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If we knew what it was we were doing,
it would not be called research, would it?

A. Einstein (1879-1955)





Abstract

Epilepsy is one of the most common neurologic diseases in theworld, and is
present in up to 1% of the world’s population. Many patients with epilepsy never
receive the treatment which make them seizure free. Surgical therapy has become
an important therapeutic alternative for patients with drug resistant epilepsy. Cor-
rect and anatomically precise localization of the epileptic focus, preferably with
non-invasive methods, is the main goal of the pre-surgical epilepsy diagnosis to
decide if resection of brain tissue could be a successful treatment option. The most
important diagnosis tool used at epilepsy surgery centers is electroencephalogra-
phy (EEG), which is used to find the source of activities inside the brain by mea-
suring the potential on the scalp with EEG electrodes at different locations. One
major advantage of EEG source localization over other brainimaging modalities
is its high temporal resolution. The procedure of EEG sourcelocalization deals
with solving the forward problem to find the scalp potentialsfor a given current
dipole(s) inside the brain and the inverse problem to estimate the source(s) that
fits with the given potential distribution at the scalp electrodes. Realistic models
of the human head are geometrically complex and the tissue conductivity is inho-
mogeneous as well as anisotropic. A critical issue for the forward problem is how
to handle the computational complexity in the numerical approaches with regard
to the inverse problem. There is still a lack of sufficiently powerful methods and
algorithms that would satisfy the time-restrictions for the solution of the inverse
problem. The overall goal in this thesis is to develop a non-invasive, clinically-
viable, time-efficient method for localization of epileptic brain activity based on
EEG source localization. For the forward problem two methods are proposed for
modeling the dipole source which can handle the head model complexity; a mod-
ified subtraction method and a method based on the reciprocity theorem. For the
inverse problem we propose a new global optimization methodbased on parti-
cle swarm optimization (PSO) to solve the multi-dipole EEG source localization.
The techniques of multimodal magnetic resonance imaging (MRI) are used in or-
der to generate a high-resolution realistically shaped volume conductor model.
The anisotropic white matter conductivity tensor is determined by diffusion ten-
sor MRI (DT-MRI) measurements and isotropic conductivities are assigned to the
other tissues in the model. The new proposed methods are tested for synthetic
and real EEG data. The results are compared with state-of-the-art and other ex-
isting methods. In the synthetic data both spherical head models and realistic
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head models with anisotropic tissues are used for validation. In the real EEG test,
measured somatosensory evoked potentials (SEPs) for a healthy subject are used
for EEG source localization. A realistic 1mmpatient-specific, anisotropic finite
element model of the subject’s head, with special consideration of precise mod-
eling the two compartments, skull and cerebrospinal fluid (CSF), generated from
T1-weighted MRI data is used. Source localization results are validated against a
clinical expert source localization as well as functional MRI palm-brushing mea-
surements and the proposed method typically finds the sourcelocation within 10
millisecond. The EEG source localization results agree well with both the clin-
ical expert and fMRI results. The finite element method (FEM)in combination
with the reciprocity theorem and the modified PSO is a highly efficient and robust
solution methodology for EEG source localization.
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CHAPTER 1
Introduction

Epilepsy is one of the most common neurological diseases, and is present in
up to 1% of the world’s population. Many patients with epilepsy never receive
the treatment which make them seizure free; consequently, treatment of epilepsy
by medications is a major challenge, according to the World Health Organiza-
tion [1]. Surgical therapy has become an important therapeutic alternative for
patients with drug resistant epilepsy. In a consensus definition proposed by the
International League Against Epilepsy (ILAE), the drug resistant epilepsy is de-
fined asfailure of adequate trials of two tolerated and appropriately chosen and
used antiepileptic drugs (AED) schedules (whether as monotherapies or in com-
bination) to achieve sustained seizure freedom[2].

Although intracranial surgery involves inherent risks, these risks are smaller
than the risks of uncontrolled seizures. The morbidity and mortality of seizures
include the following [1]:

• Accidental injury, commonly including fractures, burns, dental injuries, lac-
erations, and head injuries.

• Cognitive decline and memory loss, which over time has been demonstrated
to occur in patients.

• Sudden unexplained death in epilepsy (SUDEP) that can reacha rate of one
death per 500 patients per year.

• Psychological, social, and vocational impairment.

Considering the above factors, a continued pharmacological therapy after fail-
ure to control seizures with several trials of antiepileptic drugs, is not always an
effective treatment. Moreover, Engel [3] shows that the benefits of anteromedial
temporal lobe resection (AMTR) for disabling complex partial seizure, are greater
than continued treatment with AEDs, and the risks are at least comparable. In ad-
dition, surgery yields a better quality of life and reduces depression and anxiety
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4 CHAPTER 1. INTRODUCTION

as early as three months after temporal resection, comparedwith continued phar-
macological therapy [4].

The heterogeneity of focal epilepsy across patients demands an extensive multi-
modal approach to focus localization [5]. Generally, results of at least three stan-
dard investigative modalities, conducted in series, are required to concur before
surgery can be planned. Standard modalities are: reported clinical seizure semi-
ology; electroencephalography (EEG) or electrocorticography (ECoG) seizure
onset location combined with videoderived seizure semiology; structural MRI
(sMRI); and nuclear imaging techniques. Nuclear imaging detects abnormality
in ictal, during an actual seizure, versus interictal, period between seizures, blood
flow by single photon emission computed tomography (SPECT),and/or abnor-
mality in interictal glucose metabolism by positron emission tomography (PET).
The localization performance of these methods is validatedby comparison with
post-surgical outcomes.

Only when a well-defined structural lesion agrees with seizure semiology and
scalp EEG onset with or without radiotracer techniques, cansurgery be planned
without invasive study. Structural MRI locates brain lesions in about 70-80% of
focal epilepsy [6]. In other cases, intracranial electrodeplacement is often con-
sidered. When the lesion is located, but is close to eloquentcortex such as basal
temporal area, primary motor area, primary sensory area andprimary visual area,
fMRI and invasive studies help to minimize resection of suchtissue. However,
a visualized lesion may not represent the entire seizure-generating region. Un-
derestimating the extent of the region can result in the re-occurrence of seizures
following resective surgery. Overestimating the extent ofthe region holds an in-
creased risk of functional deficits. Correct and anatomically precise localization
of the epileptic focus, preferably with non-invasive methods, is the main goal of
the pre-surgical epilepsy diagnostic procedure. The current techniques have lim-
ited accuracy and are therefore associated with significantrisks. Hence, there is a
need for improved, complementary, time-efficient, non-invasive methods to define
the seizure-generating focus.

The neurophysiological analysis of the EEG data is a time consuming and
rather cumbersome process involving several steps where the data is converted
between different systems. There is therefore great need for modern computer-
based tools that could determine the location of the epileptic focus more accu-
rately than possible by simple visual inspection and also facilitate an automation
of the whole procedure to reduce the manual neurophysiological analysis. The
pre-surgical workup would be shortened and ultimately morepatients could be
identified that would benefit from surgery.
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1.1 EEG Source Localization

The EEG is the most important diagnostic tool used at epilepsy surgery centers.
The first human EEG was recorded in 1924 by Hans Berger [7]. Theactivity that
is measured in an EEG is the result of movements of ions, the so-calledprimary
currents, within activated regions in the cortex of the human brain. This brain
activity is often modeled as a current dipole. It is shown in [8] that this current
dipole is an acceptable approximation for modeling the neural activities in the
brain. The current dipole represents a restricted area withsynchronously active
pyramidal cells located in the gray matter of the cortex, seeChapter 2. The EEG
source localization method localizes epileptic electrical activity, called interictal
epileptiform discharges (IEDs), such as in spike waveforms. IEDs occur between
seizures and most often are closely linked to the site of the seizure focus. In
contrast to the electrographic activity during seizures, IEDs do not cause patient
movement artifacts in an MRI scanner, which is advantageousto data acquisition
and analysis. However, in visual analysis of the EEG (precise) localization of
IEDs are coarse.

The procedure of the EEG source localization deals with two problems. First,
the forward problem to find the scalp potentials for a given current dipole(s) inside
the brain, and second the inverse problem to estimate the source(s) that fits with
the given potential distribution at the scalp electrodes. One of the major advan-
tages of EEG source localization compared to other brain imaging modalities is
its high temporal resolution.

The simple, and still the most commonly used, head models in the forward
problem describe the head by three or four spherical layers,representing scalp,
skull, cerebrospinal fluid (CSF) and brain. In each of these layers, the conduc-
tivity is assumed to be isotropic and homogeneous. The advantage of spherical
models is that the scalp potential generated by dipolar sources can be computed
analytically by using series expansion formulas [9]. It is known that five tis-
sue compartments, i.e., gray matter, white matter, CSF, skull and scalp are the
most important tissues for EEG source localization [10, 11]. For a finer discrim-
ination the scalp layer may also be divided into fat and muscle compartments.
These tissues have different conductivities [12]. The human skull consists of a
soft bone layer (spongiosa) enclosed by two hard bone layers(compacta). Since
the spongiosa has a much higher conductivity than the compacta [13], the skull
shows a direction-dependent (anisotropic) conductivity.A ratio of 1 to 10 has
been measured for the radial and tangential direction to theskull surface [14].
The brain white matter has an anisotropic conductivity witha ratio of about 1:9
(normal:parallel to fibers) [15]. However, although no direct technique exists for
robust and non-invasive measurement of the conductivity properties, recently the
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relation between the effective electrical conductivity tensor of brain tissue and
the effective water diffusion tensor, as measured by Diffusion Tensor MRI (DT-
MRI), was formulated [16–19]. The underlying assumption isthat the same struc-
tural features that result in anisotropic mobility of watermolecules, which can be
detected by DT-MRI, also result in anisotropic conductivity. Basser et al., [16]
showed that the eigenvectors of the conductivity tensor arethe same as those from
the water diffusion tensor.

The influences of volume conductor inhomogeneities and headmodel simpli-
fications on EEG analysis, have been studied by various authors (see, for exam-
ple, [20–24]). Using the spherical model instead of a patient-specific model in
EEG source localization, may cause errors in the range of 10 –30 mm [20, 21].
Moreover, in [22, 25], it is shown that holes in the skull, forinstance in patients
with trepanned skull (boring, cutting, and scraping open holes in a human skull),
have a non-negligible effect on EEG source localization. In[22], it is also shown
that it can be important to model inhomogeneities of the brain compartment, since
simulated fields are especially sensitive to local conductivity changes around the
source [26]. With regard to skull anisotropy, van den Broek et al., in [22], showed
a smearing effect on the forward problem, and Marin et al., in[23], showed a non-
negligible impact on the inverse problem for certain inverse methods of the dis-
tributed source model approach. Moreover, white matter conductivity anisotropy
has been shown to have an influence on the forward problem [24].

Finite Element (FE) head models, developed by various research groups (see
[22, 23, 27, 28]), are able to handle both realistic geometries and inhomogeneous
and anisotropic material parameters. However, the critical issue for the forward
problem is how to deal with the computational complexity of the FE model with
regard to the inverse problem. Iterative solvers, like the preconditioned conju-
gate gradient (PCG) method with conventional preconditioners, have been used
for solving the large linear FE equation system. The repeated solution of such
a system with a constant geometry and varying right hand sides (the sources),
sometimes more than a thousand times, is the major time consuming part of the
source localization process. These computational times limit the resolution of the
models in the practical use of EEG source localization. It has been shown in re-
cent studies [29, 30] that algebraic multigrid preconditioners (AMP) and parallel
computing can be used to obtain reasonable simulation times.

Inverse EEG source localization is the process of finding oneor several sources,
given the EEG potentials measured by the electrodes at the scalp. The number of
EEG electrodes is usually between 30 – 100 and in some cases asmany as 200.
In [31], it is shown that the most important step for selecting the number of EEG
electrodes is the increase from 31 to 63 electrodes, whereasincreasing from 63 to
123 electrodes only improves the source localization results marginally. In com-
parison to the number of electrodes, the number of possible source locations is
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much larger. Thus, the solution of the inverse problem is generally not unique
in the sense that many dipole source configurations can result in the same EEG.
To attain uniqueness, it is necessary to imposea priori knowledge on the source
distribution. The different methods to solve the EEG sourcelocalization prob-
lem are traditionally categorized into parametric (dipoleor continuous) and non-
parametric (distributed or discretized) methods. The maindifference between
these two methods is whether a fixed number of dipoles is assumed a priori or
not. The non-parametric methods act on a distributed sourcemodel, where the
restriction to a limited number of focal sources is removed.On the other hand
parametric methods are often well suited for estimating thecurrent dipole used
to represent the well-localized activated neural sources for events like epileptic
spikes and evoked potentials (EPs) [8,32].

The clinical use of the dipole [33] and distributed [34] EEG source localiza-
tion have been examined in benign focal epilepsy of childhood with centrotempo-
ral spikes (BFEC) and mesial temporal lobe epilepsy (MTLE).For both groups,
Plummer in [35] showed that the moving-regularized and the rotating-non regu-
larized dipole models with a single dipole, and the standardized low-resolution
electromagnetic tomography (sLORETA) distributed method[36] constrained to
cortex using rotating sources, had robust and clinically meaningful results. In [33]
and [34] EEG source localization approaches were tested fora single time point
at the spike peak. Plummer concluded that the dipole and distributed EEG source
localization are complementary and furthermore single dipole models are often
sufficient for epileptic spike source localization. If multiple dipoles (see [37–39])
or a whole current distribution (see [40–42]) are assumed tounderlie the mea-
sured potentials, the inverse problem remains ill-posed. It is therefore interesting
to investigate how sensitive single dipole fit methods are tomodel inaccuracies.

Despite the fact that intraspike propagation may occur, thepeak of the spike is
often used as an indicator of the site of ictal onset. EEG source localization should
ideally include the spike onset-to-peak epoch; Lantz in [43] showed that the EEG
source localization result at the midpoint of the spike upswing, is more reliable to
identify the putative epileptogenic lesion when less propagation has occurred (vs.
the spike peak). In [35] this result was confirmed and additionally demonstrated
that this applies to both dipolar and distributed EEG sourcelocalization, in both
BFEC and MTLE. Recently, in EEG source localization the question of localiza-
tion for single versus averaged IEDs, has been raised. Automated spike averaging
is standard practice in EEG source localization studies; the assumption is that
electrically averaging identical spikes will increase signal-to-noise ratio (SNR)
and optimize the localization solution. Plummer in [35] showed that the single-
to-averaged IED localization disagreement can be high. On the other hand, [44]
showed that the spike locations computed from different trials of the same elec-
trodes are closely located.
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Figure 1.1: The different steps in the EEG source localization procedure.

Source localization is heavily dependent on how the currentdipole is modeled
and how the computations are performed and several different alternatives have
been suggested in the literature [45,46]. Also the localization accuracy is affected
by different factors including, segmentation error [47], EEG signal noise [11],
electrode misplacements [11,48,49], conductivity noise [11] and tissue anisotropy
[50], as well as the numerical computational error. As mentioned earlier, one
of the major limitations in EEG-based source reconstruction has been the poor
spatial accuracy, which is due to low resolution of previousEEG systems and the
use of simplified spherical head models. Thus, source localization requires an
accurate and robust solution of the inverse problem with realistic computational
effort for the forward problem. EEG-based source localization is an active field
of research [51, 52], but partly due to the aforementioned shortcomings, the new
computational techniques are often not part of the standardpre-surgical diagnostic
workup. In Waberski et al. [53], it is concluded that to achieve the final goal of
general clinical use, fast and automatic techniques with improved head modelling
by finer discretization, and more accurate representation of the conductivities for
the narrow anatomical relationship between the cerebral cortex and the complex
shaped skull in the region of the temporal lobe, are necessary.

As described in the following, this thesis addresses three important questions
in EEG source localization; how to decrease the computational complexity, how
to handle anisotropy in the forward problem and the physiological and anatomical
constraints in the inverse problem, and how different sources of noise influence
the results.
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1.2 Overview of the Thesis

The EEG source localization has several different sub-problems that each should
be treated carefully. Fig. 1.1 illustrates all necessary steps performed in the EEG
source localization procedure. The thesis is organized as follows. A short descrip-
tion of the physics of the EEG is presented in Chapter 2. Chapter 3 contains the
description of the forward problem. In this chapter, two methods are proposed
for modeling the dipole source that can handle the head modelcomplexity and
reduce the computational time for the forward problem. Chapter 4 contains the
description of the inverse problem and an overview of different techniques for
solving it. Chapter 5 introduces a new algorithm for parametric source localiza-
tion, based on particle swarm optimization (PSO), for solving the epileptic spike
EEG source localization. Chapter 6 deals with the head modelgeneration and
white matter anisotropy. In Chapter 7, a real EEG test case ispresented. Chapter
8 contains a summary of the appended papers. Finally, the conclusions and an
outlook are presented in Chapter 9. PartII of this thesis includes Papers which
are published/submitted, based on material presented in the thesis.
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CHAPTER 2
The Physics of EEG

To understand which activity in the brain we actually capture by the EEG elec-
trodes, one needs to look closer at the microscopic level. Inthis section the phys-
iology of the EEG will be briefly described. This is importantto be familiar with
the underlying mechanisms of the EEG for modeling the forward problem.

2.1 Neurophysiology

The brain consists of approximately 20 billion [55] nerve cells or neurons. Neu-
rons are capable of generating and transmitting electrochemical impulses. There
are many different kinds of neurons, but they all have the same basic structure.
Thesomaor cell bodycontains the nucleus of the cell and is essential for the con-
tinuing life of the neuron. Thedendrites, arising from the soma, are specialized
in receiving inputs from other nerve cells; a neuron may haveseveral dendrites.
Via the axon, impulses are sent to other neurons; a neuron has only one axon.
The axon’s end is divided into branches which formsynapseswith other neurons,
see Fig. 2.1. The synapse is a specialized interface betweentwo nerve cells. The
synapse consists of a cleft between a pre-synaptic and post-synaptic neuron. At a
synapse, between the axon of one neuron and the dendrite or cell body of the next
neuron, impulse transmission depends upon chemicals called neurotransmitters.
Further readings on the anatomy of the brain can be found in [56,57].

At rest the intracellular environment of a neuron is negatively polarized at ap-

Nerve impulse

Nucleus

Axon
Cell body

Stimulus

Nodes of Ranvier

Dendrites

Axon
terminal
bundle

Chemical
transmission

Myelin sheath
cells

Figure 2.1: Structure of a neuron (adopted from Attwood and MacKay [54])

11
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Figure 2.2: The neuron membrane potential changes and current flow during
synaptic activation, recorded by means of intracellular microelec-
trodes. Action potentials in the excitatory and inhibitorypresynaptic
fibre respectively lead to EPSP and IPSP in the postsynaptic neuron
(adopted from Saeid Sanei and J.A. Chambers [58])

proximately -70 mV compared with the extracellular environment. The potential
difference is due to an unequal distribution of Na+, K+ and Cl- ions across the cell
membrane. This unequal distribution is maintained by the Na+ and K+ ion pumps
located in the cell membrane [56]. The neuron’s task is to process and transmit
signals. This is done by an alternating chain of electrical and chemical signals.
Active neurons secrete a neurotransmitter, which is a chemical substance, at the
synaptical site. The synapses are mainly localized at the dendrites and the cell
body of the post-synaptic cell. The neurotransmitter in contact with the receptors
changes the permeability of the membrane for charged ions. Many synapses are
termed excitatory, because the neurotransmitter causes the post-synaptic neuron
to depolarize (become less negative inside as Na+ ions enterthe cell) and transmit
an electrical impulse to another neuron, muscle cell, or gland. In other words,
depolarization means that the potential difference between the intra- and extra-
cellular environment decreases. This depolarization is also called an excitatory
post-synaptic potential (EPSP), marked by (a) in Fig. 2.2. On the other hand,
some synapses are inhibitory, meaning that the neurotransmitter causes the post-
synaptic neuron to hyperpolarize (become even more positive outside as K+ ions
leave the cell or Cl- ions enter the cell) and therefore not transmit an electrical
impulse. This potential change is also called an inhibitorypost-synaptic potential
(IPSP), marked by (c) in Fig. 2.2. There are a large number of synapses from
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Figure 2.3: Changing the membrane potential for a giant squid axon by closing
the Na channels and opening K channels (adopted from Ka Xiong
Charand [62])

different pre-synaptic neurons in contact with one post-synaptic neuron. Fig. 2.2
shows the membrane changes recorded by means of intracellular microelectrodes.
At the cell body all the EPSP and IPSP signals are integrated.When a net de-
polarization of the intracellular compartment at the cell body reaches a certain
threshold, between -55 and -50 mV, an action potential is generated [59], marked
by (b) in Fig. 2.2. Fig. 2.3 shows an example of the above activities schematically
for a giant squid axon. An action potential then propagates along the axon to other
neurons [60,61].

2.2 The Generators of the EEG

One neuron generates a small amount of electrical activity.This small amount
cannot be picked up by surface electrodes, as it is overwhelmed by other elec-
trical activity from neighboring neuron groups. When a large group of neurons
is simultaneously active, the electrical activity is largeenough to be picked up
by the electrodes at the surface, thus generating the EEG signals. The electrodes
used in scalp EEG are large and remote. They only detect the summed activities
of a large number of neurons which are synchronously electrically active. The
action potentials can be large in amplitude (70−110 mV) but they have a short
duration (2 ms). A synchronous firing of action potentials ofneighboring neurons
is unlikely. The post-synaptic potentials are the generators of the extracellular
potential field which can be recorded with an EEG. Their time course is larger
(10−20 ms) which enables summed activity of neighboring neurons. However
their amplitude is smaller (0.1−10 mV) [61, 63]. The EEG reflects the electrical
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Figure 2.4: Schematic of a brain cross section, illustrating representative cortical
EEG sources where dipoles are added to a cortical layer, a pyramidal
neuron cell and dipole electric field and its equipotential lines. (de-
signed by Anders Hedström)

activity of a subgroup of neurons, especially pyramidal neuron cells, where the
apical dendrite is systematically oriented orthogonal to the brain surface. Fig. 2.4
illustrates a coronal view of a brain where dipoles are addedto the cortical layer,
a pyramidal neuron cell and the dipole electric field and its equipotential lines.



CHAPTER 3
Forward Problem

3.1 Poisson’s Equation

As mentioned in Chapter 2, the EEG reflects the electrical activity of a subgroup
of neurons, especially pyramidal neuron cells, where the apical dendrite is system-
atically oriented orthogonal to the brain surface. The characteristic frequencies of
the signals in the kHz range and below, make the capacitive and inductive effects
of the tissue negligible [64]. Therefore, the electric and magnetic fields can be
described by the well known quasi-static Maxwell equations[65],

∇ ·D = ρ , (3.1)

∇×E = 0, (3.2)

∇×B = µ j , (3.3)

∇ ·B = 0, (3.4)

whereD is the electric displacement,µ is the magnetic permeability,ρ is the elec-
tric free charge density,H andB are the magnetic field and magnetic induction,
respectively,E is the electric field andj is the electric current density. Moreover,
the material equations are as follows,

D = εE, (3.5)

B = µH, (3.6)

whereε is the electric permittivity. It can be assumed thatµ is constant over the
whole volume and is equal to the permeability of vacuum [37,64]. The irrotational
nature ofE indicated by (3.2) enables us to define a scalar electric potential Φ, as
follows:

E =−∇Φ. (3.7)

15
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The current density is generally divided into two parts [37], the so-called primary
or source current,js, and the secondary or return currents,σE,

j = js+σE, (3.8)

whereσ ∈ R3×3 denotes the conductivity tensor which is dependent on position
and given by,

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 , (3.9)

with units A/(Vm) = S/m. There are tissues in the human head that have an
anisotropic conductivity, e.g., white matter and skull. This means that the conduc-
tivity is direction dependent. For isotropic tissues the tensor matrix is a diagonal
matrix and for anisotropic tissues it is a symmetric full rank matrix. If we denote
the domain of interest asΩ (with boundary∂Ω), taking the divergence of (3.3)
(divergence of a curl of a vector is zero) and using equations(3.7) and (3.8) we
get the Poisson’s equation

∇ · (σ∇Φ) = ∇ · js in Ω, (3.10)

with boundary condition

n̂ · (σ∇Φ) = 0 on∂Ω. (3.11)

3.2 The Source Currents

As mentioned earlier, the primary currentsjs are movements of ions within the
dendrites of the large pyramidal cells of activated regionsin the cortex sheet of
the human brain. Various modeling possibilities for the primary currents,js, are
discussed in the literature [27,66–68]. A simplified electrical model for this active
cell consists of two current monopoles: a current sink at theapical dendrite side
which removes positively charged ions from the extracellular environment, and a
current source at the cell body side which injects positively charged ions in the
extracellular environment. This model can be written mathematically as follows,

js(x) := I0[δ (x−x0+
de
2
)−δ (x−x0−

de
2
)] (3.12)

wherex0 andI0 are the midpoint and the current between two monopolar sources,
respectively,d is a distance between two monopolar sources ande is the unit
vector from the negative charge to the positive charge.δ is the Dirac delta function
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with
∫

Ω δ dV = 1. Nunez in [68] showed that 2 mm distance between source and
sink can be seen as realistic.

Another model for the source current is the so-calledmathematical dipole
which is formulated as

js
Math(x) = Mδ (x−x0) , (3.13)

wherex0 is the source position andM ∈ R3 is the dipole moment. It is shown
in [8] that this current dipole is an acceptable approximation for modeling the
neural activities in the brain. This source model has a singularity at x0 which is
treated differently in the numerical approaches.

3.3 EEG Forward Problem

The EEG forward problem defined in (3.10) and (3.11), is to findthe potential
in the EEG electrode positions for the given current source(s) inside the brain.
AssumeΦ satisfies (3.10) for a given primary sourcejs. As the gradient of a
constant function is zero then any functionΦ+C satisfies (3.10), whereC is a
scalar constant. To make the solution of (3.10) unique we introduce a reference
electrode and enforce its potential to zero, i.e.,

Φ(xre f) = 0. (3.14)

Then we calculate the solution relative to this reference electrode. Since only the
relative difference of the potentials are of interest, it iscommon in EEG to use the
average signals as a common reference,

Nelec

∑
k=1

Φ(xk) = 0. (3.15)

Thus, the Poisson’s equation can be re-written as,

∇ · (σ∇Φ) = ∇ · js in Ω, (3.16)

subject to the conditions
{

n̂ · (σ∇Φ) = 0 on∂Ω,

Either(3.14) or (3.15).
(3.17)
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Additionally, for existence and uniqueness of the solutionof (3.16–3.17), thecom-
patibility condition

∫

Ω
∇ · (σ∇Φ) dV−

∫

∂Ω
n̂ · (σ∇Φ) dS= 0, (3.18)

that follows from Gauss’s theorem has to be fulfilled.

3.4 Solving the Forward Problem: Green’s Func-
tion

Using Green’s function provides a way to write the solution of a partial differential
equation in closed form, as an integral over distributed sources, e.g., Poisson’s
equation with a charge density source [65]. The physical reasoning underlying
the mathematical technique is that any distributed source can be considered as a
sum or integral over elemental sources. LetG be the Green’s function that satisfies

−∇ · (∇G(x)) = δ (x) (3.19)

along with the boundary condition thatG approaches 0 at infinity where

G(x) =
1

4π |x| . (3.20)

Physically the Green’s function shows the effect inx due to a source inx0. We
may write the general solution to Poisson’s equation in an unbounded space in
terms of the Green’s function, as

Φ(x) =
∫

G(x−x0) f (x0) dV(x0), (3.21)

where f = ∇ · js. We are especially interested in the potential solution at the EEG
electrodes,Nelec, on the scalp. If we want to compute onlyΦ(xk); k= 1, · · · ,Nelec
the explicit formula (3.21) is suitable, since we can easilychoose to computeΦ
in only a few points;

Φ(xk) =
∫

Ω
G(xk−x0) f (x0) dV(x0). (3.22)

The discrete Green’s function is an analogy of the lead field matrix, which will be
discussed in the next Chapter.

The potential field in an infinite conductor generated by a current dipole with
dipole momentM = qd (q is the monopole charge andd is the vector from the



3.5 FINITE ELEMENT METHOD 19

negative charge to the positive charge) at positionx0 can be derived using Green’s
solution

Φ∞ (x) =
1

4πσ ∞
(x−x0) ·M
| x−x0 |3

, (3.23)

whereσ ∞ is the conductivity.

The first volume conductor models of the human head consistedof a homoge-
neous sphere [69]. When it was found that the skull tissue hassignificantly lower
conductivity than the scalp and brain tissue a three shell concentric spherical head
model was introduced. In this model, illustrated in Fig. 3.1, the inner sphere rep-
resents the brain, the intermediate layer represents the skull and the outer layer
represents the scalp. For this geometry a semi-analytical solution of Poisson’s
equation exists [70,71]. There are also semi-analytical solutions available for lay-
ered spheroidal anisotropic volume conductors [72, 73]. Here the conductivity in
the tangential direction can be chosen differently from theradial direction.

As we mentioned in Chapter 1, using the spherical head model instead of a
patient-specific model in EEG source localization may causesignificant errors
with respect to the source position. Thus there is a need for accurate head mod-
eling with realistic shape and conductivity properties. Finite element methods are
well-suited for handling the head model complexity. An important consideration
in finite element methods is how to represent the dipole source in the model, which
is treated in the following sections. Here, we restrict the element types to cubical
voxels since they are obtained from CT or MRI images.

3.5 Finite Element Method

The finite element method (FEM) is a standard tool for solvingdifferential equa-
tions in many disciplines, e.g., electromagnetics, solid and structural mechanics,
fluid dynamics, acoustics, and thermal conduction. Jin [74,75] and Peterson [76]
give good accounts of the FEM for electromagnetics. For the discretization of the
EEG forward problem we begin by deriving the weak formulation. Multiplying
Poisson’s equation (3.16) by a test functionυ ∈W1

2 (Ω) and integrating overΩ:
∫

Ω
υ∇ · (σ∇Φ) dV =

∫

Ω
υ f dV, (3.24)

where f = ∇ · js andW1
2 is the Sobolev space. Next, integrate by parts using the

identity
∇ · [υ(σ∇Φ)] = ∇υ · (σ∇Φ)+υ∇ · (σ∇Φ) (3.25)
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Figure 3.1: The three-shell concentric spherical head model. The dipole is located
on the z-axis and the potential is measured at scalp point P.

and Gauss’s theorem in 3D:
∫

Ω
∇ ·FdV =

∫

∂Ω
n̂·F dS, (3.26)

with F = υ(σ∇Φ). This gives the weak form of (3.16):

−
∫

Ω
∇υ · (σ∇Φ) dV+

∫

∂Ω
n̂ · (σ∇Φ) dS=−

∫

Ω
∇υ · (σ∇Φ) dV (3.27)

=

∫

Ω
υ f dV, (3.28)

where we have used the boundary condition (3.17).

For the discretization we restrict the element types to cubical voxels with node
basis function,ϕ j , centered at the mesh pointsξ j , ϕ j equals one at nodej and zero
at all other nodes. An approximation to the potential is thenrepresented in the FE
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spaceS= span{ϕ j}N
j=1 as

Φ(x)≈
N

∑
j=1

u jϕ j(x), (3.29)

whereN is the number of FE nodes andu j are the degrees of freedom (DOFs). Af-
ter applying variational and FE techniques [77] to (3.16), we arrive at the system
of linear equations

Ku = b, (3.30)

whereK ∈ RN×N is a sparse symmetric positive definite stiffness matrix given by

Ki, j =

∫

Ω
(σ∇ϕi) ·∇ϕ j dV, (3.31)

u ∈ RN is the coefficient vector of the electric potential, andb ∈ RN is the right
hand side vector,

bi =−
∫

Ω
ϕi∇ · js dV. (3.32)

To get a unique solution we can use a reference electrode, i.e. letting

(uelec)re f = 0, (3.33)

or constrain the mean value over all electrodes, i.e.

Nelec

∑
k=1

(uelec)k = 0. (3.34)

Both these constraints can be incorporated by modifying thestiffness matrixK .
For (3.33) the row and column corresponding to the chosen electrode node are
replaced such that they have a one for the electrode node position and zeros else-
where. If (3.34) is to be used,K is expanded by an extra row of ones at the bottom,
a column of ones to the right, and a zero element in the lower right corner. In ad-
dition the right hand side vectorb is expanded by an additional element. Observe
that both these modifications makeK invertible, read more about extending rank
deficient linear systems in [78]. In the following section wedescribe three differ-
ent methods to model the dipole source.
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3.6 Source Modeling

3.6.1 Direct Method

In the direct method, a dipole source is embedded in the element basis func-
tions [79,80]. The approximation can usually be improved byintroducing more el-
ements between the poles. An ideal dipole may be described astwo point sources
of opposite polarity with an infinitely large current and an infinitely small separa-
tion d,

∇ · js(x) = lim
d→0

I0
d
[δ (x−x0+

de
2
)−δ (x−x0−

de
2
)]. (3.35)

Substituting (3.35) into (3.32) gives

bdir
i = M ·∇ϕi(x0), (3.36)

whereM = I0de is the dipole moment.
As can be seen from (3.36),bdir depends linearly on the dipole momentM so

we can write
bdir = bdir(x0,M) = Bdir(x0)M , (3.37)

whereBdir is anN×3 matrix that depends on the dipole positionx0.

3.6.2 Modified Subtraction Method

As described in Section 3.2, the dipole source introduces a singularity that re-
quires specific treatment to increase the modeling accuracycompared to the direct
method. A subtraction method was first introduced by van den Broeh et al. [45] to
circumvent this problem and then investigated in great detail in [22,28,30,80,81].
The total potential is split into two parts, a singularity potential (Φ∞) and a cor-
rection potential (Φcorr), as follows

Φ = Φ∞ +Φcorr, (3.38)

whereΦ∞ is the solution to (3.16) in an unbounded domain with constant conduc-
tivity σ ∞ as shown in (3.23). In [81] it is shown that the right hand side(RHS) is
nonsingular ifσ is constant in a small ball aroundx0 (Paper I). The RHS for the
subtraction method has support wheneverσ 6= σ ∞. This means that the RHS must
be assembled in each cell where this occurs. Here a modified subtraction method
is presented that drastically reduces the number of non-zeros in the RHS to speed
up the forward problem. Let

Φ = χΦ∞ +Φmod= F∞ +Φmod. (3.39)
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For convenience, we have defined the function

F∞ = χΦ∞, (3.40)

whereχ is a smooth cut-off function which is identically one in a neighborhood of
x0. In Paper VII a method for selecting a suitable choice ofχ is presented. (Note:
the Φcorr notation is changed toΦmod because the cut-off function modifies this
function as well). Using (3.38) and (3.10), the new formulation reads,

−∇ ·
(

σ∇Φmod
)
= ∇ · (σ∇F∞)−∇ · js in Ω, (3.41)

subject to the conditions
{

n̂ ·
(
σ∇Φmod

)
=−n̂ · (σ∇F∞) on∂Ω,

Φ(xref) = 0.
(3.42)

Because of the homogeneity assumption we can find a subdomainΩ∞ where the
right hand side in (3.41) is identically zero. Thus the singularity of the right hand
side of (3.16) is successfully eliminated by the subtraction approach and the RHS
function in (3.41) is now square-integrable over the whole domainΩ and thus
appropriate for FEM.

After applying variational and FE techniques to (3.41) withboundary condi-
tions (3.42), we obtain the following system of linear equations:

Kumod= bsub (3.43)

whereK ∈ RN×N is given by (3.31),umod ∈ RN is the coefficient vector of the
correction potential, andbsub∈ RN is the right hand side vector,

bsub
i =

∫

Ω
(σ∇ϕi) ·∇Φ∞ dV. (3.44)

As can be seen from (3.23),Φ∞ depends linearly on the dipole momentM . Thus,
the same holds for the right hand side vectorb and we can write

bsub= bsub(x0,M) = Bsub(x0)M , (3.45)

whereBsub is anN×3 matrix that depends on the dipole positionx0.

After solving (3.43) numerically forΦmod, the unknown scalar potentialΦ can
be calculated using (3.38).
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Figure 3.2: A system consisting of a simple domain in which the source with mo-
mentM is located atx0. The EEG measurements are performed with
four electrodes, one of which is the reference electrode (Q0).

3.6.3 Reciprocity Method

The reciprocity principle was introduced by Helmholtz [82]and then adapted to
the EEG problem by Rush and Driscoll [83] when they proved theapplicability of
reciprocity to anisotropic conductors. The concept allowsswitching the role of the
electrodes and dipole sources. Fig. 3.2 shows a simple 2D setup which consists
of four electrodes mounted along the boundary of the EEG domain. One of these
electrodes is used as a common reference for the measurements (ground). Hence,
the output of the EEG measurements is the three voltages measured between one
of the electrodesQ1, Q2, andQ3 and the reference electrodeQ0. These three
voltages are denoteduelec1, uelec2, anduelec3.

We assume that a single source is present in the system. This source is defined
by its position,x0, and dipole moment (orientation and amplitude)M . As we
will be using reciprocity, we also define three distributions of electric fields in the
domain,E1(x), E2(x), andE3(x). These are the electric field distributions which
are present in the system when we inject a unit current sourceto electrodesQ1,
Q2, andQ3, respectively and withdraw a unit current at the reference electrode.
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The theorem of reciprocity states that

ueleci = αM ·Ei(x0). (3.46)

In this expression, the constantα depends on several factors, such as whether
we use a voltage or a current source to calculateEi as well as how the channels
in the measurement system are set up. For simulated data in our system,α =
1 (A−1)when a unit current source is used to calculateEi . Rush and Driscoll, [83],
have presented the proof of the reciprocity theorem for a general inhomogeneous
anisotropic medium. The main assumption for their proof is that the conductivity
tensor should be a symmetric tensor meaning thatσ12 = σ21, σ13 = σ31, and
σ23 = σ32, which is the case for human anisotropic tissues. In Section4.3 we
show how the reciprocity theorem can be used for an efficient solution of the
inverse problem.
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CHAPTER 4
Inverse Problem

Localization of the neural activity inside the brain based on the scalp EEG signals
is called the EEG inverse problem. The solution of the inverse problem is gen-
erally not unique in the sense that many source configurations can result in the
same EEG. To attain uniqueness, it is necessary to imposea priori knowledge on
the source distribution, for example assumptions about thesource model, anatom-
ical and physiological constraints on the source region andsometimes even re-
sults from other brain imaging techniques, e.g., fMRI [84–87]. Different inverse
approaches for discrete and continuous source parameter space have been pro-
posed [27, 32, 37–39, 41, 88–93]. The inverse problem can be divided into two
categories, parametric (dipole or continuous) and non-parametric (distributed or
discretized) methods.

In the parametric methods a limited number of dipoles is assumed [37–39,88].
Different spatio-temporal models exist depending on the number of dipoles as-
sumed in the model and whether one or more of the dipole parameters, i.e., po-
sition, magnitude or orientation, are kept fixed or assumed to be known. In the
literature [94, 95] one can find three models: a single dipolewith time-varying
unknown parameters (so-calledmoving dipole); dipoles with fixed positions and
orientations but varying amplitudes (fixed dipole); fixed dipole positions but vary-
ing orientations and amplitudes (rotating dipole). In a case when only one single
time, e.g., the spike peak, is chosen for the inverse problem, all these three models
give the so-calledinstantaneous state dipolemodel [32]. In [8,32], it is concluded
that the instantaneous dipole model is suited for estimating the well-localized ac-
tivated neural sources for events like epileptic spike and evoked potentials (EPs).

The non-parametric methods apply a distributed source model [36, 89–93, 96,
97], where the restriction to a limited number of focal sources is removed. To
obtain a unique solution for the inverse problem it should beminimized with re-
gard to a specific norm. Different norms have been proposed, such as the L2-
norm [40, 89], leading to a smooth current distribution withminimal source en-
ergy and the L1-norm [90], which results in a more focal distribution [41]. Most
distributed source models are instantaneous models, but recent works show that

27
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spatio-temporal approaches can help to stabilize the inverse reconstruction pro-
cess [92,93]. In the non-parametric methods, there are no need to model the dipole
source in the same way as in the parametric methods, also the restriction about the
number of sources is removed which are the main advantages ofthese methods.
Moreover, because of computational simplicity, these methods have been widely
adopted in empirical studies [41, 84, 98]. On the other hand,the resulting source
distribution is less focal compared to the parametric methods [95]. In [99–102]
some limitations of the parametric method have been investigated. In [102] it is
shown that the linear inverse solutions are unable to produce adequate estimates
of arbitrary current distributions at many brain sites. In [101] and [99] the au-
thors claimed that while smoothness can be an effective constraint for retrieving
isolated sources, it can fail for patterns with the same degree of smoothness but
composed of multiple active sources.

4.1 Lead Field Matrix

The solution to the discrete EEG inverse problem on matrix form (3.30), is given
by

u = K−1b. (4.1)

In EEG applications, the potentials are typically measuredat approximately 40 to
100 electrodes. These values can be obtained by multiplyingu with a restriction
matrixR ∈ RNelec×N as follows,

uelec= Ru. (4.2)

Each row ofR has value one for the electrode node and zero elsewhere. (Note:
assuming that the electrodes are located on FEM nodes.)

As mentioned in Chapter 3, the potential valuesuelecdepends linearly on each
of the dipole moment componentsM = (Mx,My,Mz)

T ∈ R3. Therefore, the rela-
tionship betweenM and the potential valuesuelec, can be described by a matrix
operatorL ∈ RNelec×3, the so-calledlead field matrixthat depends on the dipole
position, head geometry and tissue conductivities. A column of L is formed by
calculating the forward problem at the EEG electrodes,Nelec, for a dipole at an
arbitrary position,x0, inside the brain with unit strength in one of the Cartesian
directions. The three columns inL represent the three orthogonal unit dipoles
at the dipole position. If we assume a dipole with time-variant strength withT
timepoints,M ∈ R3×T , the EEG signals at electrode positions,Uelec, can then be
calculated very effectively by

Uelec= LM , (4.3)
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whereUelec∈ RNelec×T .
The lead field matrixL can then be used for the whole variety of inverse re-

construction methods; continuous or discretized. For the discretized space one
can assemble the lead field matrix for all mesh nodes. Thus, the lead field ma-
trix becomesL ∈ RNelec×3N where each column ofL is formed by calculating the
forward solution at the EEG electrodes,Nelec, for a dipole on one of theN mesh
nodes with unit strength in a Cartesian direction, see Section 4.2. If the dipole mo-
ment is assumed to be knowna priori, i.e., orthogonal to the gray matter surface,
thenL ∈ RNelec×N.

4.2 Node Basis Lead Field Matrix

Since only the relative differences of the potential are of interest, it is common in
EEG to use the average signal as a common reference, this is the so-calledaverage
reference montage. Let R be the restriction matrix such that

uelec−uelec= Ru, (4.4)

whereuelec is the average of the potential at all electrodes.R can be obtained
from R by subtracting the column-wise mean from each entry. Substituting (4.1)
in (4.4) gives

uelec−uelec= Ru = RK−1b = Tb. (4.5)

We callT = RK−1 ∈ RNelec×N thetransfer matrixfor the average reference mon-
tage. By substituting (3.37) in (4.5),

uelec−uelec= TBdirM , (4.6)

we can introduce the lead field matrix asLdir = TBdir for the direct method.
For the subtraction method, the contribution to the total potential comes from
two parts, the finite element method computed by (3.43) and the direct contri-
bution from (3.23), respectively. Thus, the lead field matrix is given byLsub=(
TBsub+F∞

elec

)
. HereF∞

elec holds the value ofΦ∞ for the three polarizations at
all electrodes. This lead field formulation is the so-callednode basislead field
matrix which is based on the divergence of the source currentdensity vector at
each node.

4.3 Element Basis Lead Field Matrix

As discussed earlier, the traditional method of constructing theL matrix is to place
three orthogonal sources in each node of the mesh, and compute the voltages at



30 CHAPTER 4. INVERSEPROBLEM

the electrodes. For the reciprocity method, (3.46) holds for all electrodes and we
obtain



E1,x(x0) E1,y(x0) E1,z(x0)
E2,x(x0) E2,y(x0) E2,z(x0)

...
...

...
ENelec,x(x0) ENelec,y(x0) ENelec,z(x0)







Mx(x0)
My(x0)
Mz(x0)


=




uelec1
uelec2

...
uelecNelec


 (4.7)

which can be written in short as

L rec(x0)M = uelec, (4.8)

where
L rec(x0) = ∇T(x0) = ∇(RK−1)(x0). (4.9)

Here each row ofR has value 1 for the electrode node, -1 for the ground node,
and zero elsewhere. The gradient is evaluated at the midpoint of all cells using
the FEM basis functions. If we calculate (4.9) for all cells inside the domain and
assemble the lead field matrix, we obtain theelement basislead field matrixL rec∈
RNelec×3Ncells whereNcells is the number of cells. This lead field matrix maps dipole
components placed at the elements to potentials at the scalprecording electrodes.
So, rather than iteratively placing a source in every node and computing a forward
solution at the electrodes, by using the reciprocity theorem the electric field in
all of the elements is calculated. The calculated electric field then can be used to
reconstruct the potential differences at the electrodes for a source placed in any
element.

4.4 Parametric Method

In a parametric method, the number of dipoles is assumed to befixed and their
locations and moments are chosen such that the potentials atthe electrodes,uelec,
that are computed in the forward problem, closely approximate the measured po-
tentials,umeas, according to some criteria. Here we follow the common practice
and choose the parameters such that we have the best fit in the least squares sense.
For one dipole at a specific instantaneous time we get the following minimization
problem

J = min
x∈Ωbrain
M∈Rd

‖ umeas−L(x)M ‖2, (4.10)

whereΩbrain is the brain domain andd the dimension. Since this is a least squares
problem and the electrode potential depends linearly on thedipole moment, see
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(4.3), it is convenient to separate the parameters in (4.10)and solve for the dipole
momentM first. Therefore, for a given dipole positionx ∈ Ωbrain, the optimal
componentsMopt are found in the least squares sense as the solution of the linear
equationsumeas= L(x)M , i.e.,

Mopt(x) = (LT(x)L(x))−1LT(x)umeas. (4.11)

Substituting (5.12) into (4.10) yields after some manipulation

J = min
x∈Ωbrain

‖ [I −L(x)(LT(x)L(x))−1LT(x)]umeas‖2 . (4.12)

whereI is aNelec×Nelec identity matrix.
Now, (4.12) is only dependent on the dipole position. Finding the minimum of

(4.12) can be accomplished, for example, via an exhaustive search, i.e., inversion
is carried out for each possible source location in the domain and the site produc-
ing the smallest residual energy is selected as the best possible source location. In
the next Chapter we propose a new optimization method based on particle swarm
optimization, to efficiently find the optimal source position.

4.5 Computational Complexity

In the set-up phase,T is computed once per head-model by means of solvingNelec
large sparse FE-systems of equations using, e.g., an iterative AMG-CG solver
[29]. The computational complexity of the set-up phase is the same for all three
numerical methods, i.e., direct, subtraction and reciprocity, if we ignore the cheap
calculation of the gradient ofT, (4.9), in the reciprocity method. On our machine,
a PC with Intel(R) Xeon(R) @3.30GHz CPU and 16GB memory, for solving
Nelec= 61 FE-system for a model withN = 2 468 080 the set-up phase takes
approximately 5 hours. The advantage of this pre-computation, which can be
used by both parametric and non-parametric source methods,is that the solution
of the inverse problem can then be computed very fast as part of an online process.

In the parametric inverse problem, a fixed number of active sources is assumed
and in this approach, a search is made for the best-fit dipole position(s) and ori-
entation(s). If we assume an unknown source direction, the time for finding the
optimal source position and orientation is

r ∗ τinv = r ∗
(
τb + τMopt+ τuelec

)
(4.13)

in the inverse algorithm, whereτb is the time for assembling the right hand side
vector. In the direct method, right hand side has eight non-zero entries, and the
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Table 4.1: Inverse problem algorithms. Algorithm 1 uses thedirect method, Al-
gorithm 2 uses the subtraction method and Algorithm 3 uses the reci-
procity method in the forward problem.

Algorithm 1 Yazdan shirvany
Precompute T
Repeat

compute newBdir

computeTBdir

computeMopt

computeuelec
Until Convergence

Algorithm 2 Yazdrddf
Precompute T
Repeat

compute newBsub

computeTBsub+F∞
elec

computeMopt

computeuelec
Until Convergence

Algorithm 3
Precompute Tand∇T
Repeat

compute newBdir

computeTBdir

computeMopt

computeuelec
Until Convergence

Table 4.2: Computational time for one iteration in the inverse algorithm for a
spherical head model with 2 468 080 nodes.

Direct Subtraction Reciprocity
τb 0.30 s 49.5 s -
τMopt 6.2×10−5 s 6.2×10−5 s 6.2×10−5 s
τuelec 0.15 s 0.16 s 4×10−7 s

τinv 0.45 s 49.66 s 6.24×10−5 s

computational time for assemblingbdir is obtained by evaluating (3.36), where
M is a unit vector. In the subtraction method, the mathematical dipole leads to
a dense right hand side vector in equation (3.45) with non-zero entries equal to
the number of nodes on interfaces. The computational time for assemblingbsub

is obtained by evaluating (3.44). In (4.13)τMopt is the time for evaluating (4.11).
The τuelec is the time for evaluating (4.4) for the direct and subtraction methods
and (4.8) for the reciprocity method. Ther is the number of iterations needed
to find the optimal solution and it is dependent on the convergence speed of the
optimization method.

Tables 4.1 shows the necessary steps for EEG source localization by using the
different algorithms for solving the forward problems. Table 4.2 shows the wall
clock time for the computations on our machine for a model with N = 2 468 080
nodes. By comparing the computational time for all three methods presented in
Table 4.2, we can see that the reciprocity method solves the inverse problem much
faster than the other methods.
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4.6 Choosing the Number of Sources

The number of focal sources is unknown in advance and is required as an input
parameter for the spatio-temporal dipole modeling. One possible way is to start
with one dipole and then increase the number until some criterion on the match-
ing between the measured and optimized potentials at the electrodes is met. One

natural criterion is that‖umeas−L(x)M‖2

‖umeas‖2 is lower than some prescribed value, e.g.,
0.01. Mosher et al. [38] proposed a method which quickly scans with a one dipole
search, rather than the p-dipole search necessary in a complete fit. They proposed
to separate the signal and noise subspaces and thus to visually determine the num-
ber of source components, through the drop in magnitude of the smallest signal
eigenvalue to the greatest noise eigenvalue of the estimated spatial data covari-
ance matrix. This procedure assumes that the signals have sufficient strength and
that they are sufficiently uncorrelated during the time interval. In [39] atrial and
error strategy was proposed to combine the determination of the unknown num-
ber parameter with the localization of the sources using thenonlinear dipole fit
method. Knösche et al. [91] presented a systematic way to determine the number
of dipoles by information criteria. The information criteria are based on a statis-
tical concept of separating the space spanned by the principal components of the
estimated data covariance matrix into a signal and a noise part. In the next chapter,
we propose a multi-dipole source localization method basedon PSO that can deal
with scenarios where the single dipole source localizationmay fail.
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CHAPTER 5
Particle Swarm Optimization

As discussed in previous chapters, EEG is one of the most commonly used biomed-
ical techniques since it provides a way to non-invasively study the function of the
human brain. The EEG source localization problem is (usually) highly nonlin-
ear and requires efficient algorithms for its solution. The most widely used op-
timization methods for solving the EEG inverse problem can be classified into
two groups: gradient methods, which use function and derivative information
(e.g., Levenberg-Marquardt [103]), and search methods (non-gradient techniques)
which use only function values (e.g., Nelder-Mead downhillsimplex [104]). In
the literature these methods are also called local optimization and global optimiza-
tion methods, respectively. Both of these methods minimizethe cost function by
iteratively adjusting the parameters of the dipole sources. The local optimization
is fast to converge and effective when there is only one dipole in our source model
and the data is noiseless. But when we use the multi-dipole model and have noisy
data the local optimization approaches are not always effective since they are often
trapped in local minima [105–107].

The dimensionality of the EEG source localization problem can be reduced
by factoring out the linear parameters but still a fundamental problem remains:
the least squares cost function is highly non-convex with respect to the locations
of the dipoles. Consequently, inverse methods such as gradient based methods
or nonlinear simplex searches often become trapped in localminima, yielding
significant localization errors [108,109]. The gray mattertissue is located in sev-
eral disjunct regions in the head which leads to a non-continuous solution space
and makes the problem more difficult to solve using standard optimization meth-
ods [110]. Moreover, by applying the physiological constraints, such as orthog-
onality (sources are orthogonal to the gray matter surface)and the sparsity, the
problem has a non-differentiable cost function [111–113].In addition, the final
solution often depends on the initial approximation and thenumber of local min-
ima of the cost function [114] since reasonable initial guesses are difficult to make

Metaheuristic algorithms for global optimization have been used in the so-
lution of the EEG inverse problem [115–120], and most of themreported high

35



36 CHAPTER 5. PARTICLE SWARM OPTIMIZATION

accuracy on the estimation of multiple dipoles with simulation and realistic stud-
ies. Nevertheless, a strict statistical study on the variability of these results under
realistic conditions has not yet been performed, and the establishment of realis-
tic confidence intervals as a function of the parameter spaceof the metaheuristic
algorithms remains an open task.

Particle swarm optimization is a swarm intelligence algorithm for numerical
optimization problems [121,122]. PSO has gained increasing popularity in recent
years and has been applied to a large group of problems in science and engineering
[123–131], and also in biomedical applications [120,132–142].

In the next sections, we first introduce the standard PSO method and some
improved versions. Also we present the parameter selectionapproaches and their
limitations. Next, we propose a novel particle swarm optimization method with
problem-specific modifications for the epileptic spike source localization and com-
pare its effectiveness and efficiency with other improved version of PSO, a genetic
algorithm (GA) and the deterministic global optimization algorithm, DIRECT.
Finally, we show the ability of modified PSO (MPSO) to solve multiple source
localization. The results show that, whereas the DIRECT method failed to effi-
ciently solve the source localization problem, the MPSO could find the optimal
solution significantly faster than other improved versionsof PSO, as well as GA.
To the best of the author’s knowledge, the PSO algorithm has not been applied to
real EEG source localization previously.

5.1 Original PSO

The Particle Swarm Optimization concept was first introduced by Kennedy and
Eberhart [121,122] in 1995 based on social system behavior such as the movement
of flock of birds or a school of fish when searching for food. Each individual in
the swarm is called a particle. Thei − th particle of the swarm is represented by
the vectorsX i for its position andV i for its velocity. The particle has a memory to
record the position of its previous best performance, personal best (pbest), in the
vectorPi and the position of the best particle in the swarm, global best (gbest),
which is recorded in the vectorPg.The particle swarm optimization algorithm
consists of, in each iteration, changing the velocity of each particle towards the
position of its best performance,Pi , and the swarm best position,Pg. Thus in the
original version particles move according to the followingformula:





Vt+1
i = Vt

i +c1Rand()(Pi −Xt
i )

+c2Rand()(Pg−Xt
i ),

Xt+1
i = Xt

i +Vt+1
i .

(5.1)
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The parametersc1 andc2 are thecognitiveandsocial learning rates. These two
rates control the relative influence of the memory of the swarm’s best perfor-
mance, to the memory of the individual, and are often selected to the same value
to give each learning rate equal weight.Rand() is a random number, drawn from
a uniform distribution between 0.0 and 1.0. In any situation, we do not know
whether the cognitive or social learning term should be stronger; if we weight
them both with random numbers, then their strength changes randomly. The ef-
fect of this is that the particle moves unevenly around the point defined as the
weighted average of the two best positions,Pi andPg. Due to randomness, the
exact position of this point changes in every iteration. In addition to thec1 andc2

parameters, implementation of the original algorithm alsorequires placing limits
on the search area,Xmax andXmin, and the velocity,Vmax. Changes in velocity are
stochastic, and an undesirable result of this is that the particle’s trajectory expands
towards infinity. The maximum velocity parameter,Vmax, controls the particle’s
trajectory to avoid approach infinity [143].

5.2 Improved PSO

Shi and Eberhart [144,145] devised an inertia weight,w, to improve the accuracy
of PSO by damping the velocities over time, allowing the swarm to converge
with greater precision. By integration ofw into the algorithm, the formula for
computing the new velocity is

Vt+1
i = wVt

i +c1Rand()(Pi −Xt
i) (5.2)

+c2Rand()(Pg−Xt
i ).

As originally developed,w is often decreased linearly from about 0.9 to 0.4 during
a run [143]. A suitable selection of the inertia weight provides a balance between
exploration, the ability to test various regions in the problem space in order to
locate a good optimum, hopefully the global one, and exploitation, the ability to
concentrate the search around a promising candidate solution in order to locate
the optimum precisely [145].

The maximum velocity,Vmax, is a constraint that controls the maximum global
exploration ability PSO can have. By setting a too small maximum velocity, the
maximum global exploration ability is limited and PSO will always favor a local
search no matter what the inertia weight is. Since the maximum velocity affects
global exploration ability indirectly, whereas the inertia weight affects it directly,
it will generally be better to control the global exploration ability through iner-
tia weight only. Choosing a large inertia weight to facilitate more global explo-
ration is not a good strategy, instead a smaller inertia weight should be selected to
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achieve a balance between exploration and exploitation andthus a faster conver-
gence [143].

In [146] Clerc proposed aconstraint coefficient, K, as a modification of PSO
and in [147] it was found thatK, combined with constraints onVmax, significantly
improved the PSO performance. The formula for computing thenew velocity with
constriction factorK is

Vt+1
i = K(Vt

i +c1Rand()(Pi −Xt
i) (5.3)

+c2Rand()(Pg−Xt
i )),

whereK = 2
|2−φ−

√
φ2−4φ |

andφ = c1+c2 > 4.

5.3 PSO Drawbacks

The PSO algorithm introduced by Kennedy and Eberhart has proven to be power-
ful but needs to select various parameters, such as the maximum velocity coeffi-
cient, the swarm size as well as the cognitive and social learning rates. A complete
theoretical analysis of the algorithm has been done by Clercand Kennedy [148].
Based on this analysis, the authors derived a reasonable setof tuning parameters,
as confirmed by [147]. However, the parameter selection in a specific problem is
not straightforward.

The PSO algorithm risks trapping in local minima and losing its exploration–
exploitation ability. Angeline, [149], for well known testfunctions, showed that
although PSO was capable of finding a reasonable quality solution very fast, it
could not improve the quality of the solution as the number ofiterations was
increased. If thepbestandgbestof a particle remain very close to each other
then the particle becomes inactive in the swarm. In other words, when|Pi −Xt

i |
and|Pg−Xt

i | are both small, and at the same timeVt
i has a small value, then this

particle loses its exploration ability. This could happen in the early stages for the
gbestparticle and as a consequence the PSO is trapped in a local minima. In the
following section we propose a Modified PSO (MPSO) which can help to reduce
the aforementioned drawbacks.

5.4 The Modified PSO

In this section we describe some modifications that have beenmade to PSO,
i.e., evolutionary programming, concept of authority, adaptive swarm size and
problem-specific modification.
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5.4.1 Evolutionary Programming

One way to avoid PSO being trapped in local minima is mutation[150, 151] and
using evolutionary programming (EP) [149, 152, 153]. In EP,a population ofN
particles is randomly selected initially. Each particle istaken as a pair of real
valued vectors,(X i ,ηi), whereX i is the position vector andηi is the standard
deviation for Gaussian mutations of thei − th particle, respectively. Each par-
ent particle(X i,ηi) creates a single offspring(X́ i , ήi) according to the following
equations [154]:

{
X́ i = X i +ηiN (0,1)

ήi = ηie(τ́N (0,1)+τN (0,1)) (5.4)

whereN (0,1) denotes a normally distributed random number with mean zero
and standard deviation one. The factorsτ andτ́ are commonly set to(

√
2
√

ndim)
−1

and (
√

2ndim)
−1 [154]. By utilizing a q-tournament selection,N particles are

selected out of 2N parents and offspring. Tournament selection is a popular
form of selection which is commonly used in genetic algorithms [155]. In the
q-tournament selection [156],q number of individuals is chosen randomly from
the population and the best individual from this group is selected. This process is
repeated as often as individuals must be chosen. The parameter for tournament se-
lection is the tournament sizeq. Theq takes values ranging from 2 to the number
of individuals in the population.

After applying EP to the swarm, once moreM particles are selected from the
swarm population by theq-tournament selection and thus become the so-called
elite particles[157]. For each particle, the nearest elite particle is determined by
the Euclidean distance. By evaluating the fitness value of all the particles, the
global best position is determined. The velocity and the position of the particles
are updated according to the global best position, the nearest elite position, and
the personal best position. These are applied to the PSO withinertia weight as
follows:

Vt+1
i = wVt

i +c1Rand()(Pi −Xt
i)+c2Rand()(Pg−Xt

i)

+c3Rand()(Pe−Xt
i ), (5.5)

wherec3 denotes the constant of the nearest elite andPe is the nearest elite posi-
tion.
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5.4.2 The Concept of Authority

To maintain the exploration ability in our modified PSO and increase the exploita-
tion ability, we introduce the concept ofauthority and apply it to the particle’s
behavior. To implement the concept of authority, theR closest particles togbest
are extracted as the swarm moves close to a minimum and they are allowed to fly
freely based on their memory and knowledge. Thus, the velocity update is divided
into two parts as

Vt+1
i = wVt

i +c1Rand()(Pi −Xt
i)+c2Rand()(Pg−Xt

i)

+c3Rand()(Pe−Xt
i ), (5.6)

wherei = 1,2, ...,N−R and

Vt+1
r =wVt

r +c1Rand()(Pr −Xt
r) (5.7)

wherer = N−R+1, ...,N. TheRnearest particles togbestare re-selected in each
iteration to ensure that the particles that moved away from the gbest lose their
authority and at the next iteration, update their velocity based on (5.6). It means
that in some steps the particles that are closer to the globalbest can influence
the performance and decision of the swarm, more than others.The concept of
authority allows the swarm to have more information aroundgbestbefore lots of
particles approach it and get stuck to each other, thus it improves the exploitation
ability. The concept of authority mixed with EP helps to keepthe balance between
exploration and exploitation as well as avoiding getting trapped in local minima.

5.4.3 Adaptive Swarm Size

Usually, the swarm size is constant. Some authors use 20, while some others
use 30 [122, 145], but nobody has proved that one given size isreally better than
another. Thus it seems better to let the algorithm modify theswarm size [158],
adaptively based on the current situation. In each iteration, the swarm has infor-
mation about each particle’s position,X i , personal best,Pi , velocity,V i , as well as
the previous objective function values. The swarm also has some global informa-
tion, i.e., the swarm size and time step. Using this information, the swarm has two
options to act on particles. It may remove particles from theswarm or generate
new particles. The condition for the swarm to change the status of a particle is
based on the following criteria:

• If one particle has hadenough improvementa new particle is generated from
that particle and the old one is kept.
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• If one particle has not hadenough improvementthat particle is removed
from the swarm.

Here, the status changes every 5 iterations which is equal tothe neighborhood
size of the particles. Theenough improvementis defined by ”improvement for 5
iterations”. Reflecting walls are used as boundary conditions for the MPSO. When
a particle hits the boundary in one of the dimentions, the sign of that velocity
component is changed and the particle is reflected back towards the searching
space. This boundary condition keeps the particles inside the searching space at
all times.

5.4.4 Problem-Specific Modification

As our main goal is to apply PSO to EEG source localization, weadd a problem-
specific modification to the MPSO. This modification comes from the anatomical
constraint in EEG source localization. Restricting the search space to limited areas
of the brain volume, e.g., the gray matter, reduces the ambiguity of source local-
ization [159]. In the inverse problem we consider only thosedipole locations and
orientations that are consistent with the anatomical data.As discussed in Chapter
2, the EEG signals are generated by currents flowing in the apical dendrites of
cortical pyramidal cells [56,160] so the search area could be restricted only to the
cortex sheet of the brain. We use this information and add it to the MPSO. For
this anatomical constraint MPSO solely evaluates the cost function, (4.12), for
the particles that are placed in the gray matter and assigns ahigh penalty value
to others. The MPSO starts from gray matter and in this way it ends up in the
gray matter, this constraint also helps to avoid trapping the solution of the inverse
problem in false local minima in other tissues.

5.5 Comparison of Different Algorithms

The objective of this section is to statistically compare the performance of the
MPSO with some other improved versions of PSO as well as a genetic algo-
rithm [161], for EEG source localization. The well known t-test (hypothesis test-
ing) [162, 163] is used to assess and compare theeffectivenessandefficiencyof
all the different algorithms. In hypothesis testing, a nullhypothesis,Ho will be
correctly accepted with a significance (or confidence) level(1−α) and falsely
rejected with a typeI error (asserting something that is absent) probabilityα. If
the null hypothesis is false, it will be correctly rejected with a power of the test
(1−β ) and will be falsely accepted with a typeII error (failing to assert what is
present) probabilityβ [164]. The decision options are summarized in Table 5.1.
Ha corresponds to an alternative hypothesis that is complimentary toHo.
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Table 5.1: Possible decision outcomes in hypothesis testing (adapted from [164]).

The true situation may be
Action Ho is true Ho is false
acceptHo , rejectHa (1−α) significance level β [type II error]
rejectHo, acceptHa α [type I error] (1−β ) power of test
Sum 1 1

The t-test deals with the estimation of a true value from a sample and the es-
tablishing of confidence ranges within which the true value can be said to lie with
a certain probability(1−α). In hypothesis testing, increasing the sample size,n,
decreases typeI and II error probabilities,α andβ , based on the t-distribution.
Whenn is very large, the t-distribution approaches the normal distribution [165].

In this section, two hypotheses are tested. The first test is related to theef-
fectiveness(finding the true global optimum) of the algorithms and the second is
related to theefficiency(computational cost) of the algorithms. Effectiveness is
defined as the ability of the algorithm to repeatedly find the known global solu-
tion, or arrive at sufficiently close solutions, when the algorithm is started from
many random points in the design space. In other words, effectiveness is defined
as the probability of finding a high quality solution such that,

Q=

(
1− ‖ umeas−uest‖

‖ umeas‖

)
%, (5.8)

whereumeasanduest are the measured and estimated EEG signals, respectively.
The solution quality metric described in (5.8) could then beused to synthesize
a meaningful hypothesis to test the effectiveness of the search algorithms shown
in Table 5.2. In our test cases,umeas is calculated synthetically by solving the
forward problem for a dipole located inside the gray matter.

The second hypothesis that is tested in this section is the computational ef-
ficiency test. This test directly compares the computational effort required by
MPSO and some other methods for EEG source localization. This requires a t-
test calledcomparison of two means[163, 166]. For the computational efficiency
test, the metric that is implemented is the number of function evaluations,Neval,
the algorithm carried out until the convergence criterion was met. The efficiency
test is summarized in Table 5.3

5.5.1 Results and Discussions

The two tests were carried out for MPSO, three improved versions of PSO [146,
167] as well as GA [161]. Table 5.4 summarizes the features ofthe improved



5.5 COMPARISON OFDIFFERENTALGORITHMS 43

Table 5.2: The effectiveness test.

Objective to test whetherHa: µQ > 99%
H0: µQ ≤ 99%

t = Q−99%
s(Q)

takingα = 1%,β = 1%, andn= 1000
whereµ is the unknown population mean,

Q is the mean of the quality of a solution, and

s(Q) = standard deviation of Q√
n .

This is a one sided test of significance of a mean−→ tcritical = 2.0.

Table 5.3: The efficiency test.

Objective to test whetherHa : MPSOµNeval < OM µNeval

H0 : MPSOµNeval ≥ OM µNeval

t =
OM µNeval

−MPSO µNeval

s(x)
√

(1/nOM+1/nMPSO)

where

s(x) =
√

(nOM−1)s2
OM+(nMPSO−1)s2

MPSO
nOM+nMPSO−2 ,

OM stands for ”Other Method”.
Takingα = 1%,β = 1%, andnOM = nMPSO= 1000.

This is a one sided test of significance of a mean−→ tcritical = 2.5.

versions of PSO selected for benchmarking. We set up four different cases with
physiological meaning. The spike dipoles are placed insidethe gray matter with
the following positions and orientations, see Fig. 5.1:

1. Right motor cortex, radial direction.

2. Right temporal lobe, radial direction.

3. Right temporal lobe, tangential direction.

4. Deep inside the brain, oblique direction.

The background dipole is fixed at the occipital lobe for all cases. Both tests were
conducted using acceptable Type I and Type II errors of 1% each. Table 5.5 shows
the calculated t-values obtained for the effectiveness test for all methods.

The effectiveness tests for MPSO and the other improved versions of PSO
show thatt > tcritical in all cases. This leads to the rejection of the null hypothesis
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Figure 5.1: Position and orientation of the spike and background sources in 2D.
Spike dipole is placed at right motor cortex with radial direction (case
1), right temporal lobe with radial direction (case 2), right tempo-
ral lobe with tangential direction (case 3) and deep inside brain with
oblique direction (case 4). For all cases the background dipole is
placed at the occipital lobe.

Table 5.4: Parameters of different versions of PSO selectedhere as benchmark
methods.

Formula w K c1 c2 c3

MPSO Eqs. (5.6) and (5.7) linear from 0.9 to 0.4 – 0.8 0.4 0.8
PSO1 Inertia (5.2) linear from 0.9 to 0.4 – 2.0 2.0 –
PSO2 Inertia (5.2) 0.600 – 1.70 1.70 –
PSO3 Inertia (5.2) 0.729 – 1.494 1.494 –
PSO4 Constrict (5.3) – 0.642 2.10 2.10 –
EPSO Evolutionary(5.5) linear from 0.9 to 0.4 – 0.8 0.4 0.8

and the acceptance of the alternative hypothesis, that is the quality of the solu-
tions of these approaches is equal to or greater than 99% in all four cases. This
alternative hypothesis is accepted with a confidence level of 99%. The infinity t-
values in the Table 5.5 are obtained because in each of the runs the corresponding
method consistently found the known solution. Therefore, the quality of the 1000
solutions in each case is 100%.
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In all cases the null hypothesis is accepted for the GA runs, therefore it shows
that the GA does not converge. By further investigating the data, it is found that
the mean quality of the GA solutions for test case 1 is 98.98% with a standard
deviation 0.20% and for the other cases it is 94.68% with a standard deviation
0.6%.

Table 5.5: Calculated t-values for the effectiveness hypothesis test.

Effectiveness test,tcriterial = 2.0
Calculated t-value

MPSO PSO1 PSO2 PSO3 PSO4 EPSO GA
Case 1 ∞ 9.07 11.81 7.36 ∞ ∞ -0.07
Case 2 ∞ 4.38 6.35 3.68 ∞ ∞ -7.32
Case 3 ∞ 6.35 2.43 4.38 ∞ ∞ -7.29
Case 4 ∞ ∞ ∞ ∞ ∞ ∞ -7.28

Table 5.6: Calculated t-values for the efficiency hypothesis test.

Efficiency test,tcritical = 2.5
Calculated t-value

EPSO PSO1 PSO2 PSO3 PSO4 GA
Case 1 15.13 27.16 32.84 33.92 27.18 303.19
Case 2 15.36 24.83 31.23 32.84 23.84 304.28
Case 3 16.72 24.36 28.12 31.24 24.81 305.49
Case 4 15.15 28.96 33.65 34.73 27.45 306.87

In Table 5.6 the results of the efficiency test are given and they show that
t > tcritical for all cases. These results lead to rejection of the null hypothesis and
the acceptance of the alternative hypothesis with a confidence level of 99%. The
interpretation of these results is that for all cases the computational effort required
by MPSO to converge to a solution, is less than that of the other improved version
of PSO as well as GA. Since DIRECT does not have any random parameters the
same result is obtained for all runs and the t-test could not been applied. Table 5.7
shows the mean and standard deviation of the number of function evaluations for
all methods. From Table 5.7 we can see that the MPSO, in average, finds the op-
timal solution five times faster than DIRECT. Paper I presents more details on the
comparison of MPSO with other methods. In summary, by several examples, we
have shown that the MPSO could found the optimal solution significantly faster
than the other improved version of PSO as well as a genetic algorithm and the de-
terministic global optimization, DIRECT. Moreover that the MPSO is less prone
to be trapped in local minima.
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Table 5.7: Mean and standard deviation for the number of function evaluations for
1000 runs. Since DIRECT does not have any random parameters the
same result was obtained for all runs.

Case 1 Case 2 Case 3 Case 4
MPSO(mean±std) 97±40 93±42 92±39 104±35
EPSO(mean±std) 146±62 158±86 160±81 178±102
SPSO(mean±std) 187±58 201±93 196±86 195±61
CPSO(mean±std) 190±67 209±95 205±94 191±64
GA (mean±std) 1560±450 1680±400 1660±420 1710±550

DIRECT 500 680 430 350

5.6 Multiple Source Localization

Theoretically, it would be possible to calculate the objective function for all com-
binations ofp sources inNgray possible locations in the gray matter, i.e.,

(
Ngray

p

)
=

Ngray!
(Ngray− p)!p!

, (5.9)

evaluations. In practice, this is generally not feasible asthe number of gray matter
points in the configuration space is too large and cannot be explored exhaustively.
The PSO is flexible and straightforward to extend to multiplesource localizations.
For p source locations, 6p unknown parameters should be estimated in 3D, i.e.,
3p dipole position parameters in Cartesian space (x,y,z) and 3p dipole moments
(Mx,My,Mz). Thus thei−thparticle of the swarm can be represented by the vector
X i ∈ Rnp andV i ∈ Rnp, wheren= 1,2,3 is the problem dimension. Forn= 3 we
get,
{

X i = ((x1,y1,z1), · · · ,(xp,yp,zp),(Mx1,My1,Mz1), · · · ,(Mxp,Myp,Mzp))i,

V i = ((Vx1,Vy1,Vz1), · · · ,(Vxp,Vyp,Vzp),(VMx1
,VMy1

,VMz1
), · · · ,(VMxp

,VMyp
,VMzp

))i.

(5.10)
With this configuration for the particles we can now again use(5.6) and (5.7)

to minimize the cost function. The minimization problem (4.10) then becomes,

J = min
x∈Ωbrain
M∈Rd

‖ umeas−
p

∑
i=1

L(xi)M i ‖2, (5.11)

To test the ability of the MPSO to localize multiple dipole sources, we generate
sets of simulated potentials for 30 channel electrodes for two active spike sources



5.6 MULTIPLE SOURCE LOCALIZATION 47

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x (m)

y
 (

m
)

1

BG

2

Figure 5.2: Left) Position and orientation of the two activespikes, with the same
amplitude equal to 10µAm and background sources, 1µAm, in 2D
setup, Right) The cost function when a single dipole source is used.

placed in both brain hemispheres in a 2D case, see Fig. 5.2. Asin the previous test
cases, the background dipole is fixed at the occipital lobe for all cases. The two
spike sources have the same amplitude equal to 10µAm, one with radial direction
and the other with tangential direction. Fig. 5.2 shows the cost function when only
a single dipole is used to estimate the potential for this test case. As we can see
in Fig. 5.2 the global minimum is located 10.3 mm from the source in the left
hemisphere and 88.4 mm from the source in the right hemisphere. The relative
error is equal to 0.52 and clearly a single dipole is not enough in this case.

Therefore, we run the case with the multiple MSPO source localization formu-
lated in (5.10) and (5.11) with eight unknown parameters, two position parameters
and two orientation parameters for each dipole. To reduce the unknown param-
eters we can use the method explained in Section 4.4 and reduce the unknown
parameters to six. For given dipole positionsx1 ∈ Ωbrain, x2 ∈ Ωbrain and orien-
tationM1 ∈ R3 the optimal componentsM2opt are found in least squares sense as
the solution of the linear equationsumeas−L(x1)M1 = L(x2)M2, i.e.,

M2opt(x) = (LT(x2)L(x2))
−1LT(x2)ũmeas. (5.12)

whereũmeas= umeas−L(x1)M1.
We ran the multiple MPSO 100 times. The MPSO had 30 initial particles

and the optimization was stopped if the relative error≤ 0.08 (this value was ob-
tained when the exact dipole positions and orientations were selected as input for
the optimization problem). Table 5.8 summarizes the results for multiple MPSO
source localization. The standard deviation is zero since the MPSO found the op-
timal point in all runs. The errors presented in Table 5.8 is due to the background
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source activity.

Table 5.8: Mean of the localization, orientation and relative errors after 100 runs.

Source 1 Source 2
Localization error (mm) 1.8 4.0
Orientation Error (deg) 0.0 1.73
Relative Error 0.08

The results in Table 5.8 show a significant source localization improvement
compared to the one dipole localization approach. In our case the head model
had 2 879 gray matter points. Thus all possible unique combinations of the two
sources are 4 142 881. The multiple MPSO found the optimal only after 750
evaluations, which is 0.018% of the total number of possiblechoices. Using mul-
tiple MPSO source localization is a reliable choice when we deal with a strong
multi-active sources scenario, since a one dipole source localization may fail in
that case.



CHAPTER 6
Head Model

EEG source localization results are influenced by differenterrors and approxi-
mations, such as head-model complexity [10, 47], EEG signalnoise [48], tissue
conductivity noise [11] and electrode misplacement [48, 49]. In this chapter we
investigate some of these errors and approximations.

Segmentation of head tissues using structural imaging techniques such as com-
puted tomography (CT) and MRI is the first step towards generating a patient-
specific head model. MRI is known as a safe and non-invasive method for imaging
the human head. Because of its high contrast, T1-weighted MRI (T1-MRI) is well
suited for the segmentation of soft tissues, i.e., white andgray matter and tissue
boundaries like outer skull and skin. In contrast, the classification of hard tissues,
such as the skull, is problematic. Several estimation approaches for classification
of the inner skull layer have been presented [85,168–170]. Accurate EEG source
localization of, in particular, basal frontal and mesial temporal current sources in
the human brain, are of high importance in epilepsy surgery.In [171] it was shown
that inaccurate modelling of the skull compartment can cause 1 cm localization
error and this may be detrimental in clinical applications.CT is well suited for
imaging bone tissues such as the human skull, and registration of a CT with a
T1-MRI [172] enables exact modeling of the skull, but also a radiation exposure
risk which is avoided when possible. Another well suited modality for extracting
the bone from soft tissue is Proton Density MRI (PD-MRI) since the difference
between the quantity of water protons of bone tissues and intracranial tissues is
large.

Furthermore, the head model complexity studies in [10, 11] have shown that
CSF has significant influence on the EEG source localization error. As normal
CSF has long T1 and T2 times, which manifest as dark signals onT1-weighted
images and bright signals on T2-weighted images, it is difficult to segment the
CSF accurately. Moreover, the brain extraction step duringsegmentation can af-
fect the CSF misclassification significantly since a large amount of the CSF is
located between the brain and skull compartments [47]. In the following section,
the MRI acquisition and segmentation methods used in our real EEG test case are

49
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presented.

6.1 MR Acquisition

Structural MR images were acquired using a PHILIPS ACHIEVA 3T scanner
(Sahlgrenska University Hospital, Gothenburg, Sweden) equipped with a 32 chan-
nel head coil. T1-weighted images were acquired for a healthy subject, (195 sagit-
tal slices, matrix size = 256× 256, voxel size = 0.9375 mm3, flip angle 8 deg,
TR/TE= 8.095/3.704 ms).

To allow for an estimation of the conductivity anisotropy inwhite matter
(WM) based on diffusion tensor imaging (DTI) data [17], diffusion weighted im-
ages were acquired using a twice refocused SE-EPI sequence (60 axial slices, ma-
trix size = 128× 128, voxel size 1.75×1.75×2.0 mm3, TR/TE = 9793.685/77.183
ms, two averages) with 32 diffusion directions and a b-valueof 800 s/mm2.

6.2 MRI Segmentation Methods

In the last two decades, many research groups have developedmethods for brain
MRI data sequence analysis, for reconstruction of the brain’s cortical surface from
anatomical MR data and registration of functional MR data onthe reconstructed
cortical surface [173–182]. Among them, the most widely used are the FMRIB
Software Library (FSL) [173] and FreeSurfer [175]. In PaperIII, we have inves-
tigated the influence of image segmentation done by FSL and FreeSurfer on the
source localization. Comparing the results from the two methods with the “ground
truth”, the set of voxels that were labeled by an expert, showed that the segmenta-
tions obtained from FSL gave better accuracy than those fromFreeSurfer. In the
following section we present the segmentation methods usedto investigate the in-
fluence of head model on the EEG source localization. In our real EEG test case,
presented in the next chapter, a manual segmentation done byan expert is used
for generating the head model. More details are given in Papers II and III.

6.2.1 FSL

The segmentation of the five tissues, GM, WM, CSF, scalp and skull, is done by
FSL in two steps. In the first step, masks of skin, skull and brain are generated by
using a preset intensity threshold value (ITV) in the BET module. In the second
step, an automated segmentation of three tissues, GM, WM andCSF, is carried
out by applying the FAST module [174]. For the BET step, ITV isselected equal
to 0.3 since in [47] it is shown that this value generated a model with minimum
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Figure 6.1: The subject’s head model generated from the FSL segmented results.

source localization error. To generate an accurate head model the segmented tis-
sues obtained from FSL need to be checked and corrected manually by a clinical
expert. Fig. 6.1 illustrates the subject’s FEM head model obtained from the cor-
rected FSL segmentation.

6.2.2 Mean Shift Method

Our group (Department of Signals and Systems, Chalmers University of Technol-
ogy, Gothenburg, Sweden) recently proposed a fully automatic multi-tissue seg-
mentation method for multi-modal MRI images of the head [183]. The method
is based on a hierarchical segmentation approach (HSA) incorporating Bayesian-
based adaptive mean-shift segmentation (BAMS).

In Paper VIII, this method has been tested for synthetic and real EEG source
localization and compared with other existing methods suchas, HSA-HMRF-EM
[184] and BET-FAST [174]. Table 6.1 summarizes these results for the median
nerve stimulation (see Paper VIII for more results).
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6.2.3 Manual Segmentation

Here the segmentation of the five tissues, i.e., GM, WM, CSF, scalp and skull, was
done manually by a clinical expert based on neurophysiological knowledge. Our
expert spent 170 hours to fully segment the head model (120 slices). We call this
segmented model the “ground truth” since it was the most accurate segmentation
model that we could generate for EEG source localization. Wemade a comparison
between the different segmentation methods mentioned in the previous sections
for source localization of somatosensory evoked potentials, see Table 6.1.

Table 6.1: The relative error defined as relative differencebetween measured
SEPs and estimated potentials for the median nerve SEPs source local-
ization for head models generated by different segmentation methods.

Segmentation methods Relative error
FSL 0.42

Mean Shift Method 0.35
FSL Manually Corrected 0.32

Manual Segmentation 0.23

As we can see from Table 6.1 the manually segmented head modelgave, as
expected, best results compared to the other segmentation methods. We use this
model in the next chapter for real EEG source localization.

6.3 Modeling Tissue Conductivity Anisotropy

This section describes the modeling of realistic WM conductivity anisotropy, for
the generation of realistic anisotropic high-resolution volume conductor models
of the head. Conductivity anisotropy, directionally dependent, with a ratio of
about 1 to 9 (normal to parallel to fibers) has been measured for brain WM by
Nicholson [15], however, a robust and non-invasive direct measurement seems to
be challenging. Nevertheless, a formalism has been described recently for relating
the effective electrical conductivity tensor to the effective water diffusion tensor
in brain WM [17, 18, 185]. Water diffusion can be measured non-invasively by
DT-MRI. The mutual restriction of both the ionic and the water mobility by the
geometry of the porous medium (the WM fibers) builds the basisfor the described
relationship. Basser et al. [16] introduced the assumptionthat the conductivity
tensor shares the eigenvectors with the water diffusion tensor. The assumption is
not that a fundamental relation exists between the free mobility of ionic and water
particles, rather that the restricted mobilities are related through the geometry.
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Figure 6.2: The fractional anisotropy image after registration of the T1 anatomy
(top row), the color coded first eigenvector of the DTI tensorco-
registered with the T1-weighted MRI (bottom row).

Two approaches are proposed in the literature for extracting the tissue anisotropy
from DT-MRI, namely a “direct mapping” [186, 187] and a “volume normalized
mapping” [188]. The direct mapping simply scales the DTI tensors to get the con-
ductivity distribution. The volume normalized mapping uses the anisotropy infor-
mation of the DTI data, while maintaining the mean conductivity of the tensors
at a predefined value, e.g., the WM or GM isotropic conductivity. This approach
prevents the problem of very high peak conductivity values that can occur when
the direct mapping is used.

The procedure to prepare the diffusion weighted images for the subsequent
estimation of the conductivity tensors, is based on the processing steps imple-
mented in FDT [173]. A brain mask is extracted from the first b-value equal to
zero image and the remaining images are corrected for head movements and dis-
tortions caused by eddy-currents using a linear affine co-registration to this first
b = 0 image. After fitting the diffusion tensors and determiningthe fractional
anisotropy (FA), the FA image is co-registered to the structural T1-weighted im-
age. A two-step procedure is used to account for local distortions in the diffusion
weighted images, starting with an affine registration and then applying a nonlinear
registration. The resulting warp field is applied to the DTI data, thereby ensuring
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that the correct diffusion directions are preserved. Fig. 6.2 shows the FA and color
coded first eigenvector of the DTI tensor co-registered withthe T1-weighted MRI,
which illustrates the fiber orientation map from a DT-MRI. Finally, the conversion
schemes from the diffusion to conductivity tensors are applied. In the next section
we present two variations of these conversion schemes. Moreover, in Paper IX we
add the WM anisotropy to the head model in a real EEG test case.

6.3.1 Direct Mapping

Tuch et al. in [187] showed a linear relationship between theeigenvalues of the
diffusion and conductivity tensors

σv = sdv, (6.1)

whereσv anddv represent thevth conductivity and diffusion eigenvalue, respec-
tively, ands is a scaling factor. With this assumption, the anisotropy ratio between
the different diffusion eigenvalues are preserved. Tuch etal. [187] in the original
scaling factor reported that results often have unrealistically high conductivity val-
ues, and an adjusted scaling factor was applied to make sure that the conductivity
stays in a reasonable range [186]. The factorswas selected such that the geomet-
ric mean of the conductivity eigenvalues, averaged across voxels, fitted that of the
isotropic conductivities reported in the literature. Thereby, a single factors was
chosen for GM and WM such that the mean conductivities derived from DTI for
both tissue types matched the isotropic reference values asgood as possible in a
least-squares sense,

s=
dWMσ iso

WM +dGMσ iso
GM

d
2
WM +d

2
GM

, (6.2)

whereσ iso
WM andσ iso

GM denote the isotropic conductivities of WM and GM, respec-
tively. Typical conductivitiesσ iso

WM = 0.142 S/m andσ iso
GM = 0.33 S/m were used

as isotropic reference values for EEG source localization [10, 186, 189]. The av-
erage value of the diffusion eigenvaluesd1, d2 andd3, in all voxels, is given by

dWM/GM =

3

√√√√√√

NWM/GM

∑
k=1

(d1d2d3)k

NWM/GM
, (6.3)

whereNWM/GM indicates the number of voxels corresponding to WM and GM,
respectively.
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Figure 6.3: The maximum eigenvector co-registered to the segmented T1-
weighted image. The zoom-in window shows the corpus callosum
area which has highly anisotropic structures.

6.3.2 Volume Normalized Mapping

An alternative for conductivity mapping from DTI is to locally match the geo-
metric mean of the conductivity eigenvalues of each single voxel to that of an
isotropic reference value [188]. This approach is referredto as a “volume nor-
malized” approach, with the adjusted conductivity eigenvalues being determined
by

σi =
di

3
√

d1d2d3
σ iso

WM/GM. (6.4)

6.4 Numerical Results

Both the direct and the volume normalized mapping were tested for synthetic
EEG source localization with a realistic head model to investigate the influences
of anisotropic WM on EEG source localization. Fig. 6.3 illustrates the maximum
eigenvector co-registered to the segmented T1-weighted image. The zoom-in win-
dow in Fig. 6.3 shows the corpus callosum area. The corpus callosum is the major
white-matter tract that crosses the interhemispheric fissure in the human brain and
it consists of approximately 200 million interhemisphericfibers, most of which
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Table 6.2: Mean and standard deviation of the localization and relative error for
725 source positions with three polarities. The direct and the volume
normalized (VN) mapping were used to calculate the WM anisotropic
conductivities from diffusion tensor images.

Direct Mapping VN Mapping
x-polarity y-polarity z-polarity x-polarity y-polarity z-polarity

LE (mm) 5.2±3.1 6.1±3.5 6.5±4.2 4.1±2.2 5.2±2.8 5.7±3.4
RE 0.22±0.03 0.26±0.04 0.20±0.03 0.19±0.04 0.22±0.04 0.17±0.05

connect homologous regions of the cerebral cortex [190]. The corpus callosum
with highly anisotropic cellular structures is a good reference to check the co-
registration results visually.

To investigate the influence of WM anisotropy on source localization, a patch
of gray matter with 725 voxels was selected. First, the EEG signals for a model
with anisotropic tissues were calculated synthetically byapplying the reciprocity
method. Then the exhaustive search algorithm was used to locate the sources for
a model with isotropic tissues. At each point, dipoles with three polarities, i.e., x-,
y- and z-polarity were tested. The relative errors (RE) are calculated by comparing
the isotropic and anisotropic solutions at each electrode node as follows

RE=
‖uaniso

elec −uiso
elec‖

‖uaniso
elec ‖

, (6.5)

whereuiso
elecanduaniso

elec are potential values at electrodes for isotropic and anisotropic
models, respectively, and‖ ·‖ denotes the Euclidean norm. Moreover, for a single
point source, the localization error (LE) is the distance between the estimated and
the actual source position, defined as

LE = ‖xaniso
0 −xiso

0 ‖, (6.6)

wherexaniso
0 is the actual source position in the anisotropic head model andxiso

0 is
the estimated source position in the isotropic head model.

Table 6.2 presents the mean and standard deviation (STD) of the LE and
RE for both direct and volume normalized mapping. As we can see the WM
anisotropy affects the localization approximately 5 mm with a 20% relative er-
ror. From this observation, we can conclude that using a headmodel with WM
anisotropic tissue might affect the source localization inthe range of millime-
ters. These results are consistent with the previous study [188]. In [188], it
is concluded that the single-source localization errors resulting from neglecting
anisotropy were found to be smaller compared to other modeling errors, like mis-
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Figure 6.4: The localization error (left) and the relative error (right) for the differ-
ent dipole sources using the volume normalized mapping.

Figure 6.5: The color coded relative error projected on the gray matter for dipoles
with x-polarity (left), y-polarity (middle) and z-polarity (right) ob-
tained using the volume normalized mapping.

classified tissue or the use of non-realistic head models.
Fig. 6.4 shows the localization and relative error results for all three polarities.

As we can see in Fig. 6.4 the x-polarity dipoles have smaller localization error
compared to other polarities. Fig. 6.5 shows the relative error projected on the
gray matter voxels. This figure indicates that the source positions surrounded by
gray matter voxels, have smaller relative compared to thosewhich are closer to or
on the boundary.
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CHAPTER 7
Real EEG Test Case

The real EEG data that we use in this thesis was recorded from stimulation of
somatosensory evoked potentials (SEPs) on a healthy subject. The 61 EEG elec-
trodes were placed on the subject’s head according to the 10/10 EEG electrode
system [191]. The 3D (-x,-y,-z) coordinates of these electrodes were measured
before and after the SEP stimulation experiment with a digitizer, and for the elec-
trode registration three reference points, i.e., nasion (the delve at the top of the
nose, level with the eyes), left and right tragus (the point situated in front of the
respective concha) were measured on the subjects head. In this study two sets
of stimulations were measured:a) median nerve at the left hand andb) the left
posterior tibial nerves at the subject’s ankle. In the following sections the SEP
details, validation methods and results are presented.

7.1 Somatosensory Evoked Potential

Evoked potentials are the electrical signals generated by the nervous system in
response to sensory stimulus. Auditory, visual, and somatosensory stimuli are
commonly used for clinically evoked potential studies. Somatosensory evoked
potentials (SEP) consist of a series of waves that reflect sequential activation of
neural structures along the somatosensory pathways. Sensory nerves (cell bodies
in the dorsal root ganglia) transmit the signal rostrally and ipsilaterally (first order
fibers), in the posterior column to a synapse in the dorsal column nuclei at the
cervicomedullary junction [192]. Then the signal is passedvia the second order
fibers that cross to the contralateral thalamus via the medial lemniscus. Finally, the
signal travels via the third order fibers from the thalamus tothe frontoparietal sen-
sory cortex. Fig. 7.1 shows the SEP pathway (adopted from Saladin [192]). While
SEP can be elicited by mechanical stimulation, clinical studies use electrical stim-
ulation of peripheral nerves, which gives larger and more robust responses. The
stimulation sites typically used for clinical diagnostic SEP studies are the median
nerve at the wrist, the common peroneal nerve at the knee, and/or the posterior
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Figure 7.1: The motor and somatosensory pathways: sensory nerves transmit the
signal to the sensory cortex via first, second and third orderfibers
(adopted from Saladin [192]).

tibial nerve at the ankle. In this study two sets of stimulations were measured:a)
median nerve at the left hand. The anode was placed just proximal to the palmar
crease, and the cathode was placed between the tendons of thepalmaris longus
muscle, 3 cm proximal to the anode. The selected nerves were stimulated with
monophasic square pulses, 300 microseconds in duration, and the stimuli were
delivered by using a constant current stimulator with 4.8 mA. b) the left poste-
rior tibial nerves at the subject’s ankle. The selected nerves were stimulated with
monophasic square pulses, 300 microseconds in duration andthe stimuli was de-
livered by using a constant current stimulator with 5.2 mA.

Too rapid stimulus delivery rates should be avoided, as theydegrade the SEP
waveforms. Hence, we used one stimuli per second in our measurements. One
should note that the rates, which are subharmonics of the line frequency, such as 5
or 6 Hz, should be avoided, since that contaminates the averaged SEPs by artifacts
of the line frequency [193]. Several characteristics of SEPcan be measured, in-
cluding peak latencies, component amplitudes, and waveform morphology. Peak
latencies are consistent across subjects, whereas amplitudes show large intersub-
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ject variability. Therefore, interpretation of extraoperative diagnostic SEP studies
is predominantly based on peak latencies and measures derived from them, such
as interpeak intervals and right-left differences [193]. Component amplitudes are
more consistent during repeated SEP recordings in the same subject. Therefore,
both peak latencies and component amplitudes should be measured and followed
during intraoperative monitoring. Ageing is associated with some prolongation of
SEP latencies. SEP components are commonly named by their polarity and typi-
cal peak latency in the normal population [194]. For example, N20 is a negativity
that typically peaks 20 milliseconds after the stimulus. The N20 predominantly
reflects activity of neurons in the hand area of the primary somatosensory cortex
and the P40 predominantly reflects activity of neurons in theposterior tibial nerve
at the primary somatosensory cortex [194,195].

7.1.1 EEG Signal Preprocessing

The EEG of a healthy subject were recorded at the Department of Clinical Neu-
rophysiology of the Sahlgrenska University Hospital, Gothenburg, Sweden. The
participant (30 yrs-old) was without substance abuse or dependence and had no
known neurological or psychiatric illnesses or trauma. A 61-channel EEG system
was used at a sampling frequency of 2 kHz. The EEG time series were filtered
(FIR, band-pass of 1–45 Hz and notch of 50 Hz), re-referencedagainst the com-
mon average reference, and segmented into non-overlapping300 ms epochs using
the EEGLab software [196]. Artifacts in all channels were edited off-line: first au-
tomatically, based on an absolute voltage threshold (100 mV) and on a transition
threshold (50 mV), and then on the basis of a thorough visual inspection. Two
electrodes with very high artifacts were removed from the recorded signals; F7
and CP1 according to the 10/10 system [191]. Using short segments for analysis
allowed us to record 160 artifact-free epochs that were averaged to obtain an SNR
equal to 28 dB. Then the peak of the averaged signals was used as input for the
inverse problem. Fig. 7.2 shows the average of 160 stimulations for N20 at the
EEG electrode positions and its topography on the subject’shead model.

7.2 Validation

Validation of the source localization is difficult, becauseno “ground truth” exists
to make a comparison. We have taken three approaches to validate our method:
first we use the physiological knowledge on localization of motor and sensory
functions based on clinical expertise, second we use a standard functional imaging
technique, i.e., fMRI, and third we follow an exhaustive search pattern, i.e., a brute
force search for all possible locations inside the gray matter.
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Figure 7.2: Somatosensory evoked potentials (SEPs): Butterfly plot of the aver-
aged median nerve stimulation N20 and its late cortical activity P60 at
the EEG electrode positions (left), the EEG’s topography for the N20
peak (right).

7.2.1 Anatomical Validation

From direct cortical SEP studies in humans it was concluded that the postrolandic
N1 (N20) reflects a horizontally oriented dipole in the posterior wall of the central
sulcus [195,197–205], see Fig. 7.3. This conclusion was supported by studies us-
ing magnetic field analysis which are particularly sensitive to horizontally oriented
dipoles [206–208]. The primary cortical positivity following N20 (P60) is proba-
bly generated by radially oriented sources located immediately behind [201, 205]
and in front of the central sulcus [198,208–210], see primary motor cortex (area 4)
shown in Fig. 7.3. This assumption has been supported by recent primate studies
analyzing epicortical or intracortical SEPs, concomitantmulti unit activity, and
current source density calculations [211].

EEG source localization associated with SEP data has been well documented
in the literature [213–218]. The most widely researched andclinically applied
SEPs are elicited by stimulation of the median nerve at the wrist [214, 217, 218].
More recently, SEP data resulting from the stimulation of fingers or other sites
have also been reported [219–223].

Thus, for the first class validation we use the physiologicalknowledge of lo-
calization of motor and sensory functions [224]. We consulted a clinical neuro-
physiology expert (from Sahlgrenska University Hospital,Gothenburg, Sweden)
to localize the recorded SEPs in an independent session, andthen we used those
results to compare with results generated from our method. This is a valid com-
parison since in a daily clinical routine the pre-diagnostic localization for epilepsy
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Figure 7.3: The primary somatosensory cortex (area 1, 2, and3) and primary mo-
tor cortex (area 4). (Adopted from Brain Atlas: Brodmann Areas for
fMRI [212].

surgery is done by the same clinical expert. Fig. 7.4 shows visual images of lo-
cations and sizes of the subject’s somatosensory cortical areas for the left hand
marked by the clinical expert.

7.2.2 Functional Validation

Different imaging modalities including functional MRI (fMRI) and MEG have
shown that the Primary Somatosensory Cortex (SI), located in the postcentral
gyrus, is activated in response to cutaneous mechanical andelectrical stimula-
tion [220,225–227] in a somatotopic manner [228]. In fact, somatosensory infor-
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Figure 7.4: The location and size of the subject’s somatosensory cortical area
which corresponds to the left hand marked by a clinical expert. (Note:
MRI software shows the pictures flipped.)

mation of different body parts (such as the hand area) are represented in specific
regions of SI [228, 229]. Ackerley et al. in [230] showed thattouch on the left
palm elicited a large positive Blood-Oxygenation Level Dependence (BOLD) sig-
nal in the right sensorimotor areas with a typical somatotopical representation in
the right SI.

To get a robust activation in SI we used a similar fMRI design.A single run
block design, consisting of 20 stimulation intervals interspersed by 20 rest inter-
vals was used. The stimulation consisted of continuous brush strokes, manually
delivered on the palm of the left hand. Stimulation and rest intervals lasted for
8700 ms (3TRs). The run began with a rest interval. The subject, who previously
participated in the SEPs study, was instructed to lie still.

A 3T Philips Achieva MRI scanner with a 32 channels SENSE headcoil was
used. For functional imaging, a single-shot echo-planar imaging sequence was
used (T2*–weighted, gradient echo sequence, repetition time (TR)= 2900 ms,
echo time (TE)= 35 ms, flip angle= 90deg, field–of–view (FOV)= 200×244×
129 mm). The functional scan consisted of 46 slices, 2.8 mm thick, with the ac-
quisition plane oriented to the anterior-posterior commissure line and covering
the whole cerebral cortex. For structural imaging a high-resolution T1-weighted
anatomical protocol was used (195 sagittal slices, matrix size = 256× 256, voxel
size = 0.9375mm3). Preprocessing and statistical analysis of MRI data was per-
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Figure 7.5: Activation in the right primary somatosensory cortex evoked by brush
stimulation on the palm of the left hand. Activation displayed in radi-
ological convention (left is right) in subject’s space.

formed using BrainVoyager QX (version 2.1 Brain Innovation, Maastricht, The
Netherlands). Functional data was motion corrected and low-frequency drifts
were removed with a temporal high-pass filter (0.006 Hz). Spatial smoothing
was applied with a Gaussian kernel (4 mm FWHM, full width at half-maximum).
Functional data was manually co-registered with 3-dimensional (3D) anatomical
T1 scans on the basis of anatomical landmarks. A whole brain general linear
model was created for the single run. One predictor (convolved with a standard
model of the hemodynamic response function) modeled the stimulation condition.
The t-statistics image reflects the difference in activation between the stimulation
to the rest condition, thresholded at t-value (P< 0.0001) of 4.

Fig. 7.5 shows the activation evoked by brush stimulation onthe palm of the
left hand, with the largest activation cluster in the postcentral gyrus, correspond-
ing to the primary somatosensory cortex (SI). The 3D anatomical scan was trans-
formed into Talairach space [231] and the parameters for this transformation were
subsequently applied to the co-registered functional data. Talairach coordinates
of peak activation were in: 44; -29; 51, corresponding to thepostcentral gyrus
according to the Talairach atlas [232].
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Figure 7.6: The estimated source position for median nerve stimulation on the
subject’s MR images.

7.2.3 Exhaustive Search

An exhaustive search was used to validate the MPSO results. We searched with
brute force all gray matter voxels and the site with minimum relative error is de-
termined, then we compare this point with results generatedby MPSO. The head
model has 1 mm resolution with 951 874 voxels in gray matter. All computations
were performed on an Intel 2.93 GHz workstation with 8GB RAM memory and
the post processing and visualizations were done using Matlab (R2012a) and the
3DSlicer (3.6.3) software [233].

7.3 Result and Discussion

We ran the source localization method for N20 signals, see Fig. 7.2, recorded from
the median nerve, and compared the result with the anatomical, functional and ex-
haustive search methods. The manually segmented head modelwas used, see Sec-
tion 6.2. The following conductivities were then assigned to the FE compartments
based on their segmentation labels and the isotropic reference model [24, 234]:
skin = 0.43 S/m, skull = 0.0042 S/m (skull to skin conductivity ratio of approx-
imately 1:100), CSF = 1.538 S/m, gray matter = 0.33 S/m, and white matter =
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0.142 S/m. First, we brutally searched all the gray matter voxels and the site with
minimum relative error was determined, then we compared with results generated
by MPSO. Compared to the exhaustive search MPSO was 6000 times faster and
needed only around 10 milliseconds to converge.

Fig. 7.6 shows the estimated source position from all methods for median
nerve stimulation on the subject’s MR images. The optimization method was
terminated when the minimum relative error from the exhaustive search was ob-
tained. As we can see from Fig. 7.6, the EEG source localization result agrees well
with both anatomical and functional validation methods. Although the source po-
sition is a bit deeper compared to the area marked by the clinical expert, it agrees
very well with the fMRI results.

See Papers V and IX for more detailed information on the results, where
the results for both median and tibial nerve stimulations for an isotropic and an
anisotropic model, respectively, are presented.
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CHAPTER 8
Summary of the Papers

In this chapter, a brief summary of the papers included in thethesis is given. We
divide the contribution into four categories; forward problem, inverse problem,
real data source localization and sensitivity analysis.

8.1 Forward Problem: Papers I, VI and VII

In Papers I, VI and VII we proposed two methods for the forwardproblem, a
modified subtraction method and a method based on the reciprocity theorem. The
forward problem is a procedure to find the scalp potentials for a given current
dipole(s) inside the brain.

In Papers I and VII, we introduced a modified subtraction FEM method that
solves the singularity problem for the dipole sources, and improves the computa-
tional time compared to the original subtraction method. Toobtain a more com-
pact support of the right-hand side we introduced a smooth cut-off function which
is identically one in a neighborhood of the dipole source. The cut-off function
is radially symmetric around the dipole source, and its support is a ball with ad-
justable radius centered at the dipole source. We showed that a proper choice of
radius led to a substantial speed up in the assembly process of the right-hand side,
whilst the results had the same accuracy as the original subtraction method.

For using EEG source localization in real-time applications, such as TMS-
EEG, there is a great need to speed up the solution of the forward problem to the
range of seconds or less. We presented a method in Paper VI that combines the
reciprocity theorem with FEM for EEG source localization. The reciprocity the-
orem for the electric case states that the field of the so-called lead vectors is the
same as the field raised by feeding a reciprocal current to thelead. The reciprocity
EEG source localization speeds up the solution of the inverse problem with more
than three orders of magnitude compared to the state-of-the-art methods, which
is a major advantage of this method for EEG source localization. The proposed
method was tested for a four-layer spherical head model. Thevalidation of the
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method was performed by comparing the reciprocity method with analytical po-
tentials for dipoles with eccentricity from 0 to 94%. To benchmark the proposed
method, we compared it with the direct and subtraction methods. The results
showed that the reciprocity method is as accurate as the subtraction method, and
more accurate than the direct method. Furthermore, the reciprocity method was
shown to be robust to both EEG signal noise and electrode misplacement.

8.2 Inverse Problem: Papers I, II and IX

The inverse problem is (usually) highly nonlinear and requires efficient algorithms
for its solution. In Paper I, we introduced a novel particle swarm optimization
(PSO) method with problem-specific modifications for the EEGsource localiza-
tion. The algorithm uses the velocity update properties from the original PSO,
ideas from evolutionary programming and a new property, theso-called concept
of authority. In Paper I, by several examples, we showed thatthe new algorithm
finds the optimal solution significantly faster than other PSO methods from the
literature, a genetic algorithm and the deterministic global optimization method,
DIRECT. In addition, the MPSO is less prone to be trapped in local minima. The
proposed modified PSO can also be implemented in a parallel computing envi-
ronment making the inverse problem solution very cheap. Moreover, the modified
PSO can easily be extended to multiple dipole source localization.

8.3 Real EEG Data: Papers II, V and IX

On the basis of our simulation results (Papers I and IV), we designed a real EEG
test case with somatosensory evoked potentials (SEPs) in order to verify the pro-
posed methods in realistic scenarios. In this study two setsof stimulations were
measured:a) median nerve at the left wrist.b) the left posterior tibial nerves at
the subject’s ankle.

In Paper II, we applied MPSO to both median and tibial nerve stimulation as
well as their late cortical activities. For the forward problem we used the modified
subtraction method and an isotropic head model generated manually by a clini-
cal expert. Comparison between the recorded EEG and estimated scalp potential
topographies showed good agreement in all cases. Moreover,based on clinical ex-
pertise, the estimated sources were confirmed to be located in the correct region.
The EEG source localization results obtained from MPSO gavethe same results
as exhaustive search, but with significantly lower computational complexity.

In Paper V, we applied MPSO to the tibial nerve stimulation. For the forward
problem we used the modified subtraction method and an isotropic head model
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generated automatically by the FSL software. The segmentedresults from FSL
were corrected manually by a clinical expert. The results have a larger relative
error compared to the ones obtained in Paper II due to the segmentation errors in
the head model, and the fact that the source position was deeper.

In Paper IX we applied the reciprocity theorem and MPSO to themedian nerve
stimulations with a head model generated manually by a clinical expert and in-
cluding anisotropic white matter conductivity. We used thefMRI method to val-
idate our result. In a comparison between the EEG source localization and fMRI
activities, the estimated source agrees extremely well with the fMRI activities
area. The result shows that the proposed method is a step towards a clinically use-
ful EEG source localization methodology that provides accurate, fast and robust
solutions.

8.4 Sensitivity Analysis: Papers III, IV and VIII

The EEG source localization is influenced by different errors and approximations,
for example source model approximations, head-modeling errors, EEG signal
noise, tissue conductivity noise and electrode misplacements, as well as the nu-
merical computational errors. For an accurate source localization, it is crucial to
understand the influences of these errors on the results. To investigate this, we
set up several test cases with synthetic EEG data. Generating an accurate patient-
specific head model is one of the most important steps in EEG source localization
and includes the segmentation, mesh generation and assigning conductivities to
the respective tissues.

In Paper III, the performance of two of the most widely used software pack-
ages for brain segmentation, namely FSL [173] and FreeSurfer [175] were ana-
lyzed. Comparing with the “ground truth”, consisting of theset of voxels that
were labeled by an expert, the results showed that the segmentation outputs ob-
tained from FSL are more accurate than those from FreeSurfer, especially for the
CSF compartment. Then a segmented head model from FSL was used to inves-
tigate the effects of brain tissue segmentation on EEG source localization. The
results for FSL showed a 12 mm localization error in the z-direction of the esti-
mated source.

In Paper VIII, we investigated a new fully automated segmentation method,
the so-called HSA-BAMS [183], for EEG source localization.The results showed
that this method can improve the source localization results by approximately 10%
compared to other methods implemented in FSL such as HSA-HMRF-EM [184]
and BET-FAST [174].

The complexity of the head model is another source of uncertainty. In Paper
IV, six head models with different number of tissues from 4 to9 were compared
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with a reference model, i.e., a model with 10 tissues, in order to find the optimal
number of tissues for the head model as well as the most important tissue for the
source localization. Results showed that a model with five tissues, i.e. skin, skull,
WM, GM and CSF, gave the best results. Moreover, by analyzingthe results with
respect to the tissues, we showed that CSF affects the results significantly.

In Paper IV the influence of EEG noise, electrode misplacements, conductivity
noise and white matter anisotropy, on EEG source localization, were investigated.
The results, in our test cases, showed that the source localizations are very sensi-
tive to conductivity noise and only 4% noise can cause a 13 mm localization error.
The WM anisotropy can affect the potential relative error significantly, approxi-
mately 20% in a 3D test case, but it only caused a 5 mm source localization error.
In a realistic head model the electrode misplacement results showed that a 1 cm
electrode misplacement caused approximately 17% potential relative error and an
8 mm localization error for the subtraction method. In PaperVI, the influences
of electrode misplacement for the reciprocity forward method were investigated
in the spherical head model. The results showed that the reciprocity method is
more robust with respect to electrode misplacement. One centimeter electrode
misplacement only caused a 2 mm source localization error. Our investigation of
EEG signals noise in Papers I, IV and VI showed that both the subtraction and
reciprocity methods are robust with respect to EEG signal noise.



CHAPTER 9
Conclusions and Outlook

This thesis deals with different aspects of EEG source localization and pays partic-
ular attention to reducing the computational complexity. Reflecting on the short-
comings of pre-existing methods, we have developed a methodbased on the reci-
procity theorem and particle swarm optimization. Encouraging results, expressed
in different performance indicators as well as in comparison with other existing
methods, have been demonstrated for localization of different spike sources inside
the brain. The results show accurate localization with a very fast computation time
(in the range of milliseconds). We designed real EEG test cases with somatosen-
sory evoked potentials (SEPs) in order to verify the proposed method in realistic
scenarios. The feasibility of the proposed source localization method was tested
for median and tibial nerves evoked potentials. The resultsagreed very well with
both the fMRI palm-brushing measurement and the clinical expert results. The
computational time for localizing the SEP signals was 5 milliseconds.

The sensitivity analyses in this thesis contribute the understanding of the na-
ture of the problem and its limitations. The numerical results show that the head
model segmentation is the most important step in the EEG source localization and
that inaccurate segmentations produce erroneous localization results

The numerical and experimental results presented in this thesis have shown
that our proposed method based on the reciprocity theorem and the MPSO method
is a good choice for EEG source localization. These results need to be confirmed
clinically on real epileptic spikes by using subdural EEG recordings and brain
surgery outcomes for validation. [235–237]. From a technical point of view there
are still several issues that need to be improved. The existing segmentation meth-
ods should be improved to generate a more accurate head modelautomatically.
Moreover, in the future, a further effort is needed for the measurement of human
head tissue conductivities, especially concerning the skull anisotropy. Animal
models can be a good alternative to provide the necessary validation on a more
controlled level, i.e., the implantation of deep electrodes and their EEG recon-
struction with and without tissue anisotropy modeling (see[238,239]).

Knowing the position of the EEG electrodes is also very important in EEG
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source localization. Although most of the EEG electrode digitizers used in a clin-
ical measurement routine have measurement accuracy of around 1 mm, patient
movements during the recording can change their positions.To avoid electrode
misplacement error there is a strong need to develop an electrode positioning sys-
tem which can localize the electrode positions over time [240].

Using the fast EEG source localization method proposed here, a future ex-
citing application is a non-invasive treatment method for epilepsy using EEG
simultaneous-localization guided repetitive transcranial magnetic stimulation (rTMS-
EEG) [241]. This method can be an alternative to the conventional epilepsy
surgery treatment. Moreover, since skull inhomogeneitieshave a large effect on
EEG, another interesting application field for the proposedmethod would be new-
borns with open sutures (see [242]).
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