
wide oscillations). The solution to this kind of problem can be found by first determining
the response of the core to a pure local oscillations ¯δΨ

∗i
(r̄∗, t∗), i.e. solving the inhomo-

geneous problem (derived from Eqs. (4.1)-(4.2)) defined as:

¯̄v∗−1 · ∂
¯δΨ

∗i
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯δF̄ ∗i(r̄∗, t∗)− δ̄L̄∗i(r̄∗, t∗)] · Φ̄∗

0(r̄
∗)

+[(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗i
(r̄∗, t∗) + λ∗ · δC∗i(r̄∗, t∗) · X̄, (4.6)

∂δC∗i(r̄∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗i(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗i
(r̄∗, t∗)) + β∗ · ¯̄F ∗

0 (r̄
∗) · ¯δΨ

∗i
(r̄∗, t∗)

−λ∗ · δC∗i(r̄∗, t∗) · X̄, (4.7)

where the second order terms were left out. The general solution of Eqs. (4.6)-(4.7) can
be found by assuming delta-function (localized) perturbations in the cross-sections and,
thus reads as:

¯δΨ
∗i
(r̄∗, t∗) = ¯̄B∗ · expiω∗t∗ ·ψ̄∗i(r̄∗, r̄∗0, ω

∗), (4.8)

δC∗i(r̄∗, t∗) · X̄ = ¯̄C∗ · expiω∗t∗ ·ψ̄∗i(r̄∗, r̄∗0, ω
∗), (4.9)

where r̄∗0 stands for the location of the local perturbation in the cross-sections, and ¯̄A∗,
¯̄B∗ and ¯̄C∗ are matrix coefficients. Combining Eqs. (4.8)-(4.9) with Eqs. (4.6)-(4.7), one
gets the explicit solutions for the neutron flux ¯δΨ

∗i
(r̄∗, t∗) and the concentration of the

delayed neutron precursors δC∗i(r̄∗, t∗) of the inhomogeneous problem (4.6)-(4.7).
Next, subtracting Eqs. (4.6)-(4.7) with known solutions (4.8)-(4.9) from the generic

equations (4.1)-(4.2) and neglecting small terms, one obtains the equation for the homo-
geneous problem ¯δΨ

∗h
(r̄∗, t∗) given as:

¯̄v∗−1 · ∂
¯δΨ

∗h
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄δF ∗h(r̄∗, t∗)− ¯̄δL∗h(r̄∗, t∗)] · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗h
(r̄∗, t∗))

+[(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗h
(r̄∗, t∗) + λ∗ · δC∗h(r̄∗, t∗) · X̄, (4.10)

∂δC∗h(r̄∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗h(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + δ̄Φ

∗h
(r̄∗, t∗))

+β∗ · ¯̄F ∗
0 (r̄

∗) · ¯δΨ
∗h
(r̄∗, t∗)− λ∗ · δC∗h(r̄∗, t∗) · X̄, (4.11)

where ¯δΨ
∗h
(r̄∗, t∗) and δC∗h(r̄∗, t∗) are defined as:

¯δΨ
∗h
(r̄∗, t∗) = ( ¯δΨ

∗ − ¯δΨ
∗i
)(r̄∗, t∗),

δC∗h(r̄∗, t∗) = (δC∗ − δC∗i)(r̄∗, t∗).
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The solution of Eqs. (4.11)-(4.12) can be found by applying traditional mode expansion,
similarly to the one used in earlier calculations. Thus, taking only the first three eigen-
modes of the flux expansion into account, the full solution to Eqs. (4.1)-(4.2) is given
as:

¯δΨ
∗
(r̄∗, t∗) =

2∑
n=0

¯̄P ∗
n(t

∗) · Φ̄∗
n(r̄

∗) +

Ns∑
k=1

¯̄B∗
k · expiω

∗
kt

∗ ·ψ̄∗
k(r̄

∗, r̄∗0, ω
∗
k), (4.12)

where Φ̄∗
n(r̄

∗) is the solution of the corresponding eigenvalue problem, k stands for an
index representing any local source and Ns is the total number of such local sources in
the investigated problem.

It is interesting to point out that, from a mathematical point-of-view, Eqs. (4.10)-(4.11)
look exactly the same as the ones solved for the case of pure homogeneous (core-wide)
perturbations (see Section 3.1) since there is no explicit presence of the local sources in
the equations. On the other hand, from a physical point-of-view, the effect of local per-
turbations is taken into account implicitly via the feedback term [(1− β∗) · ¯̄δF ∗h(r̄∗, t∗)−
¯̄δL∗h(r̄∗, t∗)] · ¯δΨ

∗h
(r̄∗, t∗) where the effect of both the core-wide and local sources is in-

cluded.
In addition, from Eq. (4.12), one can also conclude that the presence of the local

sources simply leads to some extra heating terms in the power oscillations due to the
change of the cross-sections resulting from the neutron noise induced by a DWO.

To sum it up, since the power oscillations strongly influence the fuel temperature, one
only needs to modify the heat transfer equations to correctly simulate the effect of local
perturbations in the ROM compared with the case of core-wide instabilities. The remain-
ing of the ROM can be kept unchanged. The corresponding changes in the fuel temper-
ature and of the resulting void production will induce perturbations in cross-sections,
expressed as ¯̄δF ∗h and ¯̄δL∗h, thus creating an additional thermal-hydraulic feedback ef-
fect in the neutron-kinetic model. Thus, the modified heat transfer equations with the
effect of local instabilities included, read as:

dT1,l,jϕ(t)

dt
= p11,jϕT1,l,jϕ(t) + p21,jϕT2,l,jϕ(t)

+p31,jϕ[cq(P0,j(t)− P̃0,j) + cqξ1P1,j(t) + cqξ2P2,j(t) + cq

Ns∑
k=1

γk,l sin(ωkt+ φk,l)], (4.13)

dT2,l,jϕ(t)

dt
= p12,jϕT1,l,jϕ(t) + p22,jϕT2,l,jϕ(t)

+p32,jϕ[cq(P0,j(t)− P̃0,j) + cqξ1P1,j(t) + cqξ2P2,j(t) + cq

Ns∑
k=1

γk,l sin(ωkt+ φk,l)], (4.14)

where l = 1..4, j = 1, 2, P0,j , P1,j , and P2,j take a non-uniform axial power profile into
account, and γk,l is defined as:

γk,l =

∫
V ∗
l

¯̄F ∗
0 (r̄

∗)ψ̄i∗(r̄∗, r̄∗0, ω
∗
k)dr̄

∗∫
V ∗
core

¯̄F ∗
0 (r̄

∗)Φ̄∗
0(r̄

∗)dr̄∗
. (4.15)
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4.2 Analysis of the measurements

In this Section, the neutron flux measurements taken during the stability tests to study
the Forsmark-1 local instability event of 1996/1997, are investigated [2, 29, 30]. First, a
brief introduction into the instability event itself is given.

The event took place in 1996 when start-up tests were carried out at the Swedish
BWR Forsmark-1 for the fuel cycle 16. During these tests, some unstable operational
conditions at reduced power and reduced flow, were detected. Later on, in January 1997,
new stability measurements were performed, in order to investigate the instability event.
In one of them, when the reactor was operated at 63.3 % of power and at a core flow of
4298 kg/s, the same instability pattern was again observed with an oscillation frequency
around 0.5 Hz. The appearance of this instability was somewhat surprising since all
earlier stability calculations indicated a completely stable core [2, 29, 30].

During these stability measurements, the lower axial plane of the core was well equip-
ped with LPRMs, placed at 36 different radial positions on 2 axial levels. The signals
from only 27 were recorded at a sampling frequency of 12.5 Hz. As an illustration of
these measurement tests, one of the signals, pass-band filtered between 0.4-0.6 Hz and
corresponding to the strongest detector response, is shown in Fig. 4.1.
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Figure 4.1: Time evolution of the filtered neutron noise, measured by LPRM7.

After a spectral analysis of the measurements, several even more interesting fea-
tures were discovered. The first one is related to the space-dependence of the decay
ratio, namely one half of the core oscillated with DR=0.6 whereas the other half with
DR=0.9 [2, 29, 30]. However, in all previous studies, the DR was always assumed to be a
global stability indicator and, hence, space-independent. Another interesting feature is
the rotating symmetry line between the first two azimuthal modes which was observed
as a result of the modal decomposition of the corresponding measurements. The time
evolution of the first three modes after the decomposition, namely the fundamental, the
first and the second azimuthal modes, is given in Fig. 4.2. For the purpose of com-
parison, both azimuthal modes are shown in the same plot. As one can see from these
figures, both global and regional instabilities corresponding to the fundamental and the
first two azimuthal modes, respectively, are present. An even more remarkable feature
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4.3. ROM simulation of the local instabilities
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Figure 4.2: Time evolution of the fundamental, first and second azimuthal modes after modal
decomposition of the measurement data.

which can be clearly seen from the right of Fig. 4.2, is the changing phase shift between
the azimuthal modes, resulting in a rotating symmetry line of the regional oscillations.

Further studies of the measurements indicated that the instability was driven by most
likely two or even more local noise sources. Later on, it was suggested that these lo-
cal noise sources are presumably caused by unseated fuel assemblies leading to density
wave oscillations and, hence, to local power oscillations.

4.3 ROM simulation of the local instabilities

In the following, the results of the simulation of the Forsmark-1 channel instability event
using the extended ROM are presented. The time-dependent amplitude factors for each
of the three modes were calculated by numerical integration of 42 ROM ODEs.

First, the case without the introduction of any DWO, i.e. the case when only core-
wide instabilities may occur, is considered. The corresponding results are given in Fig.
4.3. As this figure shows, for this specific case, the ROM predicts a stable core, both
with respect to in-phase and out-of-phase oscillations, and no oscillating symmetry line
is observed. This simulation perfectly agrees with earlier stability calculations performed
by the utility according to which the core was proven to be stable.
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Figure 4.3: Time evolutions of the fundamental, the first, and the second azimuthal modes, as
computed by the ROM, δVinlet = 0.1[a.u.].

Next, the case when three local sources were introduced into the ROM is discussed.
Some results of this simulation are shown in Fig. 4.4. The dynamical characteristics of
the corresponding sources together with their spatial distributions and locations in the
core are given in [26, 28].
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Figure 4.4: Time evolutions of the neutron noise source (left figure) and of the induced neutron
noise decomposed into the fundamental, the first, and the second azimuthal modes (right figure),
as computed by the ROM.

In Fig. 4.4, the time-dependence of the strongest local noise source is given, as well as
the decomposition of the corresponding induced neutron noise into the fundamental, the
first and the second azimuthal modes. It is worth to point out that all three modes are
oscillating with a DR of unity. This is explained by the fact that all modes are driven by
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4.3. ROM simulation of the local instabilities

the external local sources.
For the purpose of comparison, in Fig. 4.5, the time evolution of the first three modes,

obtained as a result of the modal decomposition of the real measurements, together with
the strongest neutron noise, is given. From Figs. 4.4-4.5, it can be clearly seen that both
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Figure 4.5: Time evolutions of the neutron noise source (left figure) and of the induced neutron
noise decomposed into the fundamental, the first, and the second azimuthal modes (right figure),
as determined from the measurements.

cases exhibit qualitatively a similar behavior. Namely, all modes are properly excited and
oscillate with comparable amplitudes. Furthermore, the mode amplitudes have approx-
imately the same ratio, compared with the respective strongest source. Another interest-
ing feature which can be seen in both the ROM simulation and the measurements is the
oscillating symmetry line. For better visibility, both azimuthal modes as calculated from
the ROM are shown separately in Fig. 4.6.
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Figure 4.6: Time evolution of the first and the second azimuthal modes, as computed by the ROM.

In order to better understand this instability event, it is also instructive to perform two
additional ROM simulations which are presented in Fig. 4.7. In this figure, the system
response neglecting any possible DWO (lower figure) and the neutron noise induced by
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the local sources alone (i.e. the system response is excluded) (upper figure) are given. In
both cases, the decomposition into the first three modes is represented. It is clearly seen
that the effect of the system dynamics (i.e. pure system response) onto the total neutron
noise is quite negligible. This can be explained by the fact that the core-wide modes are,
alone, stable, as confirmed both by the stability calculations performed by the utility and
the ROM analysis. The latter means that the apparent excitation of the global and regional
oscillation modes is due to the inability of a modal decomposition of fully representing
the spatial dependence of the neutron noise induced by extremely-localized phenomena,
such as DWOs. One can thus conclude that the full system response is mainly driven
by the local power oscillations induced by the DWOs, and that the contribution of the
system dynamics in terms of global and regional oscillations is negligible, since such
modes are inherently stable. Similar conclusions can be drawn from the comparison
between Fig. 4.6 and the upper figure of Fig. 4.7 where the amplitudes of the first and
second azimuthal modes are given for the case when both contributions from the system
and the local sources are included and for the case when only local sources are taken into
account (i.e. the system response being excluded), respectively. Obviously, in both cases
the signals are almost identical, which supports the earlier conclusions.
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Figure 4.7: Time evolutions of the induced neutron noise (without any contribution from the sys-
tem response, upper figure) and of the corresponding system response (effect of the local sources
excluded, lower figure), decomposed into the fundamental, the first, and the second azimuthal
modes, as computed by the ROM.
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Chapter 5
INVESTIGATION OF BWR
STABILITY INDICATORS OTHER
THAN THE DECAY RATIO

A careful examination of the balance equations in the ROM developed in this project
demonstrates that the behavior of the system is entirely defined by the Cmn coefficients,
if one does not consider the case of a pure DWO, which is a thermal-hydraulic instabil-
ity not directly coupled to the neutronic properties of a given core. As a matter of fact,
different core designs lead to different values of the Cmn coefficients, which are the es-
sential parameters appearing in the ROM ODEs. It is thus intuitive to believe that these
coefficients could give an indication of the stability of a given system. This Chapter inves-
tigates this possibility. First, a qualitative analysis is performed, i.e. the Cmn coefficients
are varied and time-dependent simulations, both using the ROM and SIMULATE-3K are
carried out to determine whether the system is stable or unstable. Thereafter, a more
quantitative analysis is conducted by again varying the Cmn coefficients and estimating
the DR from the time-signatures provided by the ROM only.

5.1 Qualitative analysis of the stability properties as a func-
tion of Cmn coefficients.

In this section, a qualitative analysis of the stability property of a system as a function
of the corresponding behavior of the void reactivity (i.e. Cmn) coefficients is presented.
For this purpose, series of calculations of the Cmn coefficients for different stability con-
ditions were performed and analyzed. In order to simulate different conditions for the
ROM analysis, one of the cross-sections was artificially perturbed. The perturbation was
varying between −10% to +10% with respect to the nominal (reference) value. The study
was done for all types of cross-sections as well as for the simultaneous perturbation of
all cross-sections. However, the results for only two of the most interesting cases are dis-
cussed below. Here, it should be pointed out that such an analysis is more qualitative
than quantitative. In order to provide more accurate results from a quantitative point-of-
view, the calculations should be performed for each operational condition separately, i.e.
by recalculating the steady-state cross-sections each time. Further, for each case studied,
the Cmn coefficients should be estimated following the same methodology as was earlier
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described.
The results for perturbations of the thermal absorption-cross section are given in Ta-

ble 5.1. In order to reduce the number of analyzed data, the investigation was made for a
homogeneous core, i.e. all cross-sections were homogenized throughout the entire core.
Then, using these cross-sections, the corresponding flux was estimated from CORE SIM,
and the correspondingCmn coefficients for all three modes of interest were calculated. As
a result, the Cmn coefficients will have the same absolute value for all four channels and,
therefore, the Cmn coefficients for only one heated channel are shown in Table 5.1. Then,
the corresponding stability properties of the system for various cases were analyzed us-
ing the unmodified ROM (i.e. without any update of the steady-state cross-section data).
For the analysis, it was assumed that the system is stable if its DR is less than unity (such
a case is designated with the latter ”S”, i.e. ”stable”, in the tables). Otherwise, i.e. if
the DR is higher than unity, the system was considered to be unstable (such a case is
designated with the latter ”U”, i.e. ”unstable”, in the tables). The determination of the
DR being larger or smaller than unity was performed in a qualitative manner, by simply
observing whether the oscillations were growing or decreasing, respectively, in ampli-
tude. The cases referred to as ”-” in the tables correspond to cases where the ROM was
unable to perform the numerical integration of the equations. As one can see from Table
5.1, there is a strong correlation between the stability properties of the system and the be-
havior of Cmn coefficients, namely for deeply subcritical systems (i.e. for values of Cmn

smaller than −1), the system becomes unstable whereas for Cmn values between −1 and
0 the system is stable. A third behavior can be observed when the numerical integration
of the equations is impossible. This is due to a fast divergence resulting from a physically
unstable system, since the Cmn coefficients are then positive, corresponding to a void
reactivity feedback being positive.

Table 5.1: Correlation between the void reactivity coefficients and the stability behavior of the
system (from the ROM analysis, homogeneous core).

δΣA2% P0 P1,2 C11 C12 C13 C21 C22 C23 C31 C32 C33

-10 − − 1.93 1.53 1.55 2.10 2.22 1.71 1.57 1.05 1.91
-5 − − 0.96 0.76 0.77 1.04 1.10 0.84 0.78 0.52 0.94
-1 − − 0.17 0.14 0.14 0.19 0.20 0.15 0.14 0.09 0.17
-0.1 S S -0.003 -0.002 -0.002 -0.005 -0.005 -0.004 -0.004 -0.002 -0.004
-0.05 S S -0.012 -0.010 -0.010 -0.015 -0.016 -0.012 -0.011 -0.008 -0.014
0 S S -0.022 -0.018 -0.018 -0.026 -0.027 -0.021 -0.019 -0.013 -0.24
0.05 S S -0.032 -0.025 -0.026 -0.037 -0.039 -0.029 -0.027 -0.018 -0.033
0.1 S S -0.042 -0.033 -0.033 -0.047 -0.050 -0.038 -0.035 -0.024 0.043
1 S S -0.22 -0.17 -0.18 -0.23 -0.25 -0.19 -0.18 -0.12 -0.22
5 S S -1.00 -0.79 -0.80 -1.09 -1.15 -0.89 -0.82 -0.55 -1.00
7 U U -1.39 -1.103 -1.12 -1.52 -1.60 -1.23 -1.13 -0.75 -1.38
10 U U -1.98 -1.57 -1.59 -2.16 -2.27 -1.75 -1.61 -1.08 -1.96

A similar analysis but for the case when only the removal cross-section was perturbed
is given in Table 5.2. As can be seen from this table, the behavior of the Cmn coefficients
has the same tendency as in the previous case. It is worth to mention that the simulta-
neous perturbation of all cross-sections will probably bring the same result, however the
amplitude of the perturbation can be different.
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Table 5.2: Correlation between the void reactivity coefficients and the stability behavior of the
system (from the ROM analysis, homogeneous core).

δΣR% P0 P1,2 C11 C12 C13 C21 C22 C23 C31 C32 C33

-15 U U -1.50 -1.19 -1.20 -1.73 -1.83 -1.41 -1.30 -0.87 -1.57
-13 U U -1.30 -1.03 -1.05 -1.51 -1.59 -1.22 -1.13 -0.75 -1.36
-10 S S -1.00 -0.80 -0.80 -1.17 -1.23 -0.95 -0.87 -0.58 -1.06
-5 S S -0.52 -0.41 -0.41 -0.60 -0.63 -0.48 -0.45 -0.30 -0.54
-1 S S -0.12 -0.10 -0.10 -0.14 -0.15 -0.1 -0.11 -0.07 -0.13
-0.1 S S -0.032 -0.025 -0.026 -0.037 -0.039 -0.030 -0.028 -0.019 -0.034
-0.05 S S -0.027 -0.021 -0.022 -0.032 -0.033 -0.026 -0.024 -0.016 -0.029
0 S S -0.022 -0.018 -0.018 -0.026 -0.027 -0.021 -0.019 -0.013 -0.24
0.05 S S -0.017 -0.014 -0.014 -0.020 -0.021 -0.017 -0.015 -0.010 -0.018
0.1 S S -0.012 -0.010 -0.010 -0.015 -0.015 -0.012 -0.011 -0.007 0.013
0.5 − − 0.027 0.021 0.022 0.031 0.033 0.025 0.023 0.015 0.028
1 − − 0.076 0.060 0.061 0.088 0.093 0.071 0.066 0.044 0.08
5 − − 0.47 0.37 0.38 0.54 0.57 0.44 0.41 0.27 0.49
10 − − 0.96 0.76 0.77 1.11 1.17 0.90 0.83 0.56 1.01

Similar calculations were also performed using the SIMULATE-3/3K package where
the Cmn coefficients were estimated together with the DR for a number of different cases
and where the thermal absorption cross-section was modified by changing the position
of the control rods. The results are summarized in Table 5.3. As seen from this Table, the
behavior of the stability properties of the system as a function of the Cmn coefficients is
very similar to the one obtained by the ROM analysis, i.e the system is stable for −1 <
Cmn < 0, otherwise it is unstable.

Table 5.3: Correlation between the reactivity coefficients and the stability behavior of the system
(from SIMULATE-3/3K, homogeneous core).

P0 P1,2 C11 C12 C13 C21 C22 C23 C31 C32 C33

S S -0.089 -0.070 -0.70 -0.079 -0.089 -0.057 -0.79 -0.057 -0.089
S S -0.18 -0.14 -0.14 -0.16 -0.18 -0.12 -0.16 -0.12 -0.18
S S -0.44 -0.35 -0.35 -0.39 -0.45 -0.28 -0.39 -0.28 -0.45
S S -0.61 -0.49 -0.49 -0.54 -0.62 -0.39 -0.54 -0.39 -0.62
U U -0.75 -0.60 -0.60 -0.66 -0.76 -0.49 -0.66 -0.49 -0.76

Such a correlation between the Cmn coefficients and the stability behavior, observed
both via the ROM and SIMULATE-3/3K analyses, is very valuable as a means of esti-
mating the stability characteristics of a given core without the need to perform full three-
dimensional time-dependent calculations. A more careful estimation of this behavior is
presented in the following section, where a quantitative evaluation of the stability of the
system in terms of the DR as a function of the Cmn coefficients is performed.
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5.2 Quantitative analysis of the stability properties as a func-
tion of Cmn coefficients.

5.2.1 Dependence of the decay ratio on the reactivity coefficients (Cmn co-
efficients)

The ROM, developed and described earlier in Section 2, is applied to more carefully ex-
pedite the dependence between the DR and the coupling reactivity coefficients Cmn . A
number of different cases where the Cmn coefficients were manually modified are ana-
lyzed. For each case studied, the DR corresponding to the fundamental mode is numeri-
cally estimated [26,31]. The corresponding dependence of the DR on the Cmn coefficients
is shown in Fig. 5.1
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Figure 5.1: Dependence of the Decay Ratio on the reactivity Cmn coefficients.

As Fig. 5.1 demonstrates, the dependence between the DR and the Cmn coefficients is
not monotonic over the whole range of the Cmn-coefficients. First the DR increases with
increasing amplitude of the Cmn coefficient (following a conventional behavior of the
DR), whereas at approximately Cmn = −0.0361 a.u., the DR suddenly starts to decrease
approaching a low-value region at around Cmn = −0.2 a.u.

5.2.2 Estimation of the dynamical properties of the system (amplitude,
phase, frequency and decay ratio)

To provide some insight into the origins of the sudden drop in the DR curve, a curve-
fitting procedure is applied to all physical quantities available from the ROM, where it
is assumed that the behavior of a BWR can be described as a second-order decaying
oscillator, i.e. fitted to the following decaying sine-function:

ϕ(t) = A exp(−γt) sin(ωt+ φ) (5.1)

Such a curve-fitting procedure is applied to the time-signals generated for four given con-
figurations, i.e. for four different sets of Cmn values, thus providing information about
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the amplitude A, frequency ω, decay constant γ and phase φ of some key parameters,
i.e. void fraction α, averaged surface fuel temperature Tfs, power P and inlet pressure
drop δPinlet. The corresponding results (except for the phase) are shown in Figs. 5.2,
respectively.
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Figure 5.2: Dependence of the amplitudes A, frequency ω and decay constant γ of the void frac-
tion α, averaged surface fuel temperature Tfs, power P and inlet pressure drop δPinlet on theCmn

coefficients; for the amplitude, all the quantities were weighted to their corresponding maximum
values.

A careful analysis of the upper left part of Fig. 5.2 shows that, as the Cmn coefficients
decrease down to −0.0341 a.u., the amplitude change in the void oscillations and the
power oscillations is significantly larger compared with the ones in the surface fuel tem-
perature and the inlet pressure drop oscillations. This leads to the conclusion that most
of the produced fuel heat is transferred into the change of the void fraction. However, for
Cmn values between −0.034 a.u. and −0.0907 a.u., the situation is reversed, namely the
amplitudes of the surface fuel temperature as well as the inlet pressure drop oscillations
experience a drastic jump whereas the amplitude of the oscillations in the void fraction
do not change so much.

Such a peculiar behavior of the quantities can be interpreted as if all the heat from
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the fuel is converted into an increase of the amplitudes of the surface fuel temperature
and the inlet pressure drop oscillations, leaving the void change mostly unaffected. The
increase in the amplitude of the inlet pressure drop oscillations apparently stabilizes the
system (due to the phase delay between the power change and the feedback which be-
comes closer to −180◦) and thus contributes to the decrease in the DR. Such an unex-
pected transition of the energy transfer from the void change into the surface fuel tem-
perature/inlet pressure drop change can be explained by the inertia of the heat trans-
ferred between the fuel and the coolant (i.e. the time for the heat to be transferred from
the fuel to the coolant) leading to some time delay between the change in the power and
the corresponding change in the feedback.

One can also show that for the last two cases, i.e. Cmn = −0.034 a.u. and Cmn =
−0.0907 a.u., the characteristic time of the power oscillations is less than the time it takes
for the system to transfer heat from the fuel to the coolant. As a result, for a certain critical
value (in our case Cmn = −0.036 a.u.), the changes in the power (which frequency is a
function of Cmn) become too fast for the system to be able to transfer all the heat into
the coolant, but instead the energy oscillations are mostly transferred into changes in the
surface fuel temperature and the inlet pressure drop. Such a phenomenon might then
lead to an additional stabilization of the system and thus a decrease of the DR.

Thus, one can conclude that the dependence between the DR and the reactivity co-
efficients (Cmn coefficients) is not as trivial and monotonic as expected, i.e. the DR ex-
periences some peculiar drop at a certain critical value of the Cmn coefficient. It can
nevertheless be noticed that for typical values of the void reactivity coefficient, the Cmn

are sufficiently negative, and a monotonic behavior between the DR and the absolute
value of the Cmn coefficients can again be observed. For sufficiently negative values, it
thus means that the DR increases for Cmn coefficients becoming more negative.
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CONCLUSIONS

This report presented the work performed at Chalmers University of Technology within
NORTHNET and devoted to the investigation of BWR stability and ways of assessing
the stability of such systems. The estimation of the stability of a nuclear core is usu-
ally performed using time-dependent three-dimensional neutron kinetic solvers possibly
coupled to a thermal-hydraulic solver. Such state-of-the art approaches rely on complex
models and input decks. Although these simulations lead to accurate and reliable re-
sults, they are computationally expensive, and most importantly they seldom allow get-
ting physical insight into the mechanism driving a given instability. This project was thus
aimed at developing an alternative approach based on ROM, in which the partial differ-
ential balance equations describing neutron transport, heat transfer, and fluid dynamics
are replaced by sets of ordinary differential equations. The transformation of the balance
equations is carried out by expanding the space- and time-dependent distributions of the
relevant fields onto proper sets of functions describing the spatial dependence through-
out the system. Because of the excitation of the fundamental and first azimuthal modes
in case of global and regional oscillations, respectively, the functions of choice to perform
the spatial expansion of the neutron flux are the eigenfunctions of the nuclear core.

The first part of the project was thus devoted to developing three-dimensional com-
putational capabilities to estimate such eigenmodes using two-group diffusion theory.
The corresponding tool, called CORE SIM, has the ability to not only estimate the eigen-
modes and their adjoint functions for any heterogeneous core, but also to calculate the
neutron noise induced by any type of perturbations directly expressed as fluctuations of
the macroscopic cross-sections in the frequency domain.

The second part of the project was targeted at developing a ROM that has the ability to
model global, regional, as well as local oscillations. The novelty of the work lies with the
fact that a four heated channel model was created, and the ROM can thus handle regional
oscillations where the two first azimuthal modes are excited. This is of particular interest
for investigating the relative excitation of the two first azimuthal modes that might lead
to a rotating neutral line delimiting the two lobes of the resulting spatial dependence. In
addition, the ability of the model to simulate local oscillations and their effect on both the
global and regional oscillations make the model unique. This ROM was thereafter used
to investigate the possibility of deriving new stability indicators other than the classical
DR. After careful examination of the governing equations in the neutron kinetic model
of the ROM, it was found that the stability behavior of the system is entirely determined
by the Cmn coefficients. Such coefficients define the effect of the variation of the void
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fraction onto pairs of eigenmodes. ROM simulations clearly demonstrated that when
such coefficients are positive, the system is unstable. This is explained by the fact that
positive Cmn coefficients are only possible when the void reactivity feedback is positive,
which leads to instabilities. In addition, and most importantly, it was also noticed that
strongly negative Cmn coefficients also lead to unstable behavior. Such a behavior was
also confirmed by SIMULATE-3K calculations.

A more detailed investigation of the relationship between the amplitude of the Cmn

coefficients and the DR nevertheless demonstrated that a non-monotonic relationship
seems to exist between the two. More explicitly, for Cmn coefficients becoming more
negative but still being small in amplitudes, the DR first increases, and decreases, and
finally increases again. This behavior might be explained by a stabilization of the system
by an increase in pressure drops when the feedback becomes more negative. Such a
phenomenon only exists for small variations of the void reactivity feedback.

This non-monotonic behavior of the DR on the amplitude of the Cmn coefficients is
only present for a void reactivity feedback being only slightly negative. In most practical
cases, and as the SIMULATE-3K calculations also confirm, the void reactivity feedback
is sufficiently negative for this non-monotonic behavior to be completely shadowed. It
thus means that the Cmn coefficients can be used to assess the stability of nuclear cores
in a predictive manner, i.e. the calculations of the Cmn coefficients for two different core
configurations allow assessing which of the two cores is the most stable. This is of prime
importance for core design, when many core loadings have to be considered. The esti-
mation of the Cmn coefficients only requires the computation of the eigenmodes of the
corresponding cores, and no time-dependent simulations is required.

More systematic investigations on a variety of core loadings and designs would be
necessary to confirm these findings.
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NOMENCLATURE

ROM Reduced Order Model
BWR Boiling Water Reactor
DFM Drift Flux Model
DR Decay Ratio
DWO Density Wave Oscillation
HEM Homogeneous Equilibrium Model
ODE Ordinary Differential Equation
PDE Partial Differential Equation
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