


















not demonstrated herein. The combined signal from
several donor–acceptor positions can provide high-reso-
lution distance and orientational information of nucleic
acid structures without complications associated with
fluorophore linker flexibility or DNA-dye interactions.
Various approaches have previously been developed to

model probe dynamics during the energy transfer process
(10–12,19). Importantly, our method, which uses
user-defined directional distributions, provides a one-step
analysis without the need to include force field molecular
dynamics simulations in the analysis. The highly versatile
form of the vector distribution is a particular advantage
when modelling the orientationally constrained base
probes in various nucleic acid environments. Using
actual energy potentials to describe the nucleic acid
dynamics paves the way for novel experimental studies
of the fundamental physical properties of DNA and
RNA structures.
It is recognized that there are two modes of dipole

dynamics, reorientation and diffusion, being reflected in
the energy transfer efficiency through the values of � 2 and
R, respectively (12). Although dipole diffusion is
pronounced when measuring FRET between external
fluorophores, the tC base probes are rigidly positioned
at relatively close distances inside the DNA structures.
For this reason, we only modelled the orientational fluc-
tuations of the probes. However, the method is expand-
able to include dipole diffusion when studying more
dynamic structures.

In the demonstration studies, we used dynamic averag-
ing of � 2, which assumes that the rotational correlation
time of the probes is much faster than the energy
transfer (5). This assumption was shown to be valid for
external fluorophores (12) and is supported here by an
internal correlation time of the base probes of � int=350
ps estimated from the time-resolved fluorescence anisot-
ropy decay of tCO in high-viscosity solution (Supplemen-
tary Figure S12). In addition, the donor decays used in our
studies are all well-fit using a single lifetime to represent
FRET, which is a strong indication of dynamic averaging
(Supplementary Table S6).

SUMMARY AND OUTLOOK

We have developed a general methodological platform for
simulating FRET in nucleic acids and demonstrated its
particular power in modelling probes possessing limited
degree of diffusional and rotational freedom. The
method is based on the ability to rapidly construct any
3D nucleic acid geometry and simulate FRET between
probes positioned anywhere within the structure.
Directional vector distributions are implemented to
model rotational dynamics of the probes, which, in com-
bination with direct global intensity decay fitting of
multiple donor and acceptor pairs, may provide quantita-
tive information about structural and dynamical
properties of nucleic acids. The method was used in com-
bination with base–base FRET to obtain insight into base

Figure 5. Using quantitative base–base FRET to reconstruct the 3D structure of nucleic acids. (a) Model system 1: a regular base pair step simulated
as a local site in B-DNA. Donor positions are in yellow and acceptor positions in red. (b) Model system 2: a three adenine bulge. (c) Definition of
kink parameters. The two helical coordinate systems are the base pair coordinate frames of the two base pairs neighbouring the kink. (d) � 2

r surfaces
of the 0A system based on the global analysis of 18 donor decays (Supplementary Figure S9). Colour bars: 1.55:1.97 (left) and 1.55:1.78 (right). (e)
Global analysis of the 3A bulge system based on the global analysis of 16 donor decays (Supplementary Figure S10). Figures show only the global
minimum on the � 2

r surface (Supplementary Figure S11). Colour bars: 1.85:2.12 (top), 1.85:2.39 (bottom left), 1.85:2.90 (bottom right). (f) Optimized
0A structure. (g) Optimized 3A structure.

e18 Nucleic Acids Research, 2013, Vol. 41, No. 1 PAGE 10 OF 12

 at C
halm

ers T
ekniska H

ogskola on January 30, 2013
http://nar.oxfordjournals.org/

D
ow

nloaded from
 



dynamics occurring on the timescale of energy transfer
and to probe the exact 3D structure of kinked DNA in
solution. Importantly, the method is versatile and
expandable.

As a result of the rapidly progressing field of fluorescent
nucleobase analogues (16–18) and other rigidly attached
probes (19–25), including the popular Cy3–Cy5 pair
shown to be partly constrained when tethered to the
ends of nucleic acids (7,9,19,41,42), we anticipate that
many fluorescent markers will be modelled in the future
using the methodology presented here. Given the versatil-
ity of base–base FRET combined with the ready-to-use
methodological platform reported here, we believe that
new possibilities for experimental studies of nucleic acid
structure and dynamics have opened up.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Sup-
plementary Tables 1–10, Supplementary Figures 1–12,
Supplementary Notes 1–3, Supplementary Data sets 1
and 2 and Supplementary References [1–13].
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