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Capacity Pre-Log of Noncoherent SIMO
Channels via Hironaka’s Theorem

Veniamin I. Morgenshtern, Erwin Riegler,
Wei Yang, Giuseppe Durisi,

Shaowei Lin, Bernd Sturmfels, and Helmut Bölcskei

Abstract—We find the capacity pre-log of a temporally corre-
lated Rayleigh block-fading single-input multiple-output (SIMO)
channel in the noncoherent setting. It is well known that for block-
length L and rank of the channel covariance matrix equal to Q,
the capacity pre-log in the single-input single-output (SISO) case
is given by 1 � Q/L. Here, Q/L can be interpreted as the pre-
log penalty incurred by channel uncertainty. Our main result re-
veals that, by adding only one receive antenna, this penalty can be
reduced to 1/L and can, hence, be made to vanish for the block-
length L ! 1, even if Q/L remains constant as L ! 1. Intu-
itively, even though the SISO channels between the transmit an-
tenna and the two receive antennas are statistically independent,
the transmit signal induces enough statistical dependence between
the corresponding receive signals for the second receive antenna to
be able to resolve the uncertainty associated with the first receive
antenna’s channel and thereby make the overall system appear
coherent. The proof of our main theorem is based on a deep result
from algebraic geometry known as Hironaka’s Theorem on the
Resolution of Singularities.

I. INTRODUCTION

It is well known that the capacity pre-log, i.e., the asymptotic
ratio between capacity and the logarithm of signal-to-noise ratio
(SNR), as SNR goes to infinity, of a single-input multiple-output
(SIMO) fading channel in the coherent setting (i.e., when the
receiver has perfect channel state information (CSI)) is equal
to 1 and is, hence, the same as that of a single-input single-
output (SISO) fading channel [4]. This result holds under very
general assumptions on the channel statistics. Multiple antennas
at the receiver only, hence, do not result in an increase of the
capacity pre-log in the coherent setting [4]. In the noncoherent
setting, where neither transmitter nor receiver have CSI, but both
know the channel statistics, the effect of multiple antennas on the
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capacity1 pre-log is understood only for a specific simple channel
model, namely, the Rayleigh constant block-fading model. In
this model the channel is assumed to remain constant over a
block (of L symbols) and to change in an independent fashion
from block to block [5]. The corresponding SIMO capacity pre-
log is again equal to the SISO capacity pre-log, but, differently
from the coherent setting, is given by 1 � 1/L [6], [7].

An alternative approach to capturing channel variations in time
is to assume that the fading process is stationary. In this case, the
capacity pre-log is known only in the SISO [8] and the multiple-
input single-output (MISO) [9, Thm. 4.15] cases. The capacity
bounds for the SIMO stationary-fading channel available in the
literature [9, Thm. 4.13] do not allow to determine whether the
capacity pre-log in the SIMO case equals that in the SISO case.
Resolving this question for stationary fading seems elusive at
this point.

A widely used channel model that can be seen as lying in
between the stationary-fading model considered in [8], [9],
and the simpler constant block-fading model analyzed in [5],
[7] is the correlated block-fading model, which assumes that
the fading process is temporally correlated within blocks of
length L and independent across blocks. The L ⇥ L channel
covariance matrix of rank Q  L is taken to be the same for
each block. This channel model is relevant as it captures channel
variations in time in an accurate yet simple fashion: the rank Q

of the covariance matrix corresponds to the minimum number
of channel coefficients per block that need to be known at the
receiver to perfectly reconstruct all channel coefficients within
the same block. Therefore, larger Q/L corresponds to faster
channel variations.

The SISO capacity pre-log for correlated block-fading chan-
nels is given by 1�Q/L [10]. In the SIMO and the multiple-input
multiple-output (MIMO) cases the capacity pre-log is unknown.
The main contribution of this paper is a full characterization of
the capacity pre-log for SIMO correlated block-fading channels.
Specifically, we prove that under a mild technical condition on
the channel covariance matrix, the SIMO capacity pre-log, �, of
a channel with R receive antennas and independent identically
distributed (i.i.d.) SISO subchannels is given by

� = min[1 � 1/L, R(1 � Q/L)]. (1)

This shows that even with R = 2 receive antennas a capacity
pre-log of 1 � 1/L can be obtained in the SIMO case (provided

1In the remainder of the paper, we consider the noncoherent setting only.
Consequently, we will refer to capacity in the noncoherent setting simply as
capacity.
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that L � 2Q � 1). This capacity pre-log is strictly larger than
the capacity pre-log of the corresponding SISO channel (i.e., the
capacity pre-log of one of the component channels), given by
1 � Q/L. Here Q/L can be interpreted as pre-log penalty due
to channel uncertainty. Our result reveals that, by adding at least
one receive antenna, this penalty can be made to vanish in the
large block-length limit, L ! 1, even if the amount of channel
uncertainty scales linearly in the block-length.

A conjecture for the correlated block-fading channel model
stated in [10] for the MIMO case, when particularized to the
SIMO case, implies that the capacity pre-log in the SIMO case
would be the same as that in the SISO case. As a consequence
of (1) this conjecture is disproved.

In terms of the technical aspects of our main result, we
sandwich capacity between an upper and a lower bound that turn
out to be asymptotically (in SNR) tight (in the sense of delivering
the same capacity pre-log). The upper bound is established by
proving that the capacity pre-log of a correlated block-fading
channel with R receive antennas can be upper-bounded by
the capacity pre-log of a constant block-fading channel with
RQ receive antennas and the same SNR. The derivation of the
capacity pre-log lower bound poses serious technical challenges.
Specifically, after a change of variables argument applied to the
integral expression for the differential entropy of the channel
output signal, the main technical difficulty lies in showing that the
expected logarithm of the Jacobian determinant corresponding
to this change of variables is finite. As the Jacobian determinant
takes on a very involved form, a per pedes approach appears
infeasible. The problem is resolved by first distilling structural
properties of the determinant through a suitable factorization
and then introducing a powerful tool from algebraic geometry,
namely [11, Th. 2.3], which is a consequence of Hironaka’s
Theorem on the Resolution of Singularities [12], [13]. Roughly
speaking, this result allows to rewrite every real analytic function
[14, Def. 1.1.5, Def. 2.2.1] locally as a product of a monomial
and a nonvanishing real analytic function. This factorization
is then used to show that the integral of the logarithm of the
absolute value of a real analytic function over a compact set is
finite, provided that the real analytic function is not identically
zero. This method is quite general and may be of independent
interest when one tries to show that integrals of certain functions
with singularities are finite, in particular, functions involving
logarithms. In information theory such integrals often occur
when analyzing differential entropy.

Notation: Sets are denoted by calligraphic letters A, B, . . .

Roman letters A, B, . . . and a, b, . . . designate deterministic
matrices and vectors, respectively. Boldface letters A,B, . . .

and a,b, . . . denote random matrices and random vectors, re-
spectively. We let ei be the vector (of appropriate dimension)
that has the ith entry equal to one and all other entries equal to
zero, and denote the M ⇥M identity matrix as IM . The element
in the ith row and jth column of a deterministic matrix A is
aij (italic letters), and the ith component of the deterministic
vector u is ui (italic letters); the element in the ith row and jth
column of a random matrix A is aij (sans serif letters), and the
ith component of the random vector u is ui (sans serif letters).
For a vector u, diag(u) stands for the diagonal matrix that has the
entries of u on its main diagonal. The linear subspace spanned

by the vectors u1, . . . , un is denoted by span{u1, . . . , un}. The
superscripts T and H stand for transposition and Hermitian trans-
position, respectively. For two matrices A and B, we designate
their Kronecker product as A ⌦ B; to simplify notation, we use
the convention that the ordinary matrix product precedes the
Kronecker product, i.e., AB ⌦ C , (AB) ⌦ C. For a finite
subset of the set of natural numbers, I ⇢ N, we write

��I��
for the cardinality of I. For an M ⇥ N matrix A, and a set
of indices I ⇢ [1 :M ], we use AI to denote the |I| ⇥ N

submatrix of A containing the rows of A with indices in I.
For two matrices A and B of arbitrary size, diag(A, B) is the
2 ⇥ 2 block-diagonal matrix that has A in the upper left corner
and B in the lower right corner. For N matrices A1, . . . , AN ,
we let diag(A1, . . . , AN ) , diag(diag(A1, . . . , AN�1), AN ).
The ordered eigenvalues of the N ⇥ N matrix A are denoted
by �1(A) � · · · � �N (A). For two functions f(·) and g(·),
the notation f(·) = O(g(·)) means that limu!1

��
f(u)/g(u)

��
is bounded. For a function f(·), we say that f(·) is not iden-
tically zero and write f(·) 6⌘ 0 if there exists at least one
element u in the domain of f(·) such that f(u) 6= 0. We
say that a function f(·) is nonvanishing on a subset S of its
domain, if for all u 2 S, f(u) 6= 0. For two functions
f(·) and g(·), (f � g)(·) denotes the composition f(g(·)). For
x 2 R, dxe , min{m 2 Z | m � x}. We use [n :m] to
designate the set of natural numbers {n, n + 1, . . . , m}. Let
g : CM ! CN

, u 7! g(u), be a vector-valued function; then
@g/@u denotes the N ⇥M Jacobian matrix [15, Def. 3.8] of the
function g(·), i.e., the matrix that contains the partial derivative
@gi/@uj in its ith row and jth column. The logarithm to the
base 2 is written as log(·). For sets A, B ✓ RM , we define
A ± B , {a ± b | a 2 A, b 2 B}. If A = {a}, then
a ± B , A ± B. With (�✏, ✏) , {u 2 R | ��u�� < ✏}, we
denote by C(u, ✏) , u + (�✏, ✏)M ⇢ RM the open cube in
RM with side length 2✏ centered at u 2 RM . The set of natural
numbers, including zero, is N0. For u 2 CM and m 2 NM

0 ,
we let u

m , u

m1
1 . . . u

mM
M . If A is a subset of the image of

a map f(·) then f

�1
(A) denotes the inverse image of A. The

expectation operator is designated by E
⇥·⇤. For random matrices

A and B, we write A
d⇠ B to indicate that A and B have the

same distribution. Finally, CN (u, C) stands for the distribution
of a jointly proper Gaussian (JPG) random vector with mean u

and covariance matrix C.

II. SYSTEM MODEL

We consider a SIMO channel with R receive antennas. The
fading in each SISO component channel follows the correlated
block-fading model described in the previous section. The input-
output (IO) relation within any block of length L for the mth
SISO component channel can be written as

ym =

p
⇢ diag(hm)x + wm, m 2 [1 :R], (2)

where x = [x1 · · · xL]

T 2 CL is the signal vector transmitted
in the given block, and the vectors ym,wm 2 CL are the
corresponding received signal and additive noise, respectively,
at the mth receive antenna. Finally, hm 2 CL contains the
channel coefficients between the transmit antenna and the mth
receive antenna. We assume that hm ⇠ CN (0, DD

H
), for all
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m 2 [1 :R], where D 2 CL⇥Q (which is the same for all blocks
and all component channels) has rank Q  L. The entries of
the vectors hm are taken to be of unit variance, which implies
that the main diagonal entries of DD

H are equal to 1 and the
average received power is constant across time slots. It will
turn out convenient to write the channel coefficient vector in
whitened form as hm = Dsm, where sm ⇠ CN (0, IQ). Further,
we assume that wm ⇠ CN (0, IL). As the noise vector has unit
variance components, ⇢ in (2) can be interpreted as the SNR.
Finally, we assume that sm and wm are mutually independent,
independent across m, and change in an independent fashion
from block to block. Note that for Q = 1 the correlated block-
fading model reduces to the constant block-fading model as used
in [6], [7].

With y , [yT
1 · · · yT

R]

T, s , [sT1 · · · sTR]

T, w ,
[wT

1 · · ·wT
R]

T, and X , diag(x), we can write the IO rela-
tion (2) in the following—more compact—form

y =

p
⇢ (IR ⌦XD) s + w. (3)

The capacity of the channel (3) is defined as

C(⇢) , (1/L) sup

f
x

(·)
I(x;y), (4)

where the supremum is taken over all input distributions f

x

(·)
that satisfy the average-power constraint

E
⇥kxk2

⇤  L. (5)

The capacity pre-log, the central quantity of interest in this paper,
is defined as

� , lim

⇢!1

C(⇢)

log(⇢)

.

III. INTUITIVE ANALYSIS

We start with a simple “back-of-the-envelope” calculation that
allows to develop some intuition on the main result in this paper,
summarized in (1). The different steps in the intuitive analysis
below will be seen to have rigorous counterparts in the formal
proof of the capacity pre-log lower bound detailed in Section VI.

The capacity pre-log characterizes the channel capacity be-
havior in the regime where additive noise can “effectively” be
ignored. To guess the capacity pre-log, it therefore appears
prudent to consider the problem of identifying the transmit
symbols xi, i 2 [1 :L], from the noise-free (and rescaled)
observation

ˆy , (IR ⌦XD) s. (6)

Specifically, we shall ask the question: “How many symbols xi

can be identified uniquely from ˆy given that the vector of channel
coefficients s is unknown but the statistics of the channel, i.e., the
matrix D, are known?” The claim we make is that the capacity
pre-log is given by the number of identifiable symbols divided
by the block length L.

We start by noting that the unknown variables in (6) are s and
x, which means that we have a quadratic system of equations. It
turns out, however, that the simple change of variables

zi , 1/xi, i 2 [1 :L], (7)

(we make the technical assumption
��
xi

��
> 0, i 2 [1 :L], in

the remainder of this section) transforms (6) into a system of

equations that is linear in s and zi, i 2 [1 :L]. Since the trans-
formation zi , 1/xi is invertible for

��
xi

��
> 0, uniqueness of the

solution of the linear system of equations in s and zi, i 2 [1 :L],

is equivalent to uniqueness of the solution of the quadratic system
of equations in s and xi, i 2 [1 :L].

For concreteness and simplicity of exposition, we first con-
sider the case L = 3 and R = Q = 2 and assume that D

satisfies the technical condition specified in Theorem 1, stated
in Section IV. A direct computation reveals that upon change
of variables according to (7), the quadratic system (6) can be
rewritten as the following linear system of equations:

2

6666664

d11 d12 0 0

ˆ

y1 0 0

d21 d22 0 0 0

ˆ

y2 0

d31 d32 0 0 0 0

ˆ

y3

0 0 d11 d12 ˆ

y4 0 0

0 0 d21 d22 0

ˆ

y5 0

0 0 d31 d32 0 0

ˆ

y6

3

7777775

2

666666664

s1

s2

s3

s4

�z1

�z2

�z3

3

777777775

= 0. (8)

The solution of (8) can not be unique, as we have 6 equations
in 7 unknowns. The xi = 1/zi, i 2 [1 :3], can, therefore, not
be determined uniquely from ˆy. We can, however, make the
solution of (8) to be unique if we devote one of the data symbols
xi to transmitting a pilot symbol (known to the receiver). Take,
for concreteness, x1 = 1. Then (8) reduces to the following
inhomogeneous system of 6 equations in 6 unknowns

2

6666664

d11 d12 0 0 0 0

d21 d22 0 0

ˆ

y2 0

d31 d32 0 0 0

ˆ

y3

0 0 d11 d12 0 0

0 0 d21 d22 ˆ

y5 0

0 0 d31 d32 0

ˆ

y6

3

7777775

| {z }
,B

2

6666664

s1

s2

s3

s4

�z2

�z3

3

7777775
=

2

6666664

ˆ

y1

0

0

ˆ

y4

0

0

3

7777775
. (9)

This system of equations has a unique solution if det B 6= 0. We
prove in Appendix C that under the technical condition on D

specified in Theorem 1, stated in Section IV, we, indeed, have
that det B 6= 0 for almost all2 ˆ

y2, ˆy3, ˆy5, ˆy6. It, therefore, follows
that for almost all ˆy, the linear system of equations (9) has a
unique solution. As explained above, this implies uniqueness of
the solution of the original quadratic system of equations (6).
We can therefore recover z2 and z3, and, hence, x2 = 1/z2 and
x3 = 1/z3 from ˆy. Summarizing our findings, we expect that the
capacity pre-log of the channel (3), for the special case L = 3

and R = Q = 2, is equal to 2/3, which is larger than the capacity
pre-log of the corresponding SISO channel (i.e., one of the SISO
component channels), given by 1 � Q/L = 1/3 [10]. This
answer, obtained through the back-of-the-envelope calculation
above, coincides with the rigorous result in Theorem 1.

We next generalize what we learned in the example above
to L, R, and Q arbitrary, and start by noting that if (X, s) is a
solution of ˆy = (IR ⌦XD) s for fixed ˆy, then (aX, s/a) with
a 2 C is also a solution of this system of equations. It is therefore
immediately clear that at least one pilot symbol is needed to make
this system of equations uniquely solvable.

2Except for a set of measure zero.
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To guess the capacity pre-log for general parameters L, R,

and Q, we first note that the homogeneous linear system of
equations corresponding to that in (8), has RL equations for
RQ + L unknowns. As the example above indicates, we need
to seek conditions under which this homogeneous linear system
of equations can be converted into a linear system of equations
that has a unique solution. Provided that D satisfies the technical
condition specified in Theorem 1 below, this entails meeting the
following two requirements: (i) at least one symbol is used as a
pilot symbol to resolve the scaling ambiguity described in the
previous paragraph; (ii) the number of unknowns in the system
of equations corresponding to that in (8) must be smaller than
or equal to the number of equations. To maximize the capacity
pre-log we want to use the minimum number of pilot symbols
that guarantees (i) and (ii). In order to identify this minimum,
we have to distinguish two cases:

1) When RL < RQ + L [in this case min[1 � 1/L, R(1 �
Q/L)] = R(1�Q/L)] we will need at least RQ+L�RL

pilot symbols to satisfy requirement (ii). Since RQ + L �
RL � 1, choosing exactly RQ+L�RL pilot symbols will
satisfy both requirements. The number of symbols left for
communication will, therefore, be L � (RQ + L � RL) =

R(L � Q). Hence, we expect the capacity pre-log to be
given by R(1 � Q/L), which agrees with the result stated
in (1).

2) When RL � RQ + L [in this case min[1 � 1/L, R(1 �
Q/L)] = 1 � 1/L], we will need at least one pilot symbol
to satisfy requirement (i). Since requirement (ii) is satisfied
as a consequence of RL � RQ + L, it suffices to choose
exactly one pilot symbol. The number of symbols left for
communication will, therefore, be L � 1 and we hence
expect the capacity pre-log to equal 1 � 1/L, which again
agrees with the result stated in (1). Note that the resulting
inhomogeneous linear system of equations has RL equa-
tions in RQ+L�1 unknowns. As there are more equations
than unknowns, RL�RQ�L+1 equations are redundant
and can be eliminated.

The proof of our main result, stated in the next section,
will provide rigorous justification for the casual arguments put
forward in this section.

IV. THE CAPACITY PRE-LOG

The main result of this paper is the following theorem.

Theorem 1. Suppose that D satisfies the following
Property (A): Every Q rows of D are linearly independent.
Then, the capacity pre-log of the SIMO channel (3) is given

by
� = min[1 � 1/L, R(1 � Q/L)]. (10)

Remark 1. We will prove Theorem 1 by showing, in Section V,
that the capacity pre-log of the SIMO channel (3) can be upper-
bounded as

�  min[1 � 1/L, R(1 � Q/L)] (11)

and by establishing, in Section VI, the lower bound

� � min[1 � 1/L, R(1 � Q/L)]. (12)

While the upper bound (11) can be shown to hold even if D does
not satisfy Property (A), this property is crucial to establish the
lower bound (12).
Remark 2. The lower bound (12) continues to hold if
Property (A) is replaced by the following milder condition on D.

Property (A’): There exists a subset of indices K ✓ [1 :L]

with cardinality

|K| , min(d(RQ � 1)/(R � 1)e, L)

such that every Q rows of DK are linearly independent.
We decided, however, to state our main result under the

stronger Property (A) as both Property (A) and Property (A’)
are very mild and the proof of the lower bound (12) under
Property (A’) is significantly more cumbersome and does not
contain any new conceptual aspects. A sketch of the proof of the
stronger result (i.e., under Property (A’)) can be found in [2].

We proceed to discussing the significance of Theorem 1.

A. Eliminating the prediction penalty
According to (10) the capacity pre-log of the SIMO channel (3)

with R = 2 receive antennas is given by � = 1� 1/L, provided
that Property (A) holds, and L � 2Q � 1. Comparing to the
capacity pre-log �SISO = 1 � Q/L in the SISO case3 [10]
(this result also follows from (10) with R = 1), we see that—
under a mild condition on the channel covariance matrix D—
adding only one receive antenna yields a reduction of the channel
uncertainty-induced pre-log penalty from Q/L to 1/L. How
significant is this reduction? Recall that Q is the number of
uncertain channel parameters within each given block of length
L. Hence, the ratio between the rank of the covariance matrix
and the block-length, Q/L, is a measure that can be seen as
quantifying the amount of channel uncertainty relative to the
number of degrees of freedom for communication. It often makes
sense to consider L ! 1 with the amount of channel uncertainty
Q/L held constant. For concreteness, consider L, Q ! 1 with
L = 2Q � 1 so that Q/L ! 1/2. The capacity pre-log penalty
due to channel uncertainty in the SISO case is then given by 1/2.
Theorem 1 reveals that, by adding a second receive antenna, this
penalty can be reduced to 1/L and, hence, be made to vanish in
the limit L ! 1. Intuitively, even though the SISO channels
between the transmit antenna and the two receive antennas are
statistically independent, the transmit signal induces enough
statistical dependence between the corresponding receive signals
for the second receive antenna to be able to resolve the channel
uncertainty associated with the first receive antenna’s channel
and thereby make the overall system appear coherent.

B. Number of receive antennas
Note that for Q < L, we can rewrite (10) as

� = min[1 � 1/L, R(1 � Q/L)]

=

(
1 � 1/L, if R � d L�1

L�Qe
R(1 � Q/L), else.

(13)

As illustrated in Fig. 1, it follows from (13) that for fixed L and Q

3Note that the results in [10] are stated for general channel covariance
matrix D.
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�

Fig. 1. The capacity pre-log of the SIMO channel (3).

with Q < L the capacity pre-log of the SIMO channel (3) grows
linearly with R as long as R is smaller than the critical value
d(L � 1)/(L � Q)e. Once R reaches this critical value, further
increasing the number of receive antennas does not increase the
capacity pre-log.

C. Property (A) is mild
Property (A) is not very restrictive and is satisfied by many

practically relevant channel covariance matrices D. For example,
removing an arbitrary set of L � Q columns from an L ⇥ L

discrete Fourier transform (DFT) matrix results in a matrix that
satisfies Property (A) when L is prime [16]. (Weighted) DFT
covariance matrices arise naturally in so-called basis-expansion
models for time-selective channels [10].

Property (A) can furthermore be shown to be satisfied by
“generic” matrices D. Specifically, if the entries of D are chosen
randomly and independently from a continuous distribution [17,
Sec. 2-3, Def. (2)] (i.e., a distribution with a well-defined proba-
bility density function (PDF)), then the resulting matrix D will
satisfy Property (A) with probability one. The proof of this state-
ment follows from a union bound argument together with the fact
that N independent N -dimensional vectors drawn independently
from a continuous distribution are linearly independent with
probability one.

V. PROOF OF THE UPPER BOUND (11)
The proof of (11) consists of two parts. First, in Section V-A,

we prove that �  R(1 � Q/L). This will be accomplished by
generalizing—to the SIMO case—the approach developed in [10,
Prop. 4] for establishing an upper bound on the SISO capacity
pre-log. Second, in Section V-B, we prove that �  1 � 1/L

by showing that the capacity of a SIMO channel with R receive
antennas and channel covariance matrix of rank Q can be upper-
bounded by the capacity of a SIMO channel with RQ receive
antennas, the same SNR, and a rank-1 covariance matrix. The
desired result, �  1 � 1/L, then follows by application of [7,
Eq. (27)], [18, Eq. (7)] as detailed below.

A. First part: �  R(1 � Q/L)

To simplify notation, we first rewrite (3) as

Y =

p
⇢ diag(x)DS + W, (14)

where Y , [y1 · · · yR], H , [h1 · · · hR], W , [w1 · · · wR],
and S , [s1 · · · sR].

Recall that D has rank Q. Without loss of generality, we
assume, in what follows, that the first Q rows of D are linearly
independent. This can always be ensured by reordering the scalar
IO relations in (2). With Q , [1 :Q] and L , [Q+1 :L] we can
write

I(Y;x) = I(YQ,YL;x)

(a)
= I(YQ;x) + I(YL;x |YQ)

(b)
= I(YQ;xQ) + I(YQ;xL |xQ)| {z }

0

+I(YL;x |YQ)

(c)
= I(YQ;xQ) + I(YL;x |YQ) , (15)

where (a) and (b) follow by the chain rule for mutual information
and in (c) we used that YQ and xL are independent conditional
on xQ. Next, we upper-bound each term in (15) separately.

From [19, Thm. 4.2] we can conclude that the assumption
of the first Q rows of D being linearly independent implies
that the first term on the RHS of (15) grows at most double-
logarithmically with SNR and hence does not contribute to
the capacity pre-log. For the reader’s convenience, we repeat
the corresponding brief calculation from [19, Thm. 4.2] in
Appendix A and show that:

I(YQ;xQ)  Q log log(⇢) + O(1). (16)

Here and in what follows, O(1) refers to the limit ⇢ ! 1.
For the second term in (15) we can write

I(YL;x |YQ) = h(YL |YQ) � h(YL |x,YQ)

(a)

 h(YL) � h(YL |x,YQ, s)

= h(YL) � h(WL)

(b)


LX

l=Q+1

RX

r=1

(h(ylr) � h(wlr))

(c)


LX

l=Q+1

RX

r=1

log

�
1 + ⇢E

⇥|hlr|2
⇤
E
⇥|xl|2

⇤�

(d)


LX

l=Q+1

RX

r=1

log

�
1 + L⇢E

⇥|hlr|2
⇤�

(e)
= R(L � Q) log(⇢) + O(1), (17)

where in (a) we used the fact that conditioning reduces entropy;
(b) follows from the chain rule for differential entropy and
the fact that conditioning reduces entropy; (c) follows because
Gaussian random variables are differential-entropy-maximizers
for fixed variance and because hlr and xl are independent; (d)
is a consequence of the power constraint (5); and (e) follows
because E

⇥��
hlr

��2⇤
= 1.

Combining (15), (16), and (17) yields

C(⇢)  R(1�Q/L) log(⇢)+(Q/L) log log(⇢)+O(1). (18)

Since lim⇢!1 log log(⇢)/ log(⇢) = 0, this completes the proof
of the bound �  R(1 � Q/L).
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It follows from (18) that for Q = L, the capacity pre-log is
zero and C(⇢) can grow no faster than double-logarithmically
in ⇢.

Recall that 1 � Q/L is the capacity pre-log of the correlated
block-fading SISO channel [10]. As the proof of the upper bound
�  R(1 � Q/L) reveals, the capacity pre-log of the SIMO
channel (3) can not be larger than R times the capacity pre-log of
the corresponding SISO channel (i.e., the capacity pre-log of one
of the SISO component channels). The upper bound R(1�Q/L)

may seem crude, but, surprisingly, it matches the lower bound
for R < d(L � 1)/(L � Q)e.

B. Second part: �  1 � 1/L

The proof of �  1 � 1/L will be accomplished in two steps.
In the first step, we show that the capacity of a SIMO channel
with R receive antennas and rank-Q channel covariance matrix
is upper-bounded by the capacity of a SIMO channel with RQ

receive antennas, the same SNR, and rank-1 covariance matrix.
In the second step, we exploit the fact that the channel (14) with
rank-1 covariance matrix (under the assumption that the rows of
D have unit norm) is a constant block-fading channel for which
the capacity pre-log was shown in [7] to equal 1� 1/L. We now
implement the proof program just outlined.

Let d1, . . . , dQ 2 CL denote the columns of the L⇥Q matrix
D so that D = [d1 · · · dQ]. Let ¯s1, . . . ,¯sQ 2 CR denote the
transposed rows of the Q⇥R matrix S so that ST

= [

¯s1 · · · ¯sQ].
We can rewrite the IO relation (14) in the following form that is
more convenient for the ensuing analysis:

Y =

p
⇢

QX

q=1

diag(dq)x¯sTq + W.

LetW1, . . . ,WQ be independent random matrices of dimension
L ⇥ R, each with i.i.d. CN (0, 1) entries. As, by assumption, the
rows of D have unit norm, we have that

W
d⇠

QX

q=1

diag(dq)Wq.

Hence, we can rewrite Y as

Y
d⇠

QX

q=1

diag(dq)Yq, (19)

where
Yq , p

⇢x¯sTq + Wq, q 2 [1 :Q]. (20)

Note now that each Yq is the output of a SIMO channel with R

receive antennas, rank-1 channel covariance matrix, and SNR ⇢.
Realizing that, by (19) and (20), x ! {Y1, . . . ,YQ} ! Y
forms a Markov chain, we conclude, by the data-processing
inequality [20, Sec. 2.8], that

I(Y;x)  I(Y1, . . . ,YQ;x).

The claim now follows by noting that the L ⇥ (RQ) matrix
obtained by stacking the matrices Yq next to each other can be
interpreted as the output of a SIMO channel with RQ receive
antennas, rank-1 covariance matrix, independent fading across

receive antennas, and SNR ⇢. The proof is completed by upper-
bounding the capacity of this channel by means of the following
lemma.

Lemma 2. The capacity of the SIMO channel (14) with R

receive antennas, Q = 1, and L � 2 can be upper-bounded
according to

C(⇢)  (1 � 1/L) log ⇢+ O(1), ⇢ ! 1.

This result follows from [7, Eq. (27)]. A simpler and more
detailed proof can be found in [18, Eq. (7)].

VI. PROOF OF THE LOWER BOUND (12)
To help the reader navigate through the proof of the lower

bound (12), we start by explaining the architecture of the proof.

A. Architecture of the proof
The proof consists of the following steps, each of which

corresponds to a subsection in this section:
Step 1: Choose an input distribution; we will see that i.i.d.

CN (0, 1) input symbols allow us to establish the ca-
pacity pre-log lower bound (12).

Step 2: Decompose the mutual information between the input
and the output of the channel according to I(x;y) =

h(y) � h(y |x).
Step 3: Using standard information-theoretic bounds show that

h(y |x) is upper-bounded byRQ log(⇢) + O(1).
Step 4: Split h(y) into three terms: a term that depends on SNR,

a differential entropy term that depends on the noiseless
channel output ˆy only, and a differential entropy term
that depends on the noise vector w only. Conclude that
the last of these three terms is a finite constant4.

Step 5: Conclude that the SNR-dependent term obtained in
Step 4 scales (in SNR) as min[RQ+L�1, RL] log(⇢).
Together with the decomposition from Step 2 and the
result from Step 3 this gives the desired lower bound (12)
provided that the ˆy-dependent differential entropy ob-
tained in Step 4 can be lower-bounded by a finite con-
stant.

Step 6: To show that the ˆy-dependent differential entropy ob-
tained in Step 4 can be lower-bounded by a finite con-
stant, apply the change of variables ˆy ! (x, s) to
rewrite the differential entropy as a sum of the differen-
tial entropy of (x, s) and the expected (w.r.t. x and s)
logarithm of the Jacobian determinant corresponding to
the transformation ˆy ! (x, s). Conclude that the differ-
ential entropy of (x, s) is a finite constant. It remains
to show that the expected logarithm of the Jacobian
determinant is lower-bounded by a finite constant as
well.

Step 7: Factor out the x-dependent terms from the expected
logarithm of the Jacobian determinant and conclude
that these terms are finite constants. It remains to show
that the expected logarithm of the s-dependent factor
in the Jacobian determinant is lower-bounded by a

4Here, and in what follows, whenever we say “finite constant”, we mean
SNR-independent and finite.
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finite constant as well. This poses the greatest technical
difficulties in the proof of the lower bound (12) and is
addressed in the remaining steps.

Step 8: Based on a deep result from algebraic geometry, known
as Hironaka’s Theorem on the Resolution of Singular-
ities, conclude that the expected logarithm of the s-
dependent factor in the Jacobian determinant is lower-
bounded by a finite constant, provided that this factor
is nonzero for at least one element in its domain.

Step 9: Prove by explicit construction that there exists at least
one s, for which the s-dependent factor in the Jacobian
determinant is nonzero.

We next implement the proof program outlined above.

B. Step 1: Choice of input distribution

First note that for Q = L the lower bound in (12) is reduced
to � � 0 and is hence trivially satisfied. In the remainder of the
paper we shall therefore assume that Q < L.

We shall furthermore work under the assumption

R 
⇠

L � 1

L � Q

⇡
, (21)

which trivially leads to a capacity pre-log lower bound as capacity
is a nondecreasing function of R (one can always switch off
receive antennas).

A capacity lower bound is trivially obtained by evaluating the
mutual information in (4) for an appropriate input distribution.
Specifically, we take i.i.d. xi ⇠ CN (0, 1), i 2 [1 :L]. This
implies that h(xi) > �1, i 2 [1 :L], and, hence [19, Lem.
6.7],

E[log(|xi|)] > �1, i 2 [1 :L]. (22)

We point out that every input vector with i.i.d., zero mean, unit
variance entries xi that satisfy h(xi) > �1, i 2 [1 :L], would
allow us to prove (12). The choice xi ⇠ CN (0, 1) is made for
concreteness and convenience.

C. Step 2: Mutual information decomposition

Decompose

I(x;y) = h(y) � h(y |x) (23)

and separately bound the two differential entropy terms for the
input distribution chosen in Step 1.

D. Step 3: Analysis of h(y |x)

As y conditioned on x is JPG, the conditional differential
entropy h(y |x) can be upper-bounded in a straightforward

manner as follows:

h(y |x) = RL log(⇡e)

+ E
x

⇥
log det

�
IRL + ⇢ (IR ⌦XD)E

s

⇥
ssH
⇤ �

IR ⌦ D

HXH
��⇤

= RL log(⇡e) + RE
x

⇥
log det

�
IL + ⇢

�
XDD

HXH
��⇤

= RL log(⇡e) + RE
x

⇥
log det

�
IQ + ⇢

�
D

HXHXD

��⇤

(a)

 RL log(⇡e) + R log det

�
IQ + ⇢

�
D

H E
x

⇥
XHX

⇤
D

��

= RL log(⇡e) + R

QX

i=1

log

�
1 + ⇢�i

�
D

H
D

��

(b)
 RQ log(⇢) + O(1). (24)

Here, (a) follows from Jensen’s inequality, and (b) holds because
D has rank Q and, therefore, �i

�
D

H
D

�
> 0 for all i 2 [1 :Q].

E. Step 4: Splitting h(y) into three terms
Finding an asymptotically (in SNR) tight lower bound on

h(y) is the main technical challenge of the proof of Theorem 1.
The back-of-the-envelope calculation presented in Section III
suggests that the problem can be approached by splitting h(y)

into a term that depends on the noiseless channel output ˆy =

(IR ⌦XD) s only and a term that depends on noise w only. This
can be realized as follows.

Consider a set of indices I ✓ [1 :LR] (we shall later discuss
how to choose I) and define the following projection matrices

P , (ILR)I

Q , (ILR)[1 : LR]\I .

We can lower-bound h(y) according to

h(y) = h(Py, Qy)

(a)
= h(Py) + h(Qy | Py)

(b)
� h(

p
⇢P

ˆy + Pw | Pw) + h(Q

ˆy + Qw | Qˆy, Py)

(c)
= h(

p
⇢P

ˆy) + h(Qw | Py)

(d)
= h(

p
⇢P

ˆy) + h(Qw)

(e)
= |I| log(⇢) + h(P

ˆy) + c. (25)

Here, (a) follows by the chain rule for differential entropy;
(b) follows from (3), (6), and because conditioning reduces en-
tropy; (c) follows because differential entropy is invariant under
translations and because w and ˆy are independent; (d) follows
because Qw and Py are independent; and in (e) we used the fact
that P

ˆy is a
��I��-dimensional vector and h(Qw) = c, where c

here and in what follows denotes a constant that is independent
of ⇢ and can take a different value at each appearance.

Through this chain of inequalities, we disposed of noise w and
isolated SNR-dependence into a separate term. This corresponds
to considering the noise-free IO relation (6) in the back-of-the-
envelope calculation. Note further that we also rid ourselves of
the components of ˆy indexed by [1 :LR]\I; this corresponds to
eliminating unnecessary equations in the back-of-the-envelope
calculation. The specific choice of the set I is crucial and will
be discussed next.
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F. Step 5: Analysis of the SNR-dependent term in (25)
If h(P

ˆy) > �1, we can substitute (25) and (24) into (23)
which then yields a capacity lower bound of the form

C(⇢) �
��I��� RQ

L

log(⇢) + O(1). (26)

This bound needs to be tightened by choosing the set I such that��I�� is as large as possible while guaranteeing h(P

ˆy) > �1.
Comparing the lower bound (26) to the upper bound (11) we see
that the bounds match if

|I| = min[RQ + L � 1, RL]. (27)

Condition (27) dictates that for RL  RQ + L � 1 we must set
I = [1 :RL], which yields P

ˆy =

ˆy. When RL > RQ + L � 1

the set I must be a proper subset of [1 :RL]. Specifically, we
shall choose I as follows. Set

˜

R =

(
R(L � Q) � (L � 1), if RL > RQ + L � 1

0, if RL  RQ + L � 1,

(28)

let

Ir =

(
[(r � 1)L + 1 :rL � 1], 1  r  ˜

R

[(r � 1)L + 1 :rL],

˜

R + 1  r  R,

and define I , SR
r=1 Ir.

This choice can be verified to satisfy (27). Obviously, this is
not the only choice for I that satisfies (27). The specific set I
chosen here will be seen to guarantee h(P

ˆy) > �1 and at the
same time simplify the calculations in Section VI-I.

Substituting (27) into (26), we obtain the desired result (12),
provided that h(P

ˆy) > �1. Establishing that h(P

ˆy) > �1 is,
as already mentioned, the major technical difficulty in the proof
of Theorem 1 and will be addressed next.

G. Step 6: Analysis of h(P

ˆy) through change of variables
It is difficult to analyze h(P

ˆy) directly since ˆy =

(IR ⌦XD) s depends on the pair of variables (s,x) in a nonlinear
fashion. We have seen, in Section III, that (6) has a unique
solution in (s,x), provided that the appropriate number of pilot
symbols is used. This suggests that there must be a one-to-one
correspondence between P

ˆy and the pair (s,x). The existence
of such a one-to-one correspondence allows us to locally lin-
earize the equation ˆy = (IR ⌦XD) s and to relate h(P

ˆy) to
h(s,x) = h(s) + h(x). This idea is key to bringing h(P

ˆy) into
a form that eventually allows us to conclude that h(P

ˆy) > �1.
Formally, it is possible to relate the differential entropies of

two random vectors of the same dimension that are related by
a deterministic one-to-one function (in the sense of [21, p.7])
according to the following lemma.

Lemma 3 (Transformation of differential entropy). Assume that
g : CN ! CN is a continuous vector-valued function that is
one-to-one and differentiable almost everywhere (a.e.) on CN .
Let u 2 CN be a continuous [17, Sec. 2-3, Def. (2)] random
vector (i.e., it has a well-defined PDF) and let v = g(u). Then

h(v) = h(u) + 2E
u

[log |det(@g/@u)|] ,
where @g/@u is the Jacobian of the function g(·).

The proof follows from the change-of-variables theorem for
integrals [21, Thm. 7.26] and is given in Appendix B for com-
pleteness since the version of the theorem for complex-valued
functions does not seem to be well documented in the literature.

Note that P

ˆy 2 C|I| with
��I�� given in (27) and [sT xT

]

T 2
CRQ+L. Since

��I�� < RQ + L (see (27)), the vectors P

ˆy and
[sT xT

]

T are of different dimensions and Lemma 3 can therefore
not be applied directly to relate h(P

ˆy) to h(s,x). This problem
can be resolved by conditioning on a subset P ⇢ [1 :L] (specified
below) of components of x according to

h(P

ˆy) � h(P

ˆy |xP) . (29)

The components xP correspond to the pilot symbols in the
back-of-the-envelope calculation. The set P is chosen such that
(i) the set of remaining components in x, J = [1 :L] \ P ,
is of appropriate size ensuring that P

ˆy and [sT xT
J ]

T are of
the same dimension, and (ii) P

ˆy and [sT xT
J ]

T are related by
a deterministic bijection so that Lemma 3 can be applied to
relate h(P

ˆy |xP) to h(s,xJ |xP). Specifically, set

↵ = max[1, RQ + L � RL], (30)

let P , [1 :↵], which implies J = [↵ + 1 :L]. Observe
that P

ˆy (conditioned on xP ) depends only on [sT xT
J ]

T, and
due to our choice of J (it is actually the choice of

��J �� that is
important here), the vectors P

ˆy and [sT xT
J ]

T are of the same
dimension. Furthermore, these two vectors are related through
a deterministic bijection: Consider the vector-valued function
gxP : C|I| ! C|I|

gxP (s, xJ ) = P(IR ⌦ XD)s. (31)

Here, and whenever we refer to the function gxP (·) in the
following, we use the convention that the parameter vector
xP 2 C|P| and the variable vector xJ 2 C|J | are stacked into
the vector x , [x

T
P x

T
J ]

T and we set X , diag(x).

Lemma 4. If xP has nonzero components only, i.e., xi 6= 0 for
all i 2 P , then the function gxP (·) is one-to-one a.e. on C|I|.

The proof of Lemma 4 is given in Appendix C and is based
on the results obtained later in this section. We therefore invite
the reader to first study the remainder of Section V and to return
to Appendix C afterwards.

Recall that P

ˆy = P (IR ⌦XD) s and hence P

ˆy =

g

xP (s,xJ ). Therefore, it follows from Lemma 4 that as long as
xP = xP is fixed and satisfies xi 6= 0, for all i 2 P , P

ˆy and
[sT xT

J ]

T are related through the bijection gxP (·) as claimed.
Comments: A few comments on Lemma 4 are in order. For

L = 3 and R = Q = 2 as in the simple example in Section III,
we see from (27) that I = [1 :RL] so that P = IRL and P

ˆy =

ˆy.
Further, for this example, it follows from (30) that ↵ = 1 and
hence P = {1} and J = {2, 3}. Therefore, Lemma 4 simply
says that (6) has a unique solution for fixed x1 6= 0. As already
mentioned, conditioning w.r.t. xP = x1 in (29) in order to make
the relation between P

ˆy and [sT xT
J ]

T be one-to-one corresponds
to transmitting a pilot symbol, as was done in the back-of-the-
envelope calculation by setting x1 = 1.
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We can now use Lemma 3 to relate h(P

ˆy |xP) to h(s,xJ ) as
follows. Let f

xP (·) denote the PDF of xP . Then, we can write

h(P

ˆy |xP) =

Z
f

xP (xP)h(P

ˆy |xP = xP) dxP . (32)

Let

J(s, x) , @gxP

@(s, xJ )

(33)

be the Jacobian of the mapping in (31) (where we again
use the convention x = [x

T
P x

T
J ]

T). Applying Lemma 3 to
h(P

ˆy |xP = xP), we get for all xP with xi 6= 0, i 2 P, that

h(P

ˆy |xP = xP) = h(s,xJ |xP = xP)

+ 2E
s,xJ

h
log(|det J(s,x)|)

���xP = xP

i
. (34)

Substituting (34) into (32), we finally obtain

h(P

ˆy |xP)

(a)
=

Z
f

xP (xP)h(s,xJ |xP = xP) dxP

+ 2

Z
f

xP (xP)E
s,xJ

h
log(|det J(s,x)|)

���xP = xP

i
dxP

= h(s,xJ |xP) + 2 E
s,x[log(|det(J(s,x))|)] . (35)

Here, in (a), to be able to use (34), we exclude the set {xP |xi =

0 for at least one i 2 P} from the domain of integration. This
is legitimate since that set has measure zero.

The first term on the right-hand side (RHS) of (35) satisfies

h(s,xJ |xP)

(a)
= h(s |xP) + h(xJ | s,xP)

(b)
= h(s) + h(xJ )

(c)
= c, (36)

where (a) follows by the chain rule for differential entropy; in
(b) we used that x is independent of s, and xP is independent
of xJ because the xi, i 2 [1 :L], are i.i.d. and J \ P = ;; and
(c) follows because the xi, i 2 J , and the si, i 2 [1 :RQ], are
i.i.d. and have finite differential entropy, by assumption.

Combining (36), (35), and (29), we obtain

h(P

ˆy) � c + 2E
s,x[log(|det(J(s,x))|)] .

To show that h(P

ˆy) > �1, it therefore remains to prove that

E
s,x[log(|det(J(s,x))|)] > �1. (37)

This requires an in-depth analysis of the structure of
��
det(J(·))��,

which will be carried out in the next section.

H. Step 7: Factorization of det(J(·)) and analysis of x-
dependent terms

The following lemma shows that the determinant of the Jaco-
bian in (33) can be factorized into a product of simpler terms.

Lemma 5. The determinant of the Jacobian in (33) factorizes
as

det(J(s, x)) = det(J1(x)) det(J2(s)) det(J3(xJ )) ,

where

J1(x) , P(IR ⌦ X)P

T

J2(s) , P[IR ⌦ D | a↵+1 | · · · | aL] (38)

J3(xJ ) , diag(IRQ, (diag(xJ ))

�1
)

with

ai , (IR ⌦ diag(ei)D)s, i 2 J = [1:L]. (39)

Proof: First note that gxP (s, xJ ) in (31) can be written as

gxP (s, xJ ) =

X

j2[1:L]

xj(IR ⌦ diag(ej)D)s

and, therefore,

@gxP

@xi
=

@

@xi

⇣ X

j2[1 : L]

xj(IR ⌦ diag(ej)D)s

⌘

= ai, i 2 J .

With
@gxP

@s

= IR ⌦ XD

we can now rewrite the Jacobian in (33) as

J(s, x) = P[IR ⌦ XD | a↵+1 | · · · | aL]

= (P(IR ⌦ X)P

T
) J2(s) diag(IRQ, (diag(xJ ))

�1
),

(40)

which concludes the proof.
Using Lemma 5, we can rewrite the second term on the RHS

of (35) according to

E
s,x[log(|det(J(s,x))|)] = E[log(|det(J1(x))|)]

+ E[log(|det(J2(s))|)]
+ E[log(|det(J3(xJ ))|)] . (41)

The first and the third term in (41) can be expanded as

E[log(|det(J1(x))|)] =

˜

R

L�1X

j=1

E[log(|xj |)]

+ (R � ˜

R)

LX

j=1

E[log(|xj |)] (42)

E[log(|det(J3(xJ ))|)] = �
X

j2J
E[log(|xj |)] . (43)

Using (22), (5), and Jensen’s inequality, we have

�1 < E[log(|xj |)]  log(E[|xj |]) < 1,

which immediately implies that the terms on the left-hand side
(LHS) of (42) and (43) are finite. It remains to show that
E
⇥
log

���
det(J2(s))

���⇤
> �1.
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I. Step 8: Proving E
⇥
log

���
det(J2(s))

���⇤
> �1 through reso-

lution of singularities
This is the most technical part of the proof of Theorem 1. We

need to show that

E[log(|det(J2(s))|)]
=

1

⇡

RQ

Z

CRQ

exp(�ksk2
) log(|det(J2(s))|)ds > �1. (44)

Since J2(·) is a large matrix with little structure to exploit, a
direct evaluation of the integral in (44) seems daunting. Note,
however, that by (38), (39), and [22, 4.2.1(2)] it follows that
det(J2(s)) is a homogeneous polynomial in s1, . . . , sRQ; in
other words det(J2(·)) is a well-behaved function of its argu-
ments. It turns out that this mild property is sufficient to prove
the inequality in (44). The proof, however, requires powerful
tools, which will be described next.

Lemma 6. Let p(u), u 2 CN
, be a homogeneous polynomial

in u1, . . . , uN . Then, p(·) 6⌘ 0 implies that
Z

CN

exp(�kuk2
) log(|p(u)|)du > �1.

Lemma 6 is proved in Appendix D using the following general
result, which is a consequence of Hironaka’s Theorem on the
Resolution of Singularities [11, Theorem 2.3].

Theorem 7. Let f(·) 6⌘ 0 be a real analytic function5 [14, Def.
2.2.1] on an open set ⌦ ⇢ RK . Then

Z

�

|log(|f(u)|)|du < 1 (45)

for all compact sets � ⇢ ⌦.

For a formal proof of Theorem 7 see Appendix E. Here, we
explain intuitively why this result holds. The only reason why
the integral in (45) could diverge, is because

��
f(·)�� may take on

the value zero and log(0) = �1. Since f(·) is a real analytic
function and since f(·) 6⌘ 0, the zero set f

�1
({0}) has measure

zero. To prove (45), it remains to examine the detailed behavior of
f(·) around the zero set f

�1
({0}). The integral of

��
log(|f(·)|)��

over a small enough neighborhood around each smooth (i.e.
nonsingular) point in the zero set is bounded, but it is difficult
to determine what happens near the singularities. Hironaka’s
Theorem on the Resolution of Singularities “untangles” the
singularities so that we can understand their structure. More
formally, Hironaka’s Theorem states that in a small neighbor-
hood around every point in f

�1
({0}), the real analytic function

f(·) behaves like a product of a monomial of finite degree
and a nonvanishing real analytic function. The integral of the
logarithm of the absolute value of this product over a small
enough neighborhood around each point in f

�1
({0}) is then

easily bounded and turns out to be finite. The union of the
neighborhoods of the points in f

�1
({0}) forms an open cover

for f

�1
({0}). Since � is a compact set, it is possible to find a

finite subcover for f

�1
({0}). Summing up the integrals over the

elements of this subcover, each of which is finite as explained

5Let ⌦ be an open subset of RK . A function f(·) : ⌦ ! R is real analytic
if for every x0 2 ⌦, f(·) can be represented by a convergent power series in
some neighborhood of x0.

above, allows us to deduce that the integral in (45) must be finite
as well.

On account of Lemma 6, to show (44) it suffices to verify that
det(J2(·)) 6⌘ 0. This is indeed the case as demonstrated next.

J. Step 9: Identifying an s for which det(J2(s)) 6= 0

Lemma 8. Property (A) in Theorem 1 implies that
det(J2(·)) 6⌘ 0.

Proof: The proof is effected by showing that Property (A)
implies the existence of a vector s 2 CRQ such that det(J2(s)) 6=
0. To this end, we first note that J2(s) in (38) can be written as
J2(s) = [P (IR ⌦ D) A] with

A ,

2

4
A1...
AR

3

5 (46)

and

Ai ,

0

BBB@

0↵ · · · 0↵ 0↵
¯

d

T
↵+1si · · · 0 0

...
. . .

0 0

0 · · · ¯

d

T
L�1si 0

1

CCCA
, i 2 [1 : ˜

R],

Ai ,

0

BBBBB@

0↵ · · · 0↵ 0↵
¯

d

T
↵+1si · · · 0 0

...
. . .

0 0

0 · · · ¯

d

T
L�1si 0

0 · · · 0

¯

d

T
Lsi

1

CCCCCA
, i 2 [

˜

R + 1 :R].

Here, ↵ was defined in (30); 0↵ denotes an all-zero vector of
dimension ↵; ¯

d1, . . . ,
¯

dL 2 CQ are the transposed rows of the
L⇥Q matrix D so that D

T
= [

¯

d1 · · · ¯

dL]; and the si 2 CQ
, i 2

[1 :R], are defined through s , [s

T
1 · · · s

T
R]

T. The calculations
below are somewhat tedious but the idea is simple. Thanks to
Property (A) in Theorem 1, it is possible to find vectors si 2
CQ

, i 2 [1 :R], such that each column of the matrix A defined
in (46) has exactly one nonzero element. For this choice of si 2
CQ

, i 2 [1 :R], we can then conveniently factorize
��
J2(s)

�� using
the Laplace formula [23, p. 7]; the resulting factors are easily
seen to all be nonzero. We next detail the program just outlined.

Take an i 2 [1 :R] and consider a set Ki satisfying

Ki ✓
(

[↵+ 1 :L � 1], if i 2 [1 : ˜

R],

[↵+ 1 :L], if i 2 [

˜

R + 1 :R],

(47)

with

|Ki| =

(
Q � 1, if RL > RQ + L � 1

(R � 1)(L � Q), if RL  RQ + L � 1.

(48)

The freedom in choice of the set Ki will be used later to ensure
that each column of the matrix A has exactly one nonzero
element. We shall next show that the vector si 2 CQ can be
chosen such that the entries of Ai given by ¯

d

T
j si, j 2 Ki, equal

zero and the entries ¯

d

T
j si, j /2 Ki, are nonzero. Since, by (48),��Ki

��  Q � 1, Property (A) in Theorem 1 guarantees that the
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si

¯

d3

¯

d2

span{¯

d2,
¯

d3}

¯

d4

Fig. 2. Choice of the vector si forL = 4, Q = 3, ↵ = 1, Ki = {2, 3}, Kc
i =

{4}.

vectors {¯

dj}j2Ki are linearly independent. Furthermore, the
vectors ¯

dj , j 2 Kc
i , with

Kc
i ,

(
[↵+ 1 :L � 1] \ Ki, if i 2 [1 : ˜

R],

[↵+ 1 :L] \ Ki, if i 2 [

˜

R + 1 :R],

(49)

do not belong to span{¯

dj}j2Ki . Hence, we can find a vector
si 2 CQ such that
(a) ¯

d

T
j si = 0 for all j 2 Ki;

(b) ¯

d

T
j si 6= 0 for all j 2 Kc

i .
Geometrically, this simply means that si must be chosen such
that it is orthogonal to span{¯

dj}j2Ki (which is a subspace ofCQ

of dimension less than or equal to Q� 1) and, in addition, is not
orthogonal to every vector in the set {¯

dj}j2Kc
i

(see Fig. 2). Note
that if Property (A) in Theorem 1 were not satisfied, we could
have a vector ¯

dj0
, j

0 2 Kc
i , that belongs to the span{¯

dj}j2Ki ;
in this case there would not exist a vector si that satisfies (a) and
(b) simultaneously. Based on (30), (48), and (49), we can see
that if the vector si is chosen such that conditions (a) and (b)
above are satisfied, the number of nonzero elements,

��Kc
i

��, in
the matrix Ai is [see (28)]

|Kc
i | =

(
L � Q � 1, if i 2 [1 : ˜

R],

L � Q, if i 2 [

˜

R + 1 :R].

Hence, applying the procedure described above to every i 2
[1 :R] and choosing the corresponding vector si such that (a)
and (b) are satisfied, we obtain a matrix A [see (46)] with total
number of nonzero elements equal to the number of columns in
A and given by X

i2[1 : R]

|Kc
i | = L � ↵.

Now, recall that we have full freedom in our choice of Ki, i 2
[1 :R], as long as (47) and (48) are satisfied; this implies that
we have control over the locations of the nonzero elements of A.
Hence, by appropriate choice of the sets Ki, i 2 [1 :R], we can
ensure that each column of A contains precisely one nonzero
element.

Applying the Laplace formula [23, p. 7] iteratively, we then
get

|det(J2(s))| = c

Y

i2[1:R]

��
det(DKi[[1 :↵])

��
, (50)

where c is a positive constant. Finally, since for every i 2 [1 :R],
DKi[[1 :↵] is a Q ⇥ Q submatrix of D [see (30) and (48)], it

follows from Property (A) in Theorem 1 that DKi[[1 :↵] has
linearly independent rows and hence

��
det(DKi[[1 :↵])

��
> 0, for

all i 2 [1 :R], which by (50) concludes the proof.
The proof of Theorem 1 is now completed as follows. Com-

bining Lemmas 6 and 8, we conclude that (44) holds. Sub-
stituting (44) into (41) and using (42) and (43), we conclude
that (37) holds. Therefore, by (29), (35), and (36), it follows that
h(P

ˆy) > �1.

VII. CONCLUSIONS AND FUTURE WORK

We characterized the capacity pre-log of a temporally cor-
related block-fading SIMO channel in the noncoherent setting
under a mild assumption on the channel covariance matrix. The
most striking implication of this result is that the pre-log penalty
in the SISO case due to channel uncertainty can be made to
vanish in the large block length regime by adding only one
receive antenna.

It would be interesting to generalize the results in this paper to
the MIMO case. Preliminary work in this direction was reported
in [24], which establishes a lower bound on the capacity pre-
log of a temporally correlated block-fading MIMO channel.
This lower bound is not accompanied by a matching upper
bound so that the problem of determining the capacity pre-
log in the MIMO case remains open. It is also interesting to
note that [24] avoids the use of Hironaka’s theorem through an
alternative proof technique based on properties of subharmonic
functions.

Further interesting open questions include the generalization
of the results in this paper to the stationary case and the de-
velopment of coding schemes that achieve the SIMO capacity
pre-log.

APPENDIX A
PROOF OF (16)

The following calculation repeats the steps in [19, Thm. 4.2]
and is provided for the reader’s convenience:

I(YQ;xQ) =

QX

q=1

I

�
Y{q};xQ |Y[1 : q�1]

�

=

QX

q=1

�
I

�
Y{q};Y[1 : q�1],xQ

�� I

�
Y{q};Y[1 : q�1]

��


QX

q=1

I

�
Y{q};Y[1 : q�1],xQ

�

=

QX

q=1

�
I

�
Y{q};Y[1 : q�1],H[1 : q�1],xQ

�

� I

�
Y{q};H[1 : q�1] |Y[1 : q�1],xQ

��


QX

q=1

I

�
Y{q};Y[1 : q�1],H[1 : q�1],xQ

�

(a)
=

QX

q=1

I

�
Y{q};H[1 : q�1], xq

�

=

QX

q=1

�
I

�
Y{q};H[1 : q�1] | xq

�
+ I

�
Y{q}; xq

��
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(b)


QX

q=1

I

�
Y{q};H[1 : q�1] | xq

�
+ Q log log(⇢) + O(1)

(c)
=

QX

q=1

I

�
Y{q}, xq;H[1 : q�1]

�
+ Q log log(⇢) + O(1)


QX

q=1

I

�
Y{q}, xq,H{q};H[1 : q�1]

�
+ Q log log(⇢) + O(1)

(d)
=

QX

q=1

I

�
H{q};H[1 : q�1]

�
+ Q log log(⇢) + O(1)

= Qh

�
H{1}

�� h(HQ) + Q log log(⇢) + O(1)

= Q

RX

i=1

h(hi1) � R log det

�
DQD

H
Q
�

+ Q log log(⇢) + O(1)

(e)
= Q log log(⇢) + O(1)

where (a) follows because Y{q} is conditionally independent
of x[1 : q�1] and of Y[1 : q�1] given xq and H[1 : q�1]; (b) follows
from [19, Th. 4.2]; (c) follows because xq is independent of
H[1 : q�1]; (d) follows because Yq and xq are conditionally
independent of H[1 : q�1] given Hq; and (e) follows because the
matrix DQ is full-rank and h(hi1) = c, i 2 [1 :R].

APPENDIX B
PROOF OF LEMMA 3

The lemma is based on the change of variables theorem for
integrals, which we restate for the reader’s convenience.

Theorem 9. [21, Thm. 7.26], [15, p. 31, Thm. 7.2] Assume that
g : U ⇢ CN ! CN is a continuous vector-valued function that
is one-to-one and differentiable a.e. on U . Let V = g(U). Then,

Z

V
f(v)dv =

Z

U
f(g(u))|det(@g/@u)|2du

for every measurable f : CN ! [0, 1].

To prove Lemma 3, we let f

v

(·) and f

u

(·) denote the PDFs
of random vectors v and u, respectively. Then, according to [25,
(7-8)] and [15, p.31, Thm. 7.2]

f

v

(g(u)) =

f

u

(u)��
det(@g/@u)

��2 . (51)

Next, let U and V denote the support of f

u

(·) and f

v

(·),
respectively. Then, V = g(U) and, on account of Theorem 9, we
have

h(v) = �
Z

V
f

v

(v) log(f

v

(v)) dv

= �
Z

U
f

v

(g(u)) log(f

v

(g(u))) |det(@g/@u)|2du

(a)
= �

Z

U

f

u

(u)��
det(@g/@u)

��2 ⇥

⇥ log

 
f

u

(u)��
det(@g/@u)

��2

!
|det(@g/@u)|2du

= �
Z

U
f

u

(u) log(f

u

(u)) du

+ 2

Z

U
f

u

(u) log(|det(@g/@u)|) du

= h(u) + 2E
u

[log |det(@g/@u)|]
where in (a) we used (51). This concludes the proof.

APPENDIX C
PROOF OF LEMMA 4

We need to show that the function gxP (s, xJ ) is one-to-one
almost everywhere. It is therefore legitimate to exclude sets of
measure zero from its domain. In particular, we consider the
restriction of the function gxP (s, xJ ) to the set of pairs (s, xJ )

that satisfy
(i)
��
xi

��
> 0 for all i 2 J ;

(ii) det J2(s) 6= 0 with J2(·) defined in (38).
Condition (i) excludes those xJ from the domain of gxP (·) that
have at least one component equal to zero; since the xi, i 2 J ,

take on values in a continuum, the excluded set has measure zero.
Condition (ii) excludes those s from the domain of gxP (·) that
have det(J2(s)) = 0. Remember that we proved in Section VI-I
(see (44)) that E

⇥
log(

��
det(J2(s))

��
)

⇤
> �1, which implies

det(J2(·)) 6= 0 a.e. Therefore, the set excluded in (ii) must be
a set of measure zero. We conclude that the set of pairs (s, xJ )

that violates at least one of the conditions (i) and (ii) is a set of
measure zero.

To show that the resulting restriction of the function gxP (·)
[which, with slight abuse of notation we still call gxP (·)] is
one-to-one, we take two pairs (s̃, x̃J ) and (s, xJ ) from the
domain of gxP (·) and show that if gxP (s̃, x̃J ) = gxP (s, xJ ),
then necessarily (s̃, x̃J ) = (s, xJ ).

Indeed, assume that both (s̃, x̃J ) and (s, xJ ) belong to the
domain of gxP (·), i.e., both pairs satisfy conditions (i) and (ii)
above. Suppose that gxP (s̃, x̃J ) = gxP (s, xJ ), or, equivalently,

P(IR ⌦ ˜

XD)s̃ = P(IR ⌦ XD)s (52)

where x = [x

T
P x

T
J ]

T, X = diag(x), x̃ = [x

T
P x̃

T
J ]

T, and ˜

X =

diag(x̃). We next consider (52) as an equation parametrized by
(s, xJ ) in the variables (s̃, x̃J ) and show that this equation has
a unique solution. Since (s̃, x̃J ) = (s, xJ ) (trivially) satisfies
(52), uniqueness then implies that (s̃, x̃J ) = (s, xJ ).

To prove that (52) has a unique solution, we follow the
approach described in Section III and convert (52) into a linear
system of equations through a change of variables. In particular,
thanks to constraint (i), we can left-multiply both sides of (52)
by P[IR ⌦ X]

�1
P

T
P[IR ⌦ ˜

X]

�1
P

T to transform (52) into the
equivalent equation

P

�
IR ⌦ X

�1
D

�
s̃ = P

⇣
IR ⌦ ˜

X

�1
D

⌘
s. (53)

Next, perform the substitutions zi = 1/xi, z̃i = 1/x̃i, i 2
[1 :L], define z , [z1 . . . zL]

T, and set Z , diag(z) so that (53)
can be written as

P (IR ⌦ ZD) s̃ =

LX

i=1

z̃iPai, (54)

where ai = (IR ⌦ diag(ei)D)s, i 2 [1 : L], as defined in (39).
Finally, moving the terms containing the unknowns z̃i, i 2 J ,

to the LHS of (54) while keeping the terms containing the fixed
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parameters z̃i, i 2 P, on the RHS, we transform (54) into the
equivalent equation

P (IR ⌦ ZD) s̃ �
X

i2J
z̃iPai =

X

i2P
z̃iPai. (55)

Defining z̃J , [z̃↵+1 . . . z̃L]

T and using the expression for J(·)
in (40), we can write (55) as

J(s, z)


s̃

�z̃J

�
=

X

i2P
z̃iPai. (56)

The solution of (56) is unique if and only if det J(s, z) 6= 0.
We use Lemma 5 to factorize det J(s, z) according to

det(J(s, z)) = det(J1(z)) det(J2(s)) det(J3(zJ )) . (57)

The first and the third term on the RHS of (57) can be written
as follows

det(J1(z)) =

0

@
L�1Y

j=1

zj

1

A
R̃0

@
LY

j=1

zj

1

A
(R�R̃)

=

0

@
L�1Y

j=1

1

xj

1

A
R̃0

@
LY

j=1

1

xj

1

A
(R�R̃)

det(J3(zJ )) =

Y

j2J

1

zj
=

Y

j2J
xj

and are nonzero due to constraint (i) stated at the beginning
of this Appendix; det(J2(s)) 6= 0 due to constraint (ii). Hence
det J(s, z) 6= 0 and the solution of (56) in the variables (s̃, z̃J ) is
unique. Therefore, the solution of (52) [parametrized by (s, xJ )]
in the variables (s̃, x̃J ) is unique. This completes the proof.

We conclude this section by closing an issue that was left
open in the back-of-the-envelope calculation in Section III.
Specifically, we will show that the matrix B in (9) is full-rank.
For L = 3 and R = Q = 2, the matrix B in (9) is related to J(·)
in (40) according to B = (I2 ⌦X)J(s, z) with z = [z1 . . . zL]

T.
Hence det(B) = det(I2 ⌦X) det(J(s, z)). Since we assumed
in Section III that

��
xi

��
> 0, i 2 [1 :L], we have det(I2 ⌦X) 6= 0.

Together with det(J(s, z)) 6= 0, a.e., as shown above, we can
conclude that, indeed, det(B) 6= 0, a.e., as claimed in Section III.

APPENDIX D
PROOF OF LEMMA 6

Instead of working with

I ,
Z

CN

exp(�kuk2
) log(|p(u)|)du (58)

it will turn out convenient to consider
��
I

�� and to show that
��
I

��
<

1, which trivially implies I > �1. As already mentioned, the
proof of

��
I

��
< 1 is based on Theorem 7. In order to be able

to apply Theorem 7 we will need to transform the integration
domain in (58) into a compact set inR2N , transform the complex-
valued polynomial p(·) into a real-valued function, and get rid of
the term exp(�kuk2

). All this will be accomplished as follows.
First, we bound

��
I

�� by a sum of two integrals over the set CN ,
then, we apply a change of variables to transform these two
integrals into three new integrals. The first two of these three

integrals are over the set [0, 1], which is still not compact, but
the resulting integrals are simple enough to be bounded directly.
The third integral is over a compact set and can, thus, be bounded
using Theorem 7. We now implement the program just outlined.

Let K denote the degree of the homogeneous polynomial p(·).
Then, by homogeneity of p(·),

p(u) = p

✓
kuk u

kuk
◆

= kukK
p

✓
u

kuk
◆

and, therefore,

I =

Z

CN

exp(�kuk2
) log(|p(u)|)du

= K

Z

CN

exp(�kuk2
) log(kuk)du

| {z }
I1

+

Z

CN

exp(�kuk2
) log(|p(u/kuk)|)du

| {z }
I2

.

We next change variables in I1 and I2 by first transforming the
domain of integration from CN to R2N and then using polar
coordinates [26, p. 55]. Specifically, we introduce the function
u : R2N ! CN that acts according to

u(v) , [v1 + iv2 · · · v2N�1 + iv2N ]

T
, (59)

and the function v : R+ ⇥ � ! R2N with � , [0,⇡]

2N�2 ⇥
[0, 2⇡] defined through

v(r, t) , rf(t) (60)

with

f(t) ,

2

66666664

sin(t1) sin(t2) . . . sin(t2N�2) sin(t2N�1)

sin(t1) sin(t2) . . . sin(t2N�2) cos(t2N�1)

sin(t1) sin(t2) . . . cos(t2N�2)

...
sin(t1) cos(t2)

cos(t1)

3

77777775

. (61)

It follows from (59)–(61) that

ku(v(r, t))k = kv(r, t)k = r

and therefore
u(v(r, t))

ku(v(r, t))k =

u(rf(t))

r

= u(f(t)).

The determinant of the Jacobian of the function v(·) is well-
known and is given by [26, p. 55]

det

@v

@(r, t)

= r

2N�1
sin(t1)

2N�2
sin(t2)

2N�3
. . . sin(t2N�2)| {z }

g(t)

.

Changing variables in I1 and I2 according to u ! v ! (r, t),
we obtain

I1 = K

Z

r,t
exp(�r

2
) log(r)r

2N�1
g(t)drdt

I2 =

Z

r,t
exp(�r

2
) log(|p(u(f(t)))|)r2N�1

g(t)drdt.
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By the triangle inequality we have

|I|  |I1| + |I2|.
Using

��
g(t)

��
< 1, we get

|I1|  K 2⇡

2M�1

Z 1

0

exp(�r

2
)|log(r)|r2N�1

dr < 1

|I2| 
Z 1

0

exp(�r

2
)r

2N�1
dr ⇥

Z

�

|log(|p(u(f(t)))|)|dt

 c

Z

�

��
log(|p(u(f(t)))|2)��dt. (62)

We hereby disposed of the integrals over unbounded domains
and are left only with an integral over the compact set �. Note
also that by absorbing a factor 1/2 into c we introduced a square
in (62), which will turn out useful later. In order to prove that��
I

��
< 1 it now remains to show that

I3 ,
Z

�

��
log(|p(u(f(t)))|2)��dt < 1. (63)

Note that
��
p(u(f(·)))��2 : � ! R+ is a real analytic function

by [14, Prop. 2.2.2], because it is a composition of the polynomial��
p(u(·))��2 : R2N ! R+ and the function f(·) : � ! R2N

that has real analytic components (trigonometric functions are
real analytic on R). Furthermore, by assumption, p(·) 6⌘ 0

and hence
��
p(u(f(·)))��2 6⌘ 0. Finally, � is a compact set. The

inequality (63) now follows by application of Theorem 7. This
concludes the proof.

APPENDIX E
PROOF OF THEOREM 7 VIA RESOLUTION OF SINGULARITIES

In order to prove Theorem 7 note that
R
�⇢RM

��
log

���
f(u)

�����
du

would clearly be finite if the function f(·) were bounded away
from zero on the set �. Unfortunately, this is not the case. How-
ever, because f(·) is real analytic and f(·) 6⌘ 0, it can take on
the value zero only on a set of measure zero [14, Cor. 1.2.6]. Es-
tablishing whether the integral

R
�⇢RM

��
log

���
f(u)

�����
du is finite,

hence requires a fine analysis of the behavior of
��
log

���
f(·)����� in

the neighborhood of the zero-measure set f

�1
({0}). This can

be accomplished using Hironaka’s Theorem on the Resolution
of Singularities, which allows one to write f(·) as a product
of a monomial and a nonvanishing real analytic function in the
neighborhood of each point u where f(u) = 0. The logarithm of
this product can then easily be bounded and shown to be finite.
As the tools used in the following are non-standard, at least in the
information theory literature, we review the main ingredients in
some detail. Formally, Hironaka’s Theorem states the following:

Theorem 10. [11, Theorem 2.3] Let f(·) 6⌘ 0 be a real analytic
function [14, Def. 1.1.5] from a neighborhood of the origin 0,
denoted ⌦ ✓ RK , to R, which satisfies f(0) = 0. Then, there
exists a triple (W, M, (·)) such that
(a) W ⇢ ⌦ is an open set in RK with 0 2 W ,
(b) M is a K-dimensional real analytic manifold [11, Def. 2.10]

with coordinate charts {Mp,'p : C(0, ✏p) ! Mp} for
each point p 2 M, where'p(·) is an isomorphism6 between
C(0, ✏p) and Mp with 'p(0) = p.

6Let U and V be two real analytic manifolds. A real analytic map f : U ! V
is called an isomorphism between Ũ ⇢ U and Ṽ ⇢ V if it is one-to-one and an
onto map from Ũ to Ṽ whose inverse on Ṽ is also a real analytic map.

(c)  : M ! W is a real analytic map,
that satisfies the following conditions:

(i) The map  (·) is proper, i.e., the inverse image of every
compact set under  (·) is compact.

(ii) The map  (·) is an isomorphism [11, Def. 2.5] between
M \ (f �  )

�1
({0}) and W \ f

�1
({0}).

(iii) For every point p 2 M \ ((f �  )

�1
({0})), there exist

mp, np 2 NK
0 and a real analytic function gp(·) that is

bounded and nonvanishing on C(0, ✏p) such that

|(f �  � 'p)(v)| = v

mp
, for all v 2 C(0, ✏p)

and the determinant of the Jacobian of the mapping ( �
'p)(·) satisfies

det

✓
@( � 'p)

@v

◆
= gp(v)v

np
, for all v 2 C(0, ✏p).

Thanks to Theorem 10, in the neighborhood of zero, every
real analytic function that satisfies f(·) 6⌘ 0 and f(0) = 0

can be written as a product of a monomial and a nonvanishing
real analytic function. In order to bound the integral in (45), we
will need to represent f(·) in this form in the neighborhood of
every point in the domain of integration. This representation
can be obtained by analyzing two cases separately. For points x

such that f(x) 6= 0, by real-analyticity and, hence, continuity, it
follows that f(·) is already nonvanishing in the neighborhood of
x and is hence trivially representable as a product of a monomial
and a nonvanishing real analytic function. For points x such
that f(x) = 0, the desired representation can be obtained by
appropriately shifting the origin in Theorem 10. The following
straightforward corollary to Theorem 10 conveniently formalizes
these statements in a unified fashion.

Corollary 11. Let f(·) 6⌘ 0 be a real analytic function from a
neighborhood of u 2 RK , denoted ⌦ ✓ RK , to R. Then, there
exists a triple (W, M, (·)), such that
(a) W ⇢ ⌦ is an open set in RK with u 2 W ,
(b) M is a K-dimensional real analytic manifold [11, Def. 2.10]

with coordinate charts {Mp,'p : C(0, ✏p) ! Mp} for
each point p 2 M, where Mp is an open set with p 2 Mp

and 'p(·) is an isomorphism between C(0, ✏p) and Mp with
'p(0) = p.

(c)  : M ! W is a real analytic map, that satisfies the
following conditions:

(i) The map  (·) is proper, i.e., the inverse image of any
compact set under  (·) is compact.

(ii) The map ( �'p)(·) is an isomorphism between C(0, ✏p)\
(f �  � 'p)

�1
({0}) and  (Mp) \ f

�1
({0}).

(iii) For every point p 2 M, there exist mp, np 2 NK
0 and real

analytic functions hp(·) and gp(·) that are bounded and
nonvanishing on C(0, ✏p) such that

|(f �  � 'p)(v)| = hp(v)v

mp
, for all v 2 C(0, ✏p)

(64)
and the determinant of the Jacobian of the mapping
( � 'p)(·) satisfies

det

✓
@( � 'p)

@v

◆
= gp(v)v

np
, for all v 2 C(0, ✏p).
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Proof: First consider u such that f(u) 6= 0. As already
mentioned, in this case the statement of the corollary is a pure
formality since f(·) itself is a nonvanishing real analytic function
in the neighborhood of u. Formally, since f(·) is real analytic
and, hence, continuous, there exists an open cube C(u, ✏) on
which f(·) is uniformly bounded and satisfies f(v) 6= 0 for
all v 2 C(u, ✏). In this case, the corollary, therefore, follows
immediately by choosing M , C(u, ✏), W , C(u, ✏), setting
 (·) to be the identity map, defining Mp , M for all p 2 M,
and setting 'p(v) , v + p for all v 2 C(0, ✏).

Next, consider the more complicated case f(u) = 0. The main
idea is to apply Theorem 10 to the function ˜

f(t) , f(t+u), t 2
⌦ � u. Theorem 10 implies that there exists a triple (

˜W,

˜M,

˜

 )

that satisfies (a)–(c) and (i)–(iii) in Theorem 10 for ˜

f(·). Now
let

W , ˜W + u

M , ˜M
 (·) , ˜

 (·) + u.

Then (a)–(c) and (i) in the statement of Corollary 11 follow
immediately from (a)–(c) and (i) in Theorem 10.

Condition (ii) in the statement of Corollary 11 follows from
(ii) in Theorem 10 and the fact that 'p(·) is an isomorphism
between C(0, ✏p) and Mp.

To verify (iii) in the statement of Corollary 11, consider the
following two cases separately. First, let p 2 M such that (f �
 )(p) = 0. Then (iii) in the statement of Corollary 11 follows
from (iii) in Theorem 10 and the fact that

(f �  � 'p)(v) = (

˜

f � ˜

 � 'p)(v), for all v 2 C(0, ✏p)

det

✓
@( � 'p)

@v

◆
= det

 
@(

˜

 � 'p)

@v

!
, for all v 2 C(0, ✏p).

Second, let p 2 M with (f �  )(p) 6= 0. As (

˜

f � ˜

 )(p) =

(f �  )(p), this implies that (

˜

f � ˜

 )(p) 6= 0. Since ˜

f(·) is a
continuous function (as a translation of f(·) that is real analytic
and hence continuous), there exists an ✏p > 0 such that ˜

f(·) is
bounded and nonvanishing on the open cube C(

˜

 (p), ✏p). Now
(ii) in Theorem 10 implies that ˜

 (·) is an isomorphism, i.e.,

˜

 :

˜

 

�1
(C(

˜

 (p), ✏p)) ! C(

˜

 (p), ✏p).

Define'p(v) , ˜

 

�1
(v+

˜

 (p)) for v 2 C(0, ✏p). Then'p(0) =

p and

f( � 'p)(v) = (

˜

f � ˜

 � 'p)(v)

=

˜

f(v +

˜

 (p)), for all v 2 C(0, ✏p).

Therefore, we can simply set hp(v) , ˜

f(v +

˜

 (p)) and the
representation (64) is obtained. Furthermore, since  ('p(v)) =

˜

 ('p(v)) + u =

˜

 (

˜

 

�1
(v +

˜

 (p))) + u = v +

˜

 (p) + u, we
have

det

✓
@( � 'p)

@v

◆
= 1, for all v 2 C(0, ✏p).

We now have all the ingredients required to prove Theorem 7.
Proof: For each u 2 �, Corollary 11 implies that there

exists a triple (Wu, Mu, u) such that Wu ✓ ⌦ is an open set

containing u, Mu is a real analytic manifold, and  u : Mu !
Wu is a proper map. Furthermore, for each p 2 Mu there
exists a coordinate chart {Mu,p,'u,p : C(0, ✏u,p) ! Mu,p},
where Mu,p is an open set with p 2 Mu,p and 'u,p(·) is an
isomorphism between C(0, ✏u,p) and Mu,p with 'u,p(0) = p,
such that ( u � 'u,p)(·) is a real analytic map [11, p.49] on
C(0, ✏u,p) and

|(f �  u � 'u,p)(v)| = hu,p(v)v

mu,p

det

✓
@( u � 'u,p)

@v

◆
= gu,p(v)v

nu,p

for all v 2 C(0, ✏u,p), where gu,p(·) and hu,p(·) are real analytic
functions that are nonvanishing on C(0, ✏u,p). Now, for each
u 2 � we choose an open neighborhood of u, denoted as W 0

u,
and a compact neighborhood of u, denoted �u, such that u 2
W 0

u ⇢ �u ⇢ Wu. Since � is a compact set [27, 2.31] there
exists a finite set of vectors {u1, . . . , uN} with ui 2 � such that

� ⇢
[

i2[1 : N ]

W 0
i ⇢

[

i2[1 : N ]

�i,

where we set W 0
i , W 0

ui
and �i , �ui for i 2 [1 :N ]. Take an

i 2 [1 :N ] and set Mi , Mui , Wi , Wui , and i ,  ui . Since
the mapping  i : Mi ! Wi is proper, the set  i

�1
(�i) ⇢ Mi

is a compact set. Therefore, there exists a finite number Mi of
points p1, . . . , pMi 2 Mi such that

 i
�1

(�i) ⇢
[

j2[1 : Mi]

Mi,j (65)

with Mi,j , Mui,pj . Since (65) holds for all i 2 [1 :N ], we
can upper-bound the integral in (45) as follows:

Z

�

|log(|f(u)|)|du


X

i2[1 : N ]

Z

�i

|log(|f(u)|)|du


X

i2[1 : N ]

X

j2[1 : Mi]

Z

�i\ i(Mi,j)

|log(|f(u)|)|du


X

i2[1 : N ]

X

j2[1 : Mi]

Z

 i(Mi,j)

|log(|f(u)|)|du. (66)

Since f(·) is a real analytic function and, hence, f

�1
({0}) is a

set of measure zero, we have

Z

 i(Mi,j)

|log(|f(u)|)|du =

Z

 i(Mi,j)\f�1({0})
|log(|f(u)|)|du.

(67)
Next, recall that according to (ii) in Corollary 11 ( i � 'pj )(·)
is an isomorphism between Ci,j , C(0, ✏ui,pj ) \ (f �  i �
'pj )

�1
({0}) and i(Mi,j)\f

�1
({0}). Therefore, we can apply
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the change of variables theorem [21, Theorem 7.26] to get
Z

 i(Mi,j)\f�1({0})
|log(|f(u)|)|du

=

Z

Ci,j

��
gi,j(v)v

ni,j
log

�|hi,j(v)v

mi,j |���dv

 sup

v2Ci,j

(|gi,j(v)v

ni,j |)
| {z }

ci,j

Z

Ci,j

��
log

�|hi,j(v)v

mi,j |���dv

(a)
= ci,j

Z

Ci,j

��
log

�|vmi,j |���dv

+ ci,j

Z

Ci,j

��
log

�|hi,j(v)|���dv

(b)
 ci,j

Z ✏i,j

�✏i,j
. . .

Z ✏i,j

�✏i,j

���
KX

k=1

[mi,j ]k log

�|vk|�
���dv1 . . . dvK

+ ci,j sup

v2Ci,j

���
log

�|hi,j(v)|���� (2✏i,j)
K

| {z }
ĉi,j

(c)
 ci,j

KX

k=1

[mi,j ]k

Z ✏i,j

�✏i,j
. . .

Z ✏i,j

�✏i,j

��
log

�|vk|���dv1 . . . dvK + ĉi,j

= ci,j

KX

k=1

[mi,j ]k(2✏i,j)
(K�1)

Z ✏i,j

�✏i,j

��
log

�|v|���dv

| {z }
c̃i,j

+ĉi,j

(d)
< 1. (68)

Here, ci,j , c̃i,j , ĉi,j > 0, i 2 [1 :N ], j 2 [1 :Mi], are finite
constants; in (a) we used the fact that gi,j(·) is bounded and
nonvanishing on Ci,j ; in (b) [mi,j ]k denotes the kth component of
the vector mi,j ; in (c) we used the triangle inequality to bound the
first term, the second term is finite because hi,j(·) is bounded and
nonvanishing on Ci,j ; and in (d) we used

R ✏i,j
�✏i,j log

���
v

���
dv < 1.

Combining (66), (67), and (68), we complete the proof.
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