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Abstra
tThe problem of designing wireless 
ommuni
ation systems to operatein the presen
e of os
illator phase noise is a 
lassi
al problem in 
ommu-ni
ation theory. In re
ent times, there has been a renewed interest in thisproblem for a multitude of reasons. One of the main fa
tors for this isthe unpre
edented explosion in the number of wireless and mobile devi
esthat are enabled for 
ommuni
ation-intensive and bandwidth hungry appli-
ations. This, in turn, is exerting a tremendous pressure on the networkinfrastru
ture, where more 
ost-e�e
tive, �exible, high speed 
onne
tivitysolutions are being sought for. In this regard, wireless ba
khaul links arean e�e
tive solution to transport data by using high order signal 
onstella-tions, whi
h are extremely prone to hardware impairments like phase noisefrom imperfe
t os
illators. Phase noise is also dominant in 
ommuni
ationsystems that operate over millimeter-wave bands like 60 GHz and higher.This work is devoted to the 
lassi
al problem of designing wireless 
om-muni
ation systems in the presen
e of phase noise. First, we address theproblem of maximum-likelihood dete
tion of data in the presen
e of ran-dom phase noise due to imperfe
t os
illators. This is done by designing alow-
omplexity joint phase-estimator data-dete
tor. We show that the pro-posed method outperforms existing dete
tors, espe
ially when high ordersignal 
onstellations are used.Then, in order to further improve performan
e, we 
onsider the problemof designing signal 
onstellations that are optimal in the presen
e of phasenoise. We present two methods for solving this problem; in the �rst method,
onstellations are designed su
h that they minimize the symbol error rateperforman
e of the system impaired by phase noise. In the se
ond method,
onstellations are designed to maximize the information rate of the system.We observe that these optimal 
onstellations signi�
antly improve the sys-tem performan
e, when 
ompared to 
onventional 
onstellations and thoseproposed in the literature.Keywords: Os
illator, phase noise, maximum likelihood (ML) dete
tion,maximum a posteriori (MAP) estimation, extended Kalman �lter (EKF),
onstellations, symbol error probability, mutual information. i



List of Publi
ationsThis thesis is based on the following three appended papers1:Paper 1R. Krishnan, M. Reza Khanzadi, T. Eriksson, T. Svensson, �Softmetri
s and their Performan
e Analysis for Optimal Data De-te
tion in the Presen
e of Strong Os
illator Phase Noise,� UnderReview, IEEE Trans. Commun., 2012.Paper 2R. Krishnan, H. Mehrpouyan, T. Eriksson, T. Svensson, �Op-timal and Approximate Methods for Dete
tion of Un
oded Datawith Carrier Phase Noise,� IEEE Global Tele
omm. Conf. (GLOBE-COM), Houston, pp.1-6, 5-9 De
. 2011.Paper 3R. Krishnan, A. Graell i Amat, T. Eriksson, G. Colavolpe, �Op-timal Constellations in the Presen
e of Strong Phase Noise,�Under Review, IEEE Trans. Commun., 2013.

1This work has been supported by The Swedish Agen
y for Innovation Systems (VIN-NOVA) and in part by the Eri
sson Resear
h Foundation Grantii



Contents
Abstra
t iList of Publi
ations iiContents iiiI The Big Pi
ture1 Introdu
tion 11.1 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Phase Noise in Communi
ation Systems 42.1 Noise Sour
es in an Os
illator . . . . . . . . . . . . . . . . . 42.2 Phase Noise in an Os
illator . . . . . . . . . . . . . . . . . . 52.3 Communi
ation System Model with Phase Noise . . . . . . . 73 Designing Communi
ation Systems for Phase Noise 93.1 Design Approa
hes . . . . . . . . . . . . . . . . . . . . . . . 93.1.1 Phase Noise Tra
kers . . . . . . . . . . . . . . . . . . 103.1.2 Joint Phase-Estimation Data-Dete
tion Algorithms . 133.1.3 Constellation Design . . . . . . . . . . . . . . . . . . 153.1.4 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Contributions and Future Dire
tions 194.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Referen
es 21iii



ContentsII In
luded PapersPaper 1 Soft metri
s and their Performan
e Analysis for Op-timal Data Dete
tion in the Presen
e of Strong Os
illatorPhase Noise 311 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.1 Contributions . . . . . . . . . . . . . . . . . . . . . . 331.2 Organization . . . . . . . . . . . . . . . . . . . . . . 342 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Dete
tion Metri
s and Analysis . . . . . . . . . . . . . . . . 363.1 Metri
 based on Eu
lidean Distan
e Measure (EUC-D) 373.2 Metri
 based on Tikhonov PDF assumption for PhaseError (FOS-D) . . . . . . . . . . . . . . . . . . . . . 373.3 Metri
 based on the Fa
tor Graph framework (COL-D) 383.4 Metri
 based on the VB framework (VB-D) . . . . . 383.5 Metri
 based on Gaussian PDF Assumption for PhaseError (GAP-D) . . . . . . . . . . . . . . . . . . . . . 383.6 Two-Step Amplitude-Phase Dete
tor (TS-D) . . . . . 423.7 Metri
 as Weighted Sum of Central Moments . . . . 424 SEP Analysis for GAP-D . . . . . . . . . . . . . . . . . . . . 444.1 SEP at High SNR and Error Floors . . . . . . . . . 475 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.1 Gaussian PDF Phase Error . . . . . . . . . . . . . . 485.2 Wiener Phase Noise Pro
ess . . . . . . . . . . . . . . 496 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Referen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Paper 2 Optimal and Approximate Methods for Dete
tion ofUn
oded Data with Carrier Phase Noise 591 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 613 Alternative form for ML De
ision Rule . . . . . . . . . . . . 633.1 Trun
ation of the Sum-of-Central-Moments ML Rule 644 Simulations and Dis
ussion . . . . . . . . . . . . . . . . . . . 665 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Referen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Paper 3 Optimal Constellations in the Presen
e of StrongPhase Noise 791 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 792 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 823 ML Dete
tion Methods . . . . . . . . . . . . . . . . . . . . . 82iv



Contents3.1 ML Dete
tion based on High SNR Approximation . . 833.2 ML Dete
tion Based on Low Phase Noise Approxi-mation . . . . . . . . . . . . . . . . . . . . . . . . . . 844 Constellation Optimization Based on SEP . . . . . . . . . . 854.1 SEP for GAP-D . . . . . . . . . . . . . . . . . . . . . 854.2 Optimization Formulation . . . . . . . . . . . . . . . 875 Constellation Optimization Based on MI for the E�e
tiveDis
rete Channel . . . . . . . . . . . . . . . . . . . . . . . . 895.1 MI of the Dis
rete Channel with Memoryless PhaseNoise, AWGN and GAP-D . . . . . . . . . . . . . . . 895.2 Optimization Formulation . . . . . . . . . . . . . . . 906 Constellation Optimization Based on MI . . . . . . . . . . . 916.1 Optimization Formulation . . . . . . . . . . . . . . . 937 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . 947.1 Comparison of SEP and MI with GAP-D . . . . . . . 957.2 Comparison in terms of MI of Memoryless Phase NoiseChannel . . . . . . . . . . . . . . . . . . . . . . . . . 978 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Referen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



Part IThe Big Pi
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Chapter 1Introdu
tionSin
e the landmark paper by Shannon [1℄, substantial resear
h has beendevoted to the design of 
ommuni
ations systems that operate 
lose to theultimate performan
e limit, i.e., the 
hannel 
apa
ity, with an arbitrarysmall probability of error. Parti
ularly in single-input single-output (SISO)point-to-point wireless systems, mu
h of these e�orts have been based onseveral idealized assumptions like perfe
t 
hannel state information, perfe
tsyn
hronization, perfe
t hardware, untethered implementation 
omplexity,and mu
h more.As a result of the aforementioned idealized assumptions, there has been asigni�
ant gap between the theoreti
al and pra
ti
ally a
hieved performan
elevels in various 
ommuni
ation systems, in
luding today's operational 3Gand 4G 
ellular networks. Errors in the 
hannel state information are amajor sour
e of performan
e loss, whi
h is around 2 − 3 dB even whenthe best estimator is used [2℄. Nonlinearities in the power ampli�er 
ausedistortions in the transmitted signal and its bandwidth expansion, whi
hhas to be appropriately modeled and mitigated [3℄. Syn
hronization errorsthat o

ur primarily due to phase noise in frequen
y sour
es like os
illators,result in signi�
ant performan
e degradation [4℄.Os
illators are 
entral to the design of a wireless 
ommuni
ation system,and they should be a

urate, inexpensive and desirably 
ompa
t. Theyprovide the 
arrier and pilot signals required for 
ommuni
ation and navi-gation purposes. They also provide 
lo
k signals and referen
e signals thatare used for various purposes like syn
hronization. All pra
ti
al os
illatorssu�er from phase noise, whi
h manifests as a spe
trum of noise around itsoperating frequen
y. Thus, when information is 
onveyed from a sour
e(transmitter) to a destination (re
eiver), a random time-varying phase dif-feren
e inevitably arises between their respe
tive lo
al os
illators. This isdetrimental given that many 
ommuni
ation systems are designed to oper-ate syn
hronously and 
oherently. If the phase noise is not appropriately1



Chapter 1. Introdu
tionaddressed, it 
an result in the distortion of the re
eived signal and undesir-ably high error rates in phase modulated transmission systems.1.1 Aim of the ThesisIn this thesis, we will fo
us on the problem of 
ompensating wireless 
om-muni
ation systems impaired by os
illator phase noise by addressing thefollowing questions:1. How 
an we systemati
ally derive a low-
omplexity joint phase-estimatordata-dete
tor that is (near) optimal in system performan
e?2. How 
an we design signal 
onstellations that are to be transmitted in asystem impaired by phase noise, su
h that the error rate performan
eor the information rate of the system is optimized?In order to 
omprehensively answer the above questions, it is imperative tounderstand the phase noise phenomenon and its impa
t on the 
ommuni-
ation system performan
e. Thus, we will dis
uss about some importantresults from prior work that are related to the following questions:� What is the maximum a posteriori (MAP) joint estimator for randomphase and data?� What are the bounds for estimating the random phase noise whendata is unknown?� How 
an error 
orre
ting 
odes be designed to improve system per-forman
e when impaired by phase noise and operate 
lose to 
hannel
apa
ity?� What is the 
apa
ity of 
hannels with phase noise, in
luding thosephase noise 
hannels with memory?1.2 Thesis OutlineThe thesis is organized as follows: In Chapter 2, we explain about the phasenoise phenomenon and its sour
es in an os
illator. Then, we dis
uss aboutthe model that represents a 
ommuni
ation system impaired by phase noise.In Chapter 3, we 
over prior work related to designing systems a�e
ted byphase noise. We �rst dis
uss about phase noise tra
kers and the di�erentlow-
omplexity algorithms for joint phase-estimation and data-dete
tion.For a theoreti
al understanding of this topi
, the reader is referred to [5℄.2



1.2. Thesis OutlineThen, we examine prior work related to 
onstellation design in the presen
eof phase noise and the 
apa
ity of 
hannels impaired by phase noise. Fur-thermore, we review results related to the design of error 
ontrol 
odes forphase noise 
hannels. Finally, we summarize our papers and 
ontributionsin Chapter 4.
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Chapter 2Phase Noise in Communi
ationSystemsOs
illators that are used in 
ommuni
ation systems are imperfe
t, in thattheir output signals are a�e
ted by random phase and frequen
y instabili-ties. These instabilities manifest themselves as a spe
trum of noise aroundthe os
illators' operating frequen
y. An os
illator signal 
an su�er bothamplitude and phase perturbations. Amplitude �u
tuations are attenuatedby an amplitude limiting me
hanism present in the os
illator 
ir
uitry [6℄.For this reason, the amplitude noise originating from an os
illator 
an beignored, and phase noise is our fo
us in this thesis. In this 
hapter, wewill brie�y review the various sour
es and models for the phase noise phe-nomenon. Then, we will dis
uss about the model that represents a wireless
ommuni
ation system impaired by phase noise.2.1 Noise Sour
es in an Os
illatorAn os
illator signal is a�e
ted by a number of fa
tors. Broadly speaking,these fa
tors 
an be 
ategorized as short-term instabilities, deterministi
instabilities and long-term instabilities [7℄. Short-term instabilities, whi
htypi
ally last for a duration of a few se
onds, are mainly 
aused by thefollowing sour
es of noise in the os
illator:� Thermal Noise - This is the white noise 
aused by random motionof ele
trons due to thermal ex
itation, and its level is equal to kTB,where k is the Boltzman 
onstant, T is the absolute temperature inKelvin, and B is the 3−dB noise bandwidth [7℄. The instantaneousele
tron motion is 
ompletely independent of its past, i.e., the noiseis memoryless, and its power spe
tral density is regarded as white.4



2.2. Phase Noise in an Os
illator� Colored Noise or 1/f Noise - This is the spe
tral noise dominated bylow-frequen
y 
omponents that mixes with frequen
ies 
lose to the
arrier frequen
y of the os
illator [8℄. Its instantaneous �u
tuationsdepend on its past and therefore has memory.The main deterministi
 sour
es of os
illator noise are identi�ed as in [9℄:� Power supply feed-through and other interfering sour
es - Coupling
an happen in an os
illator 
ir
uit between the os
illator signal andthe other signals in the 
ir
uitry. This 
an amplitude/phase modulatethe output signal from the os
illator. Other os
illators and digital fre-quen
y dividers in the 
ir
uitry 
an also modulate the lo
al os
illatoroutput.� Spurious signals - Generally, an os
illator is designed to have just onefeedba
k path for phase 
orre
tion and to generate the desired outputsignal. However, several feedba
k paths may exist, whi
h may in turnresult in spurious output signals.In 
ontrast to the above forms of noise, long term instabilities o

ur dueto aging of the resonator material in the os
illator. Typi
ally, these havevery slow variations that o

ur over hours, days, months, or even years andare therefore less 
riti
al.2.2 Phase Noise in an Os
illatorConsider a noisy os
illator that operates at a 
enter frequen
y of fosc and isa�e
ted by white noise and 
olored noise pro
esses as des
ribed before. Let
Φ(t) represent the sum of all these noise pro
esses. Then the phase noise inthe output signal of the os
illator is given as

φ(t) ∝
∫ t

0

Φ(t′) dt′, (2.1)where Φ(t′) is a Gaussian pro
ess by the 
entral limit theorem [10℄. Thephase noise pro
ess φ(t) in (2.1) is also a Gaussian pro
ess with a varian
ethat in
reases with time [10℄. In other words, the phase noise in an os
illatoris an a

umulative Gaussian pro
ess that results from integrating both thewhite and 
olored noise perturbations over time. When the 
umulative noisepro
ess Φ(t) in the os
illator is assumed to be white and Gaussian, then thephase noise φ(t) de�ned in (2.1) is a Wiener pro
ess [10℄.The power spe
tral density (PSD) of the phase noise pro
ess φ(t) in(2.1) is approximately [11℄
Sφ(f) ∝

k2
f 2

+
k3
f 3

, (2.2)5



Chapter 2. Phase Noise in Communi
ation Systems
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Figure 2.1: Real Os
illator measurement.where k2 and k3 are positive 
onstants that depend on the quality of theos
illator. In Fig. 2.1, we have presented the PSD measurements from areal os
illator operating at a frequen
y of fosc = 9.85 GHz.Now 
onsider the phase noise 
aused during an interval τ , and de�ne itas
∆(τ) , φ(t + τ)− φ(t) ∝

∫ t+τ

t

Φ(t′) dt′, (2.3)where ∆(τ) refers to the phase noise in
rement representing the phase noisethat has a

umulated over the time interval τ . The in
rement pro
ess in(2.3) is also 
alled an innovation pro
ess. As shown in [12℄, the in
rementpro
ess is stationary and Gaussian, and its varian
e is given as
σ2
∆(τ) =

∫ ∞

−∞

Sφ(f)4 sin (πfτ)
2df, (2.4)When only white noise sour
es are assumed to be present in the os
illator,the varian
e of the in
rement pro
ess in (2.3) is obtained by evaluating theintegral in (2.4) as

σ2
∆(τ) = 4π2Kwτ, (2.5)whereKw is a 
onstant that depends on the 
umulative white noise pro
essesin the os
illator. For the remainder of the thesis, we will assume that theos
illator has only white noise sour
es and φ(t) is a Wiener pro
ess. Thisis a widely used model for os
illator phase noise [10℄.6



2.3. Communi
ation System Model with Phase Noise2.3 Communi
ation SystemModel with PhaseNoiseConsider an information signal m(t) that is de�ned as
m(t) =

L−1∑

l=0

mkp(t− lTs), (2.6)where Ts is the symbol period, p(·) is a bandlimited square root Nyquistpulse [13℄ and L is the number of information symbols transmitted. Thesymbols mk in (2.6) are drawn from the signal 
onstellation M = {si, ∀ i ∈
{1, ...,M}}, where M is the size of the 
onstellation. Using the signal froman os
illator at the transmitter, m(t) is up-
onverted to obtain the pass-band information signal [13℄ as

mpb(t) = ℜ{
√
2m(t)ej(2πfosct+φtx(t))}, (2.7)where ℜ{·} denotes the real part of a 
omplex number, and φtx(t) is theWiener phase noise pro
ess in the os
illator. The pass-band signal mpb(t)is transmitted from a sour
e to a destination and is a�e
ted by phase noiseand additive white Gaussian noise (AWGN) pro
esses. Let r̃pb(t) denotethe pass-band signal re
eived at the destination that is given as

r̃pb(t) = mpb(t) + ñpb(t), (2.8)where ñpb(t) is the pass-band AWGN pro
ess with double sided noise PSD
N0. The pass-band signal r̃pb(t) is down-
onverted to base-band by �rstusing the signal from an os
illator at the re
eiver as

r̃′(t) = ℜ{
√
2r̃pb(t)e

j(2πfosct+φrx(t))}, (2.9)where φrx(t) is the Wiener phase noise pro
ess in the os
illator. The signal
r̃′(t) is then low-pass �ltered to obtain r̃(t) that 
an be written as

r̃(t) = m(t)ejφ(t) + ñ′(t), (2.10)where φ(t) = φtx(t)+φrx(t), and ñ′(t) is the 
omplex envelope of ñpb(t) andan additive Gaussian noise pro
ess with double sided noise PSD N0. Thenoise pro
esses φ(t), ñ′(t) are independent of ea
h other and the transmittedinformation signal m(t).The re
eived signal (2.10) is passed through a mat
hed �lter p∗(−t) andsampled at the Nyquist rate kTs as
r̃(kTs) =

L−1∑

l=0

mk

∫ ∞

−∞

p(kTs − lTs − τ)p∗(−τ)ejφ(kTs)dτ +

∫ ∞

−∞

ñ′(kTs − τ)p∗(−τ)dτ
(a)
= mke

jφ(kTs) + ñ(kTs), (2.11)7



Chapter 2. Phase Noise in Communi
ation Systemswhere r̃(kTs) is the re
eived signal sample, ñ(kTs) is the 
omplex Gaussiannoise sample with E{ñ(kTs)} = 0 and E{ñ(kTs)ñ
∗(kTs)} = N0, and φ(kTs)is the phase noise sample in the kth time instant. The simpli�
ation instep (a) in (2.11) results be
ause p(t) is a square root Nyquist pulse andit is assumed that the phase noise variation is a 
onstant within Ts. Thedis
rete (sampled) phase noise pro
ess φ(kTs) 
an be expressed, using (2.1)and (2.3), as

φ(kTs) =

k∑

i=1

∫ iTs

(i−1)Ts

Φ(t)dt = k∑

i=1

∆(iTs)

= φ((k − 1)Ts) + ∆(kTs). (2.12)With a slight 
hange in notation, we rewrite the dis
rete phase noise pro
essin (2.12) as
φk = φk−1 +∆k, (2.13)where φk at k = 0 is a uniform random variable (r.v.), and ∆k ∼ N (0, σ2

∆)is the innovation of the Wiener pro
ess. Sin
e only white noise sour
es are
onsidered in the os
illator, the dis
rete innovation pro
ess is white anddistributed as N (0, σ2
∆), where σ2

∆ is de�ned in (2.5) as σ2
∆ = 4π2KwTs.We rewrite the dis
rete system model in (2.11) as

r̃k = mke
jφk + ñk. (2.14)The dis
rete signal r̃k in (2.11) forms a su�
ient statisti
s for the 
ontinuoustime model in (2.10) [14℄. Impli
it from (2.11) is that the spe
tral broaden-ing of the transmitted signal m(t) 
aused by phase noise is moderate, andthere is no inter-
hannel interferen
e. For the remainder of the thesis, wewill use the dis
rete model in (2.14) to represent an information signal thatis a�e
ted by phase noise and AWGN.

8



Chapter 3Designing Communi
ationSystems for Phase NoiseOs
illators may be 
arefully designed so that they have low levels of phasenoise. However, su
h a

urate os
illators 
an be expensive and 
annot beemployed ubiquitously. With an explosion in the number of wireless devi
esin use/demand in the re
ent times, their design has to be optimized inseveral ways, parti
ularly in terms of 
ost. The use of inexpensive, noisyos
illators in su
h systems is therefore inevitable, and systems have to beappropriately designed and 
ompensated by a

ounting for phase noise. Inthis 
hapter, we will present a review of prior work related to designingsystems in the presen
e of os
illator phase noise.3.1 Design Approa
hesThe problem of designing wireless 
ommuni
ation systems in the presen
eof phase noise su
h that they a
hieve near 
oherent performan
e has beeninvestigated for de
ades. The main design approa
hes to this problem 
anbe summarized as follows:1. The traditional approa
h is to design phase noise tra
kers that wouldtra
k or estimate the phase noise in the re
eived signals, followedby 
oherent dete
tion of the transmitted symbols. This 
an be usedin 
ombination with standard error 
orre
ting 
odes like low-densityparity-
he
k (LDPC) 
odes or turbo 
odes and 
onventional signal
onstellations like phase shift keying (PSK) or quadrature amplitudemodulation (QAM).2. One may design low-
omplexity joint phase-estimation data-dete
tionalgorithms for 
ompensating Wiener phase noise. Similar to the tra-9
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kingditional approa
h, these joint algorithms 
an be used along with stan-dard error 
orre
ting 
odes and 
onventional 
onstellations.3. In order to improve the system performan
e, one may design 
onstel-lations that are optimized for the phase noise 
hannel.4. Another approa
h is to design error 
orre
ting 
odes that in
orporatethe e�e
t of phase noise. This 
an be used along with 
onventional
onstellations for transmission.3.1.1 Phase Noise Tra
kersWe will �rst brie�y review some methods for phase noise tra
king used in
ommuni
ation re
eivers by 
onsidering the following question: How 
anphase noise tra
kers be designed su
h that near-
oherent error rate perfor-man
e 
an be a
hieved in the presen
e of os
illator phase noise?Tra
kers are used to tra
k or estimate the phase noise in the re
eivedsignal. That is, after mat
hed �ltering and sampling of the re
eived signal
r̃(t), the phase noise in the dis
rete signal r̃k is tra
ked and 
ompensated as

rk , r̃ke
−jφ̂k = mke

jθk + nk (3.1)
θk , φk − φ̂k, nk , ñke

−jφ̂k ,where φ̂k is the phase noise estimate, and θk is the remaining phase error.Following this 
ompensation, 
oherent dete
tion of the transmitted symbolsis performed by e�e
tively treating the phase error θk to be zero.The most widely used tra
ker is the phase lo
ked loop (PLL) [4,15℄ thatis shown in Fig. 3.1, whose operation 
an be summarized as follows: Let
φ̂k be the tra
ked phase from a loop �lter and φk be the phase noise inthe re
eived signal. They are the inputs to the phase dis
riminator. Let
θk , φk − φ̂k denote the phase error pro
ess. This error signal is then10



3.1. Design Approa
hesfed to the loop �lter, whi
h produ
es an estimate φ̂k of the phase noise inthe re
eived signal. The estimate φ̂k is generated su
h that it de
reasesthe phase error θk. When a PLL initially seeks to tra
k the phase of thein
oming signal, the phase error is large, and the error steadily de
reaseswith time. This transient operating mode is 
alled the a
quisition modeof the PLL. When the phase error be
omes very small, the PLL is said tobe lo
ked to the in
oming signal. Another tra
ker that is 
ommonly usedis the extended Kalman Filter (EKF) [16, 17℄. It has been shown in priorwork [18℄ that an EKF has a stru
ture and performan
e similar to that ofa PLL.The performan
e of the tra
kers 
an be evaluated by 
omparing theirmean square error (MSE) with a lower bound on the phase estimation MSE.One way of 
hara
terizing the MSE lower bound is to evaluate the BayesianCramer-Rao bound (CRB) [19℄ for the phase noise model in (2.13). Parti
le�lters [20℄, extended Kalman �tlers or smoothers, and the MAP estimationalgorithm in [21℄ have been shown to rea
h the CRB. Note that the boundsfor the MSE of these algorithms are known and 
hara
terized only when thedata is known. They are generally harder to derive when the transmitteddata is unknown, or when the estimator has only limited prior informationabout the transmitted data [19℄.In re
ent times, there has been a lot of e�ort towards improving theperforman
e of 
oded systems (like turbo 
odes) in the presen
e of randomphase noise. To address this problem, the per-survivor pro
essing (PSP)algorithm proposed in [22℄ has been widely used, where phase estimationis �rst performed using an estimator like the PLL followed by (Viterbi orBCJR) sequen
e dete
tion. Another widely used te
hnique for this problemis 
alled turbo syn
hronization [23℄. In this te
hnique, phase estimation isperformed using the expe
tation-maximization (EM) algorithm. The phaseestimates are then used to 
ompute the a posteriori bit and symbol prob-abilities using algorithms like the BCJR [24�26℄. In both PSP and turbosyn
hronization, the phase noise estimates rendered by the estimation al-gorithm are treated as the true value of phase noise.There are other numerous algorithms that have been proposed for phasenoise tra
king, and we refer the readers to [4, 15℄ for a fairly exhaustivereview. Note that the traditional approa
h 
an be viewed as a spe
ial 
aseof the approa
h where algorithms for phase-estimation data-dete
tion arejointly designed for 
ompensating Wiener phase noise.Phase Error ModelsIn the 
ontext of phase noise tra
king, it is important to study models forthe phase error pro
ess θk. Re
all that the phase error θk in the traditional11
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Figure 3.2: PDF of phase error resulting from the 
ompensation of the re
eived signalwith an EKF for σ2
∆
= 10

−2rad2.approa
h is treated as zero. However, as we shall see in the sequel, itsstatisti
s 
an be used for designing joint phase-estimation data-dete
tionalgorithms, whi
h 
an help to a
hieve signi�
ant gains in the system errorrate performan
e [27℄. A 
ommon assumption for the phase error pro
ess θkresulting from the PLL, for a given symbol amplitude, is that it is Tikhonov[28℄. The Tikhonov or Von Mises PDF with 
ir
ular mean 0 and varian
e
1/ρ is given as

p(θk) =
eρ cos(θk)

2πI0(ρ)
, θk ∈ [−π, π], (3.2)This PDF is approximately Gaussian for large values of ρ, and is usedto model the phase error after 
ompensation with the PLL or a tra
ker.Another PDF model that is used to des
ribe the phase error pro
ess is thewrapped Gaussian distribution [29℄

p(θk) =
1

√
2πσ2

p

∑

l∈Z

e
−(θk−2lπ)2

2σ2
p , θk ∈ [−π, π] (3.3)where σ2

p denotes the varian
e of θk. After 
ompensation by the EKF,the phase error is approximately Gaussian or Tikhonov for a given symbolamplitude. The PDF of the phase error for this 
ase is presented in Fig.3.2. However, the error PDF be
omes 
ompli
ated when the transmittedsymbols have di�erent amplitudes.Let us now try to visualize in Fig. 3.3 the e�e
t of the Gaussian phaseerror on a simple 
onstellation, where we observe the rotational e�e
t of12
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In−Phase(a) (b)Figure 3.3: 16-QAM 
onstellation at SNR per bit of 40 dB, when (a) no phase noise ispresent, (b) a�e
ted by a Gaussian distributed phase error of varian
e σ2p = 1 × 10
−2rad2.phase error on the transmitted symbols. Here, the symbols are drawn froma 16-QAM signal 
onstellation and transmitted over a wireless link at asignal-to-noise (SNR) per bit of 40 dB and phase error varian
e σ2

p = 10−2rad2.3.1.2 Joint Phase-Estimation Data-Dete
tion AlgorithmsWe will now review prior work that has attempted to address the followingquestion: When the transmitted information signal is a�e
ted by AWGNand phase noise, how 
an a low-
omplexity joint phase-estimation data-dete
tion algorithm be designed su
h that (near) optimal system perfor-man
e is a
hieved?The problem of re
eiver design for joint phase estimation and data de-te
tion in SISO point-to-point links has been extensively studied, e.g., referto [4, 15℄ and referen
es therein. One of the earlier approa
hes adoptedto solve this problem was reported in [30, 31℄, whi
h proposed simultane-ous maximum-likelihood (ML) estimation of the data symbols, the 
arrierphase and the timing o�set. In [32℄, MAP estimation based on the Viterbialgorithm was proposed for joint estimation of phase and data. The phasenoise model 
onsidered was similar to the random walk model in (2.13), butthe innovations ∆k were restri
ted to be dis
rete binary jumps. This short-
oming was addressed in [33℄, where the dis
rete Wiener pro
ess (2.13) wasused. Spe
i�
ally, the phase random variable was assumed to be dis
rete inthe range [−π, π], and the Viterbi algorithm was employed to �nd the MAP13
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ation Systems for Phase Noisephase and symbol estimates. A similar approa
h using the BCJR algorithmwas proposed in [34℄. The algorithms in [33, 34℄ are regarded as the MAPphase-estimation data-dete
tion algorithms. However, they are extremely
omplex and are used as a ben
hmark to 
ompare with the performan
e ofother low 
omplexity joint phase-estimation data-dete
tion algorithms.In [35℄, an optimum symbol-by-symbol (SBS) re
eiver was derived, whereit was illustrated that this re
eiver has a separable estimator-dete
tor stru
-ture. The re
eived signals were �rst used to 
ompute the a posteriori PDFof phase noise. This PDF was then used to perform SBS dete
tion. Theproblem of 
omputing the a posteriori PDF of phase noise given the re
eivedsignals has been demonstrated to be intra
table in general. However, it wasobserved that the optimum re
eiver stru
ture 
an be analyti
ally obtainedonly for some 
ases of the phase noise a posteriori PDF, e.g., the phase noisePDF is uniform. On a related note, it is possible to restri
t the a posterioriphase noise PDF to a 
anoni
al family of distributions and then derive theML symbol dete
tor. This approa
h was reported in a mu
h earlier workby Fos
hini et al. [27℄. In their work, it was assumed that the phase of there
eived signal is tra
ked and 
ompensated using a PLL. Then the posteri-ori phase error PDF (2.14), was approximated as a Tikhonov PDF [28℄ andused to derive the ML dete
tor. In a more re
ent e�ort, a similar dete
torwas derived in [36℄ for the phase noise 
hannel in (2.14).When the transmitted symbols are a�e
ted by random phase noise,methods based on the sum-produ
t algorithm (SPA) [37℄ on fa
tor graphshave also been used for designing joint phase-estimation data-dete
tion al-gorithms. The SPA does not employ an expli
it estimator and approximatesthe a posteriori symbol probabilities based on a marginalization of the phasenoise, whi
h is treated as a nuisan
e parameter. A joint phase-estimatordata-dete
tor that is similar to an extended Kalman smoother was proposedin [16,38℄. In [39℄, the messages used in the SPA were restri
ted to a 
anon-i
al set of distribution, namely the Tikhonov distribution. An extension ofthe approa
h in [39℄ was proposed in [40℄ to handle both time varying phasenoise and a 
onstant frequen
y o�set.As a low 
omplexity alternative to SPA, the work in [17℄ proposed jointphase estimation and dete
tion based on the Variational-Bayesian (VB)framework, whi
h was found to be e�
ient in the presen
e of random phasenoise. However, variational methods may not be as e�e
tive 
ompared tothe SPA algorithm sin
e the a posteriori symbol probabilities are 
omputedbased on a marginalization of the phase noise, for whi
h the SPA is more ef-fe
tive. In [41℄, an algorithm similar to the SPA based on forward-ba
kwardre
ursions for phase estimation and data dete
tion was proposed for thedis
rete Wiener phase noise model. Appli
ation of Monte Carlo sampling14
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Figure 3.4: Comparison of the SEP performan
e between the various dete
tors andoptimal MAP for 16-QAM, σ2
∆
= 10

−2rad2.methods for joint phase estimation and data dete
tion was investigatedin [42℄ for both 
oded and un
oded systems.Let us now see how the various low-
omplexity estimator-dete
tors pro-posed in prior work perform in terms of SEP with respe
t to the optimalMAP algorithm [33, 34℄. We 
onsider un
oded data transmission, and usesymbols from the 16-QAM 
onstellation. The phase noise model used is thedis
rete Wiener phase noise model in (2.13) with σ2
∆ = 10−2 rad2. The 
om-parison is shown in Fig. 3.4, where we observe that the gap in performan
ebetween the various proposed algorithms and the MAP is signi�
antly large.This emphasizes that the problem of 
omputing a

urate a posteriori symbolprobabilities and a posteriori phase PDF for deriving joint phase-estimationdata-dete
tion algorithms is 
hallenging. The gap in performan
e motivatesthe need to design new low-
omplexity algorithms for performing joint phaseestimation and data dete
tion for severely strong phase noise s
enarios, par-ti
ularly 
onsidering high order 
onstellations. This is investigated in ourworks in [43, 44℄ that are appended to this thesis, where we propose a low-
omplexity phase-estimator data-dete
tor that is demonstrated to outper-form all the algorithms existing in the literature.3.1.3 Constellation DesignAnother approa
h for improving system performan
e when a�e
ted by phasenoise is to design optimal 
onstellations that are to be transmitted over thewireless link. In this regard, we summarize prior work that have soughtto address the following: How 
an two-dimensional signal 
onstellations be15



Chapter 3. Designing Communi
ation Systems for Phase Noisedesigned for 
hannels with phase noise, su
h that a target obje
tive fun
tionlike error rate performan
e or the mutual information (MI) is optimized?The problem of arranging M points in a two-dimensional plane su
hthat a target obje
tive fun
tion is optimized is a 
lassi
al problem in 
om-muni
ation theory [45℄. For de
ades, this problem has been studied fordi�erent 
hannel 
onditions and 
ommuni
ation models [46�49℄. SEP andMI are some of the performan
e measures that have been used as the tar-get obje
tive fun
tion. SEP optimized 
onstellations enhan
e asymptoti
performan
e of 
oded systems. Furthermore, the e�e
ts of phase noise im-pairments 
an be quite 
ompli
ated to be in
orporated in the design of long
apa
ity-a
hieving 
odes. Then it might be a reasonable approa
h to �rstdesign a 
onstellation that is optimized in terms of SEP, and then 
ombineit with a standard error-
orre
ting 
ode like turbo or LDPC 
odes. SEPminimizing 
onstellations do not ne
essarily maximize MI, whi
h is a morerelevant �gure of merit in 
oded systems [50℄. For 
oded systems, it is inter-esting to optimize 
onstellations su
h that they maximize MI for the phasenoise 
hannel.The design of 
onstellations for wireless systems impaired by phase noisewas �rst addressed by Fos
hini et al. in [27℄. In their work, an approxi-mate ML dete
tor and its SEP were derived for the phase noise 
hannel in(2.14). The SEP derived was seen to be an upper bound, and the 
onstel-lations that minimized it were obtained using a heuristi
 algorithm devel-oped in [45℄. In [51℄, 
onstellations robust to phase noise were 
onstru
tedheuristi
ally su
h that they have low de
oding 
omplexity or simple de
i-sion regions (thus enabling quadrant or threshold-based de
oding). In [52℄,the approximate SEP for a given phase o�set in (2.14) was derived, andit was minimized for designing 
onstellations. In [53℄, a simple methodfor 
onstru
ting spiral-shaped 
onstellations was presented, and their per-forman
es were 
ompared to that of the 
onventional 
onstellations in thepresen
e of memoryless phase noise. In a more re
ent e�ort [54℄, the prob-lem of designing 
onstellations that maximize the MI of the memorylessphase noise 
hannel was addressed. In their work, �rst the (approximate)MI for the 
hannel was derived, and optimal 
onstellations were obtainedby maximizing it using the simulated annealing algorithm.Prior work has demonstrated that 
onstellations designed for phase noisesubstantially outperform 
onventional 
onstellations in terms of SEP andMI. However, in most prior work (ex
ept [27℄ and [54℄) ad-ho
 methodshave been used. There has been very limited e�ort to address this problembased on rigorous optimization formulations. These fa
tors motivate theneed to revisit the problem of 
onstellation design based on optimizationformulations that use target obje
tive fun
tions like SEP or MI. This is16



3.1. Design Approa
hesthe theme of our work in [55℄ that is appended to this thesis, where wedesign 
onstellations based on di�erent obje
tive fun
tions like SEP andMI and demonstrate that the optimal 
onstellations obtained outperformthe 
onventional 
onstellations and those proposed in the literature.Capa
ity of Phase Noise ChannelsIn the 
ontext of optimizing �nite sized 
onstellations su
h that the MI ismaximized, it is relevant to dis
uss about some important results related to
apa
ity of 
hannels with phase noise and AWGN, whi
h is an a
tive areaof resear
h. In [56℄, bounds on the 
apa
ity for 
hannels with uniform phasenoise were derived. It was also shown that the 
apa
ity a
hieving PDF isdis
rete with in�nite mass points. A similar 
onje
ture was presented forthe 
ase of partially 
oherent 
hannels. In [57℄, the 
apa
ity a
hieving inputPDF for a partially 
oherent 
hannel was found to be 
ir
ularly symmetri
and not Gaussian. In [58℄, upper bounds on the 
apa
ity for phase noise
hannels with and without memory were derived. The 
apa
ity of 
hannelswith memory is an open problem [59℄. Spe
i�
ally for phase noise 
hannelswith memory, as is the 
ase for Wiener phase noise, the 
apa
ity is not ana-lyti
ally 
hara
terized, but 
an be numeri
ally 
omputed using a te
hniquein [59℄.3.1.4 CodingDesigning error 
orre
ting 
odes that a
hieve the ultimate performan
elimit, i.e., the 
hannel 
apa
ity, with arbitrarily small probability of errorat a�ordable 
omplexity is the holy grail for resear
hers in 
ommuni
ationtheory and information theory [60℄. For systems that are a�e
ted by phasenoise, 
odes that would in
orporate the nature of phase noise impairmentshave to be designed. We now review prior work that has addressed thefollowing question: How 
an 
apa
ity-a
hieving error 
orre
ting 
odes bedesigned for systems impaired by phase noise?Designing error 
orre
ting 
odes so that they are amenable for phasenoise s
enarios is a 
hallenging problem and is an a
tive area of resear
h[61�64℄. In [36℄, the impa
t of phase noise on the error rate performan
eof standard error 
orre
ting 
odes was investigated. In parti
ular, it was
on
luded that standard LDPC and turbo 
odes were e�e
tive in redu
ingthe performan
e degradation in
urred by phase noise. It was also notedthat trellis 
oded modulation s
hemes experien
ed signi�
ant degradation intheir performan
e in the presen
e of strong phase noise. The design of 
odesfor the phase noise 
hannel have been explored in [61,63,64℄. These designs,aided by phase estimation, have been demonstrated to a
hieve near-
oherent17



Chapter 3. Designing Communi
ation Systems for Phase Noiseperforman
e for 
hannels with strong phase noise in many s
enarios. In [62℄,LDPC 
odes were designed by dividing the 
odewords into sub-blo
ks su
hthat the variation of phase noise over ea
h sub-blo
k was small. Phaseestimates were used to 
orre
t ea
h sub-blo
k and phase ambiguity 
he
kswere applied using lo
al 
he
k nodes. In [65℄, repeat-a

umulate (RA) 
odeswere designed where the phase ambiguity was resolved through di�erentialen
oding.

18



Chapter 4Contributions and FutureDire
tionsThis thesis addresses two approa
hes for 
ompensating os
illator phase noisein SISO point-to-point systems. In the �rst approa
h, we seek to designjoint phase-estimator data-dete
tor in the presen
e of os
illator phase noisein (2.13). In the se
ond approa
h, we seek to design 
onstellations thatare optimized for the phase noise 
hannel in (2.14). We will now brie�ydis
uss about the papers that have been appended to this thesis and ourmain 
ontributions:1. Paper A: Soft Metri
s and their Performan
e Analysis forOptimal Data Dete
tion in the Presen
e of Strong Os
illatorPhase NoiseIn this work, we derive an approximate ML dete
tor for dete
tingdata in the presen
e of a phase error that is Gaussian distributed.This dete
tor is used along with an EKF for joint phase-estimationdata-dete
tion in a system impaired by Wiener phase noise. We 
om-pare the SEP performan
e of the proposed te
hnique with that ofother algorithms from prior work. We observe that our te
hnique out-performs all other algorithms from prior work for a wide range of SNRvalues and phase noise varian
es. We also derive an upper bound onthe SEP of this ML dete
tor, and it is shown to be a tight upperbound for interesting SNR values and phase noise s
enarios.2. Paper B: Optimal and Approximate Methods for Dete
tionof Un
oded Data with Carrier Phase NoiseWe show that the ML data dete
tor for SBS dete
tion in the presen
eof phase noise 
an be formulated as a weighted sum of 
entral momentsof the 
onditional PDF of phase noise. Furthermore, we present a19



Chapter 4. Contributions and Future Dire
tionssimple approximation of this ML dete
tion rule, and observe that theapproximate rule renders SEP performan
e 
lose to the optimum forlow-to-high phase noise varian
e and low-to-medium SNR.3. Paper C: Optimal Constellations in the Presen
e of StrongPhase NoiseIn this work, we study the problem of designing 
onstellations for a
hannel with strong phase noise that is memoryless using three op-timization formulations. In the �rst formulation, 
onstellations thatminimize the SEP of the system are obtained. In the next two for-mulations, 
onstellations that maximize the MI of the phase noise
hannel are obtained. To this end, we analyti
ally 
hara
terize theMI of the phase noise 
hannels under 
onsideration. It is observedthat the optimal 
onstellations obtained signi�
antly outperform 
on-ventional 
onstellations and those proposed in the literature for a widerange of SNR values and phase noise varian
es.4.1 Future WorkOngoing resear
h and some possible topi
s for future resear
h are des
ribedin the following:� Currently, we are working on a joint phase-estimation data-dete
tionalgorithm based on the SPA and Gaussian mixture redu
tion thatextends our work in [43℄ by allowing the phase error PDF to be multi-modal.� We are also investigating the performan
e of the proposed 
onstella-tions in the presen
e of os
illator phase noise with memory. Spe
if-i
ally, we are exploring if our analysis and �ndings for the memory-less phase noise 
hannel 
an be extended to the 
hannel with Wienerphase noise. Also of interest is to investigate the 
onstrained 
apa
-ity of phase noise 
hannels with/without memory, where the input isrestri
ted to be dis
rete and have �nite mass points.� Another area that we intend to investigate in this do
toral thesis is thedesign of error 
orre
ting 
odes that in
orporate the e�e
t of phasenoise impairments. As observed before, this is a 
hallenging problemand is an a
tive area of resear
h.
20
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