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If we knew what it was we were doing,
it would not be called research, would it?
A. Einstein (1879-1955)






Abstract

Epilepsy is one of the most common neurologic diseases iwthréd, and is
present in up to 1% of the world’s population. Many patientthwepilepsy never
receive the treatment which make them seizure free. Suithiesapy has become
an important therapeutic alternative for patients withgdresistant epilepsy. Cor-
rect and anatomically precise localization of the epilefacus, preferably with
non-invasive methods, is the main goal of the pre-surgipé¢psy diagnosis to
decide if resection of brain tissue could be a successfatitrent option. The most
important diagnosis tool used at epilepsy surgery censegtectroencephalogra-
phy (EEG), which is used to find the source of activities iagite brain by mea-
suring the potential on the scalp with EEG electrodes ag¢wdfit locations. One
major advantage of EEG source localization over other hraaging modalities
is its high temporal resolution. The procedure of EEG solwcalization deals
with solving the forward problem to find the scalp potentialsa given current
dipole(s) inside the brain and the inverse problem to esértiee source(s) that
fits with the given potential distribution at the scalp etedes. Realistic models
of the human head are geometrically complex and the tissugubivity is inho-
mogeneous as well as anisotropic. A critical issue for tindod problem is how
to handle the computational complexity in the numericalrapphes with regard
to the inverse problem. There is still a lack of sufficientyngrful methods and
algorithms that would satisfy the time-restrictions foe tolution of the inverse
problem. The overall goal in this thesis is to develop a nmuasive, clinically-
viable, time-efficient method for localization of epileptirain activity based on
EEG source localization. For the forward problem two methaix proposed for
modeling the dipole source which can handle the head modaplexity; a mod-
ified subtraction method and a method based on the recipribg@brem. For the
inverse problem we propose a new global optimization metyexkd on parti-
cle swarm optimization (PSO) to solve the multi-dipole EEf@rse localization.
The techniques of multimodal magnetic resonance imagirigljMdre used in or-
der to generate a high-resolution realistically shapedmel conductor model.
The anisotropic white matter conductivity tensor is deieed by diffusion ten-
sor MRI (DT-MRI) measurements and isotropic conductigitiee assigned to the
other tissues in the model. The new proposed methods aesl tiest synthetic
and real EEG data. The results are compared with statecedithand other ex-
isting methods. In the synthetic data both spherical headetscand realistic



head models with anisotropic tissues are used for validaliothe real EEG test,
measured somatosensory evoked potentials (SEPs) forthyeabject are used
for EEG source localization. A realisticrhmpatient-specific, anisotropic finite
element model of the subject’'s head, with special consiaeraf precise mod-
eling the two compartments, skull and cerebrospinal fluigKY; generated from
T1-weighted MRI data is used. Source localization resutts/alidated against a
clinical expert source localization as well as functiondMyalm-brushing mea-
surements and the proposed method typically finds the séacagon within 10
millisecond. The EEG source localization results agred wigh both the clin-
ical expert and fMRI results. The finite element method (FEMgombination
with the reciprocity theorem and the modified PSO is a higfflgient and robust
solution methodology for EEG source localization.
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CHAPTER 1.

Introduction

Epilepsy is one of the most common neurological diseaseas,ispresent in
up to 1% of the world’s population. Many patients with epggmever receive
the treatment which make them seizure free; consequerghtnent of epilepsy
by medications is a major challenge, according to the Worglth Organiza-
tion [1]. Surgical therapy has become an important therapalternative for
patients with drug resistant epilepsy. In a consensus tlefinproposed by the
International League Against Epilepsy (ILAE), the drugistant epilepsy is de-
fined asfailure of adequate trials of two tolerated and approprigtehosen and
used antiepileptic drugs (AED) schedules (whether as nm@napies or in com-
bination) to achieve sustained seizure freed@m

Although intracranial surgery involves inherent risksegt risks are smaller
than the risks of uncontrolled seizures. The morbidity armttality of seizures
include the following [1]:

e Accidental injury, commonly including fractures, burnsndial injuries, lac-
erations, and head injuries.

e Cognitive decline and memory loss, which over time has beemxhstrated
to occur in patients.

e Sudden unexplained death in epilepsy (SUDEP) that can eeeatie of one
death per 500 patients per year.

e Psychological, social, and vocational impairment.

Considering the above factors, a continued pharmacolbtheaapy after fail-
ure to control seizures with several trials of antiepilephiugs, is not always an
effective treatment. Moreover, Engel [3] shows that thedfiesof anteromedial
temporal lobe resection (AMTR) for disabling complex palrseizure, are greater
than continued treatment with AEDs, and the risks are at teamparable. In ad-
dition, surgery yields a better quality of life and reducepmssion and anxiety

3



4 CHAPTER 1. INTRODUCTION

as early as three months after temporal resection, compatied¢ontinued phar-
macological therapy [4].

The heterogeneity of focal epilepsy across patients deswmdxtensive multi-
modal approach to focus localization [5]. Generally, ressaf at least three stan-
dard investigative modalities, conducted in series, ageired to concur before
surgery can be planned. Standard modalities are: repaditedat seizure semi-
ology; electroencephalography (EEG) or electrocortiapgy (ECoG) seizure
onset location combined with videoderived seizure sergpglastructural MRI
(sMRI); and nuclear imaging techniques. Nuclear imagingcts abnormality
in ictal, during an actual seizure, versus interictal, pe:between seizures, blood
flow by single photon emission computed tomography (SPE@&Mgl/or abnor-
mality in interictal glucose metabolism by positron emassiomography (PET).
The localization performance of these methods is validatedomparison with
post-surgical outcomes.

Only when a well-defined structural lesion agrees with seizemiology and
scalp EEG onset with or without radiotracer techniques,stagery be planned
without invasive study. Structural MRI locates brain lesion about 70-80% of
focal epilepsy [6]. In other cases, intracranial electrptieeement is often con-
sidered. When the lesion is located, but is close to elogumméx such as basal
temporal area, primary motor area, primary sensory arepamary visual area,
fMRI and invasive studies help to minimize resection of stishue. However,
a visualized lesion may not represent the entire seizunergéing region. Un-
derestimating the extent of the region can result in theca+rence of seizures
following resective surgery. Overestimating the extenthef region holds an in-
creased risk of functional deficits. Correct and anatoryigaiecise localization
of the epileptic focus, preferably with non-invasive methpis the main goal of
the pre-surgical epilepsy diagnostic procedure. The atteehniques have lim-
ited accuracy and are therefore associated with significsk®. Hence, there is a
need for improved, complementary, time-efficient, norasive methods to define
the seizure-generating focus.

The neurophysiological analysis of the EEG data is a timesaorng and
rather cumbersome process involving several steps wherdéta is converted
between different systems. There is therefore great neechdolern computer-
based tools that could determine the location of the epddptus more accu-
rately than possible by simple visual inspection and alsdifate an automation
of the whole procedure to reduce the manual neurophysidbgnalysis. The
pre-surgical workup would be shortened and ultimately npatents could be
identified that would benefit from surgery.
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1.1 EEG Source Localization

The EEG is the most important diagnostic tool used at epjlspsgery centers.
The first human EEG was recorded in 1924 by Hans Berger [7].atheity that
is measured in an EEG is the result of movements of ions, tteakedprimary
currents within activated regions in the cortex of the human braimisTorain
activity is often modeled as a current dipole. It is shown8hthat this current
dipole is an acceptable approximation for modeling the aleactivities in the
brain. The current dipole represents a restricted area syitichronously active
pyramidal cells located in the gray matter of the cortex,Gbapter 2. The EEG
source localization method localizes epileptic electramivity, called interictal
epileptiform discharges (IEDs), such as in spike wavefollBs occur between
seizures and most often are closely linked to the site of #ieuse focus. In
contrast to the electrographic activity during seizur&f)$ do not cause patient
movement artifacts in an MRI scanner, which is advantagemdata acquisition
and analysis. However, in visual analysis of the EEG (pegdiscalization of
IEDs are coarse.

The procedure of the EEG source localization deals with tvablems. First,
the forward problem to find the scalp potentials for a givement dipole(s) inside
the brain, and second the inverse problem to estimate threeggli that fits with
the given potential distribution at the scalp electrodese Of the major advan-
tages of EEG source localization compared to other braimgingamodalities is
its high temporal resolution.

The simple, and still the most commonly used, head modelsarfdrward
problem describe the head by three or four spherical layepgesenting scalp,
skull, cerebrospinal fluid (CSF) and brain. In each of thesers, the conduc-
tivity is assumed to be isotropic and homogeneous. The aagarof spherical
models is that the scalp potential generated by dipolarcesutan be computed
analytically by using series expansion formulas [9]. It rown that five tis-
sue compartments, i.e., gray matter, white matter, CSH| akd scalp are the
most important tissues for EEG source localization [10, Ebr a finer discrim-
ination the scalp layer may also be divided into fat and neisdmpartments.
These tissues have different conductivities [12]. The hustall consists of a
soft bone layer (spongiosa) enclosed by two hard bone Iggerspacta). Since
the spongiosa has a much higher conductivity than the caiapas], the skull
shows a direction-dependent (anisotropic) conductiviyratio of 1 to 10 has
been measured for the radial and tangential direction tcskiod surface [14].
The brain white matter has an anisotropic conductivity vaittatio of about 1:9
(normal:parallel to fibers) [15]. However, although no direechnique exists for
robust and non-invasive measurement of the conductivapenties, recently the
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relation between the effective electrical conductivitpder of brain tissue and
the effective water diffusion tensor, as measured by Didin§gensor MRI (DT-
MRI), was formulated [16—19]. The underlying assumptiothet the same struc-
tural features that result in anisotropic mobility of wateolecules, which can be
detected by DT-MRI, also result in anisotropic conducyiviBasser et al., [16]
showed that the eigenvectors of the conductivity tensotrereame as those from
the water diffusion tensor.

The influences of volume conductor inhomogeneities and headel simpli-
fications on EEG analysis, have been studied by various eifbee, for exam-
ple, [20-24]). Using the spherical model instead of a p&tspecific model in
EEG source localization, may cause errors in the range of 3@ mm [20, 21].
Moreover, in [22, 25], it is shown that holes in the skull, fostance in patients
with trepanned skull (boring, cutting, and scraping opelesicn a human skull),
have a non-negligible effect on EEG source localizatior{2Hj, it is also shown
that it can be important to model inhomogeneities of therbcampartment, since
simulated fields are especially sensitive to local congitgtchanges around the
source [26]. With regard to skull anisotropy, van den Broeil g in [22], showed
a smearing effect on the forward problem, and Marin et a[23}, showed a non-
negligible impact on the inverse problem for certain ineemsethods of the dis-
tributed source model approach. Moreover, white mattedaotivity anisotropy
has been shown to have an influence on the forward problem [24]

Finite Element (FE) head models, developed by various relseaoups (see
[22,23,27,28]), are able to handle both realistic georegtaind inhomogeneous
and anisotropic material parameters. However, the critssaie for the forward
problem is how to deal with the computational complexityleé £E model with
regard to the inverse problem. Iterative solvers, like trecpnditioned conju-
gate gradient (PCG) method with conventional precond#isnhave been used
for solving the large linear FE equation system. The regeatdution of such
a system with a constant geometry and varying right handsqjifie sources),
sometimes more than a thousand times, is the major time gongyart of the
source localization process. These computational timastine resolution of the
models in the practical use of EEG source localization. # Ib@en shown in re-
cent studies [29, 30] that algebraic multigrid precondiéis (AMP) and parallel
computing can be used to obtain reasonable simulation times

Inverse EEG source localization is the process of findingooiseveral sources,
given the EEG potentials measured by the electrodes at éfye. Sche number of
EEG electrodes is usually between 30 — 100 and in some caseargsas 200.
In [31], it is shown that the most important step for selegtime number of EEG
electrodes is the increase from 31 to 63 electrodes, wherei@asing from 63 to
123 electrodes only improves the source localization tesnérginally. In com-
parison to the number of electrodes, the number of possthlecs locations is
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much larger. Thus, the solution of the inverse problem isegaly not unique
in the sense that many dipole source configurations cantriesihle same EEG.
To attain uniqueness, it is necessary to impageiori knowledge on the source
distribution. The different methods to solve the EEG sodooalization prob-
lem are traditionally categorized into parametric (dipoteeontinuous) and non-
parametric (distributed or discretized) methods. The nadiference between
these two methods is whether a fixed number of dipoles is as$arpriori or
not. The non-parametric methods act on a distributed sauael, where the
restriction to a limited number of focal sources is removérh the other hand
parametric methods are often well suited for estimatingctimeent dipole used
to represent the well-localized activated neural sourocevents like epileptic
spikes and evoked potentials (EPS) [8, 32].

The clinical use of the dipole [33] and distributed [34] EEGusce localiza-
tion have been examined in benign focal epilepsy of childhwith centrotempo-
ral spikes (BFEC) and mesial temporal lobe epilepsy (MTLESY. both groups,
Plummer in [35] showed that the moving-regularized and dtating-non regu-
larized dipole models with a single dipole, and the standactlow-resolution
electromagnetic tomography (SLORETA) distributed met[8&] constrained to
cortex using rotating sources, had robust and clinicallgmregful results. In [33]
and [34] EEG source localization approaches were tested $amngle time point
at the spike peak. Plummer concluded that the dipole andhiited EEG source
localization are complementary and furthermore singlel@ipnodels are often
sufficient for epileptic spike source localization. If mple dipoles (see [37-39])
or a whole current distribution (see [40—42]) are assumeudhtterlie the mea-
sured potentials, the inverse problem remains ill-posed.therefore interesting
to investigate how sensitive single dipole fit methods amaoadlel inaccuracies.

Despite the fact that intraspike propagation may occump#ak of the spike is
often used as an indicator of the site of ictal onset. EEGcsolarcalization should
ideally include the spike onset-to-peak epoch; Lantz ir) fh®wed that the EEG
source localization result at the midpoint of the spike upgws more reliable to
identify the putative epileptogenic lesion when less pgai@n has occurred (vs.
the spike peak). In [35] this result was confirmed and adaliily demonstrated
that this applies to both dipolar and distributed EEG solwmcalization, in both
BFEC and MTLE. Recently, in EEG source localization the ¢joasof localiza-
tion for single versus averaged IEDs, has been raised. Aatemhspike averaging
is standard practice in EEG source localization studies;assumption is that
electrically averaging identical spikes will increasersigto-noise ratio (SNR)
and optimize the localization solution. Plummer in [35] wled that the single-
to-averaged IED localization disagreement can be high.@rother hand, [44]
showed that the spike locations computed from differeatdrof the same elec-
trodes are closely located.
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Figure 1.1: The different steps in the EEG source locabzrgprocedure.

Source localization is heavily dependent on how the cudgrtie is modeled
and how the computations are performed and several diffatearnatives have
been suggested in the literature [45,46]. Also the locabmaaccuracy is affected
by different factors including, segmentation error [47E& signal noise [11],
electrode misplacements [11,48,49], conductivity noldg ind tissue anisotropy
[50], as well as the numerical computational error. As nwred earlier, one
of the major limitations in EEG-based source reconstructias been the poor
spatial accuracy, which is due to low resolution of previ&&ss systems and the
use of simplified spherical head models. Thus, source kat#dn requires an
accurate and robust solution of the inverse problem withsteacomputational
effort for the forward problem. EEG-based source localzats an active field
of research [51, 52], but partly due to the aforementionextsbmings, the new
computational techniques are often not part of the stanut@durgical diagnostic
workup. In Waberski et al. [53], it is concluded that to acki¢he final goal of
general clinical use, fast and automatic techniques wifiraved head modelling
by finer discretization, and more accurate representafitimecconductivities for
the narrow anatomical relationship between the cerebrééxand the complex
shaped skull in the region of the temporal lobe, are necgssar

As described in the following, this thesis addresses thrgmrtant questions
in EEG source localization; how to decrease the computalticomplexity, how
to handle anisotropy in the forward problem and the physgickl and anatomical
constraints in the inverse problem, and how different sesi@f noise influence
the results.
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1.2 Overview of the Thesis

The EEG source localization has several different subiprb that each should
be treated carefully. Fig. 1.1 illustrates all necessagpsperformed in the EEG
source localization procedure. The thesis is organizedlsis. A short descrip-
tion of the physics of the EEG is presented in Chapter 2. @naptontains the
description of the forward problem. In this chapter, two Inoels are proposed
for modeling the dipole source that can handle the head numeplexity and
reduce the computational time for the forward problem. @ag contains the
description of the inverse problem and an overview of défertechniques for
solving it. Chapter 5 introduces a new algorithm for pararmoeource localiza-
tion, based on particle swarm optimization (PSO), for swuihe epileptic spike
EEG source localization. Chapter 6 deals with the head mgele¢ration and
white matter anisotropy. In Chapter 7, a real EEG test cageesented. Chapter
8 contains a summary of the appended papers. Finally, thedusians and an
outlook are presented in Chapter 9. Rarof this thesis includes Papers which
are published/submitted, based on material presentee ithésis.
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CHAPTER
The Physics of EEG

To understand which activity in the brain we actually capthy the EEG elec-
trodes, one needs to look closer at the microscopic levehisnsection the phys-
iology of the EEG will be briefly described. This is importaatbe familiar with
the underlying mechanisms of the EEG for modeling the fodyapblem.

2.1 Neurophysiology

The brain consists of approximately 20 billion [55] nervéiser neurons. Neu-
rons are capable of generating and transmitting electroada impulses. There
are many different kinds of neurons, but they all have theeshasic structure.
Thesomaor cell body contains the nucleus of the cell and is essential for the con-
tinuing life of the neuron. Thedendrites, arising from the soma, are specialized
in receiving inputs from other nerve cells; a neuron may reexesral dendrites.
Via the axon, impulses are sent to other neurons; a neuron has only ome axo
The axon’s end is divided into branches which faymapsesvith other neurons,
see Fig. 2.1. The synapse is a specialized interface betiweemerve cells. The
synapse consists of a cleft between a pre-synaptic andsgoaptic neuron. At a
synapse, between the axon of one neuron and the dendrit# bodg of the next
neuron, impulse transmission depends upon chemicalslaadlerotransmitters.
Further readings on the anatomy of the brain can be foundayb[A.

At rest the intracellular environment of a neuron is negayipolarized at ap-

Myelin sheath Chemical
transmission

Nodes of Ranvier terminal
bundle

‘ Stimulus

Figure 2.1: Structure of a neuron (adopted from Attwood aratKay [54])
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Figure 2.2: The neuron membrane potential changes andntuitoev during
synaptic activation, recorded by means of intracellulacroelec-
trodes. Action potentials in the excitatory and inhibit@nesynaptic
fibre respectively lead to EPSP and IPSP in the postsynagticon
(adopted from Saeid Sanei and J.A. Chambers [58])

proximately -70 mV compared with the extracellular enviremt. The potential
difference is due to an unequal distribution of Na+, K+ andi@is across the cell
membrane. This unequal distribution is maintained by the &ted K+ ion pumps
located in the cell membrane [56]. The neuron’s task is tagse and transmit
signals. This is done by an alternating chain of electrical ehemical signals.
Active neurons secrete a neurotransmitter, which is a atersubstance, at the
synaptical site. The synapses are mainly localized at therides and the cell
body of the post-synaptic cell. The neurotransmitter intacthwith the receptors
changes the permeability of the membrane for charged ior@yMynapses are
termed excitatory, because the neurotransmitter causgsost-synaptic neuron
to depolarize (become less negative inside as Na+ ionsteteell) and transmit
an electrical impulse to another neuron, muscle cell, ongjlain other words,
depolarization means that the potential difference betwbe intra- and extra-
cellular environment decreases. This depolarizationgse ablled an excitatory
post-synaptic potential (EPSP), marked by (a) in Fig. 2.2 tkke other hand,
some synapses are inhibitory, meaning that the neurotitiesicauses the post-
synaptic neuron to hyperpolarize (become even more pesititside as K+ ions
leave the cell or CI- ions enter the cell) and therefore remigmit an electrical
impulse. This potential change is also called an inhibifmrgt-synaptic potential
(IPSP), marked by (c) in Fig. 2.2. There are a large numbeyofgses from
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Figure 2.3: Changing the membrane potential for a giantdsguon by closing
the Na channels and opening K channels (adopted from Ka Xiong
Charand [62])

different pre-synaptic neurons in contact with one posiagyic neuron. Fig. 2.2
shows the membrane changes recorded by means of intracelidroelectrodes.
At the cell body all the EPSP and IPSP signals are integrdféden a net de-

polarization of the intracellular compartment at the celty reaches a certain
threshold, between -55 and -50 mV, an action potential ieggad [59], marked

by (b) in Fig. 2.2. Fig. 2.3 shows an example of the above giets/schematically

for a giant squid axon. An action potential then propagatasgthe axon to other
neurons [60, 61].

2.2 The Generators of the EEG

One neuron generates a small amount of electrical actiVlibys small amount
cannot be picked up by surface electrodes, as it is overwdteloy other elec-
trical activity from neighboring neuron groups. When a &agyoup of neurons
is simultaneously active, the electrical activity is lagygough to be picked up
by the electrodes at the surface, thus generating the EEfalsigrhe electrodes
used in scalp EEG are large and remote. They only detect thensd activities
of a large number of neurons which are synchronously etedlyi active. The
action potentials can be large in amplitude 400 mV) but they have a short
duration (2 ms). A synchronous firing of action potentialseighboring neurons
is unlikely. The post-synaptic potentials are the genesatdh the extracellular
potential field which can be recorded with an EEG. Their tiroarse is larger
(10—20 ms) which enables summed activity of neighboring neurdtewever
their amplitude is smaller (0-110 mV) [61, 63]. The EEG reflects the electrical
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Figure 2.4: Schematic of a brain cross section, illustgatepresentative cortical
EEG sources where dipoles are added to a cortical layer,aagtal
neuron cell and dipole electric field and its equipoteniizés. (de-
signed by Anders Hedstrom)

activity of a subgroup of neurons, especially pyramidalroaicells, where the
apical dendrite is systematically oriented orthogonahw®hrain surface. Fig. 2.4
illustrates a coronal view of a brain where dipoles are adddle cortical layer,

a pyramidal neuron cell and the dipole electric field andgtsigotential lines.



CHAPTER

Forward Problem

3.1 Poisson’s Equation

As mentioned in Chapter 2, the EEG reflects the electricaligcof a subgroup
of neurons, especially pyramidal neuron cells, where tieadgendrite is system-
atically oriented orthogonal to the brain surface. The abi@ristic frequencies of
the signals in the kHz range and below, make the capacitideratuctive effects
of the tissue negligible [64]. Therefore, the electric anaigmetic fields can be
described by the well known quasi-static Maxwell equati@as,

0.D=np, (3.1)
OxE=0, (3.2)
OxB = pj, (3.3)
0-B=0, (3.4)

whereD is the electric displacement,is the magnetic permeability, is the elec-
tric free charge densityil andB are the magnetic field and magnetic induction,
respectivelyE is the electric field anglis the electric current density. Moreover,
the material equations are as follows,

D — ¢E, (3.5)

wheree is the electric permittivity. It can be assumed tjas constant over the
whole volume and is equal to the permeability of vacuum [8}.,&he irrotational
nature oft indicated by (3.2) enables us to define a scalar electricpate, as
follows:

E=—0d. (3.7)

15
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The current density is generally divided into two parts [3fi¢ so-called primary
or source curreni?, and the secondary or return currerts,

j=J°+0E, (3.8)

whereo € R3*3 denotes the conductivity tensor which is dependent onipasit
and given by,
011 012 013
0= |02 022 02|, (3.9)
031 032 033

with units A/(Vm) = S/m. There are tissues in the human head that have an
anisotropic conductivity, e.g., white matter and skullislitmeans that the conduc-
tivity is direction dependent. For isotropic tissues thesta matrix is a diagonal
matrix and for anisotropic tissues it is a symmetric fullkanatrix. If we denote

the domain of interest aQ (with boundarydQ), taking the divergence of (3.3)
(divergence of a curl of a vector is zero) and using equat{8rnd and (3.8) we

get the Poisson’s equation

0. (oc0®) =0-j°%inQ, (3.10)
with boundary condition

n-(o0®d)=00n0Q. (3.11)

3.2 The Source Currents

As mentioned earlier, the primary currefptsare movements of ions within the
dendrites of the large pyramidal cells of activated regionthe cortex sheet of
the human brain. Various modeling possibilities for thenaty currentsjs, are
discussed in the literature [27,66—-68]. A simplified elieairmodel for this active
cell consists of two current monopoles: a current sink atghieal dendrite side
which removes positively charged ions from the extracatlenvironment, and a
current source at the cell body side which injects posiivlarged ions in the
extracellular environment. This model can be written matakcally as follows,
1°(0) = Iol8(x X0+ )~ 8(x x5 )] (3.12)
wherexg andlg are the midpoint and the current between two monopolar ssurc
respectivelyd is a distance between two monopolar sources @mlthe unit
vector from the negative charge to the positive chadgs.the Dirac delta function
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with [0 dV = 1. Nunez in [68] showed that 2 mm distance between source and
sink can be seen as realistic.

Another model for the source current is the so-caleathematical dipole
which is formulated as
ivath (X) =M (X —Xo), (3.13)

wherexg is the source position and € R3 is the dipole moment. It is shown
in [8] that this current dipole is an acceptable approxioratior modeling the
neural activities in the brain. This source model has a sargy at xo which is
treated differently in the numerical approaches.

3.3 EEG Forward Problem

The EEG forward problem defined in (3.10) and (3.11), is to fimel potential
in the EEG electrode positions for the given current sog)ceiside the brain.
Assume® satisfies (3.10) for a given primary sourge As the gradient of a
constant function is zero then any functidn+ C satisfies (3.10), wher€ is a
scalar constant. To make the solution of (3.10) unique wedinice a reference
electrode and enforce its potential to zero, i.e.,

P (Xref) = 0. (3.14)

Then we calculate the solution relative to this refereneetebde. Since only the
relative difference of the potentials are of interest, tasnmon in EEG to use the
average signals as a common reference,

Nelec
S ®(x) =0. (3.15)
k=1

Thus, the Poisson’s equation can be re-written as,
O-(oc0d)=0-j%inQ, (3.16)

subject to the conditions

{ﬁ-(aDqJ) —00ndQ, 3.17)

Either(3.14) or (3.15).
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Additionally, for existence and uniqueness of the solutibf8.16—3.17), theom-
patibility condition

/D-(ach) av— [ A-(cOd) dS=0, (3.18)
Q Q

that follows from Gauss’s theorem has to be fulfilled.

3.4 Solving the Forward Problem: Green’s Func-
tion

Using Green’s function provides a way to write the solutiba partial differential
equation in closed form, as an integral over distributed'ses) e.g., Poisson’s
equation with a charge density source [65]. The physicaaeiag underlying
the mathematical technique is that any distributed souscebe considered as a
sum or integral over elemental sources. Gdie the Green'’s function that satisfies

—0-(0G(x)) = &(x) (3.19)
along with the boundary condition th@approaches 0 at infinity where

1
G(X) = ——. 3.20
()= 4 (3.20)
Physically the Green’s function shows the effeckidue to a source iRg. We
may write the general solution to Poisson’s equation in amounded space in
terms of the Green’s function, as

D(x) = / G(x—xo) f (Xo) dV/(Xo), (3.21)

wheref = [J-jS. We are especially interested in the potential solutioh@BEG
electrodesNge ON the scalp. If we want to compute orb(xy); K=1,-- -, Nejec
the explicit formula (3.21) is suitable, since we can easiigose to comput®
in only a few points;

®(x0 = [ Gx—x0)F(x0) dV(xo). (3.22)

The discrete Green'’s function is an analogy of the lead fiedttion which will be
discussed in the next Chapter.

The potential field in an infinite conductor generated by aentrdipole with
dipole momenM = qd (q is the monopole charge amtlis the vector from the
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negative charge to the positive charge) at positioan be derived using Green’s

solution
1 (X—Xo)-M

D% (X) =
() 410® | X—Xo |3’

(3.23)

whereg® is the conductivity.

The first volume conductor models of the human head considt@tiomoge-
neous sphere [69]. When it was found that the skull tissuesiggsficantly lower
conductivity than the scalp and brain tissue a three shatieatric spherical head
model was introduced. In this model, illustrated in Fig., 3k inner sphere rep-
resents the brain, the intermediate layer represents thieasid the outer layer
represents the scalp. For this geometry a semi-analytidatien of Poisson’s
equation exists [70, 71]. There are also semi-analytidatiems available for lay-
ered spheroidal anisotropic volume conductors [72, 73}eHlee conductivity in
the tangential direction can be chosen differently fromrtuBal direction.

As we mentioned in Chapter 1, using the spherical head mod&dad of a
patient-specific model in EEG source localization may casigaificant errors
with respect to the source position. Thus there is a needcfurate head mod-
eling with realistic shape and conductivity propertiesiitél element methods are
well-suited for handling the head model complexity. An impat consideration
in finite element methods is how to represent the dipole saarthe model, which
is treated in the following sections. Here, we restrict tleenent types to cubical
voxels since they are obtained from CT or MRI images.

3.5 Finite Element Method

The finite element method (FEM) is a standard tool for soldiffgrential equa-
tions in many disciplines, e.g., electromagnetics, satid structural mechanics,
fluid dynamics, acoustics, and thermal conduction. Jin{3#and Peterson [76]
give good accounts of the FEM for electromagnetics. For iberetization of the
EEG forward problem we begin by deriving the weak formulatidlultiplying
Poisson’s equation (3.16) by a test functior W4 (Q) and integrating ove®:

/ v0. (o0d) dV :/ uf dv, (3.24)
Q o)
wheref = 0-j% andW; is the Sobolev space. Next, integrate by parts using the

identity
0 [v(c0®)]=0v-(c0P)+v0- (cOP) (3.25)
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Figure 3.1: The three-shell concentric spherical head inddhe dipole is located
on the z-axis and the potential is measured at scalp point P.

and Gauss’s theorem in 3D:
/D-FdV:/ A-Fds (3.26)
Q 2Q
with F = v(o0®). This gives the weak form of (3.16):

—/ Ou-(o0®)dV+ [ - (o0) dS:—/ Ou-(oOd)dV  (3.27)
Q Q

2Q
_ / uf dv, (3.28)
Q

where we have used the boundary condition (3.17).

For the discretization we restrict the element types toaallvoxels with node
basis functiongj, centered at the mesh poirdts ¢; equals one at nodeand zero
at all other nodes. An approximation to the potential is ttegmmesented in the FE
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spaceS=spar{¢;}\; as

N

®(x)~ H uj¢j(x), (3.29)

=

whereN is the number of FE nodes anglare the degrees of freedom (DOFs). Af-
ter applying variational and FE techniques [77] to (3.163,aarive at the system
of linear equations

Ku =b, (3.30)

whereK € RN*N js a sparse symmetric positive definite stiffness matriegioy
Ki :/g}(omfpi)-mq;,- av, (3.31)

u € RN is the coefficient vector of the electric potential, ang RN is the right
hand side vector,

by :—/Qd)iD-deV. (3.32)

To get a unique solution we can use a reference electrodégttiag

(Uelegref = 0, (3.33)
or constrain the mean value over all electrodes, i.e.

Nelec

Y (Ueleck = 0. (3.34)
k=1

Both these constraints can be incorporated by modifyingstiffmess matrixk.

For (3.33) the row and column corresponding to the chosestrelde node are
replaced such that they have a one for the electrode nodegposind zeros else-
where. If (3.34) is to be use#, is expanded by an extra row of ones at the bottom,
a column of ones to the right, and a zero element in the lowét dorner. In ad-
dition the right hand side vecttris expanded by an additional element. Observe
that both these modifications makeinvertible, read more about extending rank
deficient linear systems in [78]. In the following section describe three differ-
ent methods to model the dipole source.
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3.6 Source Modeling

3.6.1 Direct Method

In the direct method, a dipole source is embedded in the elebmsis func-
tions [79,80]. The approximation can usually be improvedipducing more el-
ements between the poles. An ideal dipole may be describsebgsoint sources
of opposite polarity with an infinitely large current and afinitely small separa-
tiond, I g g

0:10¢) = lim 2[8(x—xo+ S)—8(x—xo— ). (3.35)

Substituting (3.35) into (3.32) gives
b =M - O (xo), (3.36)

whereM = lpdeis the dipole moment.
As can be seen from (3.3@%" depends linearly on the dipole mométso
we can write
bd" = b (xo,M) = B (xo)M, (3.37)

whereBY" is anN x 3 matrix that depends on the dipole positien

3.6.2 Modified Subtraction Method

As described in Section 3.2, the dipole source introducesgukarity that re-
quires specific treatment to increase the modeling accuw@mypared to the direct
method. A subtraction method was first introduced by van deeBet al. [45] to
circumvent this problem and then investigated in greatidetf22, 28, 30, 80, 81].
The total potential is split into two parts, a singularitytgatial @*) and a cor-
rection potential ®°°™), as follows

O = O™ 4 PO, (3.38)

whered® is the solution to (3.16) in an unbounded domain with cortstanduc-
tivity g® as shown in (3.23). In [81] it is shown that the right hand KiREIS) is
nonsingular ifo is constant in a small ball around (Paper I). The RHS for the
subtraction method has support whenevet 0. This means that the RHS must
be assembled in each cell where this occurs. Here a modifi#thstion method
is presented that drastically reduces the number of narszeithe RHS to speed
up the forward problem. Let

b — choo + q)mod —F¥4+ cDmod. (3.39)
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For convenience, we have defined the function
F® = xo°, (3.40)

wherey is a smooth cut-off function which is identically one in agigdorhood of
Xo. In Paper VIl a method for selecting a suitable choicg @ presented. (Note:
the ®° notation is changed t®™°% because the cut-off function modifies this
function as well). Using (3.38) and (3.10), the new formiolateads,

_0. (amqsm"d) —0-(60F®)—0-j%inQ, (3.41)

subject to the conditions

(3.42)

f- (o0eMd) = —A. (c0OF*) ondQ,
cD(Xref) == O

Because of the homogeneity assumption we can find a subdd@faivhere the
right hand side in (3.41) is identically zero. Thus the siagty of the right hand
side of (3.16) is successfully eliminated by the subtractipproach and the RHS
function in (3.41) is now square-integrable over the whadendin Q and thus
appropriate for FEM.

After applying variational and FE techniques to (3.41) vatsundary condi-
tions (3.42), we obtain the following system of linear edqurad:

Kumod = pstb (3.43)

whereK € RN*N is given by (3.31)u™md ¢ RN is the coefficient vector of the
correction potential, andSU ¢ RN is the right hand side vector,

b /Q (a0¢y) - 0™ dV. (3.44)

As can be seen from (3.23p” depends linearly on the dipole momént Thus,
the same holds for the right hand side vedi@nd we can write

bSUP — bSUB(xg, M) = BSUY(xo)M, (3.45)

whereBs"is anN x 3 matrix that depends on the dipole positien

After solving (3.43) numerically fo®™d the unknown scalar potentid can
be calculated using (3.38).
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Figure 3.2: A system consisting of a simple domain in whighgburce with mo-
mentM is located aky. The EEG measurements are performed with
four electrodes, one of which is the reference electr@ig. (

3.6.3 Reciprocity Method

The reciprocity principle was introduced by Helmholtz [&2]d then adapted to
the EEG problem by Rush and Driscoll [83] when they provediy@icability of
reciprocity to anisotropic conductors. The concept allewgching the role of the
electrodes and dipole sources. Fig. 3.2 shows a simple 2Ip sdtich consists
of four electrodes mounted along the boundary of the EEG dun@ne of these
electrodes is used as a common reference for the measurefgenind). Hence,
the output of the EEG measurements is the three voltagesuneebsetween one
of the electrode®);, Q», and Q3 and the reference electrod®. These three
voltages are denotagijeg , Uelee,, aNdUgleq;-

We assume that a single source is present in the system.olthisess defined
by its position,xp, and dipole moment (orientation and amplitudé) As we
will be using reciprocity, we also define three distribusarf electric fields in the
domain,E;(x), E2(x), andEz(x). These are the electric field distributions which
are present in the system when we inject a unit current sdareéectrode$);,
Q2, andQs, respectively and withdraw a unit current at the refereteetde.
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The theorem of reciprocity states that

In this expression, the constaatdepends on several factors, such as whether
we use a voltage or a current source to calcuigatas well as how the channels
in the measurement system are set up. For simulated data isystem,a =

1 (A~1) when a unit current source is used to calculgteRush and Driscoll, [83],
have presented the proof of the reciprocity theorem for @ggimmhomogeneous
anisotropic medium. The main assumption for their prooh&t the conductivity
tensor should be a symmetric tensor meaning that= 0»;, 013 = 031, and

023 = 032, Which is the case for human anisotropic tissues. In SeetiBrnwe
show how the reciprocity theorem can be used for an efficiehttisn of the
inverse problem.
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CHAPTER I .

Inverse Problem

Localization of the neural activity inside the brain basadtee scalp EEG signals
is called the EEG inverse problem. The solution of the in¥gnoblem is gen-
erally not unique in the sense that many source configuraitan result in the
same EEG. To attain uniqueness, it is necessary to imgpseri knowledge on
the source distribution, for example assumptions abowgaece model, anatom-
ical and physiological constraints on the source region sordetimes even re-
sults from other brain imaging techniques, e.g., fMRI [84}-Different inverse
approaches for discrete and continuous source parametee $@ave been pro-
posed [27, 32, 37-39, 41, 88-93]. The inverse problem canvided into two
categories, parametric (dipole or continuous) and noaspatric (distributed or
discretized) methods.

In the parametric methods a limited number of dipoles isragsL{37-39, 88].
Different spatio-temporal models exist depending on thelmer of dipoles as-
sumed in the model and whether one or more of the dipole paeasyé.e., po-
sition, magnitude or orientation, are kept fixed or assurodoket known. In the
literature [94, 95] one can find three models: a single dipaté time-varying
unknown parameters (so-calletbving dipol¢; dipoles with fixed positions and
orientations but varying amplitudefixed dipol@; fixed dipole positions but vary-
ing orientations and amplitude(ating dipolg. In a case when only one single
time, e.g., the spike peak, is chosen for the inverse prold#ithhese three models
give the so-callethstantaneous state dipateodel [32]. In [8,32], itis concluded
that the instantaneous dipole model is suited for estirgdtia well-localized ac-
tivated neural sources for events like epileptic spike arudked potentials (EPs).

The non-parametric methods apply a distributed source hi3@e89-93, 96,
97], where the restriction to a limited number of focal s@sr¢cs removed. To
obtain a unique solution for the inverse problem it shouldrideimized with re-
gard to a specific norm. Different norms have been proposeth as the L2-
norm [40, 89], leading to a smooth current distribution witinimal source en-
ergy and the L1-norm [90], which results in a more focal distion [41]. Most
distributed source models are instantaneous models, bemtrevorks show that

27
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spatio-temporal approaches can help to stabilize the sevexconstruction pro-
cess [92,93]. In the non-parametric methods, there areenbtoenodel the dipole
source in the same way as in the parametric methods, alsedtretion about the
number of sources is removed which are the main advantagbesd methods.
Moreover, because of computational simplicity, these wathhave been widely
adopted in empirical studies [41, 84, 98]. On the other h#malresulting source
distribution is less focal compared to the parametric matH{85]. In [99-102]
some limitations of the parametric method have been inyat&d. In [102] it is
shown that the linear inverse solutions are unable to paddequate estimates
of arbitrary current distributions at many brain sites. 191] and [99] the au-
thors claimed that while smoothness can be an effectiveti@nsfor retrieving
isolated sources, it can fail for patterns with the same egf smoothness but
composed of multiple active sources.

4.1 Lead Field Matrix

The solution to the discrete EEG inverse problem on matmimf(8.30), is given

by
u=Kb. (4.1)

In EEG applications, the potentials are typically measatepproximately 40 to
100 electrodes. These values can be obtained by multiplyingh a restriction
matrix R € RNeleexN 35 follows,

Ue]eC: RU (4.2)

Each row ofR has value one for the electrode node and zero elsewheree:(Not
assuming that the electrodes are located on FEM nodes.)

As mentioned in Chapter 3, the potential valugg:depends linearly on each
of the dipole moment componer = (My, My, M;)T € R3. Therefore, the rela-
tionship betweermM and the potential valuaese, can be described by a matrix
operatorL € RNelec<3 the so-calledead field matrixthat depends on the dipole
position, head geometry and tissue conductivities. A colwiL is formed by
calculating the forward problem at the EEG electrodés,, for a dipole at an
arbitrary positionxgp, inside the brain with unit strength in one of the Cartesian
directions. The three columns In represent the three orthogonal unit dipoles
at the dipole position. If we assume a dipole with time-vairisirength withT
timepoints M € R3*T, the EEG signals at electrode positioblges can then be
calculated very effectively by

Uelec: LM ) (4-3)
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whereUgjec € RNelec<T,

The lead field matrixt can then be used for the whole variety of inverse re-
construction methods; continuous or discretized. For ikeretized space one
can assemble the lead field matrix for all mesh nodes. Thedetd field ma-
trix becomed. € RNeteex3N where each column df is formed by calculating the
forward solution at the EEG electrodéd, e for a dipole on one of th&l mesh
nodes with unit strength in a Cartesian direction, see Gedti2. If the dipole mo-
ment is assumed to be knowarpriori, i.e., orthogonal to the gray matter surface,
thenL € RNetecxN,

4.2 Node Basis Lead Field Matrix

Since only the relative differences of the potential arentéiiest, it is common in
EEG to use the average signal as a common reference, thésseitallecverage
reference montagé.et R be the restriction matrix such that

Uelec— Uelec = RU, (4.4)

wherelgec is the average of the potential at all electrod&can be obtained
from R by subtracting the column-wise mean from each entry. Swibisty (4.1)
in (4.4) gives

Uelec— Uelec= RU = RK ~1b = Th. (4.5)

We callT = RK ~1 € RNeeexN thetransfer matrixfor the average reference mon-
tage. By substituting (3.37) in (4.5),

Uelec— Uelec = TBdirMa (4.6)

we can introduce the lead field matrix 88" = TBY" for the direct method.
For the subtraction method, the contribution to the totdkptial comes from
two parts, the finite element method computed by (3.43) ardlttect contri-
bution from (323), respectively. Thus, the lead field matrix is givenlbyP =
(TBSUP+F5,). HereFg,. holds the value ofp® for the three polarizations at
all electrodes. This lead field formulation is the so-calhedle basidead field
matrix which is based on the divergence of the source cudensity vector at

each node.

4.3 Element Basis Lead Field Matrix

As discussed earlier, the traditional method of constngdinel. matrix is to place
three orthogonal sources in each node of the mesh, and certiputoltages at
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the electrodes. For the reciprocity method, (3.46) holdsficelectrodes and we
obtain

Eix(Xo)  Eiy(Xo)  Eaz(Xo) My (%o) Ueleg
E2 x(Xo) Ez2y(Xo) E2.2(Xo) x\70 Ueleg
: : . My(Xo) | = . 4.7)
ENeIeoX(XO) ENeIeQY(XO) ENeIeeZ(XO) ueleQ\Ie|ec
which can be written in short as
LreC(XO)M = Ueleg (4.8)
where
L"%(x0) = OT (xo0) = O(RK)(xo). (4.9)

Here each row oR has value 1 for the electrode node, -1 for the ground node,
and zero elsewhere. The gradient is evaluated at the midpball cells using
the FEM basis functions. If we calculate (4.9) for all cefiside the domain and
assemble the lead field matrix, we obtain ¢fement basikead field matrid."¢¢ e
RNetec3Neells ywhereN.gyis is the number of cells. This lead field matrix maps dipole
components placed at the elements to potentials at the izadding electrodes.
So, rather than iteratively placing a source in every nodiecemputing a forward
solution at the electrodes, by using the reciprocity thewotlee electric field in
all of the elements is calculated. The calculated electid then can be used to
reconstruct the potential differences at the electrodesa feource placed in any
element.

4.4 Parametric Method

In a parametric method, the number of dipoles is assumed fixdxe and their
locations and moments are chosen such that the potentihis electrodesygles
that are computed in the forward problem, closely approtetize measured po-
tentials,umeas according to some criteria. Here we follow the common pcact
and choose the parameters such that we have the best fit satdtesjuares sense.
For one dipole at a specific instantaneous time we get thedoiy minimization
problem
J= min | Umeas—L(X)M |2, (4.10)

X€EQprajn

M eRd
whereQpyain is the brain domain and the dimension. Since this is a least squares

problem and the electrode potential depends linearly orithele moment, see
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(4.3), itis convenient to separate the parameters in (4d@)olve for the dipole
momentM first. Therefore, for a given dipole positione Qp4in, the optimal
componentd o are found in the least squares sense as the solution of ta lin
equationsimeas= L (X)M, i.e.,

Mopt(X) = (LT (X)L (X)) 2L T (X)Umeas (4.11)
Substituting (5.12) into (4.10) yields after some manipata

J= xeerLgm I =LO)LT (X)L (X)) LT (%)]Umeas]|? - (4.12)
wherel is aNgjec X Nejlec identity matrix.

Now, (4.12) is only dependent on the dipole position. Figdime minimum of
(4.12) can be accomplished, for example, via an exhaustaeh, i.e., inversion
is carried out for each possible source location in the doraad the site produc-
ing the smallest residual energy is selected as the besbjmssurce location. In
the next Chapter we propose a new optimization method baspdnticle swarm
optimization, to efficiently find the optimal source positio

4.5 Computational Complexity

In the set-up phasé&, is computed once per head-model by means of soMing
large sparse FE-systems of equations using, e.g., aniveeraMG-CG solver
[29]. The computational complexity of the set-up phase e&ssame for all three
numerical methods, i.e., direct, subtraction and recipya€we ignore the cheap
calculation of the gradient af, (4.9), in the reciprocity method. On our machine,
a PC with Intel(R) Xeon(R) @3.30GHz CPU and 16GB memory, fuviag
Nelec = 61 FE-system for a model withl = 2 468 080 the set-up phase takes
approximately 5 hours. The advantage of this pre-computatvhich can be
used by both parametric and non-parametric source mettsottgt the solution
of the inverse problem can then be computed very fast as fantanline process.

In the parametric inverse problem, a fixed number of activesss is assumed
and in this approach, a search is made for the best-fit dipdéipn(s) and ori-
entation(s). If we assume an unknown source direction,ithe tor finding the
optimal source position and orientation is

M Tiny = I % (To + TMop T Tuereo) (4.13)

in the inverse algorithm, wherg, is the time for assembling the right hand side
vector. In the direct method, right hand side has eight reme-entries, and the
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Table 4.1: Inverse problem algorithms. Algorithm 1 usesdinect method, Al-
gorithm 2 uses the subtraction method and Algorithm 3 usesdti-
procity method in the forward problem.

Algorithm 1 Algorithm 2 Algorithm 3
Precompute T Precompute T Precompute TandOT
Repeat Repeat Repeat
compute newBdr compute nevBsuP
computeTBI" computeTBSUP+ Fg
computeM gpt computeM gpt computeM gpt
computeUglec computeUglec computeUglec
Until Convergence Until Convergence Until Convergence

Table 4.2: Computational time for one iteration in the imesalgorithm for a
spherical head model with 2 468 080 nodes.

Direct Subtraction| Reciprocity
Ty 0.30s 495s -
TMopt | 6:2 % 10°s|62x10°s| 6.2x10°s
Tugiec 0.15s 0.16s 4x10"s
| Ty | 045s | 49.66s |624x10°s|

computational time for assembling" is obtained by evaluating (3.36), where
M is a unit vector. In the subtraction method, the mathemladiigele leads to
a dense right hand side vector in equation (3.45) with naoo-eatries equal to
the number of nodes on interfaces. The computational timagsemblingsu?

is obtained by evaluating (3.44). In (4.18),, is the time for evaluating (4.11).
The 1, is the time for evaluating (4.4) for the direct and subt@ttmethods
and (4.8) for the reciprocity method. Thdas the number of iterations needed
to find the optimal solution and it is dependent on the coretrg speed of the
optimization method.

Tables 4.1 shows the necessary steps for EEG source ldaalibgy using the
different algorithms for solving the forward problems. T&#.2 shows the wall
clock time for the computations on our machine for a modehWwit= 2 468 080
nodes. By comparing the computational time for all threehoé$ presented in
Table 4.2, we can see that the reciprocity method solvesiteese problem much
faster than the other methods.
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4.6 Choosing the Number of Sources

The number of focal sources is unknown in advance and is medjais an input
parameter for the spatio-temporal dipole modeling. Onesiptesway is to start
with one dipole and then increase the number until somericniten the match-
ing between the measured and optimized potentials at to@des is met. One

natural criterion is thaHM is lower than some prescribed value, e.g.,

0.01. Mosher et al. [38] proposed a method which quickly seeth a one dipole
search, rather than the p-dipole search necessary in a etafipl They proposed
to separate the signal and noise subspaces and thus tdyetakrmine the num-
ber of source components, through the drop in magnitudeeo$thallest signal
eigenvalue to the greatest noise eigenvalue of the estihsgi®tial data covari-
ance matrix. This procedure assumes that the signals h#fi@esu strength and
that they are sufficiently uncorrelated during the timenvaé In [39] atrial and
error strategy was proposed to combine the determination of tkeawn num-
ber parameter with the localization of the sources usinghtirdinear dipole fit
method. Knosche et al. [91] presented a systematic waytesrdane the number
of dipoles by information criteria. The information crii@iare based on a statis-
tical concept of separating the space spanned by the palncgmponents of the
estimated data covariance matrix into a signal and a norselpahe next chapter,
we propose a multi-dipole source localization method bas=ldSO that can deal
with scenarios where the single dipole source localizatiay fail.
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CHAPTER

Particle Swarm Optimization

As discussed in previous chapters, EEG is one of the most coyrased biomed-
ical techniques since it provides a way to non-invasivalggtthe function of the
human brain. The EEG source localization problem is (ugudlghly nonlin-
ear and requires efficient algorithms for its solution. Thestrwidely used op-
timization methods for solving the EEG inverse problem carclassified into
two groups: gradient methods, which use function and deveranformation
(e.g., Levenberg-Marquardt [103]), and search methods-@gnadient techniques)
which use only function values (e.g., Nelder-Mead dowrgiithplex [104]). In
the literature these methods are also called local optimizand global optimiza-
tion methods, respectively. Both of these methods minirthieecost function by
iteratively adjusting the parameters of the dipole sour@é& local optimization
is fast to converge and effective when there is only one dipobur source model
and the data is noiseless. But when we use the multi-dipoteehand have noisy
data the local optimization approaches are not alwaysteféesince they are often
trapped in local minima [105-107].

The dimensionality of the EEG source localization problean be reduced
by factoring out the linear parameters but still a fundaraeptoblem remains:
the least squares cost function is highly non-convex wigipeet to the locations
of the dipoles. Consequently, inverse methods such asegrabdased methods
or nonlinear simplex searches often become trapped in logaima, yielding
significant localization errors [108, 109]. The gray matiesue is located in sev-
eral disjunct regions in the head which leads to a non-caatis solution space
and makes the problem more difficult to solve using standptishization meth-
ods [110]. Moreover, by applying the physiological conisits, such as orthog-
onality (sources are orthogonal to the gray matter surfand)the sparsity, the
problem has a non-differentiable cost function [111-118]addition, the final
solution often depends on the initial approximation andrthmber of local min-
ima of the cost function [114] since reasonable initial gessare difficult to make

Metaheuristic algorithms for global optimization have heagesed in the so-
lution of the EEG inverse problem [115-120], and most of threported high
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accuracy on the estimation of multiple dipoles with simiglatand realistic stud-
ies. Nevertheless, a strict statistical study on the vdityabf these results under
realistic conditions has not yet been performed, and trebkshment of realis-
tic confidence intervals as a function of the parameter spattee metaheuristic
algorithms remains an open task.

Particle swarm optimization is a swarm intelligence altjon for numerical
optimization problems [121,122]. PSO has gained incrggsapularity in recent
years and has been applied to a large group of problems imcgcéand engineering
[123-131], and also in biomedical applications [120, 13221

In the next sections, we first introduce the standard PSO odetind some
improved versions. Also we present the parameter seleapproaches and their
limitations. Next, we propose a novel particle swarm optiaion method with
problem-specific modifications for the epileptic spike selocalization and com-
pare its effectiveness and efficiency with other improvesies of PSO, a genetic
algorithm (GA) and the deterministic global optimizatiolg@ithm, DIRECT.
Finally, we show the ability of modified PSO (MPSO) to solveltiple source
localization. The results show that, whereas the DIRECThotefailed to effi-
ciently solve the source localization problem, the MPSOld¢dind the optimal
solution significantly faster than other improved versioh®SO, as well as GA.
To the best of the author’s knowledge, the PSO algorithm babeen applied to
real EEG source localization previously.

5.1 Original PSO

The Particle Swarm Optimization concept was first introdulog Kennedy and
Eberhart[121,122]in 1995 based on social system behavebras the movement
of flock of birds or a school of fish when searching for food. tEadividual in
the swarm is called a particle. The th particle of the swarm is represented by
the vectorsX;| for its position and/; for its velocity. The particle has a memory to
record the position of its previous best performance, pexisbest pbes), in the
vectorP; and the position of the best particle in the swarm, globat (ggzes),
which is recorded in the vectd?y. The particle swarm optimization algorithm
consists of, in each iteration, changing the velocity ofheparticle towards the
position of its best performanck;, and the swarm best positioRg. Thus in the
original version particles move according to the followingmula:

Vi = vty ciRand) (P — X
+ coRand) (Pg— X1, (5.1)
Xt =Xttt
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The parameters; andc, are thecognitiveandsocial learning rates These two
rates control the relative influence of the memory of the sw&best perfor-
mance, to the memory of the individual, and are often salettt¢he same value
to give each learning rate equal weigRand ) is a random number, drawn from
a uniform distribution between 0.0 and 1.0. In any situgtae do not know
whether the cognitive or social learning term should bersgfen; if we weight
them both with random numbers, then their strength charegetomly. The ef-
fect of this is that the particle moves unevenly around thiatpdefined as the
weighted average of the two best positioRsandPy. Due to randomness, the
exact position of this point changes in every iteration.ddition to thec; andc,
parameters, implementation of the original algorithm aésguires placing limits
on the search areXmaxandXmin, and the velocityy max. Changes in velocity are
stochastic, and an undesirable result of this is that thecpes trajectory expands
towards infinity. The maximum velocity paramet¥iy,ax, controls the particle’s
trajectory to avoid approach infinity [143].

5.2 Improved PSO

Shi and Eberhart [144,145] devised an inertia weighto improve the accuracy
of PSO by damping the velocities over time, allowing the swao converge

with greater precision. By integration @f into the algorithm, the formula for
computing the new velocity is

VL — wv! 4 ¢;Rand) (P — X}) (5.2)
+czRand) (Pg— X}).

As originally developedy is often decreased linearly from abou® @ 0.4 during
arun [143]. A suitable selection of the inertia weight pa®s a balance between
exploration, the ability to test various regions in the peoi space in order to
locate a good optimum, hopefully the global one, and exgli@ih, the ability to
concentrate the search around a promising candidate @olmiorder to locate
the optimum precisely [145].

The maximum velocityy nmax, IS @ constraint that controls the maximum global
exploration ability PSO can have. By setting a too small mmaxn velocity, the
maximum global exploration ability is limited and PSO wilhays favor a local
search no matter what the inertia weight is. Since the maximelocity affects
global exploration ability indirectly, whereas the inartveight affects it directly,
it will generally be better to control the global exploratiability through iner-
tia weight only. Choosing a large inertia weight to fact&anore global explo-
ration is not a good strategy, instead a smaller inertia mesgould be selected to
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achieve a balance between exploration and exploitatiorttargla faster conver-
gence [143].

In [146] Clerc proposed aonstraint coefficient, Kas a modification of PSO
and in [147] it was found tha{, combined with constraints 0fimax Significantly
improved the PSO performance. The formula for computingnéve velocity with
constriction factoK is

VL = K(V! + ciRand) (P — X) (5.3)
+czRand) (Pg—Xi)),

whereK = andg=-cy+¢cp > 4.

2
[2—p—+/@?—40g|

5.3 PSO Drawbacks

The PSO algorithm introduced by Kennedy and Eberhart hasprm be power-
ful but needs to select various parameters, such as the maxielocity coeffi-
cient, the swarm size as well as the cognitive and sociatiegrates. A complete
theoretical analysis of the algorithm has been done by GledcKennedy [148].
Based on this analysis, the authors derived a reasonalié teeting parameters,
as confirmed by [147]. However, the parameter selection peaific problem is
not straightforward.

The PSO algorithm risks trapping in local minima and losisgeixploration—
exploitation ability. Angeline, [149], for well known tefiinctions, showed that
although PSO was capable of finding a reasonable qualityisoluery fast, it
could not improve the quality of the solution as the numbeitefations was
increased. If thepbestand gbestof a particle remain very close to each other
then the particle becomes inactive in the swarm. In othedsjovhen|P; — X!|
and|Pg — X!| are both small, and at the same tiMghas a small value, then this
particle loses its exploration ability. This could happerlhie early stages for the
gbestparticle and as a consequence the PSO is trapped in a locahaim the
following section we propose a Modified PSO (MPSO) which celp o reduce
the aforementioned drawbacks.

5.4 The Modified PSO

In this section we describe some modifications that have Ipeste to PSO,
l.e., evolutionary programming, concept of authority, @dee swarm size and
problem-specific modification.
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5.4.1 Evolutionary Programming

One way to avoid PSO being trapped in local minima is mutgti®®, 151] and
using evolutionary programming (EP) [149, 152, 153]. In &Ropulation ofN
particles is randomly selected initially. Each particleaken as a pair of real
valued vectors(X;,ni), whereX; is the position vector and; is the standard
deviation for Gaussian mutations of the th particle, respectively. Each par-
ent particle(X;, ;) creates a single oﬁsprin@(i,hi) according to the following
equations [154]:
Xi =Xi+ni-#(0,1)
{ A = et O+ (0.1)) (5.4)

where.#/(0,1) denotes a normally distributed random number with mean zero
and standard deviation one. The factoendf are commonly set to, /2, Mgim) ~*

and (v/2ngim) ! [154]. By utilizing a g-tournament selectiorl\ particles are
selected out of ® parents and offspring. Tournament selection is a popular
form of selection which is commonly used in genetic algongh[155]. In the
g-tournament selection [156¢, number of individuals is chosen randomly from
the population and the best individual from this group igstd. This process is
repeated as often as individuals must be chosen. The paaimetournament se-
lection is the tournament sizp The(q takes values ranging from 2 to the number
of individuals in the population.

After applying EP to the swarm, once mdvkparticles are selected from the
swarm population by thg-tournament selection and thus become the so-called
elite particles[157]. For each particle, the nearest elite particle is meitged by
the Euclidean distance. By evaluating the fitness valueldhal particles, the
global best position is determined. The velocity and thetposof the particles
are updated according to the global best position, the sealige position, and
the personal best position. These are applied to the PSOinéttia weight as
follows:

VI —wi + ¢iRand) (P — X!) + coRand ) (Pg — X1)
+czRand) (Pe— X}), (5.5)

wherecs denotes the constant of the nearest elite Bnis the nearest elite posi-
tion.
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5.4.2 The Concept of Authority

To maintain the exploration ability in our modified PSO anckease the exploita-
tion ability, we introduce the concept aluthority and apply it to the particle’s
behavior. To implement the concept of authority, Bhelosest particles tgbest
are extracted as the swarm moves close to a minimum and te@flewed to fly
freely based on their memory and knowledge. Thus, the wglapidate is divided
into two parts as

Vi = w4 ¢iRand) (P — X!) + coRand ) (Pg — X})
+czRand ) (Pe— X}), (5.6)

wherei =1,2,....N—Rand
Vi —wWi + ¢ Rand ) (P, — Xt) (5.7)

wherer = N—R+1, ...,N. TheRnearest particles tgbestare re-selected in each
iteration to ensure that the particles that moved away frioegbestlose their
authority and at the next iteration, update their velocagdd on (5.6). It means
that in some steps the particles that are closer to the glmstl can influence
the performance and decision of the swarm, more than othire. concept of
authority allows the swarm to have more information aroghdstbefore lots of
particles approach it and get stuck to each other, thus itdugs the exploitation
ability. The concept of authority mixed with EP helps to kéepbalance between
exploration and exploitation as well as avoiding gettiragppred in local minima.

5.4.3 Adaptive Swarm Size

Usually, the swarm size is constant. Some authors use 20e whime others
use 30 [122, 145], but nobody has proved that one given siaally better than
another. Thus it seems better to let the algorithm modifystvarm size [158],

adaptively based on the current situation. In each itamatiee swarm has infor-
mation about each particle’s positiofy, personal besg;, velocity, Vi, as well as

the previous objective function values. The swarm also bagegylobal informa-

tion, i.e., the swarm size and time step. Using this inforomthe swarm has two
options to act on particles. It may remove particles fromdvarm or generate
new particles. The condition for the swarm to change thaistat a particle is

based on the following criteria:

¢ If one particle has hadnough improvememtnew patrticle is generated from
that particle and the old one is kept.
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¢ If one particle has not hadnough improvemerthat particle is removed
from the swarm.

Here, the status changes every 5 iterations which is equiletmeighborhood
size of the particles. Thenough improvemenms defined by "improvement for 5
iterations”. Reflecting walls are used as boundary cornustior the MPSO. When
a particle hits the boundary in one of the dimentions, tha sifjthat velocity
component is changed and the particle is reflected back tsaae searching
space. This boundary condition keeps the particles insides¢arching space at
all times.

5.4.4 Problem-Specific Modification

As our main goal is to apply PSO to EEG source localizationade: a problem-
specific modification to the MPSO. This modification comesfithe anatomical
constraintin EEG source localization. Restricting thedeapace to limited areas
of the brain volume, e.g., the gray matter, reduces the autiigf source local-
ization [159]. In the inverse problem we consider only thdgmle locations and
orientations that are consistent with the anatomical dssadiscussed in Chapter
2, the EEG signals are generated by currents flowing in theabpgendrites of
cortical pyramidal cells [56, 160] so the search area coaltestricted only to the
cortex sheet of the brain. We use this information and adad ihé MPSO. For
this anatomical constraint MPSO solely evaluates the aosttion, (4.12), for
the particles that are placed in the gray matter and assidughapenalty value
to others. The MPSO starts from gray matter and in this wawdiseup in the
gray matter, this constraint also helps to avoid trappirgstiiution of the inverse
problem in false local minima in other tissues.

5.5 Comparison of Different Algorithms

The objective of this section is to statistically compare gerformance of the
MPSO with some other improved versions of PSO as well as atigealgo-
rithm [161], for EEG source localization. The well knowresst (hypothesis test-
ing) [162, 163] is used to assess and compareetfectivenesand efficiencyof
all the different algorithms. In hypothesis testing, a rypothesisH, will be
correctly accepted with a significance (or confidence) I¢tel o) and falsely
rejected with a typé error (asserting something that is absent) probalulityf
the null hypothesis is false, it will be correctly rejectedhna power of the test
(1—B) and will be falsely accepted with a typeerror (failing to assert what is
present) probability3 [164]. The decision options are summarized in Table 5.1.
Ha corresponds to an alternative hypothesis that is compliangto H,.
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Table 5.1: Possible decision outcomes in hypothesis te&ithapted from [164]).

The true situation may be

Action Ho is true H, is false
acceptH, , rejectHy (1 — a) significance level B [typell error]
rejectHy, acceptH, o [typel error] (1—B) power of test
Sum 1 1

The t-test deals with the estimation of a true value from amarand the es-
tablishing of confidence ranges within which the true valare loe said to lie with
a certain probability1 — a). In hypothesis testing, increasing the sample size,
decreases typkeandll error probabilitiesg and 3, based on the t-distribution.
Whenn is very large, the t-distribution approaches the normatithistion [165].

In this section, two hypotheses are tested. The first testlaged to theef-
fectivenesg¢finding the true global optimum) of the algorithms and theosel is
related to theefficiency(computational cost) of the algorithms. Effectiveness is
defined as the ability of the algorithm to repeatedly find thewn global solu-
tion, or arrive at sufficiently close solutions, when theagithm is started from
many random points in the design space. In other words,taféeess is defined
as the probability of finding a high quality solution suchttha

Q= (1_ | Umeas— Uest||> %, (5.8)

| Umeas||

whereumeasanduest are the measured and estimated EEG signals, respectively.
The solution quality metric described in (5.8) could thenused to synthesize

a meaningful hypothesis to test the effectiveness of thecsedgorithms shown

in Table 5.2. In our test casesmeasis calculated synthetically by solving the
forward problem for a dipole located inside the gray matter.

The second hypothesis that is tested in this section is thguatational ef-
ficiency test. This test directly compares the computatieffart required by
MPSO and some other methods for EEG source localizations fHguires a t-
test calledcomparison of two mearj$63, 166]. For the computational efficiency
test, the metric that is implemented is the number of fumcéealuationsNeyay,
the algorithm carried out until the convergence criteri@asunet. The efficiency
test is summarized in Table 5.3

5.5.1 Results and Discussions

The two tests were carried out for MPSO, three improved wassof PSO [146,
167] as well as GA [161]. Table 5.4 summarizes the featuregh@improved
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Table 5.2: The effectiveness test.

Objective to test whethétly: Lig > 99%
Ho: Lo <99%
t = Q-99%
s(Q)
takinga = 1%, B = 1%, andn = 1000
wherey is the unknown population mean,
Qs the mean of the quality of a solution, and

S(Q) __ standard deviation of Q
= v '
This is a one sided test of significance of a mea# teyitical = 2.0.

Table 5.3: The efficiency test.

Objective to test whethétl, : MPSOp,,,, < OM LN,
Ho: MPSO[JNeval > OM HNgyay
— oM HNeval_MPSOH'\‘evaI
~ 5(x)v/(1/nom+1/nvpso)
where

s(x) = (nom—1)Sy+ (Mvpso—1)Sipso
Nom+Nmpso—2 ’
OM stands for "Other Method”.
Takinga = 1%, 8 = 1%, andnpm = Nwpso= 1000.
This is a one sided test of significance of a mea# tgiticas = 2.5.

versions of PSO selected for benchmarking. We set up foterdiit cases with
physiological meaning. The spike dipoles are placed inidegray matter with
the following positions and orientations, see Fig. 5.1:

1. Right motor cortex, radial direction.

2. Right temporal lobe, radial direction.

3. Right temporal lobe, tangential direction.
4. Deep inside the brain, oblique direction.

The background dipole is fixed at the occipital lobe for ales Both tests were
conducted using acceptable Type | and Type Il errors of 1%.€Bable 5.5 shows
the calculated t-values obtained for the effectivenesdaesll methods.

The effectiveness tests for MPSO and the other improvedoresf PSO
show that > titical In all cases. This leads to the rejection of the null hypathes
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Figure 5.1: Position and orientation of the spike and bamlgd sources in 2D.
Spike dipole is placed at right motor cortex with radial dtren (case
1), right temporal lobe with radial direction (case 2), tigempo-

ral lobe with tangential direction (case 3) and deep insi@énbwith

oblique direction (case 4). For all cases the backgroundlelifs
placed at the occipital lobe.

Table 5.4: Parameters of different versions of PSO selduted as benchmark

methods.

Formula w K C1 C C3
MPSO | Egs. (5.6) and (5.7) linear from Q9 to 04 - 0.8 04 |08
PSO1 Inertia (5.2) linear from Q9 to 04 - 2.0 20 | -
PSO2 Inertia (5.2) 0.600 - 1.70 | .70 | —
PSO3 Inertia (5.2) 0.729 - 1.494| 1.494| -
PSO4 Constrict (5.3) — 0.642| 2.10 | 2.10 | -
EPSO| Evolutionary(5.5) | linear from Q9 to 04 - 0.8 04 |08

and the acceptance of the alternative hypothesis, thatiguhlity of the solu-
tions of these approaches is equal to or greater than 99% fioualcases. This
alternative hypothesis is accepted with a confidence |v@%. The infinity t-

values in the Table 5.5 are obtained because in each of teeharcorresponding
method consistently found the known solution. Therefdre quality of the 1000
solutions in each case is 100%.
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In all cases the null hypothesis is accepted for the GA rinesefore it shows
that the GA does not converge. By further investigating taedit is found that
the mean quality of the GA solutions for test case 1 is 98.989% & standard
deviation 0.20% and for the other cases it is 94.68% with adstal deviation
0.6%.

Table 5.5: Calculated t-values for the effectiveness Hygsit test.

Effectiveness testgiterial = 2.0
Calculated t-value
MPSO PSO1 PSO2 PSO3 PS04 EPSO GA

Casel oo 9.07 1181 7.36 o o -0.07
Case2 oo 438 6.35 3.68 o o -7.32
Case3 o 6.35 243 438 o 00 -7.29
Case4 o 00 00 0o o 0o -7.28

Table 5.6: Calculated t-values for the efficiency hypothésst.

Efficiency testtcriticas = 2.5
Calculated t-value
EPSO PSOl1 PSO2 PS03 PSO4 GA
Casel 15.13 27.16 32.84 33.92 27.18 303.19
Case2 1536 24.83 31.23 32.84 23.84 304.28
Case3 16.72 24.36 28.12 31.24 24.81 305.49
Case4 15.15 28.96 33.65 34.73 27.45 306.87

In Table 5.6 the results of the efficiency test are given amy $how that
t > teritical fOr all cases. These results lead to rejection of the nulbliygsis and
the acceptance of the alternative hypothesis with a cordelavel of 99%. The
interpretation of these results is that for all cases thepdational effort required
by MPSO to converge to a solution, is less than that of theratfygroved version
of PSO as well as GA. Since DIRECT does not have any randonmeaeas the
same result is obtained for all runs and the t-test could eenlapplied. Table 5.7
shows the mean and standard deviation of the number of ametialuations for
all methods. From Table 5.7 we can see that the MPSO, in awefiags the op-
timal solution five times faster than DIRECT. Paper | presembre details on the
comparison of MPSO with other methods. In summary, by séesamples, we
have shown that the MPSO could found the optimal solutionigantly faster
than the other improved version of PSO as well as a geneticitdgh and the de-
terministic global optimization, DIRECT. Moreover thaetMPSO is less prone
to be trapped in local minima.
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Table 5.7: Mean and standard deviation for the number oftfonevaluations for
1000 runs. Since DIRECT does not have any random paraméeers t
same result was obtained for all runs.

Casel Case 2 Case 3 Case 4
MPSO(meantstd) | 97+40 93+42 92+39 104+35
EPSOmeantstd) 146+62 158+86 160+£81 | 178+102
SPSOmeantstd) 187+58 201493 196+86 195+61
CPSOmeantstd) | 190+67 209+95 205+-94 191+64
GA (meantstd) | 1560+450 | 1680+400 | 1660+420 | 1710+£550
DIRECT 500 680 430 350

5.6 Multiple Source Localization

Theoretically, it would be possible to calculate the obyectunction for all com-
binations ofp sources iMNgray possible locations in the gray matter, i.e.,

Ngray ) Ngray!
Yoy 5.9
< p (Ngray_ p)!p! (5-9)

evaluations. In practice, this is generally not feasiblthasnumber of gray matter
points in the configuration space is too large and cannot peed exhaustively.
The PSO is flexible and straightforward to extend to multgaearce localizations.
For p source locations, unknown parameters should be estimated in 3D, i.e.,
3p dipole position parameters in Cartesian spacg ¢ and J dipole moments
(Mx, My, M;). Thus the —th particle of the swarm can be represented by the vector
Xi € R"andV; € R"P, wheren = 1,2, 3 is the problem dimension. Far= 3 we

get,

Vi — ((VX]_uVyl?VZl)u Ty (VXpuvyp7VZp)7 (VMx17VMy1 7VM21)7 Ty (VMxpavMypvazp))i~
(5.10)

With this configuration for the particles we can now again (#6) and (5.7)
to minimize the cost function. The minimization probleml@). then becomes,

{Xi = ((X1,¥1,21), - (Xp, ¥ps Zp), (M, My, Mg, ), - - -, (MXD’MVD’MZD))i’

min
XEQprain
M eRrd

J= (5.11)

p
H Umeas— ZL(Xi)Mi HZ’
i£

To test the ability of the MPSO to localize multiple dipoleistes, we generate
sets of simulated potentials for 30 channel electrodesxforactive spike sources
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Figure 5.2: Left) Position and orientation of the two actpgkes, with the same
amplitude equal to 1@Am and background sourceslAm, in 2D
setup, Right) The cost function when a single dipole sowseesed.

placed in both brain hemispheres in a 2D case, see Fig. 5.i2.tAs previous test
cases, the background dipole is fixed at the occipital lobalfacases. The two
spike sources have the same amplitude equal j0Ald, one with radial direction
and the other with tangential direction. Fig. 5.2 shows thst tunction when only
a single dipole is used to estimate the potential for thisdase. As we can see
in Fig. 5.2 the global minimum is located 10.3 mm from the seun the left
hemisphere and 88.4 mm from the source in the right hemisphEne relative
error is equal to 0.52 and clearly a single dipole is not ehanghis case.

Therefore, we run the case with the multiple MSPO sourcdilataon formu-
lated in (5.10) and (5.11) with eight unknown parameters,gasition parameters
and two orientation parameters for each dipole. To redueaittknown param-
eters we can use the method explained in Section 4.4 anded¢daainknown
parameters to six. For given dipole positiose Qprain, X2 € Qprain @and orien-
tationM 1 € R3 the optimal components] 2o @r€ found in least squares sense as
the solution of the linear equationgeas— L (x1)M1 =L (Xx2)M>, i.e.,

M 260, (X) = (LT (x2)L (X2)) LT (X2) Uimeas (5.12)

wherelimeas= Umeas— L (X1)M 1.

We ran the multiple MPSO 100 times. The MPSO had 30 initiatiplas
and the optimization was stopped if the relative er00.08 (this value was ob-
tained when the exact dipole positions and orientationgselected as input for
the optimization problem). Table 5.8 summarizes the redalt multiple MPSO
source localization. The standard deviation is zero sineePSO found the op-
timal point in all runs. The errors presented in Table 5.8us tb the background
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source activity.

Table 5.8: Mean of the localization, orientation and regrrors after 100 runs.

Source 1| Source 2
Localization error (mm 1.8 4.0
Orientation Error (deg) 0.0 1.73
Relative Error 0.08

The results in Table 5.8 show a significant source locabraitnprovement
compared to the one dipole localization approach. In oue ths head model
had 2 879 gray matter points. Thus all possible unique coatioins of the two
sources are 4 142 881. The multiple MPSO found the optimat after 750
evaluations, which is 0.018% of the total number of possthl@ces. Using mul-
tiple MPSO source localization is a reliable choice when wal dvith a strong
multi-active sources scenario, since a one dipole souifation may fail in

that case.
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Head Model

EEG source localization results are influenced by diffeesndrs and approxi-
mations, such as head-model complexity [10,47], EEG sigoae [48], tissue
conductivity noise [11] and electrode misplacement [48, 48 this chapter we
investigate some of these errors and approximations.

Segmentation of head tissues using structural imagingntgohs such as com-
puted tomography (CT) and MRI is the first step towards gdimgya patient-
specific head model. MRI is known as a safe and non-invasitieaddor imaging
the human head. Because of its high contrast, T1-weightebl(IMRMRI) is well
suited for the segmentation of soft tissues, i.e., white gnag matter and tissue
boundaries like outer skull and skin. In contrast, the d@asdion of hard tissues,
such as the skull, is problematic. Several estimation amtres for classification
of the inner skull layer have been presented [85, 168—176¢urate EEG source
localization of, in particular, basal frontal and mesiahf®ral current sources in
the human brain, are of high importance in epilepsy surdeijl 71] it was shown
that inaccurate modelling of the skull compartment can edusm localization
error and this may be detrimental in clinical applicatiodsI is well suited for
imaging bone tissues such as the human skull, and regwstratia CT with a
T1-MRI [172] enables exact modeling of the skull, but als@diation exposure
risk which is avoided when possible. Another well suited aldy for extracting
the bone from soft tissue is Proton Density MRI (PD-MRI) sirthe difference
between the quantity of water protons of bone tissues amdciranial tissues is
large.

Furthermore, the head model complexity studies in [10, BiErshown that
CSF has significant influence on the EEG source localizatimr.eAs normal
CSF has long T1 and T2 times, which manifest as dark signalEleweighted
images and bright signals on T2-weighted images, it is diffito segment the
CSF accurately. Moreover, the brain extraction step dusggmentation can af-
fect the CSF misclassification significantly since a largeant of the CSF is
located between the brain and skull compartments [47]. érfahowing section,
the MRI acquisition and segmentation methods used in olEEG test case are

49
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presented.

6.1 MR Acquisition

Structural MR images were acquired using a PHILIPS ACHIEVRA fanner
(Sahlgrenska University Hospital, Gothenburg, Swedenigupd with a 32 chan-
nel head coil. T1-weighted images were acquired for a healibject, (195 sagit-
tal slices, matrix size = 256 256, voxel size = 0.9375 minflip angle 8 deg,
TR/TE= 8.095/3.704 ms).

To allow for an estimation of the conductivity anisotropy white matter
(WM) based on diffusion tensor imaging (DTI) data [17], dgfon weighted im-
ages were acquired using a twice refocused SE-EPI sequéhegi@l slices, ma-
trix size = 128x 128, voxel size 75x 1.75x 2.0 mn?, TR/TE = 9793.685/77.183
ms, two averages) with 32 diffusion directions and a b-valu@00 s mn?.

6.2 MRI Segmentation Methods

In the last two decades, many research groups have develogthdds for brain
MRI data sequence analysis, for reconstruction of the lsraortical surface from
anatomical MR data and registration of functional MR datatenreconstructed
cortical surface [173-182]. Among them, the most widelydusee the FMRIB
Software Library (FSL) [173] and FreeSurfer [175]. In Papkmwe have inves-
tigated the influence of image segmentation done by FSL aaeStnfer on the
source localization. Comparing the results from the twdroes with the “ground
truth”, the set of voxels that were labeled by an expert, gtbiliat the segmenta-
tions obtained from FSL gave better accuracy than those FaaSurfer. In the
following section we present the segmentation methods tesieglestigate the in-
fluence of head model on the EEG source localization. In alrf#EG test case,
presented in the next chapter, a manual segmentation doae bypert is used
for generating the head model. More details are given iniBdpand III.

6.2.1 FSL

The segmentation of the five tissues, GM, WM, CSF, scalp aall, $& done by
FSL in two steps. In the first step, masks of skin, skull anaeaiee generated by
using a preset intensity threshold value (ITV) in the BET wled In the second
step, an automated segmentation of three tissues, GM, WMC&#d is carried
out by applying the FAST module [174]. For the BET step, IT\é&ected equal
to 0.3 since in [47] it is shown that this value generated aehadth minimum
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Skin

B skul

Figure 6.1: The subject’s head model generated from the E§inented results.

source localization error. To generate an accurate heaelntioelsegmented tis-
sues obtained from FSL need to be checked and corrected tiydmya clinical
expert. Fig. 6.1 illustrates the subject's FEM head modéhioled from the cor-
rected FSL segmentation.

6.2.2 Mean Shift Method

Our group (Department of Signals and Systems, Chalmersasity of Technol-
ogy, Gothenburg, Sweden) recently proposed a fully autiennaalti-tissue seg-
mentation method for multi-modal MRI images of the head [|18he method
is based on a hierarchical segmentation approach (HSAjpocating Bayesian-
based adaptive mean-shift segmentation (BAMS).

In Paper VIII, this method has been tested for synthetic aatlEEG source
localization and compared with other existing methods sis;HSA-HMRF-EM
[184] and BET-FAST [174]. Table 6.1 summarizes these redolt the median
nerve stimulation (see Paper VIII for more results).
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6.2.3 Manual Segmentation

Here the segmentation of the five tissues, i.e., GM, WM, C&Hpsand skull, was
done manually by a clinical expert based on neurophysio&@dinowledge. Our
expert spent 170 hours to fully segment the head model (1&s3! We call this

segmented model the “ground truth” since it was the mostrateisegmentation
model that we could generate for EEG source localizationmalde a comparison
between the different segmentation methods mentionedeiptévious sections
for source localization of somatosensory evoked potentsae Table 6.1.

Table 6.1: The relative error defined as relative differebeéveen measured
SEPs and estimated potentials for the median nerve SERsedoual-
ization for head models generated by different segmemtatiethods.

Segmentation methods Relative error
FSL 0.42
Mean Shift Method 0.35
FSL Manually Corrected 0.32
Manual Segmentation 0.23

As we can see from Table 6.1 the manually segmented head made] as
expected, best results compared to the other segmentaéitrods. We use this
model in the next chapter for real EEG source localization.

6.3 Modeling Tissue Conductivity Anisotropy

This section describes the modeling of realistic WM conghitgtanisotropy, for
the generation of realistic anisotropic high-resoluti@ume conductor models
of the head. Conductivity anisotropy, directionally degemnt, with a ratio of
about 1 to 9 (normal to parallel to fibers) has been measureldréon WM by
Nicholson [15], however, a robust and non-invasive direeasurement seems to
be challenging. Nevertheless, a formalism has been desordzently for relating
the effective electrical conductivity tensor to the effeetwater diffusion tensor
in brain WM [17, 18, 185]. Water diffusion can be measured-mwasively by
DT-MRI. The mutual restriction of both the ionic and the wateobility by the
geometry of the porous medium (the WM fibers) builds the Hasithe described
relationship. Basser et al. [16] introduced the assumgtian the conductivity
tensor shares the eigenvectors with the water diffusiosaieThe assumption is
not that a fundamental relation exists between the free Iityobf ionic and water
particles, rather that the restricted mobilities are eglahrough the geometry.
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Figure 6.2: The fractional anisotropy image after regigiraof the T1 anatomy
(top row), the color coded first eigenvector of the DTI tensor
registered with the T1-weighted MRI (bottom row).

Two approaches are proposed in the literature for extrgtti@tissue anisotropy
from DT-MRI, namely a “direct mapping” [186, 187] and a “vohe normalized
mapping” [188]. The direct mapping simply scales the DTktns to get the con-
ductivity distribution. The volume normalized mapping siffee anisotropy infor-
mation of the DTI data, while maintaining the mean conduigtiof the tensors
at a predefined value, e.g., the WM or GM isotropic condutstivi his approach
prevents the problem of very high peak conductivity valleg tan occur when
the direct mapping is used.

The procedure to prepare the diffusion weighted imageshersubsequent
estimation of the conductivity tensors, is based on the gssiog steps imple-
mented in FDT [173]. A brain mask is extracted from the firstatue equal to
zero image and the remaining images are corrected for headmemts and dis-
tortions caused by eddy-currents using a linear affine gstr@ation to this first
b =0 image. After fitting the diffusion tensors and determinthg fractional
anisotropy (FA), the FA image is co-registered to the stmadtT1-weighted im-
age. A two-step procedure is used to account for local distw in the diffusion
weighted images, starting with an affine registration awed pplying a nonlinear
registration. The resulting warp field is applied to the D&taj thereby ensuring
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that the correct diffusion directions are preserved. Figs@ows the FA and color
coded first eigenvector of the DTI tensor co-registered thighT 1-weighted MRI,
which illustrates the fiber orientation map from a DT-MRIn&ily, the conversion
schemes from the diffusion to conductivity tensors areiadpln the next section
we present two variations of these conversion schemes.dvergn Paper IX we
add the WM anisotropy to the head model in a real EEG test case.

6.3.1 Direct Mapping

Tuch et al. in [187] showed a linear relationship betweendilgenvalues of the
diffusion and conductivity tensors

whereo, andd, represent theth conductivity and diffusion eigenvalue, respec-
tively, andsis a scaling factor. With this assumption, the anisotropip taetween
the different diffusion eigenvalues are preserved. Tucl.4187] in the original
scaling factor reported that results often have unreadilyi high conductivity val-
ues, and an adjusted scaling factor was applied to makelsatréhe conductivity
stays in a reasonable range [186]. The fastwas selected such that the geomet-
ric mean of the conductivity eigenvalues, averaged acrossls, fitted that of the
isotropic conductivities reported in the literature. Téi®y, a single factos was
chosen for GM and WM such that the mean conductivities dérikem DTI for
both tissue types matched the isotropic reference valuge@s as possible in a
least-squares sense, _ _

= SOy + dough, 62)

dwwm + dgm

whereo%%, andoS9 denote the isotropic conductivities of WM and GM, respec-
tively. Typical conductivitiess>9, = 0.142 §m ando$9, = 0.33 S/m were used
as isotropic reference values for EEG source localizatlén186, 189]. The av-
erage value of the diffusion eigenvalus d, andds, in all voxels, is given by

Nwm,/GM
3 > (dldzdg) K

d . k=1
WM /GM = Nawsom

(6.3)

whereNwwm gm indicates the number of voxels corresponding to WM and GM,
respectively.
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Figure 6.3: The maximum eigenvector co-registered to thgmsated T1-
weighted image. The zoom-in window shows the corpus caitosu
area which has highly anisotropic structures.

6.3.2 Volume Normalized Mapping

An alternative for conductivity mapping from DTI is to lotalmatch the geo-
metric mean of the conductivity eigenvalues of each singbeel/to that of an
isotropic reference value [188]. This approach is refeteeds a “volume nor-
malized” approach, with the adjusted conductivity eigéues being determined

by

d. .
0 = s /o ©4)

6.4 Numerical Results

Both the direct and the volume normalized mapping were dekie synthetic

EEG source localization with a realistic head model to itigase the influences
of anisotropic WM on EEG source localization. Fig. 6.3 ithases the maximum
eigenvector co-registered to the segmented T1-weightademThe zoom-in win-
dow in Fig. 6.3 shows the corpus callosum area. The corpiescah is the major
white-matter tract that crosses the interhemisphericrigsistthe human brain and
it consists of approximately 200 million interhemisphdilers, most of which
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Table 6.2: Mean and standard deviation of the localizatiwh rlative error for
725 source positions with three polarities. The direct dr@volume
normalized (VN) mapping were used to calculate the WM anigi¢
conductivities from diffusion tensor images.

Direct Mapping VN Mapping
x-polarity  y-polarity  z-polarity | x-polarity y-polarity  z-polarity
LE (mm)| 5.2+3.1 6.13.5 6.5+4.2 4.1+2.2 5.2-2.8 5434
RE 0.22+0.03 0.26:t0.04 0.2@:0.03| 0.19+0.04 0.22-0.04 0.1A#0.05

connect homologous regions of the cerebral cortex [190f ddrpus callosum
with highly anisotropic cellular structures is a good refere to check the co-
registration results visually.
To investigate the influence of WM anisotropy on source liaesibn, a patch
of gray matter with 725 voxels was selected. First, the EEf@als for a model
with anisotropic tissues were calculated syntheticallyapplying the reciprocity
method. Then the exhaustive search algorithm was usedadteltioe sources for
a model with isotropic tissues. At each point, dipoles whitee polarities, i.e., x-,
y- and z-polarity were tested. The relative errors (RE) ateutated by comparing
the isotropic and anisotropic solutions at each electradie s follows

whereu's® anduaniso

elec

elec

RE

o uie

eIecH

Ugiec |

(6.5)

are potential values at electrodes for isotropic and arapat

models, respectively, arjg || denotes the Euclidean norm. Moreover, for a single
point source, the localization error (LE) is the distanceveen the estimated and
the actual source position, defined as

LE = "5,

(6.6)

wherex3"s°is the actual source position in the anisotropic head mautiki° is

the estimated source position in the isotropic head model.

Table 6.2 presents the mean and standard deviation (STO)eoLE and
RE for both direct and volume normalized mapping. As we cantee WM
anisotropy affects the localization approximately 5 mmhvat20% relative er-
ror. From this observation, we can conclude that using a headkl with WM
anisotropic tissue might affect the source localizationthie@ range of millime-
ters. These results are consistent with the previous stu@8][ In [188], it
is concluded that the single-source localization errossiltang from neglecting
anisotropy were found to be smaller compared to other moglelirors, like mis-
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Figure 6.4: The localization error (left) and the relativeoe (right) for the differ-
ent dipole sources using the volume normalized mapping.

Figure 6.5: The color coded relative error projected on tlag ghatter for dipoles
with x-polarity (left), y-polarity (middle) and z-polasit(right) ob-
tained using the volume normalized mapping.

classified tissue or the use of non-realistic head models.

Fig. 6.4 shows the localization and relative error resultsfl three polarities.
As we can see in Fig. 6.4 the x-polarity dipoles have smatlealization error
compared to other polarities. Fig. 6.5 shows the relativeresrojected on the
gray matter voxels. This figure indicates that the sourcéipas surrounded by

gray matter voxels, have smaller relative compared to tiubgeh are closer to or
on the boundary.
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CHAPTER
Real EEG Test Case

The real EEG data that we use in this thesis was recorded ftiomulation of
somatosensory evoked potentials (SEPs) on a healthy subjez 61 EEG elec-
trodes were placed on the subject’s head according to tH& E¥EG electrode
system [191]. The 3D (-x,-y,-z) coordinates of these etetds were measured
before and after the SEP stimulation experiment with a idigit and for the elec-
trode registration three reference points, i.e., nasioa elve at the top of the
nose, level with the eyes), left and right tragus (the patotased in front of the
respective concha) were measured on the subjects headis Istaldy two sets
of stimulations were measured) median nerve at the left hand abjithe left
posterior tibial nerves at the subject’s ankle. In the fwlltg sections the SEP
details, validation methods and results are presented.

7.1 Somatosensory Evoked Potential

Evoked potentials are the electrical signals generatechéyérvous system in
response to sensory stimulus. Auditory, visual, and sosegigory stimuli are
commonly used for clinically evoked potential studies. @twmsensory evoked
potentials (SEP) consist of a series of waves that refleatesgtal activation of
neural structures along the somatosensory pathways. yamswes (cell bodies
in the dorsal root ganglia) transmit the signal rostrallg gsilaterally (first order
fibers), in the posterior column to a synapse in the dorsalnenlnuclei at the
cervicomedullary junction [192]. Then the signal is pasgedthe second order
fibers that cross to the contralateral thalamus via the rhiedmiscus. Finally, the
signal travels via the third order fibers from the thalamus&frontoparietal sen-
sory cortex. Fig. 7.1 shows the SEP pathway (adopted froad88]192]). While
SEP can be elicited by mechanical stimulation, clinicatlss use electrical stim-
ulation of peripheral nerves, which gives larger and mobrisb responses. The
stimulation sites typically used for clinical diagnostiES studies are the median
nerve at the wrist, the common peroneal nerve at the kneéoratie posterior
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Upper motor neurone
(primary motor cortex)

N

Tertiary sensory neurone
(primary somatosensory
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Figure 7.1: The motor and somatosensory pathways: sensorgsitransmit the
signal to the sensory cortex via first, second and third ofitbers
(adopted from Saladin [192]).

tibial nerve at the ankle. In this study two sets of stimalas were measured)
median nerve at the left hand. The anode was placed justpabxo the palmar
crease, and the cathode was placed between the tendonspHlitharis longus
muscle, 3 cm proximal to the anode. The selected nerves wieralated with
monophasic square pulses, 300 microseconds in durationthenstimuli were
delivered by using a constant current stimulator with 4.8.nbAthe left poste-
rior tibial nerves at the subject’'s ankle. The selected eewere stimulated with
monophasic square pulses, 300 microseconds in duratiotharedimuli was de-
livered by using a constant current stimulator with 5.2 mA.

Too rapid stimulus delivery rates should be avoided, as tlegyade the SEP
waveforms. Hence, we used one stimuli per second in our maasmts. One
should note that the rates, which are subharmonics of tedrigguency, such as 5
or 6 Hz, should be avoided, since that contaminates the ge@IQEPs by artifacts
of the line frequency [193]. Several characteristics of $BR be measured, in-
cluding peak latencies, component amplitudes, and wavefoorphology. Peak
latencies are consistent across subjects, whereas adgdifinow large intersub-
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ject variability. Therefore, interpretation of extraogtve diagnostic SEP studies
is predominantly based on peak latencies and measuregdérom them, such
as interpeak intervals and right-left differences [193pntponent amplitudes are
more consistent during repeated SEP recordings in the salbjecs Therefore,
both peak latencies and component amplitudes should beuneeband followed
during intraoperative monitoring. Ageing is associatethwbme prolongation of
SEP latencies. SEP components are commonly named by thafitpand typi-
cal peak latency in the normal population [194]. For examd20 is a negativity
that typically peaks 20 milliseconds after the stimuluse ™NR0 predominantly
reflects activity of neurons in the hand area of the primamgaosensory cortex
and the P40 predominantly reflects activity of neurons impibsterior tibial nerve
at the primary somatosensory cortex [194, 195].

7.1.1 EEG Signal Preprocessing

The EEG of a healthy subject were recorded at the Departniediirocal Neu-
rophysiology of the Sahlgrenska University Hospital, Gaotburg, Sweden. The
participant (30 yrs-old) was without substance abuse oewi@pnce and had no
known neurological or psychiatric illnesses or trauma. Aceannel EEG system
was used at a sampling frequency of 2 kHz. The EEG time semes filtered
(FIR, band-pass of 1-45 Hz and notch of 50 Hz), re-refereagaihst the com-
mon average reference, and segmented into non-overlapPihms epochs using
the EEGLab software [196]. Artifacts in all channels wergestioff-line: first au-
tomatically, based on an absolute voltage threshold (100 and on a transition
threshold (50 mV), and then on the basis of a thorough viswggdaction. Two
electrodes with very high artifacts were removed from theorded signals; F7
and CP1 according to the 10/10 system [191]. Using short satgvior analysis
allowed us to record 160 artifact-free epochs that wereagezt to obtain an SNR
equal to 28 dB. Then the peak of the averaged signals was sse@w for the
inverse problem. Fig. 7.2 shows the average of 160 stinauatior N20 at the
EEG electrode positions and its topography on the subjeetsl model.

7.2 Validation

Validation of the source localization is difficult, becaus®“ground truth” exists

to make a comparison. We have taken three approaches tateatidr method:

first we use the physiological knowledge on localization aiton and sensory
functions based on clinical expertise, second we use aatdfghctional imaging

technique, i.e., fMRI, and third we follow an exhaustiversbgattern, i.e., a brute
force search for all possible locations inside the gray enatt
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Figure 7.2: Somatosensory evoked potentials (SEPs): lytfgot of the aver-
aged median nerve stimulation N20 and its late corticalagtP60 at
the EEG electrode positions (left), the EEG’s topograpimyttie N20
peak (right).

7.2.1 Anatomical Validation

From direct cortical SEP studies in humans it was conclubdatthe postrolandic
N1 (N20) reflects a horizontally oriented dipole in the pastewall of the central
sulcus [195,197-205], see Fig. 7.3. This conclusion wap@tied by studies us-
ing magnetic field analysis which are particularly sensittvhorizontally oriented
dipoles [206—208]. The primary cortical positivity follamg N20 (P60) is proba-
bly generated by radially oriented sources located imntelyidehind [201, 205]
and in front of the central sulcus [198,208-210], see prymawtor cortex (area 4)
shown in Fig. 7.3. This assumption has been supported byptrpcenate studies
analyzing epicortical or intracortical SEPs, concomitemiti unit activity, and
current source density calculations [211].

EEG source localization associated with SEP data has belédagemented
in the literature [213—-218]. The most widely researched @irdcally applied
SEPs are elicited by stimulation of the median nerve at thst\W@14,217,218].
More recently, SEP data resulting from the stimulation ofjéirs or other sites
have also been reported [219-223].

Thus, for the first class validation we use the physiologicaiwledge of lo-
calization of motor and sensory functions [224]. We corexiih clinical neuro-
physiology expert (from Sahlgrenska University Hospi@bthenburg, Sweden)
to localize the recorded SEPs in an independent sessiorthandve used those
results to compare with results generated from our methbds i$ a valid com-
parison since in a daily clinical routine the pre-diagnokicalization for epilepsy
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Figure 7.3: The primary somatosensory cortex (area 1, 23aadd primary mo-
tor cortex (area 4). (Adopted from Brain Atlas: Brodmann &gdor
fMRI [212].

surgery is done by the same clinical expert. Fig. 7.4 shossalimages of lo-
cations and sizes of the subject’s somatosensory cortieakdor the left hand
marked by the clinical expert.

7.2.2 Functional Validation

Different imaging modalities including functional MRI (fRl) and MEG have
shown that the Primary Somatosensory Cortex (Sl), locatetthe postcentral
gyrus, is activated in response to cutaneous mechanicatlacttical stimula-
tion [220,225-227] in a somatotopic manner [228]. In factmatosensory infor-
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Figure 7.4: The location and size of the subject’'s somatisgncortical area
which corresponds to the left hand marked by a clinical exgiiote:
MRI software shows the pictures flipped.)

mation of different body parts (such as the hand area) aresepted in specific
regions of Sl [228, 229]. Ackerley et al. in [230] showed tt@ich on the left
palm elicited a large positive Blood-Oxygenation Level Begence (BOLD) sig-
nal in the right sensorimotor areas with a typical somatictdpepresentation in
the right SI.

To get a robust activation in SI we used a similar fMRI desigrsingle run
block design, consisting of 20 stimulation intervals isfegrsed by 20 rest inter-
vals was used. The stimulation consisted of continuoushbstrekes, manually
delivered on the palm of the left hand. Stimulation and restrvals lasted for
8700 ms (3TRs). The run began with a rest interval. The stjyd® previously
participated in the SEPs study, was instructed to lie still.

A 3T Philips Achieva MRI scanner with a 32 channels SENSE loealdvas
used. For functional imaging, a single-shot echo-planagimg sequence was
used (T2*—weighted, gradient echo sequence, repetitoe {iTR)= 2900 ms,
echo time (TE)= 35 ms, flip angle= 90deg, field—of—view (FOV¥ 200x 244 x
129 mm). The functional scan consisted of 46 slices, 2.8 mok tith the ac-
quisition plane oriented to the anterior-posterior consmis line and covering
the whole cerebral cortex. For structural imaging a higéehation T1-weighted
anatomical protocol was used (195 sagittal slices, maizexs 256 x 256, voxel
size = 0.9375nn?). Preprocessing and statistical analysis of MRI data was pe
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Figure 7.5: Activation in the right primary somatosensamptex evoked by brush
stimulation on the palm of the left hand. Activation dispdyin radi-
ological convention (left is right) in subject’s space.

formed using BrainVoyager QX (version 2.1 Brain InnovatitMeaastricht, The
Netherlands). Functional data was motion corrected andflegquency drifts
were removed with a temporal high-pass filter (0.006 Hz). ti@pamoothing
was applied with a Gaussian kernel (4 mm FWHM, full width dfin@aximum).
Functional data was manually co-registered with 3-din@medi (3D) anatomical
T1 scans on the basis of anatomical landmarks. A whole braneml linear
model was created for the single run. One predictor (comgivith a standard
model of the hemodynamic response function) modeled threutdtion condition.
The t-statistics image reflects the difference in activabetween the stimulation
to the rest condition, thresholded at t-value{®.0001) of 4.

Fig. 7.5 shows the activation evoked by brush stimulationh@enpalm of the
left hand, with the largest activation cluster in the postca gyrus, correspond-
ing to the primary somatosensory cortex (Sl). The 3D anatahsican was trans-
formed into Talairach space [231] and the parameters feittansformation were
subsequently applied to the co-registered functional. déédairach coordinates
of peak activation were in: 44; -29; 51, corresponding tobstcentral gyrus
according to the Talairach atlas [232].
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Figure 7.6: The estimated source position for median netineutation on the
subject’s MR images.

7.2.3 Exhaustive Search

An exhaustive search was used to validate the MPSO resubisséafched with
brute force all gray matter voxels and the site with minimhative error is de-

termined, then we compare this point with results generayed PSO. The head
model has 1 mm resolution with 951 874 voxels in gray mattédrcdmputations

were performed on an Intel 2.93 GHz workstation with 8GB RAMmMory and

the post processing and visualizations were done usingabl@®2012a) and the
3DSlicer (3.6.3) software [233].

7.3 Result and Discussion

We ran the source localization method for N20 signals, sge/R2, recorded from
the median nerve, and compared the result with the anatgriunational and ex-
haustive search methods. The manually segmented head weslesed, see Sec-
tion 6.2. The following conductivities were then assignethe FE compartments
based on their segmentation labels and the isotropic referenodel [24, 234]:
skin = 0.43 S/m, skull = 0.0042 S/m (skull to skin conductiviatio of approx-
imately 1:100), CSF = 1.538 S/m, gray matter = 0.33 S/m, anilewhatter =
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0.142 S/m. First, we brutally searched all the gray matteeigand the site with
minimum relative error was determined, then we comparel rgsults generated
by MPSO. Compared to the exhaustive search MPSO was 6006 faster and
needed only around 10 milliseconds to converge.

Fig. 7.6 shows the estimated source position from all metHod median
nerve stimulation on the subject's MR images. The optineramethod was
terminated when the minimum relative error from the exhaasearch was ob-
tained. As we can see from Fig. 7.6, the EEG source locadizaéisult agrees well
with both anatomical and functional validation methodshAugh the source po-
sition is a bit deeper compared to the area marked by thecaliekpert, it agrees
very well with the fMRI results.

See Papers V and IX for more detailed information on the teswhere
the results for both median and tibial nerve stimulationsafio isotropic and an
anisotropic model, respectively, are presented.
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CHAPTER .

Summary of the Papers

In this chapter, a brief summary of the papers included irthisis is given. We
divide the contribution into four categories; forward plex, inverse problem,
real data source localization and sensitivity analysis.

8.1 Forward Problem: Papers |, VI and VI

In Papers |, VI and VII we proposed two methods for the forwardblem, a
modified subtraction method and a method based on the retgyptbeorem. The
forward problem is a procedure to find the scalp potentialsafgiven current
dipole(s) inside the brain.

In Papers | and VII, we introduced a modified subtraction FEkthod that
solves the singularity problem for the dipole sources, amgroves the computa-
tional time compared to the original subtraction method.olbtain a more com-
pact support of the right-hand side we introduced a smodtb#dunction which
is identically one in a neighborhood of the dipole sourcee €ht-off function
is radially symmetric around the dipole source, and its supg a ball with ad-
justable radius centered at the dipole source. We showea gv@per choice of
radius led to a substantial speed up in the assembly prot#ssight-hand side,
whilst the results had the same accuracy as the originalagilmn method.

For using EEG source localization in real-time applicagiosuch as TMS-
EEG, there is a great need to speed up the solution of the fdipvablem to the
range of seconds or less. We presented a method in Papert\daimdines the
reciprocity theorem with FEM for EEG source localizatiorh€elreciprocity the-
orem for the electric case states that the field of the sedddlad vectors is the
same as the field raised by feeding a reciprocal current tie#ite The reciprocity
EEG source localization speeds up the solution of the ieversblem with more
than three orders of magnitude compared to the state-edwthmethods, which
is a major advantage of this method for EEG source locatinatThe proposed
method was tested for a four-layer spherical head model. vahéation of the
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method was performed by comparing the reciprocity methdt amalytical po-

tentials for dipoles with eccentricity from 0 to 94%. To bantark the proposed
method, we compared it with the direct and subtraction ndghoThe results
showed that the reciprocity method is as accurate as theastibh method, and
more accurate than the direct method. Furthermore, thpromity method was
shown to be robust to both EEG signal noise and electrodelacesment.

8.2 Inverse Problem: Papers |, Il and IX

The inverse problem is (usually) highly nonlinear and reggiefficient algorithms
for its solution. In Paper I, we introduced a novel partioleasm optimization

(PSO) method with problem-specific modifications for the E&tf@rce localiza-
tion. The algorithm uses the velocity update propertiemftbe original PSO,
ideas from evolutionary programming and a new propertystitealled concept
of authority. In Paper I, by several examples, we showedttieahew algorithm
finds the optimal solution significantly faster than othelOP@ethods from the
literature, a genetic algorithm and the deterministic glaptimization method,
DIRECT. In addition, the MPSO is less prone to be trappedéallmminima. The
proposed modified PSO can also be implemented in a paralabatng envi-

ronment making the inverse problem solution very cheap.edeer, the modified
PSO can easily be extended to multiple dipole source |caiadia.

8.3 Real EEG Data: Papers Il, V and IX

On the basis of our simulation results (Papers | and IV), wegihed a real EEG
test case with somatosensory evoked potentials (SEPsjian tw verify the pro-

posed methods in realistic scenarios. In this study twodettimulations were

measureda) median nerve at the left wrisb) the left posterior tibial nerves at
the subject’s ankle.

In Paper Il, we applied MPSO to both median and tibial neriraidaition as
well as their late cortical activities. For the forward plexrin we used the modified
subtraction method and an isotropic head model generatedatia by a clini-
cal expert. Comparison between the recorded EEG and estirsaélp potential
topographies showed good agreement in all cases. Mordaassd on clinical ex-
pertise, the estimated sources were confirmed to be locatde icorrect region.
The EEG source localization results obtained from MPSO glawesame results
as exhaustive search, but with significantly lower componal complexity.

In Paper V, we applied MPSO to the tibial nerve stimulatioor. the forward
problem we used the modified subtraction method and an @otleead model
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generated automatically by the FSL software. The segmeetdts from FSL
were corrected manually by a clinical expert. The resulishalarger relative
error compared to the ones obtained in Paper Il due to theesggiion errors in
the head model, and the fact that the source position wasdeep

In Paper IX we applied the reciprocity theorem and MPSO tartbdian nerve
stimulations with a head model generated manually by acalreéxpert and in-
cluding anisotropic white matter conductivity. We used fii&| method to val-
idate our result. In a comparison between the EEG sourcédatian and fMRI
activities, the estimated source agrees extremely weh e fMRI activities
area. The result shows that the proposed method is a stepi®walinically use-
ful EEG source localization methodology that provides sat®y fast and robust
solutions.

8.4 Sensitivity Analysis: Papers I, IV and VI

The EEG source localization is influenced by different exisord approximations,
for example source model approximations, head-modelingrer EEG signal
noise, tissue conductivity noise and electrode misplacésnas well as the nu-
merical computational errors. For an accurate sourcei@atadn, it is crucial to
understand the influences of these errors on the resultsnvéstigate this, we
set up several test cases with synthetic EEG data. Gergeaatiaccurate patient-
specific head model is one of the most important steps in EEsdocalization
and includes the segmentation, mesh generation and asgigonductivities to
the respective tissues.

In Paper Ill, the performance of two of the most widely usefiveare pack-
ages for brain segmentation, namely FSL [173] and FreeS[i7®&] were ana-
lyzed. Comparing with the “ground truth”, consisting of thet of voxels that
were labeled by an expert, the results showed that the segtisenoutputs ob-
tained from FSL are more accurate than those from FreeSedpecially for the
CSF compartment. Then a segmented head model from FSL wddaise/es-
tigate the effects of brain tissue segmentation on EEG sdoialization. The
results for FSL showed a 12 mm localization error in the 2cion of the esti-
mated source.

In Paper VIII, we investigated a new fully automated segraon method,
the so-called HSA-BAMS [183], for EEG source localizatidme results showed
that this method can improve the source localization resylapproximately 10%
compared to other methods implemented in FSL such as HSAHHER [184]
and BET-FAST [174].

The complexity of the head model is another source of uniogytaln Paper
IV, six head models with different number of tissues from @taere compared
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with a reference model, i.e., a model with 10 tissues, inotaénd the optimal

number of tissues for the head model as well as the most imparssue for the
source localization. Results showed that a model with fagues, i.e. skin, skull,
WM, GM and CSF, gave the best results. Moreover, by analythiaegesults with

respect to the tissues, we showed that CSF affects thegaggtificantly.

In Paper IV the influence of EEG noise, electrode misplacésneanductivity
noise and white matter anisotropy, on EEG source locatinatvere investigated.
The results, in our test cases, showed that the sourceZatiahs are very sensi-
tive to conductivity noise and only 4% noise can cause a 13 ocadization error.
The WM anisotropy can affect the potential relative errgngicantly, approxi-
mately 20% in a 3D test case, but it only caused a 5 mm soureédaton error.
In a realistic head model the electrode misplacement eshttwed that a 1 cm
electrode misplacement caused approximately 17% poteelidive error and an
8 mm localization error for the subtraction method. In Pagkerthe influences
of electrode misplacement for the reciprocity forward noethvere investigated
in the spherical head model. The results showed that thprosily method is
more robust with respect to electrode misplacement. Ongnceter electrode
misplacement only caused a 2 mm source localization ernar.if@estigation of
EEG signals noise in Papers |, IV and VI showed that both thxraction and
reciprocity methods are robust with respect to EEG signeleno
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Conclusions and Outlook

This thesis deals with different aspects of EEG source imai@n and pays partic-
ular attention to reducing the computational complexitgfl&ting on the short-
comings of pre-existing methods, we have developed a mdtaseld on the reci-
procity theorem and particle swarm optimization. Encourggesults, expressed
in different performance indicators as well as in comparigdth other existing
methods, have been demonstrated for localization of @iffiespike sources inside
the brain. The results show accurate localization with § fast computation time
(in the range of milliseconds). We designed real EEG testasth somatosen-
sory evoked potentials (SEPS) in order to verify the progosethod in realistic
scenarios. The feasibility of the proposed source locidinanethod was tested
for median and tibial nerves evoked potentials. The resgiteed very well with
both the fMRI palm-brushing measurement and the clinicglkeexresults. The
computational time for localizing the SEP signals was 5isgttonds.

The sensitivity analyses in this thesis contribute the wstdading of the na-
ture of the problem and its limitations. The numerical ressshow that the head
model segmentation is the most important step in the EEGesdacalization and
that inaccurate segmentations produce erroneous lotahzasults

The numerical and experimental results presented in tleisigthave shown
that our proposed method based on the reciprocity theordritharMPSO method
is a good choice for EEG source localization. These reseks mo be confirmed
clinically on real epileptic spikes by using subdural EEGarelings and brain
surgery outcomes for validation. [235-237]. From a tecélmoint of view there
are still several issues that need to be improved. The egisegmentation meth-
ods should be improved to generate a more accurate head enttdehatically.
Moreover, in the future, a further effort is needed for theameement of human
head tissue conductivities, especially concerning thdl skusotropy. Animal
models can be a good alternative to provide the necessadatiah on a more
controlled level, i.e., the implantation of deep elect®dad their EEG recon-
struction with and without tissue anisotropy modeling (238, 239]).

Knowing the position of the EEG electrodes is also very inguarin EEG

73




74 CHAPTER9. CONCLUSIONS ANDOUTLOOK

source localization. Although most of the EEG electrodetidigrs used in a clin-
ical measurement routine have measurement accuracy aficatounm, patient
movements during the recording can change their positidnsavoid electrode
misplacement error there is a strong need to develop an@legpositioning sys-
tem which can localize the electrode positions over tim@&[24

Using the fast EEG source localization method proposed, lzefeture ex-
citing application is a non-invasive treatment method fpilepsy using EEG
simultaneous-localization guided repetitive trans@abmiagnetic stimulation (rTMS-
EEG) [241]. This method can be an alternative to the conwaatiepilepsy
surgery treatment. Moreover, since skull inhomogeneliag a large effect on
EEG, another interesting application field for the propasethod would be new-
borns with open sutures (see [242]).
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