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AbstratThe problem of designing wireless ommuniation systems to operatein the presene of osillator phase noise is a lassial problem in ommu-niation theory. In reent times, there has been a renewed interest in thisproblem for a multitude of reasons. One of the main fators for this isthe unpreedented explosion in the number of wireless and mobile deviesthat are enabled for ommuniation-intensive and bandwidth hungry appli-ations. This, in turn, is exerting a tremendous pressure on the networkinfrastruture, where more ost-e�etive, �exible, high speed onnetivitysolutions are being sought for. In this regard, wireless bakhaul links arean e�etive solution to transport data by using high order signal onstella-tions, whih are extremely prone to hardware impairments like phase noisefrom imperfet osillators. Phase noise is also dominant in ommuniationsystems that operate over millimeter-wave bands like 60 GHz and higher.This work is devoted to the lassial problem of designing wireless om-muniation systems in the presene of phase noise. First, we address theproblem of maximum-likelihood detetion of data in the presene of ran-dom phase noise due to imperfet osillators. This is done by designing alow-omplexity joint phase-estimator data-detetor. We show that the pro-posed method outperforms existing detetors, espeially when high ordersignal onstellations are used.Then, in order to further improve performane, we onsider the problemof designing signal onstellations that are optimal in the presene of phasenoise. We present two methods for solving this problem; in the �rst method,onstellations are designed suh that they minimize the symbol error rateperformane of the system impaired by phase noise. In the seond method,onstellations are designed to maximize the information rate of the system.We observe that these optimal onstellations signi�antly improve the sys-tem performane, when ompared to onventional onstellations and thoseproposed in the literature.Keywords: Osillator, phase noise, maximum likelihood (ML) detetion,maximum a posteriori (MAP) estimation, extended Kalman �lter (EKF),onstellations, symbol error probability, mutual information. i
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Part IThe Big Piture



Chapter 1IntrodutionSine the landmark paper by Shannon [1℄, substantial researh has beendevoted to the design of ommuniations systems that operate lose to theultimate performane limit, i.e., the hannel apaity, with an arbitrarysmall probability of error. Partiularly in single-input single-output (SISO)point-to-point wireless systems, muh of these e�orts have been based onseveral idealized assumptions like perfet hannel state information, perfetsynhronization, perfet hardware, untethered implementation omplexity,and muh more.As a result of the aforementioned idealized assumptions, there has been asigni�ant gap between the theoretial and pratially ahieved performanelevels in various ommuniation systems, inluding today's operational 3Gand 4G ellular networks. Errors in the hannel state information are amajor soure of performane loss, whih is around 2 − 3 dB even whenthe best estimator is used [2℄. Nonlinearities in the power ampli�er ausedistortions in the transmitted signal and its bandwidth expansion, whihhas to be appropriately modeled and mitigated [3℄. Synhronization errorsthat our primarily due to phase noise in frequeny soures like osillators,result in signi�ant performane degradation [4℄.Osillators are entral to the design of a wireless ommuniation system,and they should be aurate, inexpensive and desirably ompat. Theyprovide the arrier and pilot signals required for ommuniation and navi-gation purposes. They also provide lok signals and referene signals thatare used for various purposes like synhronization. All pratial osillatorssu�er from phase noise, whih manifests as a spetrum of noise around itsoperating frequeny. Thus, when information is onveyed from a soure(transmitter) to a destination (reeiver), a random time-varying phase dif-ferene inevitably arises between their respetive loal osillators. This isdetrimental given that many ommuniation systems are designed to oper-ate synhronously and oherently. If the phase noise is not appropriately1



Chapter 1. Introdutionaddressed, it an result in the distortion of the reeived signal and undesir-ably high error rates in phase modulated transmission systems.1.1 Aim of the ThesisIn this thesis, we will fous on the problem of ompensating wireless om-muniation systems impaired by osillator phase noise by addressing thefollowing questions:1. How an we systematially derive a low-omplexity joint phase-estimatordata-detetor that is (near) optimal in system performane?2. How an we design signal onstellations that are to be transmitted in asystem impaired by phase noise, suh that the error rate performaneor the information rate of the system is optimized?In order to omprehensively answer the above questions, it is imperative tounderstand the phase noise phenomenon and its impat on the ommuni-ation system performane. Thus, we will disuss about some importantresults from prior work that are related to the following questions:� What is the maximum a posteriori (MAP) joint estimator for randomphase and data?� What are the bounds for estimating the random phase noise whendata is unknown?� How an error orreting odes be designed to improve system per-formane when impaired by phase noise and operate lose to hannelapaity?� What is the apaity of hannels with phase noise, inluding thosephase noise hannels with memory?1.2 Thesis OutlineThe thesis is organized as follows: In Chapter 2, we explain about the phasenoise phenomenon and its soures in an osillator. Then, we disuss aboutthe model that represents a ommuniation system impaired by phase noise.In Chapter 3, we over prior work related to designing systems a�eted byphase noise. We �rst disuss about phase noise trakers and the di�erentlow-omplexity algorithms for joint phase-estimation and data-detetion.For a theoretial understanding of this topi, the reader is referred to [5℄.2



1.2. Thesis OutlineThen, we examine prior work related to onstellation design in the preseneof phase noise and the apaity of hannels impaired by phase noise. Fur-thermore, we review results related to the design of error ontrol odes forphase noise hannels. Finally, we summarize our papers and ontributionsin Chapter 4.
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Chapter 2Phase Noise in CommuniationSystemsOsillators that are used in ommuniation systems are imperfet, in thattheir output signals are a�eted by random phase and frequeny instabili-ties. These instabilities manifest themselves as a spetrum of noise aroundthe osillators' operating frequeny. An osillator signal an su�er bothamplitude and phase perturbations. Amplitude �utuations are attenuatedby an amplitude limiting mehanism present in the osillator iruitry [6℄.For this reason, the amplitude noise originating from an osillator an beignored, and phase noise is our fous in this thesis. In this hapter, wewill brie�y review the various soures and models for the phase noise phe-nomenon. Then, we will disuss about the model that represents a wirelessommuniation system impaired by phase noise.2.1 Noise Soures in an OsillatorAn osillator signal is a�eted by a number of fators. Broadly speaking,these fators an be ategorized as short-term instabilities, deterministiinstabilities and long-term instabilities [7℄. Short-term instabilities, whihtypially last for a duration of a few seonds, are mainly aused by thefollowing soures of noise in the osillator:� Thermal Noise - This is the white noise aused by random motionof eletrons due to thermal exitation, and its level is equal to kTB,where k is the Boltzman onstant, T is the absolute temperature inKelvin, and B is the 3−dB noise bandwidth [7℄. The instantaneouseletron motion is ompletely independent of its past, i.e., the noiseis memoryless, and its power spetral density is regarded as white.4



2.2. Phase Noise in an Osillator� Colored Noise or 1/f Noise - This is the spetral noise dominated bylow-frequeny omponents that mixes with frequenies lose to thearrier frequeny of the osillator [8℄. Its instantaneous �utuationsdepend on its past and therefore has memory.The main deterministi soures of osillator noise are identi�ed as in [9℄:� Power supply feed-through and other interfering soures - Couplingan happen in an osillator iruit between the osillator signal andthe other signals in the iruitry. This an amplitude/phase modulatethe output signal from the osillator. Other osillators and digital fre-queny dividers in the iruitry an also modulate the loal osillatoroutput.� Spurious signals - Generally, an osillator is designed to have just onefeedbak path for phase orretion and to generate the desired outputsignal. However, several feedbak paths may exist, whih may in turnresult in spurious output signals.In ontrast to the above forms of noise, long term instabilities our dueto aging of the resonator material in the osillator. Typially, these havevery slow variations that our over hours, days, months, or even years andare therefore less ritial.2.2 Phase Noise in an OsillatorConsider a noisy osillator that operates at a enter frequeny of fosc and isa�eted by white noise and olored noise proesses as desribed before. Let
Φ(t) represent the sum of all these noise proesses. Then the phase noise inthe output signal of the osillator is given as

φ(t) ∝
∫ t

0

Φ(t′) dt′, (2.1)where Φ(t′) is a Gaussian proess by the entral limit theorem [10℄. Thephase noise proess φ(t) in (2.1) is also a Gaussian proess with a varianethat inreases with time [10℄. In other words, the phase noise in an osillatoris an aumulative Gaussian proess that results from integrating both thewhite and olored noise perturbations over time. When the umulative noiseproess Φ(t) in the osillator is assumed to be white and Gaussian, then thephase noise φ(t) de�ned in (2.1) is a Wiener proess [10℄.The power spetral density (PSD) of the phase noise proess φ(t) in(2.1) is approximately [11℄
Sφ(f) ∝

k2
f 2

+
k3
f 3

, (2.2)5



Chapter 2. Phase Noise in Communiation Systems
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Figure 2.1: Real Osillator measurement.where k2 and k3 are positive onstants that depend on the quality of theosillator. In Fig. 2.1, we have presented the PSD measurements from areal osillator operating at a frequeny of fosc = 9.85 GHz.Now onsider the phase noise aused during an interval τ , and de�ne itas
∆(τ) , φ(t + τ)− φ(t) ∝

∫ t+τ

t

Φ(t′) dt′, (2.3)where ∆(τ) refers to the phase noise inrement representing the phase noisethat has aumulated over the time interval τ . The inrement proess in(2.3) is also alled an innovation proess. As shown in [12℄, the inrementproess is stationary and Gaussian, and its variane is given as
σ2
∆(τ) =

∫ ∞

−∞

Sφ(f)4 sin (πfτ)
2df, (2.4)When only white noise soures are assumed to be present in the osillator,the variane of the inrement proess in (2.3) is obtained by evaluating theintegral in (2.4) as

σ2
∆(τ) = 4π2Kwτ, (2.5)whereKw is a onstant that depends on the umulative white noise proessesin the osillator. For the remainder of the thesis, we will assume that theosillator has only white noise soures and φ(t) is a Wiener proess. Thisis a widely used model for osillator phase noise [10℄.6



2.3. Communiation System Model with Phase Noise2.3 Communiation SystemModel with PhaseNoiseConsider an information signal m(t) that is de�ned as
m(t) =

L−1∑

l=0

mkp(t− lTs), (2.6)where Ts is the symbol period, p(·) is a bandlimited square root Nyquistpulse [13℄ and L is the number of information symbols transmitted. Thesymbols mk in (2.6) are drawn from the signal onstellation M = {si, ∀ i ∈
{1, ...,M}}, where M is the size of the onstellation. Using the signal froman osillator at the transmitter, m(t) is up-onverted to obtain the pass-band information signal [13℄ as

mpb(t) = ℜ{
√
2m(t)ej(2πfosct+φtx(t))}, (2.7)where ℜ{·} denotes the real part of a omplex number, and φtx(t) is theWiener phase noise proess in the osillator. The pass-band signal mpb(t)is transmitted from a soure to a destination and is a�eted by phase noiseand additive white Gaussian noise (AWGN) proesses. Let r̃pb(t) denotethe pass-band signal reeived at the destination that is given as

r̃pb(t) = mpb(t) + ñpb(t), (2.8)where ñpb(t) is the pass-band AWGN proess with double sided noise PSD
N0. The pass-band signal r̃pb(t) is down-onverted to base-band by �rstusing the signal from an osillator at the reeiver as

r̃′(t) = ℜ{
√
2r̃pb(t)e

j(2πfosct+φrx(t))}, (2.9)where φrx(t) is the Wiener phase noise proess in the osillator. The signal
r̃′(t) is then low-pass �ltered to obtain r̃(t) that an be written as

r̃(t) = m(t)ejφ(t) + ñ′(t), (2.10)where φ(t) = φtx(t)+φrx(t), and ñ′(t) is the omplex envelope of ñpb(t) andan additive Gaussian noise proess with double sided noise PSD N0. Thenoise proesses φ(t), ñ′(t) are independent of eah other and the transmittedinformation signal m(t).The reeived signal (2.10) is passed through a mathed �lter p∗(−t) andsampled at the Nyquist rate kTs as
r̃(kTs) =

L−1∑

l=0

mk

∫ ∞

−∞

p(kTs − lTs − τ)p∗(−τ)ejφ(kTs)dτ +

∫ ∞

−∞

ñ′(kTs − τ)p∗(−τ)dτ
(a)
= mke

jφ(kTs) + ñ(kTs), (2.11)7



Chapter 2. Phase Noise in Communiation Systemswhere r̃(kTs) is the reeived signal sample, ñ(kTs) is the omplex Gaussiannoise sample with E{ñ(kTs)} = 0 and E{ñ(kTs)ñ
∗(kTs)} = N0, and φ(kTs)is the phase noise sample in the kth time instant. The simpli�ation instep (a) in (2.11) results beause p(t) is a square root Nyquist pulse andit is assumed that the phase noise variation is a onstant within Ts. Thedisrete (sampled) phase noise proess φ(kTs) an be expressed, using (2.1)and (2.3), as

φ(kTs) =

k∑

i=1

∫ iTs

(i−1)Ts

Φ(t)dt = k∑

i=1

∆(iTs)

= φ((k − 1)Ts) + ∆(kTs). (2.12)With a slight hange in notation, we rewrite the disrete phase noise proessin (2.12) as
φk = φk−1 +∆k, (2.13)where φk at k = 0 is a uniform random variable (r.v.), and ∆k ∼ N (0, σ2

∆)is the innovation of the Wiener proess. Sine only white noise soures areonsidered in the osillator, the disrete innovation proess is white anddistributed as N (0, σ2
∆), where σ2

∆ is de�ned in (2.5) as σ2
∆ = 4π2KwTs.We rewrite the disrete system model in (2.11) as

r̃k = mke
jφk + ñk. (2.14)The disrete signal r̃k in (2.11) forms a su�ient statistis for the ontinuoustime model in (2.10) [14℄. Impliit from (2.11) is that the spetral broaden-ing of the transmitted signal m(t) aused by phase noise is moderate, andthere is no inter-hannel interferene. For the remainder of the thesis, wewill use the disrete model in (2.14) to represent an information signal thatis a�eted by phase noise and AWGN.
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Chapter 3Designing CommuniationSystems for Phase NoiseOsillators may be arefully designed so that they have low levels of phasenoise. However, suh aurate osillators an be expensive and annot beemployed ubiquitously. With an explosion in the number of wireless deviesin use/demand in the reent times, their design has to be optimized inseveral ways, partiularly in terms of ost. The use of inexpensive, noisyosillators in suh systems is therefore inevitable, and systems have to beappropriately designed and ompensated by aounting for phase noise. Inthis hapter, we will present a review of prior work related to designingsystems in the presene of osillator phase noise.3.1 Design ApproahesThe problem of designing wireless ommuniation systems in the preseneof phase noise suh that they ahieve near oherent performane has beeninvestigated for deades. The main design approahes to this problem anbe summarized as follows:1. The traditional approah is to design phase noise trakers that wouldtrak or estimate the phase noise in the reeived signals, followedby oherent detetion of the transmitted symbols. This an be usedin ombination with standard error orreting odes like low-densityparity-hek (LDPC) odes or turbo odes and onventional signalonstellations like phase shift keying (PSK) or quadrature amplitudemodulation (QAM).2. One may design low-omplexity joint phase-estimation data-detetionalgorithms for ompensating Wiener phase noise. Similar to the tra-9
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Figure 3.1: PLL Trakingditional approah, these joint algorithms an be used along with stan-dard error orreting odes and onventional onstellations.3. In order to improve the system performane, one may design onstel-lations that are optimized for the phase noise hannel.4. Another approah is to design error orreting odes that inorporatethe e�et of phase noise. This an be used along with onventionalonstellations for transmission.3.1.1 Phase Noise TrakersWe will �rst brie�y review some methods for phase noise traking used inommuniation reeivers by onsidering the following question: How anphase noise trakers be designed suh that near-oherent error rate perfor-mane an be ahieved in the presene of osillator phase noise?Trakers are used to trak or estimate the phase noise in the reeivedsignal. That is, after mathed �ltering and sampling of the reeived signal
r̃(t), the phase noise in the disrete signal r̃k is traked and ompensated as

rk , r̃ke
−jφ̂k = mke

jθk + nk (3.1)
θk , φk − φ̂k, nk , ñke

−jφ̂k ,where φ̂k is the phase noise estimate, and θk is the remaining phase error.Following this ompensation, oherent detetion of the transmitted symbolsis performed by e�etively treating the phase error θk to be zero.The most widely used traker is the phase loked loop (PLL) [4,15℄ thatis shown in Fig. 3.1, whose operation an be summarized as follows: Let
φ̂k be the traked phase from a loop �lter and φk be the phase noise inthe reeived signal. They are the inputs to the phase disriminator. Let
θk , φk − φ̂k denote the phase error proess. This error signal is then10



3.1. Design Approahesfed to the loop �lter, whih produes an estimate φ̂k of the phase noise inthe reeived signal. The estimate φ̂k is generated suh that it dereasesthe phase error θk. When a PLL initially seeks to trak the phase of theinoming signal, the phase error is large, and the error steadily dereaseswith time. This transient operating mode is alled the aquisition modeof the PLL. When the phase error beomes very small, the PLL is said tobe loked to the inoming signal. Another traker that is ommonly usedis the extended Kalman Filter (EKF) [16, 17℄. It has been shown in priorwork [18℄ that an EKF has a struture and performane similar to that ofa PLL.The performane of the trakers an be evaluated by omparing theirmean square error (MSE) with a lower bound on the phase estimation MSE.One way of haraterizing the MSE lower bound is to evaluate the BayesianCramer-Rao bound (CRB) [19℄ for the phase noise model in (2.13). Partile�lters [20℄, extended Kalman �tlers or smoothers, and the MAP estimationalgorithm in [21℄ have been shown to reah the CRB. Note that the boundsfor the MSE of these algorithms are known and haraterized only when thedata is known. They are generally harder to derive when the transmitteddata is unknown, or when the estimator has only limited prior informationabout the transmitted data [19℄.In reent times, there has been a lot of e�ort towards improving theperformane of oded systems (like turbo odes) in the presene of randomphase noise. To address this problem, the per-survivor proessing (PSP)algorithm proposed in [22℄ has been widely used, where phase estimationis �rst performed using an estimator like the PLL followed by (Viterbi orBCJR) sequene detetion. Another widely used tehnique for this problemis alled turbo synhronization [23℄. In this tehnique, phase estimation isperformed using the expetation-maximization (EM) algorithm. The phaseestimates are then used to ompute the a posteriori bit and symbol prob-abilities using algorithms like the BCJR [24�26℄. In both PSP and turbosynhronization, the phase noise estimates rendered by the estimation al-gorithm are treated as the true value of phase noise.There are other numerous algorithms that have been proposed for phasenoise traking, and we refer the readers to [4, 15℄ for a fairly exhaustivereview. Note that the traditional approah an be viewed as a speial aseof the approah where algorithms for phase-estimation data-detetion arejointly designed for ompensating Wiener phase noise.Phase Error ModelsIn the ontext of phase noise traking, it is important to study models forthe phase error proess θk. Reall that the phase error θk in the traditional11
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Figure 3.2: PDF of phase error resulting from the ompensation of the reeived signalwith an EKF for σ2
∆
= 10

−2rad2.approah is treated as zero. However, as we shall see in the sequel, itsstatistis an be used for designing joint phase-estimation data-detetionalgorithms, whih an help to ahieve signi�ant gains in the system errorrate performane [27℄. A ommon assumption for the phase error proess θkresulting from the PLL, for a given symbol amplitude, is that it is Tikhonov[28℄. The Tikhonov or Von Mises PDF with irular mean 0 and variane
1/ρ is given as

p(θk) =
eρ cos(θk)

2πI0(ρ)
, θk ∈ [−π, π], (3.2)This PDF is approximately Gaussian for large values of ρ, and is usedto model the phase error after ompensation with the PLL or a traker.Another PDF model that is used to desribe the phase error proess is thewrapped Gaussian distribution [29℄

p(θk) =
1

√
2πσ2

p

∑

l∈Z

e
−(θk−2lπ)2

2σ2
p , θk ∈ [−π, π] (3.3)where σ2

p denotes the variane of θk. After ompensation by the EKF,the phase error is approximately Gaussian or Tikhonov for a given symbolamplitude. The PDF of the phase error for this ase is presented in Fig.3.2. However, the error PDF beomes ompliated when the transmittedsymbols have di�erent amplitudes.Let us now try to visualize in Fig. 3.3 the e�et of the Gaussian phaseerror on a simple onstellation, where we observe the rotational e�et of12
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−2rad2.phase error on the transmitted symbols. Here, the symbols are drawn froma 16-QAM signal onstellation and transmitted over a wireless link at asignal-to-noise (SNR) per bit of 40 dB and phase error variane σ2

p = 10−2rad2.3.1.2 Joint Phase-Estimation Data-Detetion AlgorithmsWe will now review prior work that has attempted to address the followingquestion: When the transmitted information signal is a�eted by AWGNand phase noise, how an a low-omplexity joint phase-estimation data-detetion algorithm be designed suh that (near) optimal system perfor-mane is ahieved?The problem of reeiver design for joint phase estimation and data de-tetion in SISO point-to-point links has been extensively studied, e.g., referto [4, 15℄ and referenes therein. One of the earlier approahes adoptedto solve this problem was reported in [30, 31℄, whih proposed simultane-ous maximum-likelihood (ML) estimation of the data symbols, the arrierphase and the timing o�set. In [32℄, MAP estimation based on the Viterbialgorithm was proposed for joint estimation of phase and data. The phasenoise model onsidered was similar to the random walk model in (2.13), butthe innovations ∆k were restrited to be disrete binary jumps. This short-oming was addressed in [33℄, where the disrete Wiener proess (2.13) wasused. Spei�ally, the phase random variable was assumed to be disrete inthe range [−π, π], and the Viterbi algorithm was employed to �nd the MAP13



Chapter 3. Designing Communiation Systems for Phase Noisephase and symbol estimates. A similar approah using the BCJR algorithmwas proposed in [34℄. The algorithms in [33, 34℄ are regarded as the MAPphase-estimation data-detetion algorithms. However, they are extremelyomplex and are used as a benhmark to ompare with the performane ofother low omplexity joint phase-estimation data-detetion algorithms.In [35℄, an optimum symbol-by-symbol (SBS) reeiver was derived, whereit was illustrated that this reeiver has a separable estimator-detetor stru-ture. The reeived signals were �rst used to ompute the a posteriori PDFof phase noise. This PDF was then used to perform SBS detetion. Theproblem of omputing the a posteriori PDF of phase noise given the reeivedsignals has been demonstrated to be intratable in general. However, it wasobserved that the optimum reeiver struture an be analytially obtainedonly for some ases of the phase noise a posteriori PDF, e.g., the phase noisePDF is uniform. On a related note, it is possible to restrit the a posterioriphase noise PDF to a anonial family of distributions and then derive theML symbol detetor. This approah was reported in a muh earlier workby Foshini et al. [27℄. In their work, it was assumed that the phase of thereeived signal is traked and ompensated using a PLL. Then the posteri-ori phase error PDF (2.14), was approximated as a Tikhonov PDF [28℄ andused to derive the ML detetor. In a more reent e�ort, a similar detetorwas derived in [36℄ for the phase noise hannel in (2.14).When the transmitted symbols are a�eted by random phase noise,methods based on the sum-produt algorithm (SPA) [37℄ on fator graphshave also been used for designing joint phase-estimation data-detetion al-gorithms. The SPA does not employ an expliit estimator and approximatesthe a posteriori symbol probabilities based on a marginalization of the phasenoise, whih is treated as a nuisane parameter. A joint phase-estimatordata-detetor that is similar to an extended Kalman smoother was proposedin [16,38℄. In [39℄, the messages used in the SPA were restrited to a anon-ial set of distribution, namely the Tikhonov distribution. An extension ofthe approah in [39℄ was proposed in [40℄ to handle both time varying phasenoise and a onstant frequeny o�set.As a low omplexity alternative to SPA, the work in [17℄ proposed jointphase estimation and detetion based on the Variational-Bayesian (VB)framework, whih was found to be e�ient in the presene of random phasenoise. However, variational methods may not be as e�etive ompared tothe SPA algorithm sine the a posteriori symbol probabilities are omputedbased on a marginalization of the phase noise, for whih the SPA is more ef-fetive. In [41℄, an algorithm similar to the SPA based on forward-bakwardreursions for phase estimation and data detetion was proposed for thedisrete Wiener phase noise model. Appliation of Monte Carlo sampling14
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−2rad2.methods for joint phase estimation and data detetion was investigatedin [42℄ for both oded and unoded systems.Let us now see how the various low-omplexity estimator-detetors pro-posed in prior work perform in terms of SEP with respet to the optimalMAP algorithm [33, 34℄. We onsider unoded data transmission, and usesymbols from the 16-QAM onstellation. The phase noise model used is thedisrete Wiener phase noise model in (2.13) with σ2
∆ = 10−2 rad2. The om-parison is shown in Fig. 3.4, where we observe that the gap in performanebetween the various proposed algorithms and the MAP is signi�antly large.This emphasizes that the problem of omputing aurate a posteriori symbolprobabilities and a posteriori phase PDF for deriving joint phase-estimationdata-detetion algorithms is hallenging. The gap in performane motivatesthe need to design new low-omplexity algorithms for performing joint phaseestimation and data detetion for severely strong phase noise senarios, par-tiularly onsidering high order onstellations. This is investigated in ourworks in [43, 44℄ that are appended to this thesis, where we propose a low-omplexity phase-estimator data-detetor that is demonstrated to outper-form all the algorithms existing in the literature.3.1.3 Constellation DesignAnother approah for improving system performane when a�eted by phasenoise is to design optimal onstellations that are to be transmitted over thewireless link. In this regard, we summarize prior work that have soughtto address the following: How an two-dimensional signal onstellations be15



Chapter 3. Designing Communiation Systems for Phase Noisedesigned for hannels with phase noise, suh that a target objetive funtionlike error rate performane or the mutual information (MI) is optimized?The problem of arranging M points in a two-dimensional plane suhthat a target objetive funtion is optimized is a lassial problem in om-muniation theory [45℄. For deades, this problem has been studied fordi�erent hannel onditions and ommuniation models [46�49℄. SEP andMI are some of the performane measures that have been used as the tar-get objetive funtion. SEP optimized onstellations enhane asymptotiperformane of oded systems. Furthermore, the e�ets of phase noise im-pairments an be quite ompliated to be inorporated in the design of longapaity-ahieving odes. Then it might be a reasonable approah to �rstdesign a onstellation that is optimized in terms of SEP, and then ombineit with a standard error-orreting ode like turbo or LDPC odes. SEPminimizing onstellations do not neessarily maximize MI, whih is a morerelevant �gure of merit in oded systems [50℄. For oded systems, it is inter-esting to optimize onstellations suh that they maximize MI for the phasenoise hannel.The design of onstellations for wireless systems impaired by phase noisewas �rst addressed by Foshini et al. in [27℄. In their work, an approxi-mate ML detetor and its SEP were derived for the phase noise hannel in(2.14). The SEP derived was seen to be an upper bound, and the onstel-lations that minimized it were obtained using a heuristi algorithm devel-oped in [45℄. In [51℄, onstellations robust to phase noise were onstrutedheuristially suh that they have low deoding omplexity or simple dei-sion regions (thus enabling quadrant or threshold-based deoding). In [52℄,the approximate SEP for a given phase o�set in (2.14) was derived, andit was minimized for designing onstellations. In [53℄, a simple methodfor onstruting spiral-shaped onstellations was presented, and their per-formanes were ompared to that of the onventional onstellations in thepresene of memoryless phase noise. In a more reent e�ort [54℄, the prob-lem of designing onstellations that maximize the MI of the memorylessphase noise hannel was addressed. In their work, �rst the (approximate)MI for the hannel was derived, and optimal onstellations were obtainedby maximizing it using the simulated annealing algorithm.Prior work has demonstrated that onstellations designed for phase noisesubstantially outperform onventional onstellations in terms of SEP andMI. However, in most prior work (exept [27℄ and [54℄) ad-ho methodshave been used. There has been very limited e�ort to address this problembased on rigorous optimization formulations. These fators motivate theneed to revisit the problem of onstellation design based on optimizationformulations that use target objetive funtions like SEP or MI. This is16



3.1. Design Approahesthe theme of our work in [55℄ that is appended to this thesis, where wedesign onstellations based on di�erent objetive funtions like SEP andMI and demonstrate that the optimal onstellations obtained outperformthe onventional onstellations and those proposed in the literature.Capaity of Phase Noise ChannelsIn the ontext of optimizing �nite sized onstellations suh that the MI ismaximized, it is relevant to disuss about some important results related toapaity of hannels with phase noise and AWGN, whih is an ative areaof researh. In [56℄, bounds on the apaity for hannels with uniform phasenoise were derived. It was also shown that the apaity ahieving PDF isdisrete with in�nite mass points. A similar onjeture was presented forthe ase of partially oherent hannels. In [57℄, the apaity ahieving inputPDF for a partially oherent hannel was found to be irularly symmetriand not Gaussian. In [58℄, upper bounds on the apaity for phase noisehannels with and without memory were derived. The apaity of hannelswith memory is an open problem [59℄. Spei�ally for phase noise hannelswith memory, as is the ase for Wiener phase noise, the apaity is not ana-lytially haraterized, but an be numerially omputed using a tehniquein [59℄.3.1.4 CodingDesigning error orreting odes that ahieve the ultimate performanelimit, i.e., the hannel apaity, with arbitrarily small probability of errorat a�ordable omplexity is the holy grail for researhers in ommuniationtheory and information theory [60℄. For systems that are a�eted by phasenoise, odes that would inorporate the nature of phase noise impairmentshave to be designed. We now review prior work that has addressed thefollowing question: How an apaity-ahieving error orreting odes bedesigned for systems impaired by phase noise?Designing error orreting odes so that they are amenable for phasenoise senarios is a hallenging problem and is an ative area of researh[61�64℄. In [36℄, the impat of phase noise on the error rate performaneof standard error orreting odes was investigated. In partiular, it wasonluded that standard LDPC and turbo odes were e�etive in reduingthe performane degradation inurred by phase noise. It was also notedthat trellis oded modulation shemes experiened signi�ant degradation intheir performane in the presene of strong phase noise. The design of odesfor the phase noise hannel have been explored in [61,63,64℄. These designs,aided by phase estimation, have been demonstrated to ahieve near-oherent17



Chapter 3. Designing Communiation Systems for Phase Noiseperformane for hannels with strong phase noise in many senarios. In [62℄,LDPC odes were designed by dividing the odewords into sub-bloks suhthat the variation of phase noise over eah sub-blok was small. Phaseestimates were used to orret eah sub-blok and phase ambiguity hekswere applied using loal hek nodes. In [65℄, repeat-aumulate (RA) odeswere designed where the phase ambiguity was resolved through di�erentialenoding.

18



Chapter 4Contributions and FutureDiretionsThis thesis addresses two approahes for ompensating osillator phase noisein SISO point-to-point systems. In the �rst approah, we seek to designjoint phase-estimator data-detetor in the presene of osillator phase noisein (2.13). In the seond approah, we seek to design onstellations thatare optimized for the phase noise hannel in (2.14). We will now brie�ydisuss about the papers that have been appended to this thesis and ourmain ontributions:1. Paper A: Soft Metris and their Performane Analysis forOptimal Data Detetion in the Presene of Strong OsillatorPhase NoiseIn this work, we derive an approximate ML detetor for detetingdata in the presene of a phase error that is Gaussian distributed.This detetor is used along with an EKF for joint phase-estimationdata-detetion in a system impaired by Wiener phase noise. We om-pare the SEP performane of the proposed tehnique with that ofother algorithms from prior work. We observe that our tehnique out-performs all other algorithms from prior work for a wide range of SNRvalues and phase noise varianes. We also derive an upper bound onthe SEP of this ML detetor, and it is shown to be a tight upperbound for interesting SNR values and phase noise senarios.2. Paper B: Optimal and Approximate Methods for Detetionof Unoded Data with Carrier Phase NoiseWe show that the ML data detetor for SBS detetion in the preseneof phase noise an be formulated as a weighted sum of entral momentsof the onditional PDF of phase noise. Furthermore, we present a19



Chapter 4. Contributions and Future Diretionssimple approximation of this ML detetion rule, and observe that theapproximate rule renders SEP performane lose to the optimum forlow-to-high phase noise variane and low-to-medium SNR.3. Paper C: Optimal Constellations in the Presene of StrongPhase NoiseIn this work, we study the problem of designing onstellations for ahannel with strong phase noise that is memoryless using three op-timization formulations. In the �rst formulation, onstellations thatminimize the SEP of the system are obtained. In the next two for-mulations, onstellations that maximize the MI of the phase noisehannel are obtained. To this end, we analytially haraterize theMI of the phase noise hannels under onsideration. It is observedthat the optimal onstellations obtained signi�antly outperform on-ventional onstellations and those proposed in the literature for a widerange of SNR values and phase noise varianes.4.1 Future WorkOngoing researh and some possible topis for future researh are desribedin the following:� Currently, we are working on a joint phase-estimation data-detetionalgorithm based on the SPA and Gaussian mixture redution thatextends our work in [43℄ by allowing the phase error PDF to be multi-modal.� We are also investigating the performane of the proposed onstella-tions in the presene of osillator phase noise with memory. Speif-ially, we are exploring if our analysis and �ndings for the memory-less phase noise hannel an be extended to the hannel with Wienerphase noise. Also of interest is to investigate the onstrained apa-ity of phase noise hannels with/without memory, where the input isrestrited to be disrete and have �nite mass points.� Another area that we intend to investigate in this dotoral thesis is thedesign of error orreting odes that inorporate the e�et of phasenoise impairments. As observed before, this is a hallenging problemand is an ative area of researh.
20



Referenes[1℄ C. E. Shannon, �A mathematial theory of ommuniation,� Bell Syst.Teh. J., vol. 27, pp. 379�423, 1948.[2℄ L. Hanzo, H. Haas, S. Imre, M. O'Brien, M. Rupp, and L. Gyongyosi,�Wireless myths, realities, and futures: From 3g/4g to optial andquantum wireless,� IEEE Pro. Speial Centennial Issue, vol. 100, pp.1853�1888, May 2012.[3℄ C. Liang, J. Jong, W.E. Stark, and J.R. East, �Nonlinear ampli�ere�ets in ommuniations systems,� IEEE Trans. Mirowave TheoryTeh., vol. 47, no. 8, pp. 1461�1466, Aug. 1999.[4℄ H. Meyr, M. Moenelaey, and S. A. Fehtel, Digital CommuniationReeivers, Synhronization, Channel Estimation, and Signal Proess-ing, Wiley, 1998.[5℄ H. V. Poor, An Introdution to Signal Detetion and Estimation,Springer-Verlag, 2nd edition, 1994.[6℄ A. Hajimiri and T. H. Leee, �A general theory of phase noise in ele-trial osillators,� IEEE Journal of Solid-State Ciruits, vol. 33, no. 2,pp. 179 � 194, Feb. 1998.[7℄ G. V. Klimovith, �A nonlinear theory of near-arrier phase noise infree-running osillators,� Proeedings of the 2000 Third IEEE Interna-tional Caraas Conferene on Devies, Ciruits and Systems, pp. 1�6,2000.[8℄ A. Chorti and M. Brookes, �A spetral model for rf osillators withpower-law phase noise,� IEEE Trans. Ciruits Syst. I, Reg. Papers,vol. 53, no. 9, pp. 1989�1999, Sep. 2006.[9℄ J. Dauwels, �On graphial models for ommuniations and mahinelearning: Algorithms, bounds, and analog implementation,� Ph.D.dissertation 16365, vol. ETH Zurih, Switzerland, 2005. 21



Referenes[10℄ A. Demir, �Computing timing jitter from phase noise spetra for osil-lators and phase-loked loops with white and 1/f noise,� IEEE Trans.Ciruits Syst. I, Reg. Papers, vol. 53, no. 9, pp. 1869 � 1884, Sep. 2006.[11℄ D. Lee, �Analysis of jitter in phase-loked loops,� IEEE Trans. CiruitsSyst. II, vol. 49, no. 11, pp. 704 � 711, Nov. 2002.[12℄ R. Poore, �Phase noise and jitter,� Agilent EEsof EDA, 2001.[13℄ J. G. Proakis, Digital Communiations, New York: MGraw-Hill, 3rdedition, 1995.[14℄ A. Lapidoth, A Foundation in Digital Communiation, CambridgeUniv. Press, 1st edition, 2009.[15℄ U . Mengali and A. N. Andra, Synhronization Tehniques for DigitalReeivers, New York: Plenum Press, 1st edition, 1997.[16℄ J. Dauwels and H. A. Loeliger, �Joint deoding and phase estimation:An exerise in fator graphs,� Pro. IEEE Symp. Inf. Theory, p. 231,Jun. 2003.[17℄ M. Nissila and S. Pasupathy, �Adaptive iterative detetors for phase-unertain hannels via variational bounding,� IEEE Trans. Commun.,vol. 57, no. 3, pp. 716�725, Mar. 2009.[18℄ A. Patapoutian, �On phase-loked loops and kalman �lter,� IEEETrans. Commun., vol. 47, no. 5, pp. 670�672, May 1999.[19℄ S. Bay, C. Herzet, J. M. Brossier, J. P. Barbot, and B. Geller, �Analytiand asymptoti analysis of bayesian ramer rao bound for dynamialphase o�set estimation,� IEEE Trans. Signal Proess., vol. 56, no. 1,pp. 61�70, 2008.[20℄ P. Amblard, J. Brossier, and E. Moisan, �Phase traking: What dowe gain from optimality? partile �ltering versus phase-loked loops,�Signal Proess., vol. 83, pp. 151�167, Ot. 2003.[21℄ R. Buy and H. Youssef, �Optimal phase demodulation,� IEEE Trans.Auto. Cont., vol. 21, no. 5, pp. 732�737, Ot. 1976.[22℄ R. Raheli, A. Polydoros, , and Ching-Kae Tzou, �Per-survivor pro-essing: a general approah to mlse in unertain environments,� IEEETrans. Commun., vol. 43, no. 234, pp. 354�364, Apr. 1995.22



Referenes[23℄ C. Herzet et al., �Code-aided turbo synhronization,� IEEE Proeed.,vol. 2007, pp. 1255�1271, Jun. 2007.[24℄ V. Lottii and M. Luise, �Embedding arrier phase reovery into itera-tive deoding of turbo-oded linear modulations,� IEEE Trans. Com-mun., vol. 52, no. 4, pp. 661�669, Apr. 2004.[25℄ N. Noels et al., �A theoretial framework for soft information basedsynhronization in iterative (turbo) reeivers,� EURASIP J. WirelessCommun. Netw., vol. 2005, pp. 117�127, Apr. 2005.[26℄ G. Ferrari, G. Colavolpe, and R. Raheli, �On linear preditive dete-tion for ommuniations with phase noise and frequeny o�set,� IEEETrans. Veh. Tehol., vol. 56, no. 4, pp. 2073 � 2085, Jul. 2007.[27℄ G. J. Foshini, R. D. Giltlin, and S. B. Weinstein, �On the seletion of atwo-dimensional signal onstellation in the presene of phase jitter andgaussian noise,� Bell Syst. Teh. J., vol. 52, pp. 927 � 965, Jul/Aug.1973.[28℄ A. J. Viterbi, �Phase-loked loop dynamis in the presene of noise byfokker-plank tehniques,� Proeed. IEEE, vol. 51, no. 12, pp. 1737�1753, De. 1963.[29℄ B. Goebel et al., �Calulation of mutual information for partially o-herent gaussian hannels with appliation to �ber optis,� IEEE Trans.Inf. Theory, vol. 57, no. 9, pp. 5720�5736, Sep. 2011.[30℄ H. Kobayashi, �Simultaneous adaptive estimation and deision algo-rithm for arrier modulated data transmission systems,� IEEE Trans.Commun. Teh., vol. 19, no. 3, pp. 268�280, Jun. 1971.[31℄ D. Faloner and J. Salz, �Optimal reeption of digital data over thegaussian hannel with unknown delay and phase jitter,� IEEE Trans.Info. Theory, vol. 23, no. 1, pp. 117�126, Jan. 1977.[32℄ G. Ungerboek, �New appliation for the viterbi algorithm: Carrierphase traking in synhronous data transmission systems,� Pro. Nat.Teleomm. Conf., pp. 734 � 738, 1974.[33℄ O. Mahi and L. L. Sharf, �A dynami programming algorithm forphase estimation and data deoding on random phase hannels,� IEEETrans. Info. Theory, vol. 27, no. 5, pp. 581�595, Sep. 1981. 23



Referenes[34℄ M. Peleg, S. Shamai (Shitz), and S. Galán, �Iterative deoding for odednonoherent mpsk ommuniations over phase-noisy awgn hannel,�IEE Pro. Commun., vol. 147, pp. 87 � 95, Apr. 2000.[35℄ P. Y. Kam, S. S. Ng, and T. S. Ng, �Optimum symbol-by-symbol dete-tion of unoded digital data over the gaussian hannel with unknownarrier phase,� IEEE Trans. Commun., vol. 42, no. 8, pp. 2543�2552,Aug. 1994.[36℄ T. Minowa, H. Ohiai, and H. Imai, �Phase-noise e�ets on turbotrellis-oded modulation over m-ary oherent hannels,� IEEE Trans.Commun., vol. 52, no. 8, Aug. 2004.[37℄ F. R. Kshishang, B. J. Frey, and H.-A. Loeliger, �Fator graphs andthe sum-produt algorithm,� IEEE Trans. Inform. Theory, vol. 47, no.2, pp. 498�519, Feb. 2001.[38℄ J. Dauwels and H. A. Loeliger, �Phase estimation by message passing,�Pro. IEEE Int. Conf. Commun, (ICC '04), pp. 523 � 527, 2004.[39℄ G. Colavolpe, A. Barbieri, and G. Caire, �Algorithms for iterativedeoding in the presene of strong phase noise,� IEEE Journ. Sel.Areas Commun., vol. 23, no. 9, pp. 1748�1757, Sep. 2005.[40℄ G. Colavolpe, A. Barbieri, and G. Caire, �Joint iterative detetion anddeoding in the presene of phase noise and frequeny o�set,� IEEETrans. Commun., vol. 55, no. 1, pp. 171 � 179, Jan. 2007.[41℄ A. Anastasopoulos and K. M. Chugg, �Adaptive iterative detetion forphase traking in turbo-oded systems,� IEEE Trans. Commun., vol.49, no. 12, pp. 2135�2144, De. 2001.[42℄ F. Simoens et al., �Monte arlo solutions for blind phase noise esti-mation,� EURASIP J. Wireless Commun. Netw., vol. 2009, pp. 1�11,Jan. 2009.[43℄ R. Krishnan, M. Reza Khanzadi, T. Eriksson, and T. Svensson, �Softmetris and their performane analysis for optimal data detetion inthe presene of strong osillator phase noise,� IEEE Trans. Commun.,Under Review, 2013.[44℄ R. Krishnan, H. Mehrpouyan, T. Eriksson, and T. Svensson, �Optimaland approximate methods for detetion of unoded data with arrierphase noise,� IEEE Global Teleomm. Conf. (GLOBECOM), pp. 1�6,Houston, 5-9 De. 2011.24



Referenes[45℄ B. W. Kernighan and S. Lin, �Heuristi solution of a signal designoptimization problem,� Bell Syst. Teh. J., vol. 52, no. 7, pp. 1145 �1159, 1973.[46℄ G. F. Foshini, R. D. Gitlin, and S. B. Weinstein, �Optimization of twodimensional signal onstellations in the presene of gaussian noise,�Bell Syst. Teh. J., vol. 22, no. 1, pp. 28�38, Jan. 1974.[47℄ L. Beygi, E. Agrell, and M. Karlsson, �Optimization of 16 - point ringonstellations in the presene of nonlinear phase noise,� Pro. Opt. Fib.Comm. Conf. (OFC), Mar. 2011.[48℄ T. Pfau, X. Liu, and S. Chandrasekhar, �Optimization of 16 - aryquadrature amplitude modulation onstellations for phase noise im-paired hannels,� ECOC 11, Optial Soiety of Ameria, Teh. Dig.,Tu.3.A.6 2011.[49℄ C. Haeger, A. Graell i Amat, A. Alvarado, and E. Agrell, �Constellationoptimization for oherent optial hannels distorted by nonlinear phasenoise,� IEEE Pro. Global Commun. Conf., Anaheim, CA, De. 2011.[50℄ M. F. Barsoum, C. Jones, and M. Fitz, �Constellation design via a-paity maximization,� IEEE Int. Sym. Info. Th. (ISIT), 2007.[51℄ S. Hulyalkar, �64 qam signal onstellation whih is robust in the pres-ene of phase noise and has deoding omplexity,� U.S.Patent, , no.5832041, Nov. 1998.[52℄ Y. Li, S. Xu, and H. Yang, �Design of irular signal onstellationsin the presene of phase noise,� 4th Int. Conf. Wireless Commun.,Networking, and Mobile Computing, IEEE WiCOM'08, pp. 1�8, 2008.[53℄ B. Kwak, N. Song, B. Park, and D. S. Kwon, �Spiral qam: A novelmodulation sheme robust in the presene of phase noise,� IEEE 68thVeh. Teh. Conf. 2008, VTC 2008-Fall, pp. 1�5, 2008.[54℄ F. Kayhan and G. Montorsi, �Constellation design for han-nels a�eted by phase noise,� arXiv:1210.1752 [Online℄. Available:http://arxiv.org/abs/1210.1752, pp. 1�5, Ot. 2012.[55℄ R. Krishnan, A. Graell i Amat, T. Eriksson, and G. Colavolpe, �Opti-mal onstellations in the presene of strong phase noise,� IEEE Trans.Commun., Under Review, 2013. 25



Referenes[56℄ M. Katz and S. Shamai, �On the apaity-ahieving distribution ofthe disrete-time nonoherent and partially oherent awgn hannels,�IEEE Trans. Info. Theory, vol. 50, no. 10, pp. 2257 � 2270, Ot. 2004.[57℄ P. Hou, B. Belzer, and T. R. Fisher, �Shaping gain of the partiallyoherent additive white gaussian noise hannel,� IEEE Commun. Lett.,vol. 6, pp. 175�177, 2002.[58℄ A. Lapidoth, �On phase noise hannels at high snr,� IEEE Pro.Information Theory Workshop, Bangalore, India, Ot. 2002.[59℄ D. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavi, and W. Zeng,�Simulation-based omputation of information rates for hannels withmemory,� IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3498 � 3508,Aug. 2006.[60℄ S. Lin and D. J. Costello, Error Control Coding, Englewood Cli�s, NJ:Prentie-Hall, 2nd edition, 2004.[61℄ M. Ferrari and A. Tomasoni, �Low-omplexity z4 ldp ode designunder a gaussian approximation,� IEEE Wireless Comm. Lett., , no.99, pp. 1�4, 2012.[62℄ S. Karuppasami and W. Cowley, �Constrution and iterative deod-ing of ldp odes over rings for phase-noisy hannels,� EURASIP J.Wireless Commun., vol. 2008, pp. 1�9, 2008.[63℄ A. Barbieri and G. Colavolpe, �Soft-output deoding of rotationally in-variant odes over hannels with phase noise,� IEEE Trans. Commun.,vol. 55, no. 11, pp. 2125�2133, Nov. 2007.[64℄ Y. Aviv and I. Rosenhouse, �Bit-error-rate of ldp oded qam in thepresene of a residual phase noise proess and a non-linear distortion,�IEEE 25th Convention of Eletrial and Eletronis Engineers in Israel,pp. 175�179, De. 2008.[65℄ A. Barbieri and G. Colavolpe, �On the information rate and repeat-aumulate ode design for phase noise hannels,� IEEE Trans. Com-mun., vol. 59, no. 12, pp. 3223 � 3228, De. 2011.
26


